

UL 971

STANDARD FOR SAFETY

F. OF JIL 977 2021 Nonmetallic Underground Piping For Flammable Liquids

The Liquids Charles Chick to View Tree Liquids

Jung Pan Comp. Click to View Tree Liquids

Jung Pan JI. MORM. COM. Click to view the full POF of UL 9Th 2021

MAY 12, 2021 - UL971 tr1

UL Standard for Safety for Nonmetallic Underground Piping For Flammable Liquids, UL 971

Second Edition, Dated May 12, 2021

Summary of Topics

This new edition of UL 971 dated May 12, 2021 includes a change in requirements to the Manufacturing and Production Leakage Test in <u>25.2</u> and also incorporates editorial changes to include renumbering and reformatting to align with current style.

The new requirement are substantially in accordance with Proposal(s) on this subject dated November 20, 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of UL.

UL provides this Standard "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will UL be liable for any special, incidental, consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this Standard, even if UL or an authorized UL representative has been advised of the possibility of such damage. In no event shall UL's liability for any damage ever exceed the price paid for this Standard, regardless of the form of the claim.

Users of the electronic versions of UL's Standards for Safety agree to defend, indemnify, and hold UL harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney's fees) resulting from any error or deviation introduced while purchaser is storing an electronic Standard on the purchaser's computer system.

tr2 MAY 12, 2021 - UL971

No Text on This Page

JILMORM.COM. Click to view the full POF of UL. 9Th 2021

1

UL 971

Standard for Nonmetallic Underground Piping For Flammable Liquids

First Edition - October, 1995

Second Edition

May 12, 2021

This UL Standard for Safety consists of the Second Edition.

Comments or proposals for revisions on any part of the Standard may be submitted to UL at any time. Proposals should be submitted via a Proposal Request in UL's On-Line Collaborative Standards Development System (CSDS) at https://csds.ul.com.

UL's Standards for Safety are copyrighted by UL. Neither a printed nor electronic copy of a Standard should be altered in any way. All of UL's Standards and all copyrights, ownerships, and rights regarding those Standards shall remain the sole and exclusive property of UL.

COPYRIGHT © 2021 UNDERWRITERS LABORATORIES INC.

No Text on This Page

JILMORM.COM. Cick to view the full POF of UL 9Th 2021

CONTENTS

INIT		DI.	\sim T	
IN	rro	UU		IUN

1	Scope	
2	Units of Measurement	5
3	Undated References	5
4	Glossary	5
CONST	RUCTION	
5	General	7
PERFO	General	
6	General	
7	Short Term Pressure Tests	10
-	Short Term Pressure Tests 7.1 General	10
	7.2 Leakage test	10
	7.1 General 7.2 Leakage test 7.3 Hydrostatic test 7.4 Breakdown test Long Term Pressure Tests 8.1 General 8.2 Sustained pressure test	11
	7.4 Breakdown teet	11
8	Long Term Dressure Tests	11
0	8.1 General	
	8.2 Sustained pressure test	11
	9.3 Cyclic proscure test	
9	8.2 Sustained pressure test 8.3 Cyclic pressure test Vacuum Tests 9.1 General 9.2 Static vacuum test 9.3 Cyclic vacuum test Fitting Torque Test Fitting Bending Test	
9	0.1 Caparal	۱۵
	0.2 Static vacuum toot	۱۵
	9.2 Static vacuum test	۱۵۱۸ ۱۲
10	9.5 Cyclic vacuum test	۱۷۱۷ ۱۲
10	Fitting Ponding Toot	۱۷۱۷ ۱۶
11 12	Ding Dending Test	۱۵۱۵
13	Tipo Boriaing Took	
14		
15		
16		
17		
	17.1 General	
	17.2 Pull strength test	
	17.3 Puncture resistance test	
	17.4 Crush resistance test	
18		
19		
20		
21	Nonmetallic Fitting Stress Crack Test	
22		
23	Permeation Test	21
MANUF	FACTURING AND PRODUCTION TESTS	
24		
25	Leakage Test	23

M	Δ	R	K	IN	ദ

26	General	23
INSTRUC	CTIONS	
27	Conoral	24

JILMORIN.COM. Click to view the full POF of UL 971/2021

INTRODUCTION

1 Scope

- 1.1 These requirements cover primary carrier, secondary containment, integral primary/secondary containment, normal vent and vapor recovery, nonmetallic pipe, fittings, and systems (products) intended for use underground in the distribution of petroleum-base flammable and combustible liquids, alcohols, and alcohol-blended fuels as identified in this standard.
- 1.2 The piping covered by these requirements is intended to be installed and used in accordance with the Flammable and Combustible Liquids Code, NFPA 30 and the Standard for Automotive and Marine Service Station Code, NFPA 30A.
- 1.3 These requirements cover nonmetallic thermoplastic (flexible) and thermoset (rigid) plastic piping with manufacturer-supplied fittings for underground use only. The products covered by this standard have been evaluated for assembly in normal soil applications by qualified persons in accordance with the manufacturer's instructions.
- 1.4 The products covered by this standard have not been evaluated for applications in sumps [more than 12 inches (30.5 cm) from sump wall], as connector pipe (between underground pipe and dispensing device), aboveground or marine use, or other applications exceeding ambient temperatures of 75 °F (23 °C).
- 1.5 A product that contains features, characteristics, components, materials, or systems new or different from those covered by the requirements in this standard, and that involves a risk of fire or of electric shock or injury to persons shall be evaluated using appropriate additional component and end-product requirements to maintain the level of safety as originally anticipated by the intent of this standard. A product whose features, characteristics, components, materials, or systems conflict with specific requirements or provisions of this standard does not comply with this standard. Revision of requirements shall be proposed and adopted in conformance with the methods employed for development, revision, and implementation of this standard.

2 Units of Measurement

2.1 If a value for measurement is followed by a value in other units in parentheses, the second value shall be only approximate. The first stated value is the requirement.

