NFPA 1963 Screw Threads and Gaskets for Fire Hose Connections 1985 Edition

NOTICE

All questions or other communications relating to this document should be sent only to NFPA Head-quarters, addressed to the attention of the Committee responsible for the document.

For information on the procedures for requesting Technical Committees to issue Formal Interpretations, proposing Tentative Interim Amendments, proposing amendments for Committee consideration, and appeals on matters relating to the content of the document, write to the Secretary, Standards Council, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

A statement, written or oral, that is not processed in accordance with Section 16 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Users of this document should consult applicable Federal, State and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action which is not in compliance with applicable laws and this document may not be construed as doing so.

Policy Adopted by NFPA Board of Directors on December 3, 1982

The Board of Directors reaffirms that the National Fire Protection Association recognizes that the toxicity of the products of combustion is an important factor in the loss of life from fire. NFPA has dealt with that subject in its technical committee documents for many years.

There is a concern that the growing use of synthetic materials may produce more or additional toxic products of combustion in a fire environment. The Board has, therefore, asked all NFPA technical committees to review the documents for which they are responsible to be sure that the documents respond to this current concern. To assist the committees in meeting this request, the Board has appointed an advisory committee to provide specific guidance to the technical committees on questions relating to assessing the hazards of the products of combustion.

Licensing Provision — This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rulemaking process. B. Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rulemaking powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rulemaking powers may apply for and may receive a special royalty when the public interest will be served thereby.

All other rights, including the right to vend, are retained by NFPA.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

NFPA 1963

Standard for Screw Threads and Gaskets for Fire Hose Connections

1985 Edition

This edition of NFPA 1963, Standard for Screw Threads and Gaskets for Fire Hose Connections, was prepared by the Technical Committee on Fire Hose, and acted on by the National Fire Protection Association, Inc. at its Fall Meeting held November 12-15, 1984 in San Diego, California. It was issued by the Standards Council on December 7, 1984, with an effective date of December 27, 1984, and supersedes all previous editions.

The 1985 edition of this standard has been approved by the American National Standards Institute.

Origin and Development of NFPA 1963

The development of a standard for screw threads and gaskets for fire hose connections has been worked on for nearly a century. Specifications for hose couplings were drawn up by the NFPA as early as 1898. The present standard covers the ten standard sizes of threaded connections from $\frac{3}{4}$ in. to 6 in.

An NFPA committee appointed in 1905 established a casional standard thread for 2½-in, and larger hose connections. Work on smaller hose threads was started in 1916 and the standard was adopted in 1922. The standard for suction hose coupling threads was adopted in 1955. Editions published in 1956, 1967, 1968, 1974, and 1979 incorporated changes adopted by the NFPA upon recommendations of the Committee on Fire Hose. See Appendix B for a detailed history.

The need for this standard is most apparent during operations involving mutual aid by various fire fighting organizations, i.e.: nearby municipalities, governmental and industrial departments. When hose couplings, nozzles and other equipment do not conform to this standard it becomes necessary to employ adaptors, thus adding complications and confusion to fire fighting operations.

There are many different screw threads which give the appearance of compatibility. What may appear to be a good connection when the lines are not pressurized may actually be loose, cross-threaded or improperly mated connections which have a tendency to fail when the hose lines are pressurized, thus seriously impairing fire fighting operations and possibly causing a hazard to personnel.

Conformity with this standard will result in fire fighting equipment that is intended to be serviceable, economical, easily assembled and provide maximum effectiveness in fire fighting operations.

Committee on Fire Hose

Stephen Gilbert, Chairman Scandia Industries

Herbert C. Fothergill, Vice Chairman Chelsea Fire Dept. Rep. Int'l. Assn. of Fire Chiefs

Duane Barker, Secretary

Amerock Corp.

Rep. National Fire Protection Association Industrial Fire Protection Section

Raymond G. Balelo, Factory Mutual Research Corp.

William H. Barnes, Akron Brass Co.

Robert Ely, San Diego, CA

John C. Fisher, Angus Fire Armour Ltd.

Russell P. Fleming, Nat'l. Fire Sprinkler Assn.

Justin George, Klamath County Fire Dist. #1

Maurice Gioseffi, Broward Fire Equipment & Service, Inc.

Rep. Nat'l. Assn. of Fire Equipment

Distributors, Inc.
Paul R. Hill, U.S. Forest Service

William J. Patterson, FEMA

William Stamm, Milwaukee Fire Dept. Head-

Rep. Int'l. Assn. of Fire Chiefs
L. M. Walker, Underwriters Laboratories Inc.

Alternates

Harlan R. Bratvold, Underwriters Laboratories

(Alternate to L. M. Walker)

Thomas J. Brown, Jr., Factory Mutual Research

(Alternate to R. G. Balelo)

J. P. Spollen, Western Electric Co., Inc. (Alternate to D. Barker)

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

NOTE: Membership on a Committee shall not in and of itself constitute an endorsement of the Association or any document developed by the Committee on which the member serves.

Contents

Chapter 1 Administration	. 1963 - 4
1-1 Scope	. 1963 - 4
1-2 Purpose	. 1963 - 4
1-3 Definitions	
1-4 General Requirements	. 1963 - 4
Chapter 2 Form of Thread	1963_ 4
2-1 Basic Form of Thread	
2-2 Blunt Start	
Chapter 3 Thread Series Designation	1069
3-1 Thread Designation	. 1963 - 4 . 1963 - 4
Chapter 4 Dimensions of American National Fire Hose Connection	
Screw Threads, NH	1062 5
4-1 Definitions of Dimensions	
4-2 Dimensions	
4-3 Tolerance	
Chapter 5 Gages and Gaging NH Threads	1963_ 0
5-1 Limits of Size	
Chapter 6 Gaskets for Connections with NH Threads	1963-11
6-1 Thread Gasket	1963-11
6-2 Tail Gasket	
Chapter 7 Use of NH Standard Threads	. 1963 -11
7-1 Hose Coupling Threads	. 1963 -11
7-2 Threads for Fire Service Nozzles for Handlines	. 1963 -12
7-3 Appliances and Devices for Large Streams	. 1963 -12
7-4 Threads for Fire Department Pump Discharge Outlets	. 1963 -13
7-5 Threads for Pump Supply Connections	. 1963 -13
7-6 Threads for Portable and Booster Pumps	. 1963 -13
7-7 Hydrant Threads	
7-8 Fire Department Connections for Sprinkler Systems and Standpipes	. 1963 –13
Chapter 8 Referenced Publications	. 1963 -13
Appendix A	1963 -14
Appendix B	. 1963 - 15

NFPA 1963

Standard for

Screw Threads and Gaskets

for Fire Hose Connections

1985 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates explanatory material on that paragraph in Appendix A.

Information on referenced publications can be found in Chapter 8.

