

SAE, J2497

ISSUED OCT2002

Issued

2002-10

Power Line Carrier Communications for Commercial Vehicles

Foreword—This SAE Recommended Practice has been developed by the Truck and Bus Electronic Interface Subcommittee of the Truck and Bus Electrical and Electronics Committee. The objectives of the subcommittee are to develop information reports, recommended practices, and standards concerned with the requirements design and usage of devices which transmit electronic signals and control information among vehicle components.

This document is intended as a guide toward standard practice and is subject to change so as to keep pace with experience and technical advances.

TABLE OF CONTENTS

1.	Scope
2.	References
2.1	Applicable Documents
2.1.1	References
3.	Abbreviations
4.	Intellectual Property Licensing
	C.
5.	Network Description 3 PLC Network 3 PLC Transceiver 4
5.1	PLC Network
5.2	PLC Transceiver4
5.3	Coupling Examples
6.	Power Line Message 5
6.1	Message Format Between Host Microcontroller and PLC Transceiver
6.2	Message Format On The Power Line
6.2.1	Preamble Format
6.2.2	Data Body Format
6.3	Message Encoding6
6.3.1	Preamble Encoding
6.3.2	Data Body Encoding7
6.4	Message Timing
6.5	Contention Resolution

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright ©2002 Society of Automotive Engineers, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:

877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA) Fax: 724-776-0790

Email: custsvc@sae.org http://www.sae.org

Tel:

7. 7.1 7.2 7.3 7.4 7.5	Transmitter Characteristics Waveform Generation Amplitude SUPERIORθ1 to SUPERIORθ2 Transition Conducted Emissions Limit ECU Isolation	8 8 9
8. 8.1	Receiver Characteristics	
	Software Functions Cab Mounted Trailer ABS Malfunction Indicator Lamp Control Trailer Device Control Functions Lamp On Command Lamp Off Command Power Up (Bulb Check) Tractor Device Control Functions Lamp On Function Lamp Off Function Power Up (Bulb Check) SAE J1587 Indicator Lamp Control SAE J1939 Indicator Lamp Control PLC Network Message Format Definitions	.10 .10 .10 .10 .11 .11 .11 .11
10.1 10.2	PLC Network Message Format Definitions	.12 .12
Appendix A Appendix B Appendix C	SUPERIOR State Waveform. ECU Isolation Timing Diagrams	. 13 . 14 . 15
Table 1 Table 2 Table A1	Output Voltage	9
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	PLC Network PLC Transceiver	4 5 6 7 8 9
Figure B1 Figure C1 Figure C2	PLC and ECU Isolation	. 15

Scope—This SAE Recommended Practice defines a method for implementing a bidirectional, serial communications link over the vehicle power supply line among modules containing microcomputers. This document defines those parameters of the serial link that relate primarily to hardware and software compatibility such as interface requirements, system protocol, and message format that pertain to Power Line Communications (PLC) between Tractors and Trailers.

This document defines a method of activating the trailer ABS Indicator Lamp that is located in the tractor.

2. References

- 2.1 Applicable Publications—The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest version of SAE publications shall apply.
- SAE PUBLICATIONS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001. 2.1.1

SAE J1587—Joint SAE/TMC Recommended Practice for Electronic Data Interchange Between Microcomputer Systems In Heavy-Duty Vehicle Applications

SAE J1708—Serial Data Communications Between Microcomputer Systems In Heavy-Duty Vehicle Applications

view the full PDF SAE J1939—Recommended Practice for a Serial Control and Communications Vehicle Network

3. Abbreviations

ABS- Anti lock Brake System

ASK - Amplitude Shift Key modulation

ECU- Electronic Control Unit

MID - Message Identifier

NRZ - Non Return to Zero modulation

PGN - Parameter Group Number

PL- Power Line

PLC - Power Line Communications

PLCC- Power Line Carrier Communications

PRK - Phase Reversal Keying modulation

RF- Radio Frequency

4. Intellectual Property Rights—Attention is called to the possibility that implementation of this document may require the use of subject matter covered by patent rights. By publication of this document, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The SAE is not responsible for identifying patents for which a license may be required.