3 Undated References

3.1 Any undated reference to a code or standard appearing in the requirements of this standard shall be interpreted as referring to the latest edition of that code or standard.

4 Glossary

- 4.1 BARRIER LINER The thin inner or outer layer of a composite pipe that contains internal fuels, provides permeation resistance, and protects the outer structural pipe wall from exposure to fuels or external fluids.
- 4.2 CHASE PIPE An underground pipe that is used to route primary carrier, secondary containment, or integral primary/secondary pipe between storage tanks and containment sumps. Typically used to extract pipe without excavation and is not considered secondary containment.

- 4.3 CLOSED SECONDARY CONTAINMENT PIPING SYSTEM A secondary piping system with ends normally closed at the tank and sump with a minimum rated pressure of 50 psig (350 kPa).
- 4.4 FITTING A manufacturer-supplied component designed to connect, branch, or terminate pipe sections and contain liquids. Connections may be threaded, welded, crimped, clamped, compressed, thermo fused, solvent welded, or adhesive joined. Sump boots are not considered fittings.
- 4.5 FLEXIBLE PIPING Pipe with a manufacturer's recommended minimum bend radius less than or equal to 6 feet (1.8 m). Typically constructed from thermoplastic materials.
- 4.6 INTEGRAL Two or more separate components physically joined together or combined to form a single part at the manufacturer. Primary and secondary pipe joined in the field with a common fitting is not considered integral.
- 4.7 INTEGRAL PRIMARY/SECONDARY PIPE A single pipe, constructed at the manufacturer, that combines both primary carrier and secondary containment with an interstitial space that can be monitored for leakage.
- 4.8 METALLIC Pipe, fittings, or components primarily consisting of metals (typically corrosion-resistant malleable types such as steel, aluminum, copper, and brass) with or without minor nonmetallic components (such as gaskets, seals, sleeves or bushings).
- 4.9 NON-INTEGRAL PRIMARY/SECONDARY PIPE A pipe system with independent primary carrier and secondary containment connected in the field with an interstitial space that can be monitored for leakage.
- 4.10 NONMETALLIC Pipe, fittings, or components primarily consisting of nonmetals (typically polymeric thermoplastics, thermosets or composites) with or without minor metallic components (such as foils, braids, tapes, sleeves, or bushings).
- 4.11 NORMAL VENT PIPE A pipe system intended to transfer displaced gases (air and fluid vapors) from the top of an underground tank to grade during filling and provide atmospheric pressure equalization.
- 4.12 OPEN SECONDARY CONTAINMENT PIPING SYSTEM A secondary piping system with ends normally open at the sump and a minimum rated pressure of 5.0 psig (35 kPa).
- 4.13 PIPE A long Cylindrical thin-walled structure designed for the intended use of underground burial and conveying or containing liquids. The pipe structure may be formed from homogenous (single material), composite (multiple materials mixed together) or integral (individual materials joined as one component) elements.
- 4.14 PIPE OR FITTING SIZE Nominal or trade size (inches or mm) based on inside diameters of pipe and fittings.

Note – Nominal or trade sizes may not be equivalent to the actual measurements.

- 4.15 PIPING SYSTEM A combination of pipes and fittings joined to contain liquids transferred between a storage tank and sumps or dispensers (primary, secondary, or integral primary/secondary types) and vapor or air transfer between dispenser or tank to atmosphere (normal vent and vapor recovery types). The system may be primary, secondary, or an integral primary/secondary type. Also known as system.
- 4.16 PRIMARY CARRIER PIPE Pipe intended to be in continuous contact with the liquid flowing in a piping system under normal use. Also known as carrier pipe, primary pipe, or product pipe.

- 4.17 QUALIFIED PERSON A worker specifically trained by the manufacturer to perform proper installations of its piping systems in the field in accordance with the specified instructions. The qualified person is not required to be an employee of the manufacturer.
- 4.18 RIGID PIPING Pipe with a manufacturers recommended minimum bend radius greater than 6 feet (1.8 m). Typically constructed from thermoset materials.
- 4.19 SECONDARY CONTAINMENT PIPE Pipe intended to contain the liquid of a piping system during abnormal use (for example, primary carrier pipe leaks and sump or dispenser spills).
- 4.20 SUMP Accessible atmospheric enclosure located underground, typically below a dispenser or above a tank, and designed to monitor leaks, contain spills and house connector pipe and control valves.
- 4.21 UNDERGROUND Physically located below the surface layer of the earth in contact with soil (direct burial) or routed in a secondary or chase pipe (indirect burial). Underground does not include sump use more than 12 inches (30.5 cm) from the sump wall.
- 4.22 VAPOR RECOVERY PIPE A pipe system intended to transfer collected gasses (air and fluid vapors) from a vacuum system to an underground tank during dispensing. Also known as vapor pipe.

CONSTRUCTION

5 General

- 5.1 All materials used in the construction of pipe, fittings or systems shall be suitable for their intended use with respect to normal (expected use within marked ratings) and abnormal (reasonable foreseeable misuse) conditions per the required performance tests described in Table 6.1.
- 5.2 Metallics used in the construction of pipe, fittings or systems shall be inherently corrosion resistant (stainless steel, aluminum, brass) or be evaluated as equivalent to coating Designation G90 (galvanized with minimum 40 percent zinc on all sides) in ASTM A653/A653M, Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process. Metallics shall not promote dielectric corrosion of dissimilar metals.
- 5.3 All nonmetallics used in the construction of pipe, fittings, and systems shall be evaluated for long term exposure compatibility to air, soil, ultraviolet light and internal and external fluids at maximum 75 °F (23 °C) expected use
- 5.4 All gaskets and seals used to contain fluids used in piping systems shall comply with the performance tests in <u>Table 6.1</u> plus the applicable requirements for their intended use in the Standard for Gaskets and Seals, UL 157.
- 5.5 All adhesives used to join components in piping systems shall comply with the performance tests for the system in <u>Table 6.1</u> and the requirements for "Adhesives Specialized Applications" specified in the Standard for Polymeric Materials, UL 746C.
- 5.6 All tapes used to join components in piping systems shall comply with the performance tests for the system in Table 6.1 and the requirements for the "Tape Adhesion Test" specified in the Standard for Polymeric Materials, UL 746C.