Chapter 1 Administration

- 1-1* Scope. This standard gives the dimensions for screw thread connections, gages, gaskets, gasket seats, and the size thread of threaded connections specified herein. The sizes covered include fire hose connections with nominal sizes from ¾ in. through 6 in.
- 1-2 **Purpose.** The purpose of this standard shall be to provide uniformity and interchangeability of fire hose coupling threads and all other hose fittings, connections, and appliances that connect to or with fire pumps, hose, and hydrants.

1-3 Definitions.

Blunt Start. The removal of the incomplete thread at the end of the thread. This is a feature of threaded parts that are repeatedly assembled by hand. Also known as the "Higbee Cut."

May. This term is used to state a permissive use, or an alternative method to a specified requirement.

Shall. Indicates a mandatory requirement.

Should. Indicates a recommendation or that which is advised but not required.

1-4 General Requirements.

1-4.1 The requirements of this standard shall apply to all sizes of:

Fire hose couplings Adaptors Suction hose couplings Reducers Relay supply hose couplings Caps Fire pump suctions Plugs Discharge valves Wyes Fire hydrants Siamese connections Nozzles Standpipe connections Sprinkler connections Booster hose and all other hose fittings, connections and appliances

that connect to or with fire pumps, hose, or hydrants.

Chapter 2 Form of Thread

2-1 Basic Form of Thread.

- 2-1.1 Basic thread form as specified in Figure 4-1.1 shall have an included angle of 60 degrees and truncated top and bottom.
- 2-1.2 The basic angle of the thread between the sides of the thread measured in an axial plane shall be 60 degrees. The line bisecting this 60-degree angle shall be perpendicular to the axis of the screw thread.
- 2-1.3 The flat at the root and crest of the basic thread as specified in Figure 4-1.1 shall be $\frac{1}{8}$ times the pitch, or 0.125 times the pitch $(\frac{p}{8})$.
- 2-1.4 The height of the basic thread shall be:

 $h = 0.649519 \times p$, or $h = \frac{0.649519}{n}$ where: p = pitch in inches, or $p = \frac{1}{n}$; n = number of threads per inch; h = basic thread height in inches.

2-2 Blunt Start.

- 2-2.1 The outer ends of all external and internal threads shall be terminated by the blunt start or "Higbee Cut," as shown in Figure 4-1.2, on full thread to avoid crossing and mutilation of thread.
- 2-2.2 The minimum length of the blunt start shall not be less than that radius formed by a cutter of .500-in. diameter for threads of 8 threads per inch (TPI) or more, and shall not be less than that radius formed by a cutter of .750-in. diameter for threads of 7½ TPI or less.
- 2-2.3 The maximum length of the blunt start shall not be greater than 20 degrees of arc.

Chapter 3 Thread Series Designation

3-1 Thread Designation. These threaded connections shall be defined as the "American National Fire Hose Connection Screw Thread" and abbreviated throughout the standard as NH, also known as NST and NS. It shall be designated by specifying in sequence the nominal size of the connection, number of threads per inch, and the thread symbol as shown below:

.75-8 NH	3.5-6 NH
1-8 NH	4-4 NH
1.5-9 NH	4.5-4 NH
2.5-7.5 NH	5-4 NH
3-6 NH	6-4 NH

Chapter 4 Dimensions of American National Fire Hose Connection Screw Threads, NH

4-1 Definitions of Dimensions.

4-1.1 The basic major diameter, basic pitch diameter, and basic minor diameter and tolerances shall be as specified in Figure 4-1.1.

4-1.2 Nominal dimensions shall be as specified in Figure 4-1.2.

4-2 Dimensions.

4-2.1 The basic dimensions for the threads shall be as specified in Table 4-2.1.

4-2.2 The nominal dimensions for the threads shall be as specified in Table 4-2.2.

4-2.3 The limiting dimensions for external threads (nipples) shall be as specified in Table 4-2.3.

4-2.4 The limiting dimensions for internal threads (couplings) shall be as specified in Table 4-2.4.

4-3 Tolerance.

4-3.1 The pitch diameter tolerances for a mating external (nipple) and internal (coupling) thread shall be the same. Pitch diameter tolerances include lead and halfangle deviations. Values for deviations in lead and halfangle deviations.

angle consuming one-half of the pitch diameter tolerance shall be as specified in Table 4-3.1.

4-3.2 The tolerance relationships for the external (nipple) threads shall be as follows:

Major diameter tolerance = 2 × pitch diameter tolerance.

Minor diameter tolerance = pitch diameter tolerance + 2h/9.

4-3.3 The minimum minor diameter of the external thread (nipple) shall be such as to result in a flat equal to ½ of the p/8 basic flat (p/24) at the root when the pitch diameter of the nipple is at its minimum value. The maximum minor diameter is basic, but may be such as results from the use of a worn or rounded threading tool. The maximum minor diameter shall be as specified in Figure 4-1.1 and is the diameter on which the minor diameter tolerance formula shown above shall be based.

4-3.4 The tolerance relationships for the internal (coupling) threads shall be as follows:

Minor diameter tolerance = 2 × pitch diameter tolerance.

The minimum minor diameter of a coupling is such as to result in a basic flat, p/8, at the crest when the puch diameter of the coupling is at its minimum value

Major diameter tolerance = pitch diameter tolerance + 2h/g.

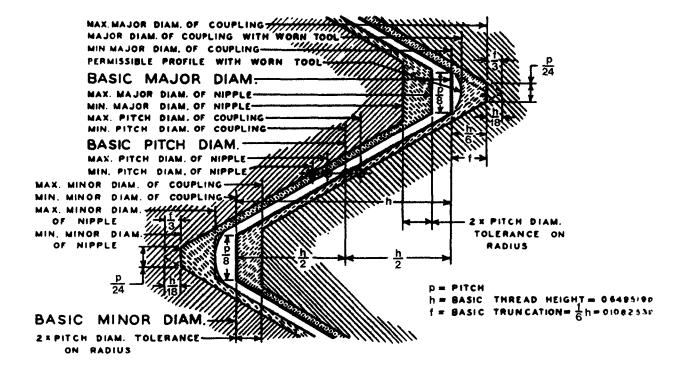
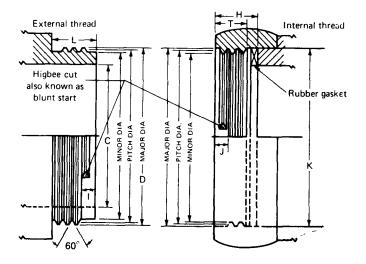



Figure 4-1.1 Form of Thread of American National Fire Hose Connection Screw Thread, NH. The left portion shows the external thread (nipple) and the right portion the internal thread (coupling). (See Table 4-2.1 for dimensions)

- C = Inside diameter of connection waterway. (Nominal size of connection.)
- D
- Н
- tion.)
 Approximate outside diameter of external thread (ODM).
 Depth of internal connection.
 Length of the pilot from the face of the external connection to the start of the second thread (Higbee cut).