Intellon Corporation 5100 West Silver Springs Boulevard Ocala, Florida 34482 [Spread Spectrum Carrier technology]

Power Talk 100 Morey Drive Woodridge, IL 60517

[Spread Spectrum modulated PLC Communications in Vehicles]

5. Network Description

5.1 PLC Network—Figure 1 shows a typical PLC network. A typical network consists of Electronic Control Units (ECU) with, PLC transceivers, mounted on the tractor and trailer(s). These ECUs communicate to each other by sending Radio Frequency (RF) signals over the power line. These ECUs interface to the power line through a PLC transceiver.

The tractor PLC ECU must provide control for the Trailer ABS Indicator Lamp that is mounted in the tractor cab. This can be done by either a direct connection to the lamp, or by providing an appropriate control message (for example, by SAE J1587 or SAE J1939) to another ECU which then controls the lamp.

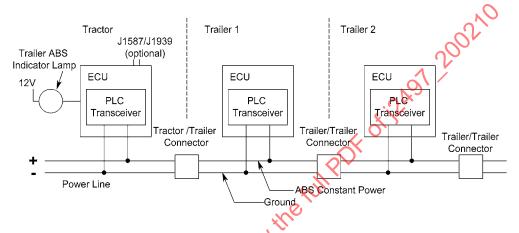


FIGURE 1—EXAMPLE OF PLC NETWORK

5.2 PLC Transceiver—The microprocessor of an electronic module interfaces to the power line through a PLC transceiver. Refer to Figure 2. The microprocessor sends digital data (Tx) to a coding device in the PLC transceiver. This data is in the format described in SAE J1708. The coding device converts the digital data into a signal suitable for being transmitted on the power line. This signal will be described in later sections. This signal (Signal_out) is then passed through the appropriate amplifier and filters before it is coupled onto the power line. Conversely, a PLC signal (Signal_in) is taken from the power line, filtered, and decoded into digital data (Rx). This data is sent to the host microprocessor in a format defined by SAE J1708.

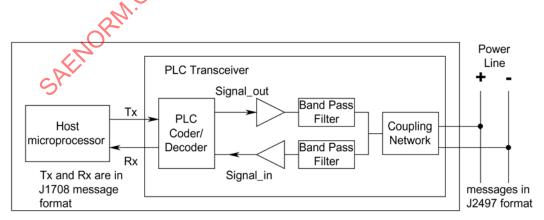


FIGURE 2—PLC TRANSCEIVER

5.3 **Coupling Examples—**The PLC transceivers will interface to the power line, relative to the negative line. through the appropriate coupling network. Figure 3 illustrates two possible coupling networks. One provides capacitive coupling and the other provides transformer (inductive) coupling of the PLC signals onto the power line."

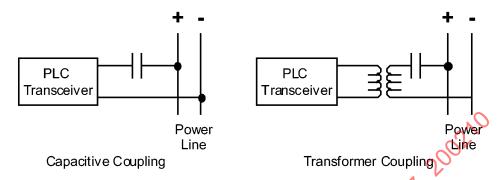


FIGURE 3—POWER LINE COUPLING TECHNIQUE

- 6. Power Line Message—The message sent on the power line has two major parts, the preamble and the data body. Refer to Figures C1 and C2 in Appendix C for following descriptions.
- 6.1 Message Format Between Host Microcontroller and PLC Transceiver—The communications between the host microcontroller and the PLC transceiver follows the SAE 1708 message format. The only exception to SAE J1708 message format is the character gap between the first and second characters. The host microcontroller must wait 2 bit times after receiving the stop bit of the first character echoed back to the microcontroller before sending the second character. Refer to Figure C1 in Appendix C.
- 6.2 Message Format On The Power Line—The format of the message that is placed on the power line is as follows.

Message:

Preamble:

ess than 2 symbols Initial Symbol(s)

Start bit Logic low, SUPERIORθ2 symbol Data bits Either Superior or Inferior symbol Logic high, Inferior symbol

Stop bit

Data Body:

5 Sync: Logic high, SUPERIORθ1 symbol

Each data character:

Start bit 1 Logic low, SUPERIORθ2 symbol

Data bits 8 Either superior symbol

Logic high, SUPERIORθ1 symbol Stop bit 1

Character Gap 0-4 symbol times

Logic high, SUPERIORθ1 symbol End of message

A symbol is the signal, encoded on the power line, that is the representation of a binary state. The symbols will be discussed in more detail in subsequent sections.

The preamble is created by the PLC transceiver and uses the first character it receives, of the message to be sent, from the host microcontroller (i.e., the MID). After the preamble, the transceiver retransmits the first data character again in the data body. The host microcontroller SHOULD NOT resend the first data character again to the PLC transceiver.