PERFORMANCE

6 General

- 6.1 Representative sample sizes of each type pipe, component, or system shall be subjected to the appropriate Performance Tests as specified in Table 6.1:
 - a) Pipe type rigid (R), flexible (F);
 - b) Component pipe (P), fitting (F);
 - c) System primary carrier (PC), secondary containment (SC), integral primary/secondary (PS), normal vent (NV) or vapor recovery (VR).
- 6.2 Critical dimensions of all pipe (as applicable for each pipe construction and test shall be measured before testing in accordance with ASTM D 3567, Standard Practice for Determining Dimensions of "Fiberglass" (Glass-Fiber-Reinforced Thermosetting Resin) Pipe and Fittings. All test samples shall be within the manufacturer's quality control specifications for minimum and average thickness and diameter.
- 6.3 Calculated hoop stress of each type pipe in all nominal sizes in a product range shall be determined by the formula:

$$S = \frac{P(D-t)}{2t}$$

in which:

S is hoop stress (psi),

P is the breakdown pressure (psi) per 7.4,

D is the average outside diameter inches per 6.2, and

t is the minimum wall thickness inches per 6.2.

This information may be used to determine "worst case" sizes for some tests to reduce samples.

- 6.4 Representative sample sizes for the Performance Tests specified in Table 6.1 are defined as either
 - a) "ALL" for all nominal or trade sizes in a product range,
 - b) "WC" for worst case sizes per maximum average hoop stress per <u>6.3</u>, or other analytical method, or
 - c) As otherwise indicated in the specific test.

Table 6.1
Performance Tests for Underground Piping

Clause	Test	Pipe type	Sample	Component/System
<u>7</u>	Short Term Pressure			
<u>7.2</u>	Leakage	R, F	ALL	PC, SC, PS, NV, VR

Table 6.1 Continued

Clause	Test	Pipe type	Sample	Component/System
<u>7.3</u>	Hydrostatic	R, F	ALL	PC, SC, PS, NV, VR
<u>7.4</u>	Breakdown	R, F	ALL	PC, SC, PS, NV, VR
<u>8</u>	Long Term Pressure			
<u>8.2</u>	Sustained Pressure	F	WC	PC, PS
<u>8.3</u>	Cyclic Pressure	R	WC	PC, PS
<u>9</u>	Vacuum			
<u>9.2</u>	Static Vacuum	R, F	ALL	PC, PS, NV
<u>9.3</u>	Cyclic Vacuum	R, F	ALL	PC, PS, VR
<u>10</u>	Fitting Torque	R, F	ALL	FO
<u>11</u>	Fitting Bending	R, F	ALL	UD V
<u>12</u>	Pipe Bending	R, F	ALL	P
<u>13</u>	Drop	R, F	ALL O	F, P
<u>14</u>	Drop after Conditioning	R, F	ALL	F, P
<u>15</u>	Ball Impact	R, F	ANL ALL	PC, SC, PS, NV, VR
<u>16</u>	Ball Impact after Conditioning	R, F	ALL	PC, SC, PS, NV, VR
<u>17</u>	Pipe Burial			
<u>17.2</u>	Pull Strength	R, F	ALL	PC, SC, PS, NV, VR
<u>17.3</u>	Puncture Resistance	R, F	ALL	PC, SC, PS, NV, VR
<u>17.4</u>	Crush Resistance	R, F,	ALL	PC, SC, PS, NV, VR
<u>18</u>	Long Term Compatibility	R/F	WC	PC, SC, PS, NV, VR
<u>19</u>	Interstitial Communication	R, F	WC	PC, SC, PS, NV, VR
<u>20</u>	UV Compatibility	R, F	WC	PC, SC, PS, NV, VR
<u>21</u>	Nonmetallic Fitting Stress	R, F	WC	F
<u>22</u>	Metallic Fitting Stress	R, F	WC	F
<u>23</u>	Permeation	R, F	WC	PC, SC, PS

NOTE – "WC" (worst case) indicates a sample, size, or test condition that is most likely to cause a non-complying result. Material, thickness, construction, components, and connections are to be considered for the selection of worst case samples or test conditions.

- 6.5 Representative worst case sample sizes for Long Term Compatibility and Permeation Tests shall be based on the minimum thickness of interior or exterior materials in contact with the test fluids.
- 6.6 New samples may be used for each test except for the sequence of the Short Term Pressure Tests (Leakage per 7.2, Hydrostatic per 7.3 and Breakdown per 7.4), which shall use the same sample and test equipment at successively higher pressures.
- 6.7 Assembly of all piping system samples shall be conducted by a qualified person using manufacturersupplied components and tools in accordance with the manufacturer's instructions (minimum thread or screw torques, minimum cure temperature and time, crimp setting, or other critical parameters). If multiple methods of connecting pipe and fittings are used, each shall be evaluated.
- 6.8 Damage shall be determined by visual examination of any critical part of a component or system sample after testing. The following items are examples of complying and non-complying results:

- a) Flexible Piping and Fittings discoloration or minor dimensional change is acceptable, but major dimensional change, cracking, splitting, bulging, collapse, and delamination are non-complying results;
- b) Rigid Piping and Fittings discoloration or minor stress cracking is acceptable, but major cracking, splitting, bulging, collapse, and delamination are non-complying results.
- 6.9 Unless otherwise indicated in a specific test method, all tests shall be conducted with working fluids at 70 ±10 °F (20 ±6 °C) or at normal ambient temperatures between 65 °F and 85 °F (17 °C and 29 °C) and 50 percent (± 20 percent) RH. All pressures shall be measured with respect to gauge (psig).
- 6.10 Unless otherwise indicated in a specific test method, hydrostatic tests shall be conducted with water and pneumatic tests shall be conducted with air (or other inert gasses). In either case, preçautions shall be 1202 used to prevent personal injury.

