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2.2.5 Other Publications

Ballesteros, M. F., Dischinger, P. C., Langenberg, P. (2004) Pedestrian Injuries and Vehicle Type in Maryland, 1995-

1999. Accident Analysis and Prevention 36(1), pp. 73-81.

EEVC Working Group 17 (1998) Improved Test Methods to Evaluate Pedestrian Protection Afforded
http://www.eevc.org/publicdocs/WG17_Improved_test methods.pdf

GESAC, Inc. (2000) Polar-Il User's Manual Version 2.2.

by Passenger Cars,
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2.3 Definitions
23.1 ARM
That portion of the upper extremity from the shoulder to the elbow.

23.2 FOOT

That portion of the lower extremity from the ankle to the end of the toes.

2.3.3 FOREARM

That portion of the upper extremity from the elbow to the wrist.
2.3.4 HAND
That portion of the upper extremity from the wrist to the finger tips.
2.3.5 IMPACT PQOINT

The point in space where the vehicle/buck first contacts the pedestrian.
2.3.6 LEG
That portion of the Igwer extremity from the knee to the ankle.

2.3.7 STUB ARM

A dummy upper extremity which terminates at or proximalto the elbow (i.e., does not include the forea

2.3.8 THIGH
That portion of the Iqwer extremity from the hip\te the knee.
2.3.9 VALGUS BENDING

Bending about the fqre-aft dummy.axis (x).

2.3.10 VULNERABLE ROAD.USERS

Terminology used inf Glabal’Technical Regulations, European Union regulations, and commonly used
research (see ESV dgession guide) to describe pedestrians, cyclists, and motorcyclists.

irm and the hand).

in the field of safety
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2.4 Symbols, Subscripts and Abbreviations

2.4.1 Abbreviations

ATD Anthropomorphic Test Dummy

AMRL Aerospace Medical Research Lab (see Chandler, 1975)

AMVO Anthropometry for Motor Vehicle Occupants Database as established by UMTRI-83-53-1

ANSUR 1988 Anthropometric Survey of U.S. Army Personnel as listed in 2.1.6

C1, C2, etc. Cervical vertebrate number 1, 2, etc.

CAESAR Civilian American and European Surface Anthropometry Resource as listed in 2.1.1

c.g. Center of gravity

Ccv Caefficient of variation defined as the standard deviation divided by the average

DAS Data acquisition system, normally consisting of sensors, signal conditioning-and Recorders

ESV Conference on the Enhanced Safety of Vehicles

FMVSS Federal Motor Vehicle Safety Standard

FPS Frames per second

IRCOBI International Research Council on the Biomechanics of Impact

ISO International Organization for Standardization

MT Mid-thorax

NHTSA The National Highway Traffic Safety Administration

PMHS Post mortem human subject (i.e., cadaver)

SAFE Survival and Flight Equipment Association

SD Standard deviation

T1, T8, etc. Thoracic vertebrate number 1, 2, etc.

THOR Test Device for Human Occupant Restraint{an advanced frontal crash test dimmy developed by
the NHTSA beginning in the 1990s

UMTRI University of Michigan Transportation Research Institute

us Upper spine

WorldSID World Side Impact Dummy

2.4.2 Symbols
2.4.2.1 Vehicle R¢ference System (fixed with respect to the moving vehicle) (4.8.4.1.2)

x  Positive motiong are forward with respect to the car
z Positive motiong are down
V; Resultant velocity in the vehicle reference system xz plane

2.4.2.2 Dummy Ppsitioning(Reference System (4.8.3) per SAE J211-1

X+ forward from dummy.
Y +right from dummy.
Z +down

t time

2.4.2.3 Imager Frame Reference System (4.8.4.1.2)

Xg + leftin the image (assuming the image is of the left side of the car and the rear of the dummy)
z= +down in the image
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3. WHOLE BODY KINIMATIC BIOFIDELITY COMPARISONS BETWEEN DUMMY AND PMHS TEST RESULTS

A properly designed and fabricated pedestrian crash test dummy should provide overall impact kinematics which are
representative of humans. For example, the trajectory and velocities of a dummy head in a vehicle impact should be
similar to what would be expected of a human head in a similar impact. Typically such whole body dummy kinematics are
evaluated by making comparisons between dummy and PMHS motions and velocities.

The materials which follow in this section of the document provide the reader with an example of how such kinematic
comparison studies can be performed. The procedures are based on test series conducted at the University of Virginia

and are described by Kerrigan et al. at the 19th ESV Conference (Kerrigan et al., ESV 2005). The test series included
three PMHS tests and three pedestrian dummy tests. All tests were conducted with the pedestrian in an upright posture

at a vehicle impact Tpeed_nu&kmm_EMH&mMmMMﬂ&scﬂed_as_neededJo_ammaMHSﬁeight, PMHS motion
corridors were detefmined, a dummy was tested using the PMHS setup and test procedures, and |the dummy motions

were compared to te PMHS corridors (additional PMHS anthropometry provided in Kerrigan etal. »E$V 2005).
3.1 Test Procedures
3.1.1 General Test Setup

The general test setlip is shown in Figure 1.

Cushioned Cadaver Supported Vehicle-Pedestriaelr
Catc¢hing By Release Sled Buck Fixtur
et Mechanism

FIGURE I - GENERAL TEST SETUP
3.1.2 Impact Buck Details
3.1.2.1 Buck Construction
The vehicle used for this example was a 4 Door Honda Civic model year 2004 produced for sale in the U.S. market. For

reference the centerline profile of the Civic, which is shown in various included data plots, is found in Table 1 and the
geometric locations of specific front end assembly details are found in Figure 2.
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TABLE 1 - 2004 CIVIC CENTERLINE PROFILE

X (mm) Z (mm)
778 0
780 -2
772 -6
762 -6
751 -6
747 -25
720 -29
689 -46
652 -58
287 -133
270 -167
184 -190
182 -208
221 -242
213 -819
167 =346
163 -413
157 -450
155 -490
178 -508
206 -531
223 -562
237 -592
264 -625
300 671
344 -706
378 -733
433 748
525 -773
698 -825
815 -858
890 -875
985 -892
1061 -902
1121 -910
1175 -915
1225 -913
1284 -921
1422 -1013
1625 -1140
1800 -1250
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<€ L >‘ M
1 —Vindshield Lower
4 P K Edge
+ Hood Top Edge Windshield Wipers
H - |iood Leading Edge ReferencgMeasurement  Unit Value
A+ A mm 28
Hood Leading Edge B mm 201
C mm 355
¢ ,%‘ ‘“Bumper Cover Top D mm 45
3 umper Cover Bottom E mm 642
L . F mm 112
v &=Air Dam G i 912
C D Lower Ridge  ynder carriage H mm 50
I mm 46
B —P|[EA J mm 119
Ground Level K degrees 9
S mm 980
M degrees 32