- 6.2.1 PREAMBLE FORMAT—Refer to Figure C1 in Appendix C. The preamble starts with less than two complete initial SUPERIORθ2 symbols. The initial symbol(s) are followed by a start bit, 8 data bits, and 1 stop bits. The start bit is a SUPERIORθ2 symbol and the stop bit is an Inferior symbol. The data bits are either symbol.
- 6.2.2 DATA BODY FORMAT—A sync segment follows the preamble. This sync segment consists of 5 SUPERIORθ1 symbols.

Following the sync segment is the first data character. Data characters consist of a start bit, followed by 8 data bits, and 1 stop bit. These data characters in the data body are the same characters from the SAE J1708 message sent to the PLC transceiver by the host microcontroller. The start bit is represented by a SUPERIOR02 symbol, and a stop bit is represented by a SUPERIOR01 symbol.

The data characters are separated by character gaps of zero to four SUPERIOR 1 symbols. The character gaps are required because the bit time (symbol time) of the message on the power line is different than the bit time of the message sent between the host microprocessor and the power line transceiver.

The end of the message is terminated with five consecutive SUPERIOR symbols (logic highs) after the stop bit of the last (nth) character. Refer to Figure C2 of Appendix C.

- **6.3 Message Encoding**—The preamble and data body are encoded onto the power line using different modulation techniques.
- 6.3.1 PREAMBLE ENCODING—The preamble is encoded onto the power line using "Amplitude Shift Key" modulation (ASK). A logic "0" is encoded using a particular waveform. This waveform is a logic symbol known as a Superior State Phase 2 or SUPERIORθ2. The characteristic of this waveform is described in a later section. The logic "1" is encoded by the absence of any signal. This logic symbol is known as an Inferior state. These symbols are illustrated in Figure 4.

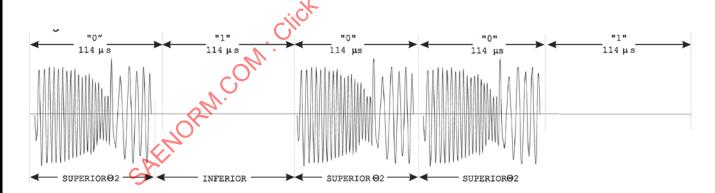


FIGURE 4—EXAMPLE OF PREAMBLE LOGIC SYMBOL ENCODING

The bit time during the preamble is 114 μ s, whereas the time of the SUPERIOR θ 2 symbol is 100 μ s. There are 14 μ s of idle time between two consecutive SUPERIOR θ 2 symbols. This extra idle time increases the ability to detect the preamble.

6.3.2 DATA BODY ENCODING—The data body is encoded onto the power line using "Non Return to Zero" (NRZ) "Phase Reversal Keying" (PRK) Modulation. There are two signals used to encode binary logic symbols "1" and "0". Both are superior state. The signal for a logic "1" symbol is known as "Superior State Phase 1" or SUPERIORθ1. The signal for a logic "0" symbol is known as "Superior State Phase 2" or SUPERIORθ2. The signal for a SUPERIORθ2 has the same function as SUPERIORθ1 except it differs in phase by 180 degrees (SUPERIORθ2 = -SUPERIORθ1). Examples of these symbols are shown in Figure 5. The SUPERIORθ2 symbol is the same symbol used in the coding of the logic "0" in the preamble. The characteristics of these waveforms are described in a later section.

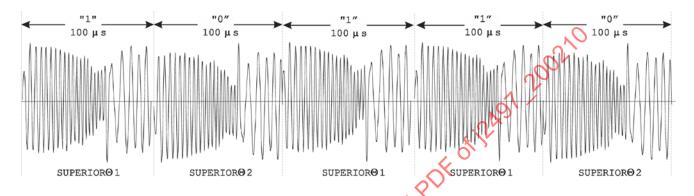


FIGURE 5—EXAMPLE OF DATA BODY LOGIC SYMBOL ENCODING

6.4 Message Timing

Message between host microprocessor and PLC Transceiver:

Bit time is 104 µs (9600 bits per second)

Message sent on power line:

Bit time of preamble is 114 us (8772 bits per second).

Bit time of data body is 100 is (10 000 bits per second).

Symbol time is 100 µs-

The tolerance is $\pm 0.5\%$ over the operating temperature and humidity range of the PLC transceiver.