7 Short Term Pressure Tests

7.1 General

- 7.1.1 Three 3-foot lengths of pipe types and systems indicated in each test method in all sizes shall be:
 - a) Measured per 6.2,
 - b) Assembled per 6.7, and
 - c) Tested in a continuous sequence in accordance with the Leakage, Hydrostatic, and Breakdown tests specified in 7.2 - 7.4.

Six 3-foot samples of integral primary/secondary pipe are required to separately test the primary (3 samples) and secondary (3 samples).

- 7.1.2 All pipe systems evaluated are to be filled with water before applying the test pressures hydrostatically. The test sequence shall start at 0 psig and gradually increase at:
 - a) 10 ±5 psig/min for pipe rated less than 50 psig;
 - b) 100 ±20 psig/min for pipe rated 50 psig or more.

There shall be a minimum 5-minute pause at each test level (except for the Breakdown Test, 7.4) when the samples are to be visually examined for damage and leakage. Filling and sealing the primary of an integral pipe is permitted when testing the secondary to prevent implosion.

7.1.3 All samples used for the Short Term Pressure Tests shall be tested hydrostatically. Alternatively, an aerostatic method or combined hydrostatic/aerostatic method may be used if found superior to the hydrostatic method when accurately determining leakage. Leakage is to be detected by visual examination with the aid of dyes, leak solution, blotting paper, bubble submersion or any other accurate and repeatable method.

7.2 Leakage test

- 7.2.1 Rigid and flexible type primary carrier, secondary containment, integral primary/secondary, normal vent and vapor recovery pipe systems shall be subjected to the Leakage Test.
- 7.2.2 The Leakage Test pressure shall be twice the rating, and there shall be no leakage or any noncomplying damage (see 6.8) while the samples are pressurized.

7.3 Hydrostatic test

- 7.3.1 Rigid and flexible type primary carrier, secondary containment, integral primary/secondary, normal vent and vapor recovery pipe systems shall be subjected to the Hydrostatic Test.
- 7.3.2 The Hydrostatic Test pressure shall be five times the rating. There shall be no leakage while the samples are pressurized.

7.4 Breakdown test

- 7.4.1 Following the Hydrostatic Test, rigid & flexible type primary carrier, secondary containment, integral primary/secondary, normal vent and vapor recovery pipe systems shall be subjected to the following test.
- 7.4.2 The test pressure is to be gradually increased at the rates specified in 7.1.2 until severe leakage, rupture or burst occurs. The type and location of the breakdown or other significant observations (damage) shall be recorded along with the breakdown pressure for use in determining the retention values with other tests.

8 Long Term Pressure Tests

8.1 General

- 8.1.1 Three 3-foot lengths of pipe types and systems indicated in each test method in all sizes shall be:
 - a) Measured per 6.2,
 - b) Assembled per 6.7, and
 - c) Tested in accordance with the Sustained Pressure Test, 8.2, or the Cyclic Pressure Test, 8.3, as appropriate.

Only the primary of an integral primary/secondary system shall be pressurized for the test.

8.1.2 Worst case samples used for the Long Term Pressure Tests shall use water as the test fluid. Leakage shall be detected by visual examination with or without dyes, leak solution, blotting paper, bubble submersion or any other accurate and repeatable method.

8.2 Sustained pressure test

- 8.2.1 Only flex type primary carrier and the primary of integral primary/secondary systems shall be subjected to the Sustained Pressure Test.
- 8.2.2 Three samples of each system shall be tested in accordance with ASTM D 2837, Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials, with the breakdown time and pressures recorded at targeted times of approximately 1, 10, 100, 1000, and 2000 hours.
- 8.2.3 Following the collection of all data points, a log and log plot of time verses pressure shall be developed, and a 30-year breakdown pressure extrapolated. The rated pressure shall be greater than the extrapolated 30-year breakdown pressure.

8.3 Cyclic pressure test

8.3.1 Only rigid type primary carrier and the primary of integral primary/secondary systems shall be subjected to the Cyclic Pressure Test.

- 8.3.2 Three samples of each system shall be tested in accordance with ASTM D 2143, Test Method for Cyclic Pressure Strength of Reinforced Thermosetting Plastic Pipe. Alternating pressures (between 0 and rated pressure of equal times) shall be applied at 25 ±2 cycles per minute for 1.5 million cycles.
- 8.3.3 Following the completion of the cycling, the test samples shall be visually examined for damage and leakage. There shall be no leakage or any non-complying damage during or after testing.

9 Vacuum Tests

9.1 General

- 9.1.1 Three 3-foot lengths of pipe types and systems indicated in each test method in all sizes shall be measured per <u>6.2</u> and assembled per <u>6.7</u>, then tested in accordance with either <u>9.2</u>, Static Vacuum Test or <u>9.3</u>, Cyclic Vacuum Test or both. Only primary pipe or the primary of an integral primary secondary normal vent or vapor recovery piping system shall be tested.
- 9.1.2 Vacuum tests shall be conducted on all samples using air. Unless otherwise specified, a leakage test shall be conducted using water as the test fluid. Leakage shall be detected by visual examination with or without dyes, leak solution, blotting paper, bubble submersion or any other accurate and repeatable method.

9.2 Static vacuum test

- 9.2.1 Rigid and flexible type normal vent pipe systems shall be subjected to the Static Vacuum Test.
- 9.2.2 All samples shall be subjected to a static vacuum of 28 inches Hg for 60 minutes followed by the Leakage Test specified in 7.2 and visual examination?
- 9.2.3 Following the test sequence, there shall be no leakage or any non-complying damage.

9.3 Cyclic vacuum test

- 9.3.1 Rigid and flexible type vapor recovery pipe systems shall be subjected to the Cyclic Vacuum Test.
- 9.3.2 All samples are to be subjected to alternating pressures (approximately 3 seconds at 0 and approximately 7 seconds at rated vacuum) applied at 6 cycles per minute for 250,000 cycles followed by the Leakage Test specified in 7.2 and visual examination.
- 9.3.3 Following the test sequence, there shall be no leakage or any non-complying damage.

