AMS 5841

ADOPTION NOTICE

"Alloy, Corrosion and Heat Resistant, Bars 19Cr - 36Co -25Ni - 7.0Mo - 0.50Cb - 2.9Ti - 0.20Al -9.0Fe Vacuum Induction Plus Vacuum Consumable Electrode Melted Solution Heat Treated for Work Strengthening" was adopted on 22 August 1994 for use by the Department of Defense (DoD). Proposed changes by DoD activities must be submitted to the DoD Adopting Activity: Air Force, ASC/ENOSD, Building 125, 2335 Seventh Street, Suite 6, Wright-Patterson AFB OH 45433-7809. DoD activities may obtain copies of this standard from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094. The private sector and other Government agencies may purchase copies from the Society of Automotive Engineers Inc., 400 Commonwealth Drive, Warrendale, PA 15096-0001.

Custodians:

Army - MR

Navy - AS

Air Force - 11

Adopting Activity: Air Force - H (Proj No. 9530-0520)

Review activities:

AF - 99

Click to view the full PD SAETHORM. COM. Click to view the full PD SAETHORM. AMSC N/A FSC 9530

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

AEROSPACE MATERIAL SPECIFICATION

SAE

AMS 5841C

Issued MAR 1977 Revised JUL 1994 Superseding AMS 5841B

Submitted for recognition as an American National Standard

ALLOY, CORROSION AND HEAT RESISTANT, BARS

19Cr - 36Co - 25Ni - 7.0Mo - 0.50Cb - 2.9Ti - 0.20Al - 9.0Fe

Vacuum Induction Plus Vacuum Consumable Electrode Melted

Solution Heat Treated for Work Strengthening

UNS R30159

- 1. SCOPE:
- 1.1 Form:

This specification covers a high strength, corrosion and heat resistant cobalt-chromium-nickel alloy in the form of bars

1.2 Application:

These bars have been used typically for applications requiring a combination of high strength up to 1100 °F (593 °C), good tension-tension fatigue strength, toughness, and ductility, but usage is not limited to such applications. This alloy exhibits exceptionally good resistance to corrosion, crevice-corrosion, stress-corrosion cracking, and elevated temperature relaxation.

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

AMS 2261 Tolerances, Nickel, Nickel Alloy, and Cobalt Alloy Bars, Rods, and

MAM 2261 Tolerances, Metric, Nickel, Nickel Alloy, and Cobalt Alloy Bars, Rods. and Wire

AMS 2269 Chemical Check Analysis Limits, Wrought Nickel Alloys and Cobalt Alloys

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright 1994 Society of Automotive Engineers, Inc. All rights reserved.

SAE

AMS 5841C

2.1 (Continued):

- AMS 2371 Quality Assurance Sampling and Testing, Corrosion and Heat Resistant Steels and Alloys, Wrought Products and Forging Stock
- AMS 2750 **Pyrometry**
- AMS 2806 Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels and Corrosion and Heat Resistant Steels and Alloys

2.2 ASTM Publications:

Available from ASTM, 1916 Race Street, Philadelphia, PA 19103-1187.

Tension Testing of Metallic Materials ASTM E 8

Tension Testing of Metallic Materials (Metric) ASTM E 8M

ASTM E 18 Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials

ASTM E 21 ASTM E 112 Elevated Temperature Tension Tests of Metallic Materials

Determining the Average Grain Size

ASTM E 139 Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials

Conducting Time-for-Rupture Notch Tension Tests of Materials ASTM E 292 ASTM E 354 Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

2.3 U.S. Government Publications:

Available from DODSSP, Subscription Services Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094.

MIL-STD-163 Steel Mill Products, Preparation for Shipment and Storage

3. TECHNICAL REQUIREMENTS:

3.1 Composition:

Shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 354, by spectrochemical methods, or by other analytical methods acceptable to purchaser:

SAE

AMS 5841C

TABLE 1 - Composition

Element	min	max
Carbon		0.04
Manganese		0.20
Silicon		0.20
Phosphorus		0.020
Sulfur		0.010
Chromium	18.00	20.00
Cobalt	34.00	38.00
Molybdenum	6.00	8.00
Columbium	0.25	0.75
Titanium	2.50	3.25
Aluminum	0.10	0.30
Iron	8.00	10.00
Boron		0.03
Nickel	remainder	0,

- 3.1.1 Check Analysis: Composition variations shall meet the requirements of AMS 2269.
- 3.2 Melting Practice:

Alloy shall be produced by multiple melting using vacuum induction followed by vacuum consumable electrode melting practice.

3.3 Condition:

Solution heat treated and centerless ground.

3.4 Heat Treatment:

Bars shall be solution heat treated by heating to a temperature within the range 1900 to 1925 °F (1038 to 1052 °C), holding at the selected temperature within ± 25 °F (± 14 °C) for 4 to 8 hours, and quenching in water. Pyrometry shall be in accordance with AMS 2750.