6.5 Contention Resolution—The preamble is used to resolve contention between two messages transmitted simultaneously.

The ASK encoding method provides the means of arbitration. One preamble will have signal (SUPERIOR θ 2) in a bit location that the contending preamble has no signal (INFERIOR). Thus, the SUPERIOR θ 2 symbol will overwrite the INFERIOR symbol.

Refer to Figure C1 of Appendix C. As each transceiver sends out its preamble, it observes the preamble on the power line. When one transceiver detects a SUPERIOR02 symbol in the bit location where there should be an INFERIOR symbol, it will immediately stop transmitting and place itself in the receiver mode so as not to corrupt the preamble of the dominant message. When in the receive mode, the output of the transceiver is placed in tri-state so as not to load the line and block the incoming signal.

The received preamble is echoed back to the host microcontroller so it will know that it has lost arbitration and not to continue sending the remainder of its message.

- NOTE— The delay in the first character echoed back to the host microcontroller from the PLC transceiver is considerably larger than the delay typically found in SAE J1708 communications. This is due to the PLC preamble decoding process.
- 7. **Transmitter Characteristics**—The transmitter shall be a differential driver capable of driving the specified carrier waveform on the PL network. The following sections detail the transmitter requirements for generating the SUPERIOR (either phase) and INFERIOR states on the power line network.
- 7.1 Waveform Generation—The AC output voltage generated during either SUPERIOR state shall be a swept sine wave. Figure 6 shows the waveform for a SUPERIOR state. The signal shall be impressed upon the DC power line voltage. It will begin at the 0° point at 203 kHz and linearly sweep to a frequency of 400 kHz in 66 μs (19 full cycles), then linearly sweep to 100 kHz in 4 μs (1 full cycle), and then linearly sweep to 203 kHz in 33 μs (5 full cycles). The resultant waveform is thus 100 μs ± 100 ns ending at the 0° point after 25 cycles. The carrier may begin with either a positive or negative going phase. The shape and relative amplitude of the waveform over time is a complex function designed to reduce out-of-band radiated interference from the carrier. The specification for the waveform is given as a table in Appendix A.

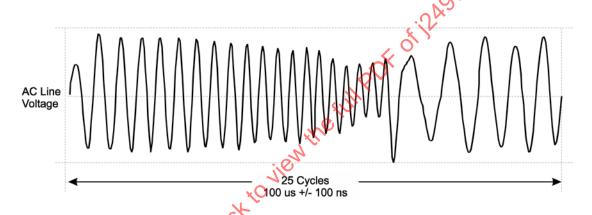
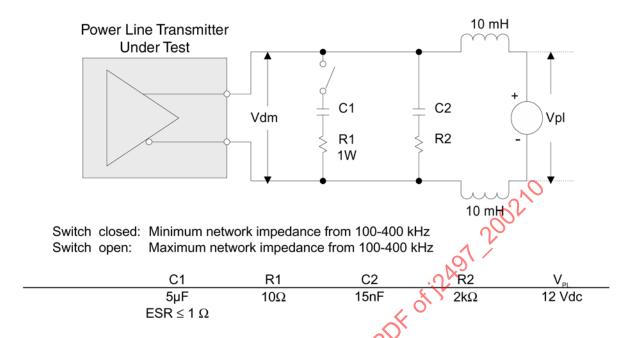


FIGURE 6—FREQUENCY SWEPT CARRIER WAVEFORM


The only difference between the waveform of SUPERIOR θ 1 and SUPERIOR θ 2 is that they are 180 degrees out of phase (SUPERIOR θ 1 = SUPERIOR θ 2). The phase difference depends upon the specific design and is automatically sensed by the PLC transceiver.

7.2 Amplitude—The amplitude of the carrier output voltage during either SUPERIOR state, into the test load shown in Figure 7 at the power line connector of the device, shall be between the minimum and maximum output levels given in the following table. The output voltage is measured between adjacent waveform peaks developing the highest differential amplitude. These output levels will be met over the load range represented by the switched load conditions of the test circuit. See Table 1.

TABLE 1—OUTPUT VOLTAGE

Minimum	Maximum	Load Range			
2.5 Vpp	7 Vpp	10 Ω - 2 kΩ			

To ensure proper reception and minimum out of band interference, the normalized envelope shape of the transmitted swept carrier will match the envelope shape of the waveform of Table A1 in Appendix A to within ±10% measured while driving the test circuit of Figure 7, with the switch in the closed position.