10 Fitting Torque Test

- 10.1 Six 3-foot samples of all metallic or nonmetallic, rigid, and flexible-type fittings with any threaded connections in all sizes intended to accommodate threaded components not included in the manufacturer's piping system (such as connector pipe or valves) are to be assembled to mating nonmetallic pipe per 6.7. The samples shall then be assembled to a threaded Schedule 40 steel pipe at the torque values indicated in 10.2 at normal and low temperatures. The Leakage Test, 7.2, shall then be repeated. Ninety-degree elbows are to be considered worst case for this test.
- 10.2 Three samples are to be assembled at 1-1/2 times the manufacturer's torque value under normal temperature conditions and another three samples are to be assembled at minus 20 $^{\circ}$ F (minus 30 $^{\circ}$ C). All of the samples shall then be subjected to the leakage test specified in $\underline{10.1}$ under normal temperature conditions.

10.3 The samples shall not leak or show any signs of non-complying damage when subjected to the test torques or pressures.

11 Fitting Bending Test

- 11.1 Six 3-foot samples of all metallic or nonmetallic, rigid, and flexible-type fittings with threaded connections intended to accommodate threaded components not included in the manufacturer's piping system (such as connector pipe or valves) in all sizes are to be assembled to mating nonmetallic pipe per 6.7. The samples are then be assembled to a 4-foot length of Schedule 40 steel pipe and subjected to the bending moment indicated in 11.2 and 11.3. The Leakage Test specified in 7.2 shall be repeated. Ninety-degree elbows are to be considered worst case for this test.
- 11.2 Three samples are to be fixed (without adding or reducing the pipe stress) and subjected to a 2000 ft-lb bending moment applied within 1 minute at the top of the pipe under normal temperature conditions. The bending moments are to be applied both parallel and perpendicular to the pipe axis within 1 minute of each other. If the nonmetallic or steel pipe bends more than 45 degrees from the original axis before reaching the maximum value, the bending moment shall be stopped. The remaining three samples are to be subjected to the same test method except the temperature shall be minus 20 °F (minus 30 °C). After the conditioned samples return to normal temperature, all samples are to be subjected to the leakage test specified in 10.1.
- 11.3 The samples shall not leak or show any signs of non-complying damage when subjected to the bending load or and test pressures.

12 Pipe Bending Test

- 12.1 Six samples of rigid and flexible type pipe in all sizes, minimum 10 feet long, are to be measured per <u>6.2</u> and assembled per <u>6.7</u>. The samples are to be divided into two equal sets of three. The samples of each set shall be provided with capped end fittings, and two of those samples shall be provided with centered connection fittings. All samples are to be subjected to a bending radius or deflection load per <u>12.2</u> and <u>12.3</u> at normal and low temperatures. The radius is to be measured at the pipe center. The Leakage Test specified in <u>7.2</u> is to be repeated while in the bent position.
- 12.2 One set of samples is to be bent 1-1/2 times below the manufacturer's minimum bending radius (for pipe with marked bending radius) or deflected 1-1/2 times the centered distance at no load of the longest pipe (for pipe with zero bend radius) under normal temperature conditions for 1 minute. The other set of samples is to be subjected to the same test method except the temperature shall be minus 20 °F (minus 30 °C). The bend is to be applied using a simple support, 2- or 3-point loading system, or a mandrel. Any forces used are to be applied at the ends or center to equalize bending. After the conditioned samples return to normal temperature, all samples are to be subjected to the leakage test specified in 7.2 while in the bent position.
- 12.3 The samples shall not leak or show any signs of non-complying damage when subjected to the bending load or and test pressures.

13 Drop Test

- 13.1 Three 2-foot samples of all rigid and flexible type pipe and fittings shall be measured per <u>6.2</u>, then subjected to a drop test as indicated in <u>13.2</u> and <u>13.3</u>. Following the drop, pipe and fittings are to be assembled per <u>6.7</u> and the Leakage Test specified in <u>7.2</u>, is to be repeated. Fittings are to be tested as parts (shell halves, bushings, rings, etc.) and subassemblies, except for metal and rubber components.
- 13.2 Each fitting component, fitting, and pipe is to be dropped six feet (measured from the bottom of the test sample) onto a flat concrete surface. The samples are to be impacted at the worst case locations.

Each sample is to be visually examined before system assembly and evaluation to the Leakage Test specified in 7.2.

13.3 If non-complying damage is visible to the naked eye from three feet away, the test is to be repeated with new samples at a reduced drop height. The drop height is to be maximum 6 inches below the original height but not less than 3 feet. The drops are to be repeated (each time reduced by 6-inch increments) until no damage is visible. The leakage test shall then be repeated. The samples shall not leak or show any signs of non-complying damage when assembled and subjected to the test pressure.

14 Drop Test After Conditioning

- 14.1 Six 2-foot samples of all rigid and flexible type pipe and fittings are to be measured per <u>6.2</u>, with three samples conditioned for a minimum of 2 hours at 120 °F (50 °C) and three samples conditioned for a minimum of 16 hours at minus 20 °F (minus 30 °C). The samples are then to be subjected to a drop test as indicated in <u>14.2</u> and <u>14.3</u>. Following the drop, pipe and fittings are to be assembled per <u>6.7</u>, and the Leakage Test specified in <u>7.2</u> is to be repeated. Fittings are to be tested as parts (shell halves, bushings, rings, etc.) and subassemblies, except for metal and rubber components.
- 14.2 Each fitting component, fitting, and pipe is to be dropped six feet (measured from the bottom of the test sample) onto a flat concrete surface. The samples are to be impacted at the worst case locations. Each sample is to be visually examined before system assembly and evaluation to the Leakage Test specified in 7.2.
- 14.3 If non-complying damage is visible to the naked eye from three feet away, the test is to be repeated with new samples at a reduced drop height. The drop height is to be maximum 6 inches below the original height but not less than 3 feet. The drops are to be repeated (each time reduced by 6-inch increments) until no damage is visible. The leakage test shall then be repeated. The samples shall not leak or show any signs of non-complying damage when assembled and subjected to the test pressure.