- Distance from the face of the internal connection to the start of the second thread (Higbee cut).
 Diameter of the gasket seat.
 Length of external thread.
 Length of internal thread.

Figure 4-1.2 Nominal Dimensions of Connections. (See Table 4-2.2 for dimensions.)

Table 4-2.1 Basic Dimensions of NH Threads. (See Figure 4-1.1.)

Nominal Threads		Thread	Pitch (p)	Basic Thread		External Th (N	read Dimen ipple)	sions		imum Inte ead Dimens	
Connection	(tpi)	Designation (NH)		Height (h)	Allow- ance	Maximum Major Diameter, D-allow.	Maximum Pitch Diameter, Col. 7-h	Minor	Minimum Minor Diameter, D-2h	Basic Pitch Diameter, D-h	Basic Major Diameter, D
1	2	3	4	5	6	7	8	9	10	11	12
3/4	8	.75-8 NH	0.12500	0.08119	0.0120	1.3750	1.2938	1.2126	1.2246	1.3058	1.3870
1	8	1-8 NH	0.12500	0.08119	0.0120	1.3750	1.2938	1.2126	1.2246	1.3058	1.3870
1 1/2	9	1.5-9 NH	0.11111	0.07217	0.0120	1.9900	1.9178	1.8457	1.8577	1.9298	2.0020
$2\frac{1}{2}$	7.5	2.5-7.5 NH	0.13333	0.08660	0.0150	3.0686	2.9820	2.8954	2.9104	2.9970	3.0836
3	6	3-6 NH	0.16667	0.10825	0.0150	3.6239	3.5156	3.4073	3.4223	3.5306	3.6389
31/2	6	3.5-6 NH	0.16667	0.10825	0.0200	4.2439	4.1356	4.0273	4.0473	4.1556	4.2639
4	4	4-4 NH	0.25000	0.16238	0.0250	5.0109	4.8485	4.6861	4.7111	4.8735	5.0359
41/2	4	4.5-4 NH	0.25000	0.16238	0.0250	5.7609	5.5985	5.4361	5.4611	5.6235	5.7859
5	4	5-4 NH	0.25000	0.16238	0.0250	6.2600	6.0976	5.9352	5.9602	6.1226	6.2850
6	4	6-4 NH	0.25000	0.16238	0.0250	7.0250	6.8626	6.7002	6.7252	6.8876	7.0500

[&]quot;All other values are given in inches.

Nominal Size of Connection Waterway	Threads ^a per Inch (tpi)	Thread ^a Designa- tion (NH)	Approxi- mate Outside Diameter of External Thread	Length of External Thread (Min.)	Length of Pilot to Start of Second Thread (External)	Depth of Internal Connector	Diameter of Gasket Seat in Coupling	Length of Internal Thread	Length of Pilot to Start of Second Thread (Internal)
\mathbf{c}	N		D +	L	I	н	K	Т	J
3/4	8	.75-8 NH	13/8	5/8	5/32	19/32	1-7/16	13/32	5/32
1	8	1-8 NH	1 %	5/8	5/32	19/32	1-7/16	13/32	5/32
11/2	9	1.5-9 NH	2	5/8	5/32	19/32	2-1/16	13/32	5/32
$2\frac{1}{2}$	$7\frac{1}{2}$	2.5-7.5 NH	3-1/16	1	1/4	15/16	3-3/16	11/16	3/16
3	6	3-6 NH	3%	1 1/8	5/16	1-1/16	3 3/4	3/4	1/4
31/2	6	3.5-6 NH	41/4	1 1/8	5/16	1-1/16	4%	3/4	1/4
4	4	4-4 NH	5	1 1/4	7/16	1.3/16	5 ½	7∕8	3/8
41/2	4	4.5-4 NH	5 3/4	1 1/4	7/16	1-3/16	5%	7/8	3/8
5*	4	5-4 NH	61/4	1 3/8	7/16	1-5/16	6%	1	3/8
6*	4	6-4 NH	7-1/32	1 %	7/16	1-5/16	71/8	1	3/8

Table 4-2.2 Nominal Dimensions of NH Threads. (See Figure 4-1.2.)

^a All other values are given in inches.

Table 4-2.3 Limits of Size and Tolerances of NH External Threads (Nipples

Nominal	Thursday	eads" Thread"	Pitch	Thread Height	External Thread (Nipple)								
Size of Connection Inch	per Inch	Designa- tion	(p)			Iajor Diame	eter]	ter	Minor ^b Diameter			
	(NH)		(h)	Maximum	Minimum	Tolerance	Maximum	Minimum	Tolerance	Maximum			
1	2	3	4	5	6	7	8	9	10	11	12		
3/4	8	.75-8 NH	0.12500	0.08119	1.3750	1.3528	0.0222	1.2938	1.2827	0.0111	1.2126		
1	8	1-8 NH	0.12500	0.08119	1.3750	1.3528	0.0222	1.2938	1.2827	0.0111	1.2126		
11/2	9	1.5-9 NH	0.11111	0.07217	1.9900	1.9678	0.0222	1.9178	1.9067	0.0111	1.8457		
21/2	7.5	2.5-7.5 NH	0.13333	0.08660	3.0686	3.0366	0.0320	2.9820	2.9660	0.0160	2.8954		
3	6	3-6 NH	0.16667	0.10825	3.6239	3.5879	0.0360	3.5156	3.4976	0.0180	3.4073		
31/2	6	3.5-6 NH	0.16667	0.10825	4.2439	4.2079	0.0360	4.1356	4.1176	0.0180	4.0273		
4	4	4-4 NH	0.25000	0.16238	5.0109	4.9609	0.0500	4.8485	4.8235	0.0250	4.6861		
41/2	4	4.5-4 NH	0.25000	0.16238	5.7609	5.7109	0.0500	5.5985	5.5735	0.0250	5.4361		
5	4	5-4 NH	0.25000	0.16238	6.2600	6.2100	0.0500	6.0976	6.0726	0.0250	5.9352		
6	4	6-4 NH	0.25000	0.16238	7.0250	6.9750	0.0500	6.8626	6.8376	0.0250	6.7002		

[&]quot;All other values are given in inches.

^{*}See Appendix A-7-7.

[†]Approximate dimensions are for field identification purposes only. Exact basic manufacturing dimensions and tolerances are given in subsequent tables.

^bDimensions given for the maximum minor diameter of the nipple are figured to the intersection of the worn tool arc with a centerline through crest and root. The minimum minor diameter of the nipple shall be that corresponding to a flat at the minor diameter of the minimum nipple equal to p/24 and may be determined by subtracting $11 \ h/9$ (or $0.7939 \ p$) from the minimum pitch diameter of the nipple.