C1 should have equivalent series resistance less than 1 ohm.

Note: The intent is to present a nearly real load to the PLC transceiver. C1 and 22 are for AC coupling of R1 and R2 respectively. Their impedance and ESR must be much less than R1 and R2 respectively within reasonable component characteristics.

FIGURE 7—OUTPUT DRIVER TEST CIRCUIT

The 10 mH inductors must have a self resonance much greater than the PLC band (> 400 KHz) and saturation and maximum current limits above DC current levels used by the PLC Transceiver or devices connected in parallel with the PLC Transceiver.

- 7.3 SUPERIORθ1 to SUPERIORθ2 Transition—During the output transition from the end of one SUPERIOR state to the beginning of another SUPERIOR state of the opposite phase, the waveform amplitude ±2 intervals (Table A1 in Appendix A) about the transition point may assume any value necessary to implement the phase reversal (less than the maximum waveform amplitude allowed during this interval) provided the out-of-band signal level requirements of 7.4 are met.
- **7.4 Conducted Emissions Limit**—Table 2 lists the maximum conducted emissions measured at Vdm of the test load described in Figure 7, measured in any 9 KHz band.

TABLE 2—CONDUCTED EMISSIONS LIMIT

Frequency		20 kHz to 80 kHz	100 kHz to 400 kHz	2.5 MHz to 5.0 MHz	Elsewhere from 530 kHz to 30 MHz
Limit	V	< 5 mV RMS	< 7.0 V pp	< 500 μV RMS	< 1 mV RMS

7.5 ECU Isolation—The PLC transceiver essentially connects in parallel to the power supply of the ECU into which the transceiver is integrated. Some component configurations in the power supply may cause attenuation and distortion, which may lead to conducted emissions exceeding the recommended limits. Examples of ECU and PLC isolation are shown in Appendix B.

- 8. Receiver Characteristics—The PLC receiver must detect the two valid swept frequency carrier unit symbol state waveforms of SUPERIORθ1 and SUPERIORθ2. Detection is assumed to occur, for specification description purposes, by correlating the received waveform with an internal model of the waveform. This process requires that reporting of a valid medium state occur only after the complete state (100 μs) has been received.
- **8.1 SUPERIOR States Recognition**—Unit SUPERIOR state symbol recognition (of either phase) will occur when the received swept frequency carrier signal level is ≥5.0 mV p-p and <7.0 V p-p, at the power line connector of the device, in the band from 100 kHz to 400 kHz and the transmitted swept carrier waveform meets the relative amplitude and waveform timing requirements given in Section 7.

The received message error rate (one or more errors occurring within the message) will not exceed 0.1% (with no retries) when the swept carrier waveform is received with a signal level in the range of ≥5.0 mV p-p and <7.0 V p-p without any interfering signals or signal impairments, measured using a minimum of 1000 messages of data with a message length of five bytes. In addition, the received packet error rate will not exceed:

2% when the swept carrier waveform is received in the presence of a constant carrier interfering signal occupying any single frequency from 20 kHz to 1 MHz producing a signal-to-interfering noise ratio of 3.0 dB at the receiver terminals.

2% when the swept carrier waveform is received at the minimum level of 5 mV p-p, where not impaired, in the presence of a band stop filter impairment between the signal source and the receiver with a 10.0 db attenuation in the stop band, having a Q of 5, with center frequency placed at any point between 100 kHz and 400 kHz.

- **9. Software Functions**—The protocol of the messages communicated on the PLC network is that which is described in the SAE J1708.
- 9.1 Cab Mounted Trailer ABS Malfunction Indicator Lamp Control—The physical control of the cab mounted Trailer ABS Indicator Lamp is made by a device within the towing vehicle. An example of this device is the Tractor ABS ECU. The logical control of the cab mounted Trailer ABS Indicator Lamp is made by a device mounted on the Trailer. An example of this device is the Trailer ABS ECU.
- 9.1.1 TRAILER DEVICE CONTROL FUNCTIONS—The trailer mounted device performs the logical control of the cab mounted trailer ABS Indicator Lamp by sending the appropriate control message over the power line to the tractor mounted control device. The trailer device shall send either of these messages every 500 ms.
- 9.1.1.1 Lamp On Command—The message to command the lamp "ON" starts with message identifier (MID) 10. This message is defined in Section 10.
- 9.1.1.2 Lamp Off Command—The message to command the lamp "OFF" starts with message identifier (MID) 11. This message is defined in Section 10.
- 9.1.1.3 Power up (Bulb Check)—When power is applied and the trailer ABS device becomes active, if the lamp is not to be turned on (no faults), the trailer device has the option to send one or more initial "ON" command(s) for a bulb check. Otherwise, it shall send the "OFF" commands (Example 2.8 in Figure 8).