15 Ball Impact Test

- 15.1 Three 2-foot samples of all rigid and flexible pipe systems are to be measured per <u>6.2</u> and assembled per <u>6.7</u>. The samples are then to be subjected to the ball impact test as indicated in <u>15.2</u> and <u>15.3</u>. Following the impact test, the Leakage Test specified in <u>7.2</u> is to be repeated. Only exposed parts of the fitting and pipe after assembly (except for metal or rubber components) are to be subjected to this test.
- 15.2 Each pipe system shall be impacted with a 1.18-lb, 2.0-inch diameter steel ball dropped from 6 feet (measured from ball bottom to test point) on worst case locations of the fitting and pipe surface. The sample is to be visually examined before being subjected to the Leakage Test specified in 7.2.
- 15.3 If non-complying damage is visible to the naked eye from three feet away, the test is to be repeated with new samples impacted at a reduced drop height. The steel ball is to be dropped maximum 6 inches from the original height but not less than 3 feet. The impacts are to be repeated (each time reduced by 6-inch increments) until no damage is visible. The leakage test shall then be repeated. The samples shall not leak or show any signs of non-complying damage when assembled and subjected to the test pressure.

16 Ball Impact Test After Conditioning

16.1 Six 2-foot samples of all rigid and flexible pipe systems are to be measured per <u>6.2</u> and assembled per <u>6.7</u>, with three samples conditioned for a minimum of 2 hours at 120 °F (50 °C) and three samples conditioned for a minimum of 16 hours at minus 20 °F (minus 30 °C). The samples are then to be subjected to a ball impact test as indicated in <u>16.2</u> and <u>16.3</u>, followed by the Leakage Test specified in <u>7.2</u>. Only exposed parts of the fitting and pipe after assembly (except for metal or rubber components) are to be subjected to this test.

- 16.2 While still at the conditioning temperature, each pipe system is to be impacted with a 1.18-lb, 2.0-inch diameter steel ball dropped 6 feet (measured from ball bottom to test point) on worst case locations of the fitting and pipe surface. The sample is then to be visually examined before being subjected to the Leakage Test specified in 7.2.
- 16.3 If non-complying damage is visible to the naked eye from three feet away, the test is to be repeated with new samples impacted at a reduced drop height. The steel ball is to be dropped maximum 6 inches from the original height but not less than 3 feet. The impacts are to be repeated (each time reduced by 6-inch increments) until no damage is visible. The leakage test shall then be repeated. The samples shall not leak or show any signs of non-complying damage when assembled and subjected to the test pressure.

17 Pipe Burial Tests

17.1 General

- 17.1.1 Three 18-inch lengths of all rigid and flexible pipe systems in all sizes for each test method are to be measured per $\underline{6.2}$ and assembled per $\underline{6.7}$, then tested in accordance with the Pull Strength, Puncture Resistance, and Crush Resistance tests specified in $\underline{17.2} \underline{17.4}$ respectively. Both the primary and secondary of an integral primary/secondary system shall be evaluated; however, separate samples may be used if necessary.
- 17.1.2 After each Pipe Burial Test, all samples shall be subjected to the Leakage Test specified in <u>7.2</u>. Water shall be used as the test fluid to determine compliance. Leakage shall be detected by visual examination with or without dyes, leak solution, blotting paper, bubble submersion or any other accurate and repeatable method.

17.2 Pull strength test

17.2.1 Two 18-inch samples of each system shall be subjected to a pull force applied by a loading machine. The force is to be applied at the end fittings parallel to the axis at 1/2 inch per minute until the maximum value per <u>Table 17.1</u> is obtained and held for 1 minute. After unloading the force, the sample shall be visually examined before being subjected to the Leakage Test.

Table 17.1 Pull Force

Nominal p	ipe size,	Tens	sion,
inches	(mm)	pounds	(N)
3/8 – 1/2	9.5 – 12.7	300	1334
3/4	19.1	350	1557
1	25.4	400	1779
1-1/4	31.8	500	2224
1-1/2	38.1	600	2669
2	50.8	800	3579
2-1/2	63.5	1000	4448
3	76.2	1200	5338
4	101.6	1600	7117

17.2.2 The samples shall not leak or show any signs of non-complying damage after the applied force or when subjected to the test pressure.

17.2.3 One additional sample is to be prepared and subjected to the pull test specified in 17.2.1 until breakdown. The maximum load and breakdown details shall be recorded for percent retention comparison purposes.

17.3 Puncture resistance test

- 17.3.1 Three 18-inch samples of each system shall be subjected to a point force applied by a loading machine holding a steel probe with a 0.180-inch diameter shaft with 0.04-inch diameter tip and 30 degree edge. The probe is to be applied at the pipe center perpendicular to the axis at 1/2 inch per minute until a force of 15 lb is obtained and held for 1 minute. After unloading the force, the sample shall be visually examined before being subjected to the Leakage Test.
- 17.3.2 The samples shall not leak or show any signs of non-complying damage after the applied force or when subjected to the test pressure.

17.4 Crush resistance test

- 17.4.1 Three 18-inch samples of each system are to be tested in accordance with ASTM D 2412, Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading. The load is to be applied at the pipe center perpendicular to the axis at 1/2 inch per minute until conditions per 17.4.2 (for rigid pipe) or 17.4.3 (for flexible pipe) are met. After unloading the force, the sample shall be visually examined before being subjected to the Leakage Test.
- 17.4.2 For rigid pipe, the load to obtain a stiffness factor of \$6.25 lbf/in shall be held for 1 minute and the value recorded for comparison purposes.
- 17.4.3 For flex pipe, the load to obtain a 40 percent reduction of the O.D. shall be held for 1 minute and the value recorded for comparison purposes.
- 17.4.4 The samples shall not leak or show any signs of non-complying damage after the applied force or when subjected to the test pressure.