Table 4-2.4 Thread Limits of Size and Tolerances for NH Internal Threads (Couplings).

N 1	7CL . 1 c	771 30	70:	Basic			l Thread (Coupling)							
Size of per Connection Inch	Inch	per Designa- inch tion		Designa- tion	Designa- tion	Designa- tion	Pitch (p)	Thread Height				Pitch Diameter			Major ^s Diameter
	(tpi)	(NH)		(h)	Minimum	Maximum	Tolerance	Minimum	Maximum	Tolerance	Minimum				
1	2	3	4	5	6	7	8	9	10	11	12				
*4	8	.75-8 NH	0.12500	0.08119	1.2246	1.2468	0.0222	1.3058	1.3169	0.0111	1.3870				
1	8	1-8 NH	0.12500	0.08119	1.2246	1.2468	0.0222	1 3058	1.3169	0.0111	1.3870				
11/2	9	1.5-9 NH	0.11111	0.07217	1.8577	1.8799	0.0222	1.9298	1.9409	0.0111	2.0020				
21/2	7.5	2.5-7.5 NH	0.13333	0.08660	2.9104	2.9424	0.0320	2.9970	\$.0130	0.0160	3.0836				
3	6	3-6 NH	0.16667	0.10825	3.4223	3.4585	0.0360	3.5306	3.5486	0.0180	3.6389				
31/2	6	3.5-6 NH	0.16667	0.10825	4.0478	4.0833	0.0360	4.1556	4.1736	0.0180	4.2639				
4	4	4-4 NH	0.25000	0.16238	4.7111	4.7611	0.0500	4.8735	4.8985	0.0250	5.0859				
41/2	4	4.5-4 NH	0.25000	0.16238	5.4611	5.5111	0.0500	5.6235	5.6485	0.0250	5. 78 59				
5	4	5-4 NH	0.02500	0.16238	5.9602	6.0102	0.0500	6.1226	6.1476	0.0250	6.2850				
6	4	6-4 NH	0.25000	0.16238	6.7252	6.7752	0.0500	6.8876	6.9126	0.0250	7.0500				

[&]quot;All other values are given in inches.

Table 4-3.1 Deviations in Lead and Half-Angle Consuming One-Half of Pitch Diameter Tolerances for NH Threads.

Nominal Size of Connection	Thread ^e per Inch (tpi)	r Inch Designation Diam		Lead Deviation Consuming One-Half of Pitch Diameter Tolerance	Half-Angle* Deviation Consuming One-Half of Pitch Diameter Tolerance		
V 16			<u></u>	<u> </u>	deg	min	
3/4	8	.75-8 NH	0.0111	0.0032	1	42	
1	8	1-8 NH	0.0111	0.0032	1	42	
11/2	9	1.5-9 NH	0.0111	0.0032	1	54	
21/2	7.5	2.5-7.5 NH	0.0160	0.0046	2	17	
3	6	3-6 NH	0.0180	0.0052	2	4	
31/2	6	3.5-6 NH	0.0180	0.0052	2	4	
4	4	4-4 NH	0.0250	0.0072	1	55	
41/2	4	4.5-4 NH	0.0250	0.0072	1	55	
5	4	5-4 NH	0.0250	0.0072	1	55	
6	4	6-4 NH	0.0250	0.0072	1	55	

[&]quot;All other values are in inches.

⁶Dimensions for the minimum major diameter of the coupling correspond to the basic flat p/8, and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the coupling shall be that corresponding to a flat at the major diameter of the maximum coupling equal to p/24 and may be determined by adding 11 h/9 (or 0.7939 p) to the maximum pitch diameter of the coupling.

The tolerances specified for pitch diameter include all deviations of pitch diameter, lead, and angle. The full tolerance cannot, therefore, be used on pitch diameter unless the lead and angle of the thread are perfect. The last two columns give, for information, the deviations in lead and in angle, each of which can be compensated for by half the pitch-diameter tolerance given in Column 4. If lead and angle deviations both exist to the amount tabulated, the pitch diameter of a nipple, for example, must be reduced by the full tolerance or it will not enter the GO gage.

^{&#}x27;Between any two threads not farther apart than the length of engagement.

Chapter 5 Gages and Gaging NH Threads

5-1 Limits of Size.

5-1.1 The limits of size for the gages to be used in the gaging of fire hose connections shall be as specified in Tables 5-1.1, 5-1.2, and 5-1.3.

5-1.2 For these gages, the allowable variation in lead between any two threads not farther apart than the length of engagement shall be $\pm\,0.0004$ in. The allowable variation in half-angle of thread shall be $\pm\,5$ min.

Table 5-1.1 Setting Thread Plug Limits of Size for NH Thread Ring Gages".

Nominal	Threads ^b				x		X Basic-Crest ^c Setting Plugs				
Size of per Connection (tpi)	Thread ^b Designation		Plug for GO Thread Gage			Plug for LO	O(NOT G Gage	Major Diameter			
tion	tion (tpi) (NH	, (1411)		Major Diameter Pi		Pitch Diameter	Major Diameter Pitch			Plug for GO Thread	LO(NOT GO
				Truncated	Full	Diameter	Truncated	Full	Diameter	Gage	Thread Gage
Gage T	olerance			_	+	_	-	+	+	+	+
1	2	3	4	5	6	7	8	9	10	11	12
3/4	8	.75-8 NH	Max Min	1.3579 1.3572	1.3757 1.3750	1.2938 1.2934	1.3368 1.3361	1.3757 1.3750	1.2831 1.2827	1.3757 1.3750	1.3757 1.3750
1	8	1-8 NH	Max Min	1.3579 1.3572	1.3757 1.3750	1.2938 1.2934	1.3368 1.3361	$1.3757 \\ 1.3750$	$\frac{1.2831}{1.2827}$	1.3757 1.3750	1.3757 1.3750
11/2	9	1.5-9 NH	Max Min	1.9742 1.9735	1.9907 1.9900	$\frac{1.9178}{1.9174}$	1.9548 1.9541	1.9907 1.9900	1.9071 1.9067	1.9907 1.9900	1.9907 1.9900
21/2	7.5	2.5-7.5 NH	Max Min	3.0507 3.0500	3.0693 3.0686	$\frac{2.9820}{2.9815}$	$\frac{3.0237}{3.0230}$	$\frac{3.0693}{3.0686}$	2.9665 2.9660	3.0693 3.0686	3.0693 3.0686
3	6	3-6 NH	Max Min	$\frac{3.6029}{3.6021}$	3.6247 3.6239	3.5156 3.5151	$\frac{3.5698}{3.5690}$	$\frac{3.6247}{3.6239}$	$\frac{3.4981}{3.4976}$	$\frac{3.6247}{3.6239}$	$\frac{3.6247}{3.6239}$
31/2	6	3.5-6 NH	Max Min	$\frac{4.2229}{4.2216}$	$4.2452 \\ 4.2439$	4.1356 4.1350	$\frac{4.1898}{4.1885}$	$\frac{4.2452}{4.2439}$	4.1182 4.1176	4.2452 4.2439	$4.2452 \\ 4.2439$
4	4	4-4 NH	Max Min	$4.9828 \\ 4.9813$	$5.0124 \\ 5.0109$	$\frac{4.8485}{4.8479}$	$4.9318 \\ 4.9303$	$5.0124 \\ 5.0109$	$\frac{4.8241}{4.8235}$	5.0124 5.0109	5.0124 5.0109
41/2	4	4.5-4 NH	Max Min	5.7328 5.7313	5.7624 5.7609	5.5985 5.5979	$5.6818 \\ 5.6803$	5.7624 5.7609	5.5741 5.5735	5.7624 5.7609	5.7624 5.7609
5	4	5-4 NH	Max Min	$6.2319 \\ 6.2304$	$6.2615 \\ 6.2600$	$6.0976 \\ 6.0970$	$6.1809 \\ 6.1794$	$6.2615 \\ 6.2600$	$6.0732 \\ 6.0726$	$6.2615 \\ 6.2600$	$6.2615 \\ 6.2600$
6	4	6-4 NH	Max Min	6.9969 6.9954	$7.0265 \\ 7.0250$	$6.8626 \\ 6.8620$	$6.9459 \\ 6.9444$	$7.0265 \\ 7.0250$	$6.8382 \\ 6.8376$	$7.0265 \\ 7.0250$	7.0265 7.0250