The vehicle buck in
horizontal sled syste|

3.1.2.2 Buck Mas
The vehicle buck ma
3.1.2.3
The vehicle buck w

line £2.5 degrees al
450 mm £ 10 mm akl

Buck Attitide

FIGURE 2 - HONDA DETAILS

cluded the front half of the vehicle ‘structure, including the B-pillar, and was
Im with the vehicle suspension components locked so that they did not deflect (Fig

3

ss was 1175 kg.

as set up towrepresent the base vehicle attitude with the vehicle side sill p3
nd the bumper height set with the mid-point of the structural bumper be
ove the ground plane.

igidly mounted to a
ure 3).

rallel to the ground
am at a height of
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..-"""
FIGURE 3 - VEHICLE BUCK
3.1.2.4 Buck Congition

The front structure
constructed out of p
parts. Typical replal
hinges, radiator, con
3.1.3 Impact Spee

The impact velocity
impact.

3.1.4 PMHS Pre-1

PMHS and dummy
J2782 Section 4.8.3
3.1.5 High Speed

3.1.5.1 Imaging

of the vehicle buck was in good condition and was repaired after each test.
arts obtained from the original equipment manufacturer and did not include afte
Ccement parts included the front bumper face,front bumper foam, front grille, hg
denser, and front bulkhead structure (radiatar-support).

d

for all tests was 40 km/h = 1 km/R’? No vehicle braking occurred until after prin

est Position

pre-test positions, support and release for all tests were based on the requireme

Cameras and-Targets

For PMHS tests, hig

The structure was
market replacement
od, hood lock, hood

hary head to vehicle

nts specified in SAE

h*speed video was recorded at a frame rate of 1000 Hz, using an off-board imag

er facing the rear of

the PMHS/dummy and the left side of the vehicle (see Figure 1). The field of view stretched horizontally from
approximately 47 cm before the impact point to a location approximately 330 cm from the impact point.

3.1.5.2

Photo Targets

Photo targets were dumbbell-type consisting of two 38 mm diameter table tennis balls, painted in contrasting colors, and
mounted at both ends of a wooden rod 63.5 mm x 6.35 mm x 6.35 mm. The center point of each target assembly was
attached to the outer surface of the PMHS near the location specified in SAE J2782 except at the mid-thorax and head
where a single ball was used as a photo target (see Kerrigan et al. ESV 2005 for target attachment details).
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3.2 Motion Analys

3.2.1

is Procedures

PMHS Phototarget Tracking

Motion analysis for all PMHS and dummy tests followed the requirements specified in SAE J2782.

On the PMHS, the motion of the head centroid (henceforth called “head” for convenience) and photo targets at the upper

spine (US), mid-thor

was used, the motion of both balls was tracked.

guadrant-type photo

The motion of each
The first frame that
the bumper and the

The point of head
accelerometers, was
The video analysis
post impact motiong
velocities of the hea
straight line extrapol

impact decelerationg.

TAB
TIME

3.2.2 Data Scaling

NOTE: For each bd
coordinates
frame (4 ms
NOTE: The followin
left and right

ax (MT), and pelvis reference points were measured.

target on the vehicle was tracked.

nhata taraet was measured by recordina the laocation —innixels of each nhoto tar
9 P I T Lad T g

In all cases where a dumbbell type photo target
In addition to the photo targets on the surrogate, the motion of a

et at 4 ms intervals.

was digitized was about 40 ms prior to t = 0, with t = 0 defined as the time of(in
surrogate’s lower extremity.

strike, determined by visual examination of the video data and¢tonfirmed
designated as the end of the interval of interest for computing kinematic trajectd

tial contact between

by head mounted
ry and velocity data.

rame just prior to the time of head strike was determined (Tablé2). To prevent the impact altered

and the position averaging filter from affecting the calculated)pre-impact and i
1, the x and z coordinates of the head in the 4 ms interval priar to head-to-vehicle
ate virtual x and z coordinates after head-to-vehicle impacti~’Such virtual points 3

| E 2-TEST TYPE, TIME OF HEAD STRIKE, DIGITIZED FRAME CLOSEST TO
OF HEAD STRIKE AND LAST FRAME DIGITIZED FOR EACH TEST IN THE S]

Time*of Head
Strike (ms)

152
136
142

Analysis Frame Closest
to Head Strike

152
136
140

Test
001
002
003

Vehicle
Civic
Civic
Civic

Type
PMHS
PMHS
PMHS

Analysis
dy region in which\two photo targets were digitized (i.e., dumbbell-type photo

(in the frame eoordinate system) of each ball on the photo target were averad
intervals) to-obtain the motion of the center of the photo target.

directions for test setups with a camera view of the right side of the car and the r

mpact positions and
impact were used to
re unaffected by the

THE
[UDY

argets), the x and z
ed at each analysis

g procedures assume a camera view of the left side of the car and the rear of the PMHS. Reverse

par of the PMHS.

For the purpose of

dl coordinate system,

the vehicle coordinate system will be deflned Iater) The frame coordlnate system is defined by the view of the high
speed imager. This coordinate system is fixed with respect to the laboratory. The x¢ direction is defined as the horizontal

axis of the imager frame and z- is defined as the vertical axis of the imager frame. Positive xc is to the left (the vehicle
travels in the positive xg direction) and positive z- points down. The motions of all of the photo targets were tracked in the

frame coordinate system by digitizing the location of the photo target in each analysis frame. The origins for the frame
coordinate system were as follows:

Xz =0 corresponds to a vertical line passing through the head centroid, upper spine reference point, mid-thorax

reference point, and pelvis reference point. If some alignment error between points exists the line should be
located so as to minimize the cumulative X2 errors.

z-=0 corresponds to the horizontal surface on which the bottom of the dummy shoes rests prior to impact.
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3.2.3 Motion Analysis
Motion analysis proceeded as follows:

a. ldentify the image frame which just precedes the first indication of contact between the car bumper and the test
subject dummy. This could for example be the last frame prior to the illumination of a contact light or prior to any
visible movement or deformation of the test subject. This frame becomes analysis frame 0, and corresponds to t = 0.

b. Identify a series of analysis frames prior to and after frame 0 with a time interval between analysis frames of
approximately 4 ms. For example, when using a 1000 FPS video camera every 4th frame prior to and after frame 0

will be an analysis frame. Note that although only every 4th frame is analyzed to provide some motion filtering, the
use of 1000 FPS_allows a more r\rnr‘icn determination of the initial contact time

c. For each analysis frame, digitize the location of the head, upper spine, mid thorax, and pelvis reference points, and
the car side targpt.