18 Long Term Compatibility Test

18.1 Sets of three 18-inch lengths of each type rigid and flexible pipe systems in representative worst case sizes for each exposure fluid and time period shall be measured per 6.2 and assembled per 6.7. The samples are then to be subjected to the applicable exposures specified in Table 18.1 to simulate long term compatibility to intended use fuels and surrounding environmental conditions. Both the primary and secondary of an integral primary/secondary system shall be evaluated, but separate primary and secondary samples may be used if representative of the materials, design and fittings.

Table 18.1 Compatibility Test Fluids

External soil and environmental fluids at 100 °F (38 °C) required for all pipe systems			
Type A Type B			
Ph 3.0 sulfuric acid	1 percent hydrochloric acid ^a		
Saturated sodium chloride 1 percent nitric acid ^a			
Distilled Water ^b Ph 10 sodium carbonate – sodium bicarbonate ^c			
Air (except at 70 °C) Ph 12 sodium hydroxide			

Table 18.1 Continued

Motor Vehicle Fuels at 100 °F (38 °C) required for pipe systems marked per 26.1(g).				
Туре А				
100 percent ASTM Reference Fuel No. 2				
100 percent ASTM Reference Fuel C				
85 percent Reference Fuel C – 15 percent MTBE				
85 percent Reference Fuel C – 15 percent methanol				
70 percent Reference Fuel C – 30 percent ethanol				
Concentrated Fuels at 1	00 °F (38 °C) required for pipe systems marked per 26.1(g)			
All external soil and envir	onmental fluids and motor vehicle fuels are also required plus			
Туре А	Type B			
100 percent methanol	100 percent Toluene			
100 percent ethanol				
Special use fuels at 100 °F (38 °C) required f	for pipe systems marked for ratings			
All external soil and envir	onmental fluids and motor vehicle fuels are also required plus:			
Type A – Marked per <u>26.1(g)</u> for high blend fuels	, PO,			
50 percent Reference Fuel C – 50 percent methanol	FUI			
50 percent Reference Fuel C – 50 percent ethanol	"the			
Type A – Marked per 26.1(g) for aviation and marine fuels	onmental fluids and motor vehicle fuels are also required plus:			
100 percent premium leaded gas	100			
100 percent kerosene	<i>t</i> 0:			
NOTES				
1) Test parameters, such as temperature and concentrations of media, are increased in severity over those of normal operating conditions to obtain observable deterioration in a reasonable period of time. This accelerated test does not give a direct correlation with service performance. However, this method of testing yields comparative data on which to evaluate the product.				
2) ASTM Reference Fuel C is to be as described in the Test Method for Rubber Property – Effect of Liquids, ASTM D 471-79.				
^a Percentage by weight.				
^b Distilled water having a maximum total matter of 2.0 ppm and a maximum electrical conductivity of 5.0 microhms/cm at 25 °C (77 °F), as described for Type IV grade reagent water in the Standard Specification for Reagent Water, ASTM D 1193-77.				
^c A pH of 10 is to be obtained by mixing 10.6 grams per liter of sodium carbonate and 8.4 grams per liter of sodium bicarbonate. A pH meter is to be used and the ratio of sodium carbonate to sodium bicarbonate is to be adjusted to obtain a pH of 10. The pH is to be checked several times during the test.				

- 18.2 Additional samples shall be permitted to be tested, and the average of all samples tested shall be used as the basis for evaluating performance.
- 18.3 Mechanical pre-flexing shall be permitted prior to testing of as-received samples. The mechanical pre-flexing shall consist of rolling and unrolling based on number of times, spool diameter, and speed parameters associated with manufacturing and installation.
- 18.4 Thermal stress relaxation shall be permitted prior to testing of as-received samples. The thermal stress relaxation shall consist of exposing samples to 65 °C air at 50 percent relative humidity for 12 hours followed by cooling to room temperature.

- 18.5 The samples for this test are to be preconditioned to simulate transport, assembly and installation conditions by using cut length of pipe that has been subjected to the Pipe Bending Test, Section 12 (except at one times the minimum bend radius on samples without fittings), Drop Test, Section 13, and Ball Impact Test, Section 15. All precondition tests do not require a Leakage Test, and the Drop and Impact tests shall be done at heights that do not show visible damage per 13.3 and 15.3 respectively.
- 18.6 Before immersion, one sample (for repeat leakage/breakdown test) per set is to be measured to the nearest 0.004 inch (0.1 mm) for:
 - a) Length between 2 reference points approximately 12 inches (30.5 cm) apart and
 - b) Diameter between 2 reference points near the center of the pipe.

The reference marks are to be visible after the immersion for dimensional comparison specified in 18.9 but shall not damage the pipe. The same sample is to be weighed to the nearest 0.0035 ounces (0.1 g) for use in determining the weight comparison specified in 18.10. Pipe systems using nonmetallic removable fittings (connectors, plugs or caps) are to be measured with the fittings. Pipe systems using metallic removable fittings are to be measured without the fittings. For pipe systems using adhesives, the measurement is to be made after full cure per the manufacturer's instructions. One control sample of each pipe type is to be prepared for post immersion comparison, but shall not be subject to any test fluids.

18.7 All exposures specified in <u>Table 18.1</u> are to be maintained over the entire time period at the indicated temperatures ±4 °F (2 °C) with equipment such as a water bath used for all liquid exposures and a circulating oven used for all air exposures. The exposed surfaces of the test samples for internal and external fluids for each system are to be as indicated in <u>Table 18.2</u> to simulate normal and abnormal use conditions.