[&]quot;Gage limit values in this table have been obtained in accordance with ANSI/ASME B1.2.

^bAll other values are given in inches.

^{&#}x27;Pitch diameter limits for basic-crest GO setting plugs are the same as those shown in Column 7. Pitch diameter limits for basic-crest LO (NOT GO) setting plugs are the same as those shown in Column 10.

Table 5-1.2 Gage Limits of Size for Ring Gages for NH External (Nipple) Thread.

	Threads ^b	Ī			X Thread	Ring Gages		Z Plain Ring Gages		
Nominal	per	_ Thread*			0	LO(NO	OT GO)	Major	Diameter	
Size of Connection	Inch (tpi)	Designation (NH)		Pitch Diameter	Minor Diameter	Pitch Diameter	Minor Diameter	CO	NOT GO	
Gage Tole	rance			-	-	+	+	_		
1	2	3	4	5	6	7	8	9	10	
3/4	8	.75-8 NH	Max Min	1.2938 1.2934	1.2246 1.2239	1.2831 1.2827	1.2563 1.2556	1.37500 1.37488	1.35292 1.35280	
1	8	1-8 NH	Max Min	1.2938 1.2934	1.2246 1.2239	1.2831 1.2827	1.2563 1.2556	1.37500 1.37488	1.35292 1.35280	
1 1/2	9	1.5-9 NH	Max Min	1.9178 1.9174	1.8577 1.8570	1.9071 1.9067	1.8833 1.8826	1.99000 1.98984	1.96796 1.96780	
21/2	7.5	2.5-7.5 NH	Max Min	2.9820 2.9815	2.9104 2.9097	2.9665 2.9660	2.9378 2.9371	3.06860 3.06840	3.03680 3.03660	
3	6	3-6 NH	Max Min	3.5156 3.5151	3.4223 3.4215	3.4981 3.4976	3.4623 3.4615	3.62390 3.62370	3.58810 3.58790	
31/2	6	3.5-6 NH	Max Min	4.1356 4.1350	4.0473 4.0460	4.1182 4.1176	4.0828 4.0815	4.24390 4.24370	4.20810 4.20790	
4	4	4-4 NH	Max Min	4.8485 4.8479	4.7111 4.7096	4.8241 4.8235	4.7709 4.7694	5.01090 5.01065	4.96115 4.96090	
41/2	4	4.5-4 NH	Max Min	5.5985 5.5979	5.4611 5.4596	5.5741 5.5785	5.5209 5.5194	5.76090 5.76065	5.71115 5.71090	
5	4	5-4 NH	Max Min	6.0976 6.0970	5.9602 5.9587	$6.0732 \\ 6.0726$	6.0200 6.0185	6.26000 6.25975	6.21025 6.21000	
6	4	6-4 NH	Max Min	6.8626 6.8620	6.7252 6.7237	6.8382 6.8376	6.7850 6.7835	7.02500 7.02468	6.97532 6.97500	

[&]quot;Gage limit values in this table have been obtained in accordance with ANSI/ASME B1.2 except for the values shown in Column 6. The maximum values shown in Column 6 are values for the minimum minor diameter of the internal thread.

Table 5-1.3 Gage Limits of Size for Plug Gages for NH Internal (Coupling) Threadsa.

Nominal	Threads'	Thread*			X Thread	Plug Gages	OT GO)	Z Plain Plug Gages Minor Diameter		
Size of Connection	Inch (tpi)	Designation (NH)		Major Diameter	Pitch Diameter	Major Diameter	Pitch Diameter	GO	NOT GO	
Gage Tolerance				+	+	_	-	+		
1	2	3	4	5	6	7	8	9	10	
3/4	8	.75-8 NH	Max Min	1.3877 1.3870	1.3062 1.3058	1.3710 1.3703	1.3169 1.3165	1.22472 1.22460	1.24680 1.24668	
1	8	1-8 NH	Max Min	1.3877 1.3870	1.3062 1.3058	1.3710 1.3703	1.3169 1.3165	1.22472 1.22460	1.24680 1.24668	
11/2	9	1.5-9 NH	Max Min	2.0027 2.0020	1.9302 1.9298	1.9890 1.9883	1.9409 1.9405	1.85786 1.85770	1.87990 1.87974	
21/2	7.5	2.5-7.5 NH	Max Min	3.0843 3.0836	2.9975 2.9970	3.0707 3.0700	3.0130 3.0125	2.91060 2.91040	2.94240 2.94220	
3	6	3-6 NH	Max Min	3.6397 3.6389	3.5311 3.5306	3.6208 3.6200	3.5486 3.5481	3.42250 3.42230	3.45830 3.45810	
31/2	6	3.5-6 NH	Max Min	4.2652 4.2639	4.1562 4.1556	4.2458 4.2445	4.1736 4.1730	4.04750 4.04730	4.08330 4.08310	
4	4	4-4 NH	Max Min	5.0374 5.0359	4.8741 4.8735	5.0068 5.0053	4.8985 4.8979	4.71135 4.71110	4.76110 4.76085	
41/2	4	4.5-4 NH	Max Min	5.7874 5.7859	5.6241 5.6235	5.7568 5.7553	5.6485 5.6479	5.46135 5.46110	5.51110 5.51085	
5	4	5-4 NH	Max Min	6.2865 6.2850	6.1232 6.1226	6.2559 6.2544	6.1476 6.1470	5.96045 5.96020	6.01020 6.00995	
6	4	6-4 NH	Max Min	7.0515 7.0500	6.8882 6.8876	7.0209 7.019 4	6.9126 6.9120	6.72552 6.72520	6.77520 6.77488	

^aGage limit values in this table have been obtained in accordance with ANSI/ASME B1.2.