d. In order to obtajn the scale factors for the video analysis, reference objects of known size wgre placed in the XZ
planes at the mjd-point Y distance of the PMHS and the vehicle from the caméraand the length of the objects in
pixels was detefmined. For the specific camera location and resolution used, for'this series of tests the scale factors
(SF) for the test pubject and vehicle were as follows:

PMHSScalefactor = 3.695 mm/pixels

Eq. 1
vehicleScalefactor = 3.243mm/pixels (Ea. 1)

e. The filtering conpention specified in ISO 13232-4 (ISO, 2004)was used to smooth the position data. All signals were
filtered with four|passes of the moving average filter:

Xgiv1 + 2XEi + XFivg

XFi,f =
: 4
(Eq. 2)
SO Zria 27 + Zriy
Fiyf — 4

where:

Xgi £+ Zri¢ are the filtered x and\z- position at frame i, in mm
Xg» Zg are the Qinfiltered (orfiltered on the previous pass) Xz and z- positions, in the frame doordinate system at

frame i, in mm
i - 1andi + 1 dgsignate the preceding and next analysis frames

f. Scaling — To prdvide a basis for comparing dummy kinematics it is commaon to assume that PMHS specimens are
geometrically similar and thus can be geometrically scaled to a reference geometry. The reference geometry chosen
was that of the specified midsize adult male in the test striding position (see Table 3). Since the proportional length of
PMHS body segments relative to the reference geometry varied among body segments, it was determined that the
PMHSs were not geometrically similar and thus an individual scale factor for each body segment trajectory for each
PMHS was necessary. Twelve individual scale factors (see Table 4) were calculated to account for the head, upper
spine, mid thorax, and pelvis motion for the three PMHSs tested. An example calculation to obtain the mid thorax
scale factor in test 002, "% is given as:

MT

MT,002 _ S _
Szc
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where:

MT

s is the midsize adult male mid thorax reference point z location in the test striding position, in mm

MT,002
Szc

is the s, z location value, in mm, for the mid thorax in test 002

The filtered trajectory data, x;  and Xg ¢ (Equation 2), were then multiplied by their respective scale factors to obtain the

scaled frame coordinate system trajectories X  ; and Z . All scaled values are indicated with a

TABLE 3 - MIDSIZE MALE MOTION REFERENCE LOCATION"

*
[T ]

IN THE TEST STRIDING POSITION WITH SHOES (SEE J2782 4.8.4.1.1.1)

Reference Point Z Location
Head -1659
Upper spine -1501
Mid thorax -1352
Pelvis -1005

TABLE 4 - SCALE FACTORS USED TO SCALE BODY SEGMENT TRAJECTORIE

b Note that these dimensions are for motion
reference points only and are not based on,tafget
locations for any particular dummy. Nor are/they
necessarily key anthropometry locations (see
J2782 4.8.4.1.1.1)

001 002 003
Head 0.9224+| 0.9869 | 0.9375
Upper spine | 0.8942 | 0.9729 | 0.9049
Mid thorax 09458 | 1.0062 | 0.9642
Pelvis 0.9363 | 1.0284 | 0.9576

The scaled positiong measured in the frame coordinate system, X ¢; and Z ; ;, are then calculated by:

where:

A is the scale fadtordora gi\/nn r\ncifinn and-test

*
Xpi f = AXFi f

*
Zri ¢ = AZg ¢

ES

(Eq. 4)

g. Time Scale — For the purposes of calculating scaled velocities, and for average/corridor development, the time
variable t;, defined as the time at frame i, had to be scaled as well. However since there are numerous scale factors,

an individual signal for the scaled time at frame i, t;, had to be calculated for each body region and each test. If the

mass density and modulus of elasticity are considered to be constant among the test subjects, the time can be scaled
using the length scale factor (Eppinger et al. SAE 1984) so t; was multiplied by each of the scale factors to obtain

each of the t"; signals. It should be noted that the use of a single scale factor (based on height for example) for a
given test would result in different initial positions for the body region targets when the test data is combined, which

would in turn lead to wider motion corridors. See Kerrigan et al., ESV 2005 for further details.
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h. Transfer the origin of all scaled surrogate photo target position signals to the vehicle reference frame as follows:

where:

X = XFif _(VXF,i,f _VXF,o,f)

2/ =ZFj ¢ _<VZF,i,f —VZF,o,f)

(Eq. 5)

Xrin Zrig are the filtered x- and z- position of each of the surrogate photo targets at analysis frame i, in mm, in the

frame coordi

nate system

VXeif, VZeis are the filtered x- and zg positions of the vehicle photo target at frame i, in mm in the frame coordinate

system
Xyis Z,i are the x
system, in m
\,XF,O,fI VZr o are
coordinate s

The second coordin
and defined as folloy

Positive x towarg
Positive zdown

vehicle
z=0is the same

NOTE: The vehicle

i. Velocity Data —

methodology red
body segment w

where:

V.

x = 0 is the same vertical line as the frame coordinate system atanalysis frame 0, but is fixed

and z positions of each of the surrogate photo targets at frame i in the vehicle
m

the filtered x and z positions of the vehicle photo target at analysis~frame 0,
ystem

Ate system is the vehicle coordinate system. The vehicle coerdinate system is
Us:

s the front of the car

horizontal surface as the frame coordinate system at analysis frame 0
coordinate system moves in the frame cgordinate system positive X direction.

Scaled body segment and vehicle yelocities in the frame coordinate system were
ommended in ISO 13232-5 (1ISO,-2002). The component velocities in the x and
ere calculated as:

Xigq — X
Vx,i: i+1~ M-

iva—tiag
_4na—41

VZI
G-ty

eference coordinate

n mm, in the frame

fixed to the vehicle,

and moves with the

calculated using the
z directions of each

(Eq. 6)

he frame coordinate

V,; are each
system

X0’

photo target’'s component velocity, in m/s, in the x and z directions at frame i, in

t; is the time, in ms, at frame i
i +1andi - 1designate the next and preceding analysis frames

To properly combine the scaled head velocity in the frame coordinate system and the vehicle velocity in the frame
coordinate system requires that the individual velocities be calculated as shown above and then combined to generate
head velocities in the vehicle coordinate system as follows:

VH X :VH XE _VV XE
VH Z :VH ZF _VV ZF

(Eq. 7)
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where:

Vi x Vi 2 are the head x and z velocities in the vehicle axis system
Vhx Vi, are the scaled head x- and z¢ velocities in the frame axis system

Vv,va VV'ZF are the vehicle xz and z- velocities in the frame axis system

Resultant velocities were computed using the length of the velocity vector defined by the components in Equation 7.