- 9.1.2 TRACTOR DEVICE CONTROL FUNCTIONS—The device in the tractor, that physically controls the cab mounted Trailer ABS Indicator Lamp, shall activate the lamp as indicated in the following.
- 9.1.2.1 Lamp On Function—When the tractor device receives an "ON" message, from the power line, it shall turn on the Lamp for 2.5 s (Example 2.1 in Figure 8). In the event of multiple trailers sending conflicting control messages, the "ON" message has priority (Example 2.2 in Figure 8).
- 9.1.2.2 Lamp Off Function—When the tractor device receives an "OFF" message, over the power line, it shall turn the lamp off 2.5 s after the receipt of the last "ON" message (Examples 2.3 through 2.5 in Figure 8).

When the tractor device no longer receives "ON" or "OFF" messages, from the power line, it shall turn off the lamp 10 seconds after the receipt of the last "ON" message (Example 2.6 in Figure 8).

9.1.2.3 Power on (Bulb Check):—When the ignition becomes active and the first control message that the tractor device receives within 3 s is an "OFF", then the tractor device will turn on the lamp for 2.5 s or longer if an "ON" message is received (Examples 2.7 and 2.8 in Figure 8). If an "ON" message is received during this time, the tractor device will then control according to the preceding sections.

If no lamp control messages are received, then the tractor device will not perform a bulb check (Example 2.9 in Figure 8).

		,
Exan		Comments
2.1	lamp on11 11 11 10 10 10 10	Lamp on when ON message
	lamp off → 0.5s ←	received (MID 10)
2.2	lamp on11 11 11 11 10 11 10 11 10 11 10 11.	Lamp on with multiple trailers
	0.50	(dollies) and ON message received
	lamp on	
2.3	lamp on10 10 11 11 11 11 11	Lamp off 2.5 seconds after last ON
	lamp off	message sent. OFF messages sent.
2.4	lamp on ^{10 11} 10 ¹¹ 11 ¹¹ 11 ¹¹ 11 ¹¹ 11	Lamp off, multiple trailers
	lomp off → 0.5s	
2.5	₄₀ 11 ₄₀ 11 11 11 11 11	Lamp off with multiple trailers and
	lamp on10 11 11 11 11 11 11	ON message from one trailer no
	lamp off →0.5s ←	longer received.
2.6	lamp on	Lamp off 10 seconds after loss of
	lomp off	messages
	t + 10 sec	
2.7	lamp on 11 11 11 11 11 11	Bulb check performed when OFF
	lamp off	messages detected within 3
	ign on t < 3sec t + 2.5 sec	seconds of ignition activation.
2.8	lamp on 11 11	Bulb check NOT performed when
	lamp off	OFF messages are detected after
	ign on t > 3sec	3 seconds of ignition activation.
2.9	lamp on	Lamp not to be activated with no
	lamp off 0.5s -	control messages available.

FIGURE 8—CONTROL OF CAB MOUNTED TRAILER ABS INDICATOR LAMP BY TRACTOR DEVICE

- 9.1.3 SAE J1587 INDICATOR LAMP CONTROL—The tractor PLC unit will send a message onto the SAE J1587 bus to indicate the control status of the Trailer ABS Indicator Lamp. This message is to facilitate control of a Trailer ABS Indicator lamp that is mounted in an electronic instrument panel with no dedicated control input. The Parameter Identifier (PID) for the control of this lamp is defined in SAE J1587.
- 9.1.4 SAE J1939 INDICATOR LAMP CONTROL—The tractor PLC unit will send a message onto the SAE J1939 bus to indicate the control status of the Trailer ABS Indicator Lamp. This message is to facilitate control of Trailer ABS Indicator lamp that is mounted in an electronic instrument panel with no dedicated control input. The Parameter Group Number (PGN) for the control of this lamp is defined in SAE J1939.
- 10. PLC Network Message Format Definitions—The definitions of the PLC network messages, which are not described in the SAE joint SAE/TMC Recommended Practice for Electronic Data Interchange Between Microcomputer Systems In Heavy-Duty Vehicle Applications, J1708 and J1587, are described in this section.
- 10.1 Trailer ABS Indicator Lamp ON (MID10)

Message Identifier (MID) 10d

- DATA = 00d
- Update rate = 500ms

The purpose of the message identifier is to command tractor mounted Trailer ABS Indicator Lamp to be ON.