^bAll other values are given in inches.

^bAll other values are given in inches.

- 5-1.3* Except as otherwise specified herein, the gages and gaging practices shall conform to the latest edition of ANSI/ASME B1.2, Screw Thread Gages and Gaging.
- 5-1.4* Adjustable thread ring gages shall be set by means of threaded setting plug gages, the dimensions of which are given in Table 5-1.1. Means of setting ring gages shall be as specified in ANSI/ASME B1.2.

Chapter 6 Gaskets for Connections with NH Threads

6-1 Thread Gasket.

- 6-1.1 Each internal connection shall be provided with a resilient gasket which does not leak under normal use when fitted accurately in the seat specified in this standard.
- **6-1.2** Each gasket shall meet the dimensions specified in Table 6-1.2.

Table 6-1.2 Dimensions of Thread Gaskets for Standard Internal Connections.

Nominal Size of Connection	Inside Diameter	Outside Diameter	Thickness	
3/4	13/16 (20.6)	11/16 (36.5)	½ (3.18)	
l	$1\frac{1}{16}$ (27)	$1\frac{7}{16}$ (36.5)	½ (3.18)	
1 1/2	1% (40)	$2\frac{1}{16}$ (52)	1/8 (3.18)	
$2\frac{1}{2}$	$2\%_{16}$ (65)	$3\frac{3}{16}$ (81)	3/16 (4.8)	
3	$3\frac{1}{16}$ (78)	33/4 (95)	1/4 (6.4)	
31/2	3% (91)	$4\frac{3}{8}$ (111)	1/4 (6.4)	
4	$4\frac{1}{16}$ (103)	5% (130)	1/4 (6.4)	
41/2	$4\%_{16}$ (117)	5% (149)	1/4 (6.4)	
5	$5\frac{1}{16}$ (129)	$6\frac{3}{8}$ (162)	1/4 (6.4)	
6	$6\frac{1}{16}$ (154)	7% (181)	1/4 (6.4)	

All dimensions are given in inches (mm).

- 6-2 Tail Gasket. Each fire hose coupling end shall be provided with a resilient gasket which keeps the ends of the fabric of the fire hose dry. The nominal dimensions of these gaskets shall be as follows:
 - (a) I.D. as specified in Table 6-1.2.
 - (b) O.D. to accurately fit the recess provided.
 - (c) Thickness $\frac{3}{16}$ in. (4.8 mm) minimum.

Chapter 7 Use of NH Standard Threads

7-1* Hose Coupling Threads.

- 7-1.1* Booster Hose. All ¾-in. and 1-in. (20-mm and 25-mm) booster hose shall be provided with couplings having the .75-8NH standard thread and 1-8 NH standard thread respectively.
- 7-1.2 1½- Through 2-In. (38- Through 51-mm) Fire Hose. All 1½- through 2-in. (38- through 51-mm) fire hose shall be provided with couplings having the 1.5-9 NH standard thread.

- 7-1.3 2½-In. (65-mm) Fire Hose. All 2½-in. (65-mm) fire hose shall be provided with couplings having the 2.5-7.5 NH standard thread.
- 7-1.4 3-In. (76-mm) Fire Hose. All 3-in. (76-mm) fire hose shall be provided with couplings having the 2.5-7.5 NH standard thread for interchangeability with 2½-in. (65-mm) fire hose.
- 7-1.4.1 Where interchangeability with 2½ in. (65-mm) fire hose is not a factor, the couplings may have the 3-6 NH standard thread.
- 7-1.5 3½-In. (89-mm) Fire Hose. All 3½-in. (89-mm) fire hose shall be provided with couplings having the 3.5-6 NH standard thread.
- 7-1.5.1 Where interchangeability with 3-in. (76-mm) fire hose or other connections is required, the couplings may have the 3-6 NH standard thread.
- 7-1.6 4-In. (102-mm) Fire Hose. All 4-in. (102-mm) fire hose shall be provided with couplings having the 4-4 NH standard thread.
- 7-1.6.1 Where interchangeability with $3\frac{1}{2}$ -in. (89-mm) fire hose or other connections is required, the couplings may have the 3.5-6 NH standard thread.
- 7-1.7 3½-In. (89-mm) Relay Supply Hose. All 3½-in. (89-mm) relay supply hose shall be provided with couplings having the 3.5-6 NH standard thread.
- 7-1.7.1 Where interchangeability with 3-in. (76-mm) fire hose or other connections is required, the couplings may have the 3-6 NH standard thread.
- 7-1.8 4-In. (102-mm) Relay Supply Hose. All 4-in. (102-mm) relay supply hose shall be provided with couplings having the 4-4 NH standard thread.
- 7-1.8.1 Where interchangeability with $3\frac{1}{2}$ -in. (89-mm) fire hose or other connections is required, the couplings may have the 3.5-6 NH standard thread.
- 7-1.9 4½-In. (114-mm) Relay Supply Hose. All 4½-in. (114-mm) relay supply hose shall be provided with couplings having the 4.5-4 NH standard thread.
- 7-1.9.1 Where interchangeability with 4-in. (102-mm) fire hose or other connections is required, the couplings may have the 4-4 NH standard thread.
- 7-1.10 5-In. (127-mm) Relay Supply Hose. All 5-in. (127-mm) relay supply hose shall be provided with couplings having the 5-4 NH standard thread.
- 7-1.10.1 Where interchangeability with 4½-in. (114-mm) fire hose or other connections is required, the couplings may have the 4.5-4 NH standard thread.
- 7-1.11 6-In. (152-mm) Relay Supply Hose. All 6-in. (152-mm) relay supply hose shall be provided with couplings having the 6-4 NH standard thread.

- 7-1.11.1 Where interchangeability with 5-in. (127-mm) fire hose or other connections is required, the couplings may have the 5-4 NH standard thread.
- 7-1.12* Suction Hose. Suction hose shall be provided with expansion ring-type couplings having the NH standard thread. The thread size for 4-in. (102-mm) and larger suction hose shall be standard for the size connections specified in 3-1.2.2 of NFPA 1901, Standard for Automotive Fire Apparatus.

7-2* Threads for Fire Service Nozzles for Handlines.