3.3 Corridor Deve

3.3.1 Trajectory
Note that corridors
corridor developmen
to determine the enq

also scaled and ther

Since a different sca
scaled time signal is
sampled in time to fa

The average scaled
intervals. Averaged
Figures 12 to 15.

The good repeatabi
standard deviations
percentage of the
calculated as:

lopment

rrdarc
TTooTS

lvere developed based only on the three PMHS tests. For the purposesof*tr
t, the time when the surrogate’s head first contacts any part of the vehiele(head
of the trajectory data. Since the time signal is scaled for the PMHS,‘the time o

rounded to the nearest 4 ms interval (Table 5).

TABLE 5 - UNSCALED AND SCALED HEAD STRIKE TIMES FOR EACH
BODY REGION IN EACH PMHS TEST AT HEABDSTRIKE

Scaled Time at Head(Strike t'ss (ms)
001 002 003
Un-scaled 152 136 142
= Head 140 132 132
% Upper spine 136 132 128
3 Mid thorax 144 136 136
Pelvis 144 140 136

le factor was used to scale the'trajectory of each PMHS body region in each te
different for each PMHS /body region in each test. Thus, all of the scaled sign
cilitate averaging of the signals.

PMHS trajectory was' computed by averaging values of each trajectory signal
scaled trajectories were computed for the head, upper spine, mid thorax, and pel

ity seensin_the scaled trajectory plots for the three PMHS tests made traditiona|
unacceptably small. As a result, it was decided to construct corridors around

hjectory plotting and
-strike time), is used
head strike , t';, is

5t, the interval of the
hls needed to be re-

at each of the 4 ms

Vis and are shown in

corridors based on
the means using a

where:

§ is the total path

* *

3

j=1

—% —% 2 —% —% 2
(Xj —Xj_1) +(Zj —21_1j

length of the trajectory measured up to frame i, in mm

Tath length traveled by the object in the vehicle coordinate systems where [re path length S is

(Eq. 8)

Xj,and Zj, are the average scaled x and zcomponents of each body segment’s trajectory, in mm
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Four signals were calculated to determine the corridors. These four signals represent the corners of a square, with a
reference point on the average trajectory curve, and whose dimension is equal to (J+k)S , where J and k are variables
representing a percentage of the trajectory’s path length §. The four signals were calculated as:

Cii =x +K§
Cri =X =35 (Eq. 9
Ci =z +k§

—%

Czi=2 —J5

where:

C:,6 C. C+ C,. are the x and z corridor signals for the 4 corners of the percentage path length square

X,i? X,i? Z,i

Due to the downward concavity of the average trajectory signals, the negative x motions, and the definition of the +z axis
(as down), the kinenatic response corridors for the head, upper spine, and mid thorax trajectoried were developed by
plotting C;i vs. CI. (for the upper bound) and C;i VS. C;i (for the lower bound). Since the peglvis average scaled

trajectory is concave up, the upper bound of the pelvis corridor was developed by plotting C:i vs. |C5; and the lower
bound was developdd by plotting C‘ VS. C+

Based on a review pf existing dummy specifications and certification procedures, the total corridor [width was set to be
15% of the path length. The choice of 15% was based on a-feview of the data and was determined not to be overly wide
so as to include all dummies, but was wide enough that same level of existing technology could fit within the corridor.

To investigate wherg the trajectories of the midsize male would lie relative to the test results, several|studies were carried
out to investigate the influence of the height and r€lated parameters (e.g., increased mass moment of|inertia and height of
the c.g.) were congidered to affect the trajecCtories (see Appendix E). These studies revealed that the head, upper
thoracic spine, and inid-thoracic spine trajectories would most likely fall below (i.e., would result in a ower Z location for a
given X displacement) the available PMHStest results and that the pelvis trajectory would most likely be higher (higher Z
for a given X). Althpugh the directiop. of the shift of the trajectory plot for midsize male PMHS test$ was apparent (see
Appendix E), becauge of the limited ‘data, it was not possible to quantify the amount of trajectory shift which might be
expected for the midsize male.

Based on the theory| that midsize male trajectories would lie under the trajectories of the tall PMHS {ests, it was decided
that the corridor shquld be asymmetric with an upper bound of 5% of the path Iength and a Iower bound of 10% of the
path length from th For the pelvis, the
corridor was set to )n of corridors based
on path length see Kerrlgan et al., ESV 2005.

As discussed above, the head, upper spine and mid thorax corridors were determined using +5% and -10% path length
values and the pelvis corridor was based on +10% and -5% path length values. The corridors for the head, upper spine,
mid thorax, and pelvis along with the individual PMHS responses and the average PMHS response are shown in
Figures 4 to 7. To facilitate implementation, the corridors were defined using piecewise linear boundary segments. A
comparison of the average based corridors and the linearized corridors are shown in Figures 8 to 11. The piecewise linear
corridors alone are shown in Figures 12 to 15 and quantified in Tables 6 to 9.
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Scaled PMHS Head Centroid Trajectories, Average and
Corridor
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FIGURE 4 - PMHS HEAD CENTROID TRAJECTORY AND CORRIDOR
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FIGURE 5 - PMHS UPPER SPINE TRAJECTORY AND CORRIDOR
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Scaled PMHS Mid Thorax Trajectories, Average and
Corridor
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FIGURE 7 - PMHS PELVIS TRAJECTORY AND CORRIDOR
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FIGURE 9 - UPPER SPINE TRAJECTORY AVERAGE CORRIDOR VS PIECEWISE LINEAR
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Z (m)

Head Centroid Trajectory Corridor

NOTE: The head csd
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FIGURE 12 - HEAD CENTROID TRAJECTORY CORRIDOR
(IN VEHICLE REFERENCE FRAME)

ntroid displacement corridor above can‘be plotted with the values in Table 6.

TABLE 6 - HEAD CENTROID TRAJECTORY CORRIDOR

Upper Bound Lower Bound
Point x(m) z(m) x(m) z(m)
1 0.400 -1.690 0.400 -1.640
2 0 -1.690 0 -1.640
3 -0.500 -1.680 -0.300 -1.580
4 -1.000 -1.580 -0.800 -1.390
5 -1.650 -1.330 -1.370 -1.030
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Upper Spine Reference Point Trajectory Corridor

-1.8
-1.6
—_———— T ————
1.4 R \\__ |
N~ < \
1.2 ~ = o
’ ~ N L Civic Mid-Line
{’__r—’('_\ —prerICorridor
e \@\ % — —Lower Cdftidpr
04 \\
Civic Direction of Travel
-0.2 2 b N
\\
0
04 02 0 02 04 -06 08 1 12 14 16%-18

X (m)

NOTE: The uppers

FIGURE 13 - UPPER SPINE REFERENCE POINT TRAJECTORY CORRIDOR

(IN VEHICLE REFERENCE FRAME)

TABLE 7 - UPPER SPINE REFERENCE POINT DISPLACMENT CORRIDOR

bine reference point displacement corridorican be plotted with the values in Table|7.