3.5 Properties:

Bars shall conform to the following requirements:

- 3.5.1 As Solution Heat Treated:
- 3.5.1.1 Tensile Properties: Shall be as shown in Table 2, determined in accordance with ASTM E 8 or ASTM E 8M:

SAE

AMS 5841C

TABLE 2 - Tensile Properties as Solution Heat Treated

Property	Value
Tensile Strength, max	160 ksi (1103 MPa)
Yield Strength at 0.2% Offset, max	70.0 ksi (483 MPa)
Elongation in 4D, min	50%
Reduction of Area, min	65%

- 3.5.1.2 Hardness: Shall be not higher than 20 HRC, or equivalent (See 8.2). determined in accordance with ASTM E 18. (R)
- 3.5.1.3 Average Grain Size: Shall be ASTM No. 4 or finer, determined in accordance with ASTM E 112 (See 8.3). (R)
- 3.5.2 After Cold Working and Aging: Specimens as in 4.3.1 from bars 1-3/4 inches (44.4 mm) and under in nominal diameter, solution heat treated as in 3.4, shall have the following properties after being reduced by cold drawing $48\% \pm 1$ of original cross-section area (See 8.4) and aged by heating to a temperature within the range 1200 to 1250 °F (649 to 677 °C), holding at the selected temperature within ± 25 °F (± 14 °C) for not less than 4 hours, and cooling at a rate equivalent to an air cool (See 8.5).
- 3.5.2.1 Tensile Properties:
- 3.5.2.1.1 At Room Temperature: Shall be as shown in Table 3, determined in accordance with ASTM E 8 or ASTM E 8M.

TABLE 3 - Minimum Room Temperature Tensile Properties

Property	Value	
Tensile Strength	260 ksi (1793 MPa)	
Yield Strength at 0.2% Offset	250 ksi (1724 MPa)	
Elongation in 4D	6%	
Reduction of Area	22%	

3.5.2.1.2 At 1100 °F (593 °C): Shall be as shown in Table 4, determined in accordance with ASTM E 21 on specimens heated to 1100 °F \pm 10 (593 °C \pm 6), held at heat for 20 to 30 minutes before testing, and tested at 1100 °F \pm 10 (593 °C \pm 6): AMS 5841C SAE AMS 5841C

TABLE 4 - Minimum Elevated Temperature Tensile Properties

Property	Value
Tensile Strength	205 ksi (1413 MPa)
Yield Strength at 0.2% Offset	190 ksi (1310 MPa)
Elongation in 4D	5%
Reduction of Area	15%

- 3.5.2.2 Hardness: Should be not lower than 44 HRC, or equivalent (See 8.2), (R) determined in accordance with ASTM E 18.
- 3.5.2.3 Stress-Rupture Properties at 1200 °F (649 °C): Shall be as follows; testing of notched specimens and of combination smooth-and-notched specimens shall be in accordance with ASTM E 292 and of smooth specimens as in 4.3.1 in accordance with ASTM E 139:
- 3.5.2.3.1 A standard, cylindrical, combination smooth-and-notched specimen conforming to ASTM E 292, maintained at 1200 °F \pm 3 (649 °C \pm 2) while a load sufficient to produce an initial axial stress of 140 ksi (965 MPa) or higher is applied continuously, shall not rupture in less than 23 hours. The test shall be continued to rupture without change of load. After the 23 hours, if rupture occurs in the notch, the smooth section shall, by suitable means, be continued to rupture or a separate smooth specimen shall be tested to rupture under the above conditions. Elongation of the smooth section after rupture, measured at room temperature, shall be not less than 5% in 4D.
- 3.5.2.3.2 As an alternate procedure, separate smooth and notched specimens, machined from adjacent sections of the same piece with gage sections conforming to the respective dimensions shown in ASTM E 292, may be tested individually under the conditions of 3.5.2.3.1. The smooth specimen shall not rupture in less than 23 hours and elongation after rupture, measured at room temperature, shall be not less than 5% in 4D. The notched specimen shall not rupture in less time than the companion smooth specimen but need not be tested to rupture.
- 3.5.2.3.3 The tests of 3.5.2.3.1 and 3.5.2.3.2 may be conducted using incremental loading. In such case, the load required to produce an initial axial stress of 140 ksi (965 MPa) or higher shall be used to rupture or for 23 hours, whichever occurs first. After the 23 hours and at intervals of 8 to 16 hours, preferably 8 to 10 hours, thereafter, the stress shall be increased in increments of 5.0 ksi (34.5 MPa). Time to rupture and elongation requirements shall be as specified in 3.5.2.3.1.

3.6 Quality:

Bars, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the bars.

(R)

SAE

AMS 5841C

3.7 Tolerances:

Shall conform to all applicable requirements of AMS 2261 or MAM 2261.

- **OUALITY ASSURANCE PROVISIONS:**
- 4.1 Responsibility for Inspection:
 - The vendor of bars shall supply all samples for vendor's tests and shall be responsible for performing all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the bars conform to the requirements of this specification.
- 4.2 Classification of Tests:
- 4.2.1 Acceptance Tests: Tests for the following requirements are acceptance tests and shall be performed on each heat or lot as applicable:
- 4.2.1.1 Composition (3.1) of each heat.
- 4.2.1.2 Tensile properties (3.5.1.1), hardness (3.5.1.2), and average grain size (3.5.1.3) of each lot as solution heat treated.
- 4.2.1.3 Tolerances (3.7).
- 4.2.2 Periodic Tests: Tests for tensile properties (3.5.2.1), hardness (3.5.2.2), and stress-rupture properties (3.5.2.3) after cold working and aging are periodic tests, and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.
- Sampling and Testing:
- (R) Shall be in accordance with AMS 2371.
- 4.4 Reports:

(R)

The vendor of bars shall furnish with each shipment a report showing the results of tests for chemical composition of each heat and for tensile properties, hardness, and average grain size of each lot as solution heat treated and when performed, the results of tests to determine conformance to the periodic test requirements. This report shall include the purchase order number, heat and lot number, AMS 5841C, size, and quantity.

4.5 Resampling and Retesting:

Shall be in accordance with AMS 2371.

- PREPARATION FOR DELIVERY:
- 5.1 Sizes:

Except when exact lengths or multiples of exact lengths are ordered, straight bars will be acceptable in mill lengths of 6 to 20 feet (1.8 to 6.1 m) but not more than 10% of any shipment shall be supplied in lengths shorter than 10 feet (3 m).