- 7-2.1 Playpipes for connecting shutoff nozzles to 2½ in. (65-mm) fire hose shall have the 2.5-7.5 NH standard thread at the base or inlet and the 1.5-9 NH standard thread at the discharge end as shown in Figure 7-2.1.
- 7-2.2 Nozzle shutoff valves for either $2\frac{1}{2}$ -in. nozzles or $1\frac{1}{2}$ -in. nozzles shall have the 1.5-9 NH standard thread for both the inlet and discharge sides of the valve as shown in Figure 7-2.2 for $1\frac{1}{2}$ -in, and Figure 7-2.1 for $2\frac{1}{2}$ -in.
- 7-2.2.1 Where the valve is an integral nondetachable part of a 2½-in. playpipe, the 1.5-9 NH standard thread shall be provided only on discharge side of the valve.
- 7-2.3 All nozzles used on booster hose shall have the 1-8 NH standard thread.
- 7-2.4 All nozzle tips for use on 2½-in. and 1½-in. nozzles shall have the 1.5-9 NH standard thread.

Exception: Large stream nozzles as specified in Section 7-3 of this standard are exempt from this requirement.

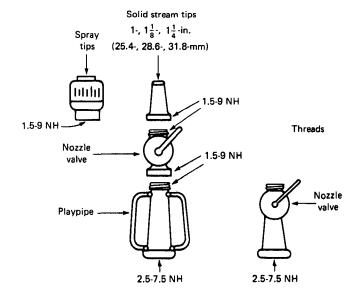


Figure 7-2.1 Nozzle Assembly for 21/2-in. (65-mm) Hose.

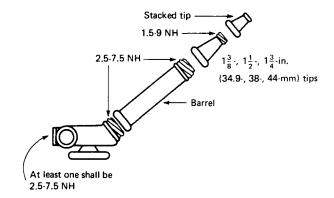


Figure 7-2.2 Nozzle Assembly for 1½-in. (38-mm) Hose.

7-2.5* All spray nozzles for use on 2½-in. (65-mm) and 1½-in. (38-mm) hose where flows at rated pressure do not exceed 350 gpm (1400 L/min) shall have 1.5-9 NH standard thread at the internal connection.

7-3 Appliances and Devices for Large Streams.

- 7-3.1 All inlet connections for fire department large stream devices (other than connections piped permanently to a pump) shall be fitted with internal swivel connections having the standard thread at least one of which shall be the 2.5-7.5 NH standard thread as shown in Figure 7-3.3.
- 7-3.2* Discharge ends of large stream devices designed to discharge from 350 to 1250 gpm (1400 to 5000 L/min) shall have the 2.5-7.5 NH standard thread for attaching nozzle tips or spray nozzles. If stacked tips are used, one of these tips may have the 1.5-9 NH standard thread as shown in Figure 7-3.2.
- 7-3.3 Discharge ends of large stream devices designed to discharge in excess of 1250 gpm (5000 L/min), but less than 3000 gpm (12,000 L/min), shall have the 3.5-6 NH standard thread for attaching nozzle tips or spray nozzles. However, all such large capacity appliances shall be provided with a reducer fitting, 3.5-6 NH female × 2.5-7.5 NH male. A stacked tip meeting the requirements of 7-3.6 and having the male 2.5-7.5 NH standard thread as an integral component shall be accepted as meeting this requirement as shown in Figure 7-3.3.
- 7-3.4 Nozzle tips designed to discharge flows between 350 and 1250 gpm (1400 and 5000 L/min) shall have the 2.5-7.5 NH standard thread for the internal inlet thread.
- 7-3.5 Spray nozzles designed to discharge flows between 350 and 1250 gpm (1400 and 5000 L/min) shall have the 2.5-7.5 NH standard thread for the internal inlet thread.
- 7-3.6 Nozzle tips designed to discharge flows above 1250 gpm (5000 L/min), but less than 3000 gpm (12,000 L/min), at standard operating pressures shall have the 3.5-6 NH standard fire hose thread for the internal inlet thread.
- 7-3.7 Spray nozzles designed to discharge flows above 1250 gpm (5000 L/min), but less than 3000 gpm (12,000

L/min), shall have the 3.5-6 NH standard fire hose thread for the internal inlet thread.

7-3.8 Discharge ends and nozzles for large stream devices over 3000 gpm (12,000 L/min) shall be designed such that all inlet and outlet threads are the NH standard thread.

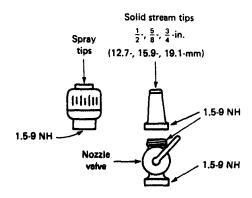


Figure 7-3.2 Large Stream Device Rated under 1250 gpm (5000 L/min).

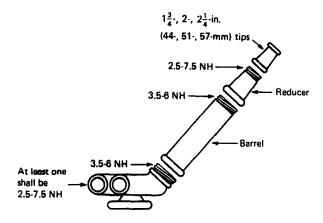


Figure 7-3.3 Large Stream Device Rated over 1250 gpm (5000 L/min) but Less than 3000 gpm (12,000 L/min).

7-4 Threads for Fire Department Pump Discharge Outlets.

- 7-4.1* Pump outlets for 2½-in. (65-mm) and larger fire hose shall have the NH standard thread for the outlet size specified in 3-2.2.5 of NFPA 1901, Standard for Automotive Fire Apparatus.
- 7-4.2* Pumper hose outlets for 1½ in. (38-mm) hose shall have the 1.5-9 NH standard thread.
- 7-4.3 Pump outlets supplying booster hose shall have the 1-8 NH standard thread.

7-5 Threads for Pump Supply Connections.

7-5.1* Pumper suction inlet connections shall have the NH standard thread for the size specified in 3-1.2.2 of NFPA 1901, Standard for Automotive Fire Apparatus.

- 7-5.2 Pump connections for relay supply hose shall have, if necessary, an adaptor for reducing or increasing to the size NH standard thread of the relay supply hose.
- 7-5.3 Gated suction inlets as required in 3-2.2.3 of NFPA 1901, Standard for Automotive Fire Apparatus, shall have the NH standard thread for the size specified.
- 7-6* Threads for Portable and Booster Pumps. Inlet and discharge outlets for portable pumps and booster pumps having a capacity of less than 300 gpm (1200 L/min) shall have the NH standard thread for the size specified in Chapter 5 of NFPA 1901, Standard for Automotive Fire Apparatus, and Section 2-1 of NFPA 1921, Standard for Fire Department Portable Pumping Units.
- 7-7* Hydrant Threads. Hydrant connections shall have external threaded fitting(s) having the NH standard thread for the size outlet(s) supplied.
- 7-8 Fire Department Connections for Sprinkler Systems and Standpipes. The fire department connection(s) for sprinkler systems and standpipes as specified in Section 2-7 of NFPA 13, Standard for the Installation of Sprinkler Systems, and Section 5-6 of NFPA 14, Standard for the Installation of Standpipe and Hose Systems, shall be internal threaded swivel fitting(s) having the NH standard thread, at least one of which shall be the 2.5-7.5 NH standard thread.