Upper-Bound Lower Bound
Point x(m) z(m) x(m) z(m)
1 0.300 -1.520 0.300 -1.470
2 =0.500 -1.520 0 -1.470
3 -0.800 -1.470 -0.400 -1.400
4 -1.200 -1.360 -0.900 -1.200
5 -1.500 -1.220 -1.250 -0.940
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Mid Thorax Reference Point Trajectory Corridor
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FIGURE 14 - MID-THORAX REFERENCE POINT TRAJECTORY CORRIDOR

(IN VEHICLE REFERENCE FRAME)

ax reference point trajectory corridor ¢an be plotted with the values in Table 8.

TABLE 8 - MID-THORAX REFERENCE POINT TRAJECTORY CORRIDOR

Upper Bound Lower Bound
Point x(m) z(m) x(m) z(m)
1 0.300 -1.380 0.300 -1.320
2 -0.500 -1.380 0 -1.320
3 -0.750 -1.340 -0.400 -1.250
4 -1.000 -1.300 -0.800 -1.110
5 -1.310 -1.180 -1.100 -0.940
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Pelvis Reference Point Trajectory Corrdor
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FIGURE 15 - PELVIS REFERENCE POINT TRAJECTORY CORRIDOR
(IN VEHICLE REFERENCE FRAME)

NOTE: The pelvis ré¢ference point trajectory can be plotted\with the values in Table 9.

3.3.2

Head Veloci

TABLE 9 - PELVIS REFERENCE POINT TRAJECTORY CORRIDOR

Upper Bound Lower Bound
Point x(m) z(m) x(m) z(m)
1 0.300 -1.030 0.300 -0.980
2 0 -1.030 0 -0.980
3 -0.300 -1.050 -0.300 -0.960
4 -0.600 -1.080 -0.600 -0.930
5 -0.850 -1.150 -0.970 -0.960

by -Caorridor

=}
=

=]
=

The development of the head velocity versus time corridor involved three distinct steps as follows:

1. Using the film analysis procedures described above, the head resultant velocity plots in the vehicle coordinate frame
for the three PMHS tests were determined. The three PMHS head resultant velocity plots were averaged for a given
time and £ 1 standard deviation corridors were calculated as shown in Figure 16.

2. Areview of the three PMHS test videos showed that as expected, the PMHS exhibited no active muscle tension in the
neck and thus the head motion was likely not representative of a living pedestrian. To investigate the effect that the
lack of neck muscle tension might have on head motion, the motion analysis of a virtual head point was performed.

A virtual head point supported from the PMHS upper spine was mathematically constructed and tracked via film analysis.
As shown in Figure 17 the virtual head point, which was rigidly attached to the PMHS upper spine did not move as a result
of neck flexibility. The motions of this virtual head point represented the motions of the head which would have occurred
had it been supported by a rigid neck. The three PMHS virtual head velocity plots were averaged for a given time and + 1
standard deviation corridors were calculated as shown in Figure 18.
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A comparison of the "rigid" neck and "flexible" neck velocity curves shows some similarity, however, the rigid neck tends
to increase the head velocity and it further tends to reduce the time of peak V,.

3. Recognizing that the actual head velocity for an impacted live human would probably fall somewhere between the
"flexible" neck exhibited by the PMHS, and the "rigid" neck, the specified head velocity vs. time corridor was
established as follows:

Upper corridor = Max(PM HSag +1SD, Virtua g + 1SD)

: . : (Eq. 10)
Lower corridor = Mm(PM HSag —1SD, Virtual 44 —1SD)

The resulting corridor and the specified linearized corridor are shown in Figure 19. The linearized corridor alone is shown
in Figure 20 and qugntified in Table 10.

PMHS Head Vr vs. Time and Average +/- 1 Standard Deviation

Corridor
18
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FIGURE 16 - PMHS HEAD VELOCITY +1 SD CORRIDOR
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Head c.g. with flexible neck
Head c.g. with rigid neck
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FIGURE 17 - VIRTUAL HEAD WITH RIGID NECK
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FIGURE 18 - PMHS VIRTUAL HEAD VELOCITY *1 SD CORRIDOR
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Head Vr Corridor
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Head Centroid Resultant Velocity vs. Time Corridor
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FIGURE 20 - HEAD CENTROID xz RESULTANT VELOCITY CORRIDOR
(IN VEHICLE REFERENCE FRAME)

NOTE: The head centroid velocity corridor can be plotted with the values in Table 10.
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TABLE 10 - HEAD CENTROID xz RESULTANT VELOCITY CORRIDOR
Upper Bound Lower Bound
Point t(s) Vi(mis) t(s) Vi(mis)

1 -0.030 11.8 -0.030 9.8

2 0.015 11.8 0.040 9.8

3 0.060 13.6 0.070 10.4

4 0.085 16.6 0.104 13.6

5 0.148 16.6 - -

4. COMPARISONS BETWEEN EXISTING DUMMY TECHNOLOGY PERFORMANCE AND THE SPECIFICATIONS OF

SAE J2782

One of the overall ggals during the development of SAE J2782 was to establish performance gaals'wi
existing technologie$. During the development and evaluation of the pedestrian dummy perfermance

structure [Pritz, SAE
2001]. Each of the

nich could be met by
Criteria found in SAE
estrian impact tests.
pteral bending knee
ar-11 [Akiyama, ESV
systems at the time

ir [full-scale pedestrian
| Honda volunteered

their Hybrid-1I, but
primarily been used

The intent of the follpwing information is not to imply endorsementiof any particular dummy or desigfn but to demonstrate

that the requirementp of SAE J2782 can be satisfied with existing'technologies.