Table 18.2 Exposed Surfaces for Test Samples

< f

Pipe system	Test fuels	Soil fluids	Air oven
Primary carrier	PI, PE	PE	All
Secondary containment	SI	SE	All
Integral primary/secondary	PI, PE, SI	SE	All
Normal vent	PI	PE	All
Vapor recovery	PI	PE	All

NOTES

- P = Primary pipe and fittings
- I = Interior surface of pipe and fittings
- S = Secondary pipe and fittings
- E = Exterior surface of pipe and fittings
- All = All interior and exterior surfaces of pipe and fittings
- 18.8 Type A fluids are intended to represent exposures expected in normal use and are to be subjected to 30-, 90-, 180-, and 270-day exposures. Extrapolations (using regression analysis) for the 270-day exposure shall be permitted (to reduce testing and time) but are to be an additional 20 percent above the minimums in $\frac{18.14}{10.15}$ and have a correlation coefficient of 1 ±0.15 to qualify for the waiving of 270-day testing.
- 18.9 Type B fluids are intended to represent exposures more severe than expected and shall be subject to 30-, 90-, and 180-day exposures.

- 18.10 Following each exposure time period, each set of samples is to be drained of any test fluid, dried, and visually examined for damage. One sample (repeat leakage/breakdown) is to be subjected to repeat dimensional and weight measurements per 18.6. The repeat physical tests specified in 18.13 are then to be conducted on individual samples. Fittings shall not be removed or reassembled before the repeat physical tests.
- 18.11 Repeat dimensional measurements are to be made before the or after the repeat leakage/breakdown test. The dimensional change (length and O.D.) shall not exceed ±2 percent of the original sample. Adjustments shall be allowed for differences in the control sample in the as-received condition and at each time period.
- 18.12 Repeat weight measurements may be made before or after the repeat leakage/breakdown test. Any sample material lost from the repeat leakage/breakdown test is to be included in the measurement. The weight change shall not exceed ±5.0 percent of the original sample. Adjustments shall be allowed for differences in the control and test samples at each time period.
- 18.13 Following each exposure time, repeat physical tests are to be conducted in accordance with the:
 - a) Short Term Pressure Tests, Section 7,
 - b) Pull Strength Test, 17.2, and
 - c) Crush Resistance Test, 17.4.

One sample is to be used for each test. The results for these repeat tests shall comply with <u>18.14</u>, <u>18.15</u>, and <u>18.16</u> respectively. Fittings shall not be removed or reassembled before the repeat physical tests.

Exception No. 1: The Hydrostatic Test, 7.3, is not required for (a).

Exception No. 2: For (b), a repeat leakage test is not required and the sample is to be loaded until breakdown.

18.14 Samples subjected to the repeat Short Term Pressure Tests shall comply with the Leakage Test, 7.2 and the Breakdown Test, 7.4, with a breakdown pressure retention value per <u>Table 18.3</u>.

Table 18.3
Retention Values for Long Term Test Samples

		Minimum property reten	tion values (percentage)	
Compatibility test fluids	Pipe system type	Type A	Type B	
External soil and environmental fluids	PC, SC, PS	80	50	
	NV, VR	70	50	
Motor vehicle fuels	PC, SC, PS	80	50	
	NV, VR	70	50	
Concentrated fuels	PC, SC, PS	80	50	
	NV, VR	70	50	
Special use fuels	PC, SC, PS	80	50	
	NV, VR	70	50	
NOTE – See <u>6.1</u> for pipe system type legend.				

- 18.15 Samples subjected to the repeat Pull Strength Test shall comply with either data points or a data curve meeting one of the following:
 - a) The minimum retention values specified in <u>Table 18.3</u> comparing pull breakdown loads of asreceived and conditioned samples, or
 - b) The minimum pull values and breakdown values complying with both of the following:
 - 1) The samples shall withstand a minimum pull strength per $\underline{17.2}$ except at two times the pull force values identified in $\underline{\text{Table }17.1}$ for the specific diameter. Following this preconditioning pull load, the samples shall be subjected to the Leakage Test in accordance with $\underline{7.2}$ followed by the Breakdown Test in accordance with $\underline{7.4}$. The samples shall not leak, and
 - 2) All minimum breakdown values of these samples shall be at least 70 percent (Type A Fluids) or 50 percent (Type B Fluids), and all values shall be at least 250 psig (PC, PS and closed SC systems) or 25 psig (open SC systems).

Data points shall comply as individual points or as averaged points (per 18.2) for each time period. Data curves shall comply as a generated curve (from least squares or higher order method with at least a 0.85 correlation coefficient) using at least 0, 30, 90, 180 and 270 day data.

- 18.16 Samples subjected to the repeat Crush Resistance Test shall comply with either data points or a data curve meeting one of the following:
 - a) The minimum retention values specified in <u>Table 18.3</u> comparing crush loads of as-received and conditioned samples, or
 - b) The minimum crush values and breakdown values, complying with both of the following:
 - 1) The samples shall be subjected to crush loading per $\underline{17.4}$ except at 150 lb times the pipe O.D. in inches. Following this preconditioning crush load, the samples shall be subjected to the Leakage Test in accordance with $\underline{7.2}$ followed by the Breakdown Test in accordance with $\underline{7.4}$. The samples shall not leak, and
 - 2) All minimum breakdown values of these samples shall be at least 70 percent (Type A Fluids) or 50 percent (Type B Fluids), and all values shall be at least 250 psig (PC, PS and closed SC systems) or 25 psig (open SC systems).

Data points shall comply as individual points or as averaged points (per 18.2) for each time period. Data curves shall comply as a generated curve (from least squares or higher order method with at least a 0.85 correlation coefficient) using at least 0, 30, 90, 180 and 270 day data.

19 Interstitial Communication Test

- 19.1 A minimum 10-foot length of the following pipe types in representative worst case sizes with respect to minimum interstitial space shall be subjected to this test:
 - a) Field-use combinations of rigid and flexible primary and secondary pipe, and
 - b) Integral primary/secondary pipe systems

The samples are to be measured for the communication rate specified in <u>19.2</u>. A 90-degree end fitting on one end of the pipe, assembled as specified in <u>6.7</u>, is to be used to add the test fluid.

Exception: Interstitial spaces 5 mm or larger are exempt from this test.