Chapter 8 Referenced Publications

8-1 The following documents or portions thereof are referenced within this standard and shall be considered part of the requirements of this document. The edition indicated for each reference is current as of the date of the NFPA issuance of this document. These references are listed separately to facilitate updating to the latest edition by the user.

8-1.1* NFPA Publications.

NFPA 13-1985, Standard for the Installation of Sprinkler Systems.

NFPA 14-1983, Standard for the Installation of Standpipe and Hose Systems

NFPA 1901, Standard for Automotive Fire Apparatus, 1979

NFPA 1921, Standard for Fire Department Portable Pumping Units, 1980.

8-1.2* Other Codes and Standards.

ANSI/ASME B1.2, Screw Thread Gages and Gaging. 1983

Appendix A

This Appendix is not a part of the requirements of this NFPA document, but is included for information purposes only.

A-1-1 Some fire fighting organizations use small hose fitted with garden hose couplings. Such couplings should have .75-11.5 NH (garden hose thread) threads conforming to ANSI/ASME B1.20.7, Standard on Hose Coupling Screw Threads.

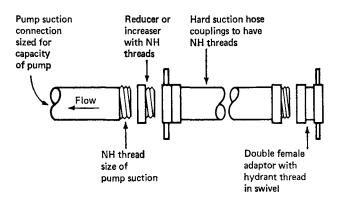
A-5-1.3 See Figure A-5-1.3.

A-5-1.4 Note that setting plug gages is necessary only for setting of adjustable thread ring gages and for checking solid ring gages.

A-7-1 Where local fire hose coupling threads are not standard, swivel adaptors, with the NH female thread and the local male thread, and with the local female thread and the NH male thread, should be carried on the apparatus, stored in hose houses, etc.

A-7-1.1 See A-1-1.

A-7-1.12 Where the hydrant connections have local threads, swivel adaptors, with the NH male thread and the local female thread for soft suction hose, and the NH female thread and the local female thread for hard suction hose, should be provided. Where in service suction hose has couplings that are of a different size, or has threads other than the NH standard, an adaptor to the proper size and to the NH standard thread should be provided and attached to the section hose couplings. (See Figure A-7-1.12.)


Figure A-5-1.3 Gages for 2.5-7.5 NH Threads.

(See Tables 5-1.2 and 5-1.3 for complete dimensions for these gages.)

NOTE 1: The GO plain ring gage and the GO plain plug gage have not been included above since it is considered that the sharpness of the crests of the external and internal threads will be generally acceptable if the GO thread ring gage and the GO thread plug gage assemble on the two mating parts of the coupling.

NOTE 2: Internal threads are acceptable when the HI thread plug is applied to the coupling thread if: (a) it does not enter, or if (b) all complete coupling threads can be entered provided that a definite drag (from contact with the coupling material) results on or before the second turn of entry. The gage should not be forced after the drag becomes definite.

NOTE 3: External threads are acceptable when the LO thread ring gage is applied to the nipple thread if: (a) it is not entered, or if (b) all complete nipple threads can be entered provided that a definite drag (from contact with the nipple material) results from contact on or before the second turn of entry. The gage should not be forced after the drag is definite.

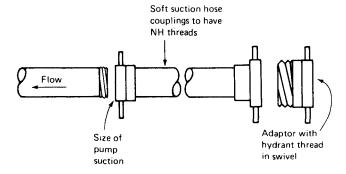


Figure A-7-1.12 Suction Inlet for Local Threads.

- A-7-2 Connections with NH threads covered in 7-2.1 through 7-2.5 should have adaptors with the internal local thread preconnected to the appliance.
- A-7-2.5 The use of the specified size thread makes it possible to attach these nozzles to any standard $2\frac{1}{2}$ -in. and $1\frac{1}{2}$ -in. playpipe or shutoff valve and also to advance the nozzle by connecting $1\frac{1}{2}$ -in. (38-mm) hose between the spray nozzle and the valve.
- A-7-3.2 A flow of 350 gpm (1400 L/min) is the maximum normally obtained with a handline nozzle using a standard 1½-in. (31.8-mm) nozzle tip. A flow of 1250 gpm (5000 L/min) is the maximum normally obtained with a portable turret nozzle using a 2-in. (51-mm) nozzle tip. (See NFPA 1901, Standard for Automotive Fire Apparatus, for a discussion of nozzle tip sizes.)
- A-7-4.1 Where the local hose thread is not the NH standard, an adaptor with the NH female thread and the local male thread should be provided at each outlet. (See Figure A-7-4.1.)

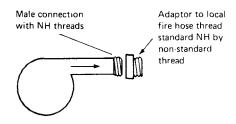


Figure A-7-4.1 Pump Discharge Connections for Local Threads.

- A-7-4.2 Where the local 1½-in. thread is nonconforming, an adaptor with the local female thread and the 1.5-9 NH male thread should be provided at each outlet. (See Figure A-7-4.1.)
- A-7-5.1 Reducer couplings are not recommended on suction hose used to supply the rated capacity of the pump.
- A-7-6 Where local threads are not the NH standard, adaptors should be provided with the pump for inlet and/or discharge connections for connecting the nonstandard threads.
- A-7-7 Hydrant connections of 5-4NH and 6-4NH sizes are not recommended.
- A-8-1.1 NFPA. The following documents are available from the National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
- A-8.1.2 The document is available from American National Standards Institute (ANSI), 1430 Broadway, New York, NY 10018.

Appendix B

This Appendix is not a part of the requirements of this NFPA document, but is included for information purposes only.

B-1 History of Fire Hose Coupling Thread Standardization in the United States.

The need for securing uniformity and interchangeability of fire hose coupling threads was demonstrated by the Boston conflagration of November 1872. The following year, standardization was proposed by the International Association of Fire Engineers, now the International Association of Fire Chiefs (IAFC). In subsequent years, various suggested standard threads were considered. A special committee of that Association prepared a report adopted by its 1891 convention in which the present principal dimensions for $2\frac{1}{2}$ -in. fire hose coupling screw threads were suggested but no specifications for the shape of thread were included.

Little further was done toward standardization until difficulties with nonstandard threads were encountered by fire departments called to assist at the Baltimore conflagration of 1904. The following year the National Fire Protection Association (NFPA) took up the project actively, appointing a Committee on Standard Thread for Fire Hose Couplings. In that year this committee developed general screw thread specifications covering the $2\frac{1}{2}$ -, 3-, $3\frac{1}{2}$ -, and $4\frac{1}{2}$ -in. sizes, using as a basis the earlier report of the IAFE Committee and working with the active cooperation of the American Water Works Association (AWWA). The principal dimensions for the $2\frac{1}{2}$ -in. couplings of $7\frac{1}{2}$ threads per in. and $3\frac{1}{16}$ -in. outside diameter of the external thread (ODM) were selected to facilitate conversion of existing couplings, the majority