4.1  Anthropometry Performance

The anthropometry [performance specified in SAE_J2782 Section 3 can of course be met if t
performance requirements, but design compromises created by other performance criteria may make
of the specified critgria. The ability of exiting. technologies to meet the criteria was evaluated usir]
Polar-1l dummies. A summary of SAE J2782 anthropometry requirements and recommendations
Polar-ll measures in|shown in Table 11,

Table 11 provides many anthropometty measures for the dummy that require a shoe to be worn. lItis
meeting the mass specificationsgiven in SAE J2782 can be worn by the different dummy designs
incorporated with th¢ foot into"aymolded foot design. If the shoes are independent of the foot moldin
in the PMHS test (K¢rrigan-etal., ESV 2005) should meet have inertial properties of Ixx = 0.001001 k
kgm?, and Izz = 0.0p3899¢kgm? relative to the center of gravity located in the foot (x = - 0.1434 m,

+0.0421 m) measured relatlve to an orlgln defmed at the intersection of a plane contalnmg the pl

nese were the only
it difficult to meet all
g the Hybrid 11l and
and Hybrid Il and

assumed that shoes
or the mass can be
g, the shoes utilized
gm?, lyy = 0.003806
y =-0.0003m, z =
bne of the floor (XY

Plane) and a plane pe

YZ plane).
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SAE

TABLE 11 - DUMMY COMPLIANCE WITH SAE J2782
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4.2 Biofidelity Performance
4.2.1 Whole Dummy Response Performance

The ability of existing pedestrian dummy technology to meet the whole body response performance requirements
specified in SAE J2782 was investigated using a Polar-11 pedestrian dummy and the test procedures specified in SAE
J2782. (2009). As detailed in Section 3 above, PMHS tests were performed and trajectory corridors were developed and
the Polar-Il dummy was then tested using the same vehicle and test procedures as is specified by SAE J2782. As is
common practice, for this testing the Polar-1l data was not scaled. When the Polar-II target locations did not correspond to
the motion reference points defined in SAE J2782, Section 4.8.4.1.1.1, locations on the Polar-Il corresponding to the
motion reference points were “tracked” during the film analysis process. Figures 21 to 25 show that Polar-Il performance

meets the head, upperspire—mid-thorax-andpelvistrajestor-and-head-veloscity-corridors-

Polar Il Dummy Head Centroid Trajectory vs. PMHS Based
Corridor
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FIGURE 21+POLAR HEAD TRAJECTORY VERSUS PMHS-BASED CORRIDOHR
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Polar Il Dummy Upper Spine Trajectory vs. PMHS Based

Corridor
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FIGURE 22 - POLAR UPPER SPINE TRAJECTORY«VERSUS PMHS-BASED CORRIDOR
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FIGURE 23 - POLAR MID THORAX TRAJECTORY VERSUS PMHS-BASED CORRIDOR
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Polar Il Dummy Pelvis Trajectory vs. PMHS Based
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FIGURE 24 - POLAR PELVIS TRAJECTORY VERSUS PMHS-BASED CORRIDOR

Polar || Dummy Head Velocity'vs. PMHS Based Corridor
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FIGURE 25 - POLAR HEAD CENTROID VELOCITY VERSUS PMHS-BASED CORRIDOR


https://saenorm.com/api/?name=dd7a61a72182db0c0c2b9844edb7635f

SAE J2868 Issued OCT2010 Page 36 of 57

4.2.2 Body Segment Responses Performance
4.2.2.1 Head and Neck

The ability of dummy head and neck assemblies to meet the frontal and lateral performance criteria outlined in FMVSS
part 572 has long been established for ATDs such as the Hybrid-lll and THOR. Current pedestrian dummies, such as
Polar-Il, use either modified Hybrid-1ll or THOR head/neck components and thus should be able to satisfy the head drop
and neck pendulum performance requirements found in SAE J2782.

4.2.2.2  Shoulder

The ability to meet shot biofideh ecifications-included-in ecti ith-existing technologies has
been demonstrated by the 50" percentlle male WorIdSID de5|gn As reported by Scherer (ESV"2009), the WorldSID
shoulder lateral response falls within the required ISO/TR 9790:1999(E) Section 4.1.4 force/time-€orriglor.

4.2.2.3 Thorax

Few existing ATDs fre capable of meeting both frontal and lateral biofidelity criteriaCfor the thorax. The thorax of the
THOR Advanced Frontal Crash Test Dummy developed by GESAC, Inc and NHTSA however wag developed to have
some level of multidfrectional biofidelity. As reported by White (SAFE 1996), in the\4.27 m/s frontal pendulum impact test
THOR is able to fit in the 4.27 m/s frontal pendulum corridor (49CFR572.34) reasonably well. The Polar-Il, which has a
thorax construction lpased on THOR, was tested to the 4.3 m/s ISO/TR-9790\corridor for lateral biofidelity. The results of
these tests showed that there was some lag in the initial ramp up<ef“loading (Figure 26), but|by making a small
modification to the jgcket foam the lateral response corridor could be satisfied (Figure 27).
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FIGURE 26 - BASELINE POLAR-Il THORACIC RESPONSE IN THE 4.3 M/S LATERAL PENDULUM IMPACT
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FIGURE 27 - MODIFIED POLAR-Il THORACIC RESPONSE IN THE 4.3 M/S LATERAL PENDU

4.2.2.4 Pelvis
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FIGURE 28 - MODIFIED POLAR-I:KNEE STIFFNESS

4226 Leg

The biofidelity of th¢ Polar-1l dummy leg in three-point beAding was evaluated by Takahashi, et al. (ESV 2005). The
Polar-Il leg, when gvaluated at the mid-shaft, fell within"the upper and lower bounds (see Figure[29) of the idealized
PMHS corridor specfified in SAE J2782.
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FIGURE 29 - POLAR-II LEG STIFFNESS


https://saenorm.com/api/?name=dd7a61a72182db0c0c2b9844edb7635f

SAE J2868 Issued OCT2010 Page 39 of 57

4.3 Instrumentation Availability

That the instrumentation requirements and sensor specifications in SAE J2782 Section 3 are compatible with existing
dummy and sensor technologies can be verified by comparing the SAE J2782 Section 3 requirements to existing dummy
technologies such as the WorldSID (as specified in ISO 15830), specialized motorcycle dummies (as specified in
ISO 13232), the Polar-1l pedestrian dummy (as specified in Polar-Il User's Manual Version 2.2), and various occupant
dummies and sensors offered by dummy and sensor manufacturers such as Robert A. Denton Inc., Denton ATD,
Endevco, Entran, FTSS, and GESAC for example.

4.4 Repeatability and Reproducibility Performance

That the repeatability and reproducibility requirements of SAE J2782 Section 3 can be met by existing dummy
technologies can b ifi i i i nce documented in
ISO 15830. The rldSID repeatability and reproducibility requirements are similar in scope and|CV values to those
specified for the peglestrian dummy in SAE J2782 and, as is documented in ISO 15830 the WorldSID, an example of
existing dummy technology, met these performance requirements.

4.5 Durability Performance

The ability of existing dummy technologies to withstand the 50 km/h test specified in SAE J278pR Section 4 without
sustaining non-cosnpetic damage to non-frangible parts was demonstrated in actest performed with| the Polar-1l dummy
(see Appendix D).

5. NOTES
5.1 Marginal Indicla
A change bar () locpted in the left margin is for the convenience of the user in locating areas wherg technical revisions,
not editorial change$, have been made to the previous issueof this document. An (R) symbol to the[left of the document

title indicates a conplete revision of the document, including technical revisions. Change bars and|(R) are not used in
original publications, nor in documents that contain editorial changes only.