- 10.2 Trailer ABS Indicator Lamp OFF (MID 11)—Message Identifier (MID) 11d
 - DATA = 255d
 - Update rate = 500ms

The purpose of the message identifier is to command ractor mounted Trailer ABS Indicator Lamp to be OFF.

10.3 Trailer ABS Active (MID 87)—Message Identifier (MID) 87d

Format: MID / data / checksum

- Data = 255d
- Update rate = 500 ms and when ABS is first active.

State signal which indicates that the ABS in the trailer is actively controlling an ABS event. This information is used in the tractor vehicle dynamic control system for calculating trailer dynamics.

This message is to be sent on change to ABS active state and continued to be broadcast with an update rate of 500 ms while in the active state. To indicate that this message is supported by the trailer ECU, this message is transmitted, with an update rate of 500 ms, during the first 2.5 s following the application of power and vehicle motion is not detected.

PREPARED BY THE SAE TRUCK AND BUS LOW SPEED COMMUNICATIONS NETWORK SUBCOMMITTEE OF THE SAE TRUCK AND BUS ELECTRICAL AND ELECTRONICS COMMITTEE

APPENDIX A

SUPERIOR STATE WAVEFORM

A.1 The specification for the waveform during SUPERIOR State is given as a table, below, describing the relative amplitude of the waveform over 360 evenly spaced intervals (over the 100 µs frequency sweep period). The values shown in the table for each point are relative to a maximum of ±0.5 about a 0.0 reference level. The values for the waveform of the opposite phase will be identical except for having the opposite sign.

TABLE A1—DIGITIZED 100 MS WAVEFORM—360 INTERVALS (361 POINTS)