PREPARED BY THE,.SAE PEDESTRIAN DUMMY TASK FORCE OF THE SAE HUMAN BIOMECHANICS AND
SIMULATIONS STANDARDS STEERING COMMITTEE
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APPENDIX A - TERMS OF REFERENCE OF THE SAE PEDESTRIAN DUMMY TASK FORCE

The following is a reprint of SAE Pedestrian Dummy Task Force Document TGN1 which is the final Terms of Reference
for the Task Force.

Worldwide, pedestrian crashes constitute the most frequent cause of traffic-related fatalities. Knowledge about pedestrian
crashes is essential to reduce fatality and injury of these vulnerable road users. Currently available tools and methods for
studying pedestrian casualties include statistical databases, component testing, and computer simulations. Full-scale
vehicle tests with a research dummy that is representative of a pedestrian are an essential component for understanding

the mechanisms of pedestrian trauma and for developing appropriate countermeasures.

The near term aim o
existing technology
develop performan
physical representa
specifications using

Possible uses of a p
Design of countg

Evaluation of ac
Validation of cor]

that can be used to study pedestrian-vehicle interactions. While the objectiv,

specifications rather than a physical device, the Task Force realizes it\i$ N
on of such a research dummy in order to assess the feasibility of meeting the
bXisting technologies.

bdestrian research dummy include the following:

brmeasures
ive systems (pop-up hoods, airbags, etc.)
Nputer simulations

Study of pedest

While it is recognizgd that collisions involve pedestrians-of all sizes, it is proposed that performancsg

midsize adult male

biomechanics and e
the initial objective,
dummies will be dev

To develop pedestri
items must be under

Biomechanical r

size, mass, moment of ingrtia, static and dynamic responses of essential body regions. To determ

requirements, th
Certification pro
meet biomechar]

Facilitate crash feconstruction including pedestrian kinematics

Refine compongnt test parameters and procedures

Predict injury pr@babilities for given vehicle, crash, and countefrmeasure combinations
Elucidate influerce of pedestrian size on interaction, injury, and outcome

ian kinematics

esearch dummy be developed as'the first step. This approach stems from the g
Kisting dummy technologies forthe mid-size male relative to other adult sizes an
it is envisioned that additional performance specifications for other sizes of
Eloped in the future based‘on accepted scaling procedures.

AN research dummyperformance specifications that are based on existing tech
taken by the TG:

bsponse reguirements for a pedestrian research dummy - Biomechanical requirer

ch dummy based on

of the group is to
ecessary to have a
jummy performance

b specifications for a
reater knowledge of
0 children. While not
pedestrian research

nology, the following

nent should include
ine these
ind consolidated.

e literature should be surveyed and existing data should be gathered, classified, 3
edures’and requirement - Certification procedures to ensure that the production
icabrequirements.

Tummy designs

Instrumentation - Although Injury criteria development is not a focus of this group, measurement of engineering

parameters known to relate causally to injury is necessary for assessing injury potential of vehicle-pedestrian
interactions. For this purpose, knowledge about the most frequent and severe pedestrian injuries must be combined
with sensors containing appropriate engineering measures at critical body regions.

requirements wil

| be necessary.

Functionality - The specification should ensure ease of use in a crash-laboratory environment.
Survey of existing technology - The establishment of performance specifications based on existing technologies will

Durability and repeatability - Durability and repeatability are essential characteristics of crash dummies. Establishing

require a careful review and evaluation of existing pedestrian dummies and other dummy technologies, which may
form the basis for the specifications.

The development of

the performance specifications document shall be completed by June 2005.
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APPENDIX B - EXPERT RANKINGS OF BODY REGION PRIORITIES

The following is a reprint of SAE Pedestrian Dummy Task Force Document TGN78 which includes information related to
the expert ranking of pedestrian body region priorities (see Appendix C also).

In order to determine body region priorities for a variety of performance specifications including instrumentation
compatibility, component biofidelity, and whole body kinematics for a dummy design, a detailed review of available field
injury studies was undertaken. The study showed a variety of investigations detailing injury frequency, injury severity,
injury cost, and disability probabilities. Attempts to objectively combine the results of the various studies were hampered
by a lack of common procedures, terminology, and body segmentations. In order to prioritize body regions, a group of 10
experts, familiar with the available studies were asked to prioritize the body regions (1 = most important, 10 = least
important) based on such factars as the frequency of injury to the body region the sacietal cost assaciated with the injury,
and the probability gf disability. The results, shown in Table B-1, showed that the body regions coyld be combined into
four priority groups {group A - most important and group D - least important). The results of thevrahkings are shown in
Figure B1. Additiongl details describing the ranking procedures and results may be found in Appendiy C.

TABLE B1 - BODY REGION PRIORITY

Priority Rankings )
Expert nimber Total |.Average | St. Dev | Necessity
1 ]2 |3 |4 |5 |6 |7 |8 ]9 |10

Region
head 1 ]2 |1 (1 )1 (12 |1 |1 ]1 |1 y¢20 1 0.00 A
knee 5 |2 |4 |2 |2 |2 |4 |2 |3 |32 2.9 1.10 B
leg 2 |7 12 |3 |4 |5 |2 |6 |2, ]35 35 1.90 B
thorax 4 |3 |3 |4 |3 |3 |3 |4 |4 15 |36 3.6 0.70 B
cervical 3 |5 |7 |10]8 |6 |8 |[3%xk5 |4 [59 5.9 2.33 C
pelvis 6 |6 |5 |6 |7 |4 |7 |5 |6 |7 |59 5.9 0.99 C
abdomen 6 |4 |6 |7 |5 |8 |58 |7 |6 |62 6.2 1.32 C
femur 9 |8 |8 |8 |9 |7.4q6 |7 |8 |8 |78 7.8 0.92 D
ankle foot 9 |9 |10|5 [10pO. 19 |9 |10]9 |89 8.9 1.45 D
upper ext 6 [10]9 |9 |[6\10|10]10|9 |10]89 8.9 1.60 D

sum 51 | 55| 55 |55 | 55 | 55 | 55 | 55 | 55 | 55
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Body Region Priorities (1 = high, 10 = low)
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FIGURE B1 - BODY REGION.RRIORITIES
Some example factdrs on which the above rankings were based‘included:

- Head injuries were|the most frequent severe injuries
- Knee (including distal femur and proximal tibia) and leg injuries were the most frequent AIS 2 + injuries
- Cervical injuries, although not common are extremely eostly and severe when they do occur
- Thorax injuries were of moderate frequency but high severity

- Upper extremity injuries were of moderate fregquency and low severity
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APPENDIX C - MINUTES OF THE 4TH SUB-GROUP MEETINGS OF THE SAE PEDESTRIAN DUMMY TASK FORCE

The following is a summary of SAE Pedestrian Dummy Task Force Document TGN86, with attendee names removed,
which includes information related to the expert ranking of pedestrian body region priorities (see Appendix B also). In
places, the excerpt below is not reprinted as approved and may contain corrections of spelling and typographical errors
and other minor corrections noted after the approval of the original document.

Collectively, a group of experts met in Goteborg, Sweden on 9/8/2004 to determine body region priorities for the
development of body region biofidelity and instrumentation requirements. Since the priorities for pedestrians may change
over time, the appendix provides a summary of what was considered current at the time of writing of this information

report.
was a factor for the
occurrence of injuri
lower limb injuries w

A discussion regar
undertaken by the

cannot be measured
required to cause a
than fracture forces
The ability to place
dimensional rotatior
discussed. Measu
injury mechanism i{

assuming the dummy joint is representative of human geometry).“For thorax deflection measure

measure the absolu
direction and locatio
to refer to the regi
associated with the
from an injury meas
are generally at the

The available literature was reviewed that included published field data studies of pedestrian injuries. While age

when reviewing the
serious injury while

s and priorities. In general, head injuries were considered the most frequent
bre the most frequent AIS 2+ injuries.

ding pedestrian dummy instrumentation requirements to monitor dnjuries by body region was
group of experts. Knee motions were considered important, butythree-dimensional joint rotations
with existing technologies. The most common pelvis fracture is @+fracture of thg¢ ramus. The forces
rami fracture differ with contact location. Fracture forces caused by trochanter |contact are different
caused by iliac crest contact. The pelvis instrumentation available in the WorldSID was discussed.
6 axis load cells above and below the knee and perfarm post-test calculafions of knee three-
s was discussed. The possible use of small load~cells to measure knee ligament cables was
ements should be made which are as close to the injury mechanism as possible, (e.g. if the knee

ligament tension, dummy ligament tension measurements would be better [than joint rotations,
nts, it is difficult to
e maximum deflection because in pedestrianAesting, which involves three dimensional motions, the
N of the maximum deflection is impossible*to predict prior to the test. "Bony thofax” is the term used
bn covered by the rib cage. This inclides the liver, spleen, and other interpal organs normally
abdomen. From a practical standpoint; injuries to these organs frequently involve rib deflections so
urement standpoint will be included as the bony thorax. In terms of local deformation, heart injuries
level of 4th rib deflections (lateraly and liver injuries are at the level of the lateral 8th rib deflections.

Dummy thorax deflg
human 4th and 8th

ction sensors should be located so as to measure displacements corresponding to the location of
ibs. From discussions at prior meetings, the priorities (5 is high priority, O low) f@r instrumentation by

body region was head 5, cervical spine 3, thorax 4, abdomen 3, pelvis 3, (the femur, knee, and tibia were listed as "high"
but no numerical valpe was previously assigned). Discussions related to lower limb injuries included & review of lower limb
injury data in the litgrature that showed.some inconsistencies related to the classifications of injuries|and injury locations.
Some studies discugsed AlS-based anatomical injuries rather than their function role. For example, ftactures to the top of
the tibia tend to be listed as tibiainjuries rather than knee injuries. When based on anatomical descriptors, knee injuries
tend to show a slightly lower ocelrrence than leg or femur injuries.When reviewed by functional or regional descriptions,
the proximal and digtal ends\of’‘bones are grouped with the joint rather than with the general descriptor of the particular
bone or segment. In this €ase, the occurrence of thigh injuries decreases and knee injuries increas¢ because injuries to
the end of the femyr are-classified as joint or knee injuries. It was proposed that the Task Forge review injuries by
function or location.

Knee injuries would include injuries to the:

Femoral condyle
Patella
Ligament
Dislocations
Tibial plateau

Femur injuries would include injuries to the shaft only.
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Based on functional

Tibia (1)
Knee (2)
Pelvis (3)
Ankle (4)
Femur (5)

definitions lower extremity injury occurrence rankings would be:

When considering both frequency of occurrence and severity, the lower extremity priorities might be:

Pelvis 3

Femur 2.5
Knee 4.5
Leg 3.5
Ankle 2

Femur and pelvis inj
and with more recen

Given the wide va
investigated, etc., di
frequency of occurre
data reviewed and

regions usinga 10 p

Head

Cervical

Thorax
Abdomen

Pelvis

Femur

Knee

Leg

Ankle

Upper extremitig

The ratings from all
(also see TG-N78).

Head = 1.0 (Grd

Lries may decrease when hood height is decreased as this has been shown by
t LTV, hood radius is increased, or bumper height is increased.

Fiation in field data studies including inclusion critefia, body region groupi
Ecussion of the relative importance of biofidelity for various body regions based g
nce was done using a subjective interpretation of the literature by a panel of e
liscussed, each of the ten experts present were\asked to rate the importance
pint scale (1 highest priority, 10 lowest priority), The body regions were:

7]

ten experts‘were averaged. Regions with similar ratings were grouped. The r¢

up.A) (highest priority on a scale of 1 to 10)

ehicles in the 1990s

g, injury severities
n injury severity and
perts. Based on all
of each of the body

sults are as follows

FET=t DA

Knee = 2.9 (Grc
Leg =3.5 (Grou
Thorax = 3.6 (G

Abdomen = 6.2

Ankle foot = 8.9
Upper extremity

A=~ =

pB)
roup B)

Cervical =5.9 (Group C)
Pelvis =5.9 (Group C)

(Group C)

Femur = 7.8 (Group D)

(Group D)
=8.9 (Group D)
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APPENDIX D - POLAR —I1 50 KM/HR TEST RESULTS

The following is a black and white reprint of SAE Pedestrian Dummy Task Force Document TGN109 which includes a
brief overview of the results of a 50 km/h impact test designed to investigate the durability of existing dummy designs.

The objective was to evaluate the durability of the Polar Il dummy at a nominal impact speed of 50 km/h. The test
conditions included a 2004 Honda Civic Sedan. The dummy was struck laterally and was suspended by a release
mechanism that was released 30 ms prior to impact. Braking of the vehicle was applied 200 ms after impact. The ground
surface where the dummy was intended to land was covered with padding to avoid any damage from the dummy from
occurring from the ground rather than the vehicle.

> R 14y"” 'I

FIGURE D1 - TEST CONF

IGURATION FOR POLAR Il DURABILITY TESTING

s

The actual impact speed was 50.5 km/h.  Following theMest, no damage to the structural parts off the instrumentation
were noted. A few quts of the dummy head skin were sustained from the vehicle windshield.

FIGURE D2 - VEHICLE DAMAGE FOLLOWING POLAR Il DURABILITY TESTING
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