i	value	i	value	1	Value	- 1	value	1	value	i	value	I	value
0	0.0000	52	0.4001	104	0.2039	156	-0.2319	208	-0.2202	260	-0.1932	312	-0.1875
1	0.0816	53	0.4082	105	0.3419	157	-0.3436	209	-0.1164	261	-0.2437	313	-0.2684
2	0.1328	54	0.3351	106	0.3867	158	-0.3534	210	0.0251	262	-0.2930	314	-0.3319
3	0.1827	55	0.1916	107	0.3435	159	-0.2372	211	0.1559	263	-0.3328	315	-0.3758
ļ	0.2149	56	0.0225	108	0.1955	160	-0.0465	212	0.2239	264	-0.3436	316	-0.3865
5	0.2149	57	-0.1517	109	0.0135	161	0.1443	213	0.1887	265	-0.3322	317	-0.3758
;	0.2041	58	-0.3040	110	-0.1777	162	0.2879	214	0.0855	266	√ 0.2899	318	-0.3192
•	0.1585	59	-0.4053	111	-0.3300	163	0.3224	215	-0.0369	267	-0.2362	319	-0.2377
3	0.0784	60	-0.4295	112	-0.3968	164	0.2392	216	-0.1417	268	-0.1844	320	-0.1300
)	-0.0246	61	-0.3560	113	-0.3592	165	0.0663	217	-0.1717	269	-0.1244	321	-0.0099
0	-0.1479	62	-0.2197	114	-0.2226	166	-0.1424	218	-0.1099	270	-0.0644	322	0.1101
1	-0.2628	63	-0.0397	115	-0.0333	167	-0.2973	219	-0.0006	271	-0.0214	323	0.2087
2	-0.3550	64	0.1511	116	0.1679	168	-0.3643	220	0,1301	272	0.0450	324	0.2857
3	-0.3973	65	0.3067	117	0.3104	169	-0.2894	221	0.2072	273	0.1182	325	0.3330
4	-0.3973	66	0.4053	118	0.3760	170	-0.1157	222	0.2285	274	0.1903	326	0.3542
5	-0.3257	67	0.4140	119	0.3520	171	0.0871	223	0.1508	275	0.2680	327	0.3437
6	-0.2056	68	0.3428	120	0.1970	172			0.0235	276	0.3330	328	0.3099
7	-0.2030	69	0.2091	121	-0.0002	173	0.2640	225	-0.1019	277	0.3760	329	0.2498
			0.2091	122	-0.2097	173	0.3424	226		278	0.3836	330	0.2498
8 9	0.1161	70 74					0.1266		-0.1727				
	0.2619	71	-0.1636	123	-0.3590	175		227	-0.1645	279	0.3652	331	0.0447
0	0.3736	72	-0.3028	124	-0.4078	176	0.0813	228	-0.0615	280	0.3330	332	-0.0806
1	0.4404	73	-0.3971	125	-0.3412	177	-0.2519	229	0.0706	281	0.2849	333	-0.2061
2	0.4301	74	-0.4018	126	-0.1846	178	-0.3221	230	0.1922	282	0.2142	334	-0.3261
3	0.3652	75	-0.3310	127	0.0255	179	-0.2640	231	0.2578	283	0.1541	335	-0.3847
4	0.2442	76	-0.1904	128	0.2122	180	-0.1073	232	0.2122	284	0.0834	336	-0.4295
5	0.0997	77	-0.0173	129	0.3430	181	0.0898	233	0.0815	285	0.0126	337	-0.4197
6	-0.0529	78	0.1690	130	0.3652	182	0.2509	234	-0.1116	286	-0.0842	338	-0.3646
7	-0.2115	79	0.3120	131	0.2746	183	0.3223	235	-0.3090	287	-0.1826	339	-0.2791
8	-0.3218	80	0.4082	132	0.1053	184	0.2717	236	-0.4610	288	-0.2641	340	-0.1586
9	-0.3973	81	0.3867	133	-0.1035	185	0.1194	237	-0.5000	289	-0.3436	341	-0.0362
0	-0.4008	82	0.2915	134	-0.2753	186	-0.0765	238	-0.4600	290	-0.3949	342	0.0839
1	-0.3596	83	0.1316	135	-0.3597	187	-0.2281	239	-0.3383	291	-0.4295	343	0.2039
2	-0.2610	84	-0.0686	136	-0.3426	188	-0.2899	240	-0.1861	292	-0.4295	344	0.2962
3	-0.1148	85	-0.2594	137	-0.2216	189	-0.2405	241	-0.0338	293	-0.4022	345	0.3670
4	0.0648	86	-0.3827	138	-0.0450	190	-0.0906	242	0.0862	294	-0.3514	346	0.4108
5	0.2065	87	-0.4295	139	0.1366	191	0.0855	243	0.1612	295	-0.2821	347	0.4189
6	0.3373	88	-0.3796	140	0.2936	192	0.2163	244	0.1827	296	-0.2006	348	0.3781
7	0.4082	89	-0.2444	141	0.3545	193	0.2578	245	0.2041	297	-0.1202	349	0.3059
8	0.4082	90	-0.0536	142	0.3048	194	0.1963	246	0.2134	298	-0.0269	350	0.1803
9	0.3334	91	0.1479	143	0.1651	195	0.0377	247	0.2363	299	0.0753	351	0.0312
0	0.1922	92	0.3134	144	-0.0235	196	-0.1379	248	0.2471	300	0.1648	352	-0.1211
-1	0.0277	93	0.4032	145	-0.1992	197	-0.2578	249	0.2714	301	0.2606	353	-0.2349
2	-0.1524	94	0.3829	146	-0.3111	198	-0.2899	250	0.2793	302	0.3421	354	-0.3321
3	-0.2968	95	0.2805	147	-0.3328	199	-0.2106	251	0.2599	303	0.3960	355	-0.3752
4	-0.3963	96	0.0953	148	-0.2436	200	-0.0608	252	0.2213	304	0.4189	356	-0.3474
5	-0.4295	97	-0.0992	149	-0.0753	201	0.0939	253	0.1613	305	0.4082	357	-0.2874
6	-0.3944	98	-0.2729	150	0.1111	202	0.1929	254	0.1013	306	0.3738	358	-0.1970
7	-0.2861	99	-0.2729	151	0.2669	203	0.1929	255	0.0413	307	0.3008	359	-0.1970
8	-0.2861	100	-0.3790	152	0.2009	203	0.2041	256	-0.0161	308	0.2068	360	0.0000
	0.0277								-0.0161		0.2066	300	0.0000
9		101	-0.3174	153	0.2986	205	-0.0262	257		309			
0	0.1922	102	-0.1589 0.0283	154	0.1497 -0.0441	206	-0.1610 -0.2362	258	-0.0858 -0.1400	310	0.0096		