### INTERNATIONAL ISO/IEEE STANDARD 11073-10404

Second edition 2022-12

Health informatics — Device interoperability —

Part 10404:

Personal health device communication

— Device specialization — Pulse oximeter

Informatique de santé — Interopérabilité des dispositifs —

Partie 10404: Communication entre dispositifs de santé personnels — Spécialisation des dispositifs — Oxymètre de pouls vien de la communication des dispositifs — Oxymètre de pouls vien de la communication entre dispositifs de santé personnels — Spécialisation des dispositifs — Oxymètre de pouls vien de la communication entre dispositifs de santé personnels — Spécialisation des dispositifs — Oxymètre de pouls vien de la communication entre dispositifs de santé personnels — Spécialisation des dispositifs — Oxymètre de pouls vien de la communication entre dispositifs de santé personnels — Spécialisation des dispositifs — Oxymètre de pouls vien de la communication entre dispositifs de santé personnels — Spécialisation des dispositifs — Oxymètre de pouls vien de la communication entre del communication entre de la com





© IEEE 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from IEEE at the address below.

Institute of Electrical and Electronics Engineers, Inc 3 Park Avenue, New York NY 10016-5997, USA

Email: stds.ipr@ieee.org Website: www.ieee.org Published in Switzerland

### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted (see <a href="https://www.iso.org/directives">www.iso.org/directives</a>).

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>.

ISO/IEEE 11073-10404 was prepared by the *IEEE 11073 Standards Committee of the IEEE Engineering in Medicine and Biology Society* (as IEEE Std 11073-10404-2020) and drafted in accordance with its editorial rules. It was adopted, under the "fast-track procedure" defined in the Partner Standards Development Organization cooperation agreement between ISO and IEEE, by Technical Committee ISO/TC 215, *Health informatics*.

This second edition cancels and replaces the first edition (ISO/IEEE 11073-10404:2010), which has been technically revised.

A list of all parts in the ISO/IEEE 11073 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <a href="https://www.iso.org/members.html">www.iso.org/members.html</a>.

STANDARDS ISO COM. CIRK TO VIEW THE FUND OF AT SOMELE. MOTOS MANDA, 2012

# JEEE Std 11073-10404 .atics—Personal health device communication .at 10404: Device specialization— Julse oximeter Developed by the IEEE 11073\*\* Standards Committee of the IEEE Engineering in Medicine and Biology Society Park Approved 30 January 2020 IEEE SA Standards Board EEE A Standards Board Line Sa Standards Board

Abstract: Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard establishes a normative definition of communication between personal telehealth pulse oximetry devices and compute engines (e.g., cell phones, personal computers, personal health appliances, set top boxes) in a manner that enables plug-and-play interoperability. It leverages appropriate portions of existing standards including ISO/IEEE 11073 terminology, information models, application profile standards, and transport standards. It Newwords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition of the personal telehealth pulse oximeters.\*\*

\*\*Reywords: IEEE 11073-10404™, medical device communication, personal health devices, PHD.

\*\*Proposition oximeters.\*\* specifies the use of specific term codes, formats, and behaviors in telehealth environments

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2021 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 7 January 2021. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers,

PDF. ISBN 978-1-5044-6458-1 STD24061 Print: ISBN 978-1-5044-6459-8 STDPD24061

IEEE prohibits discrimination, harassment, and bullying.

t/corporate/governance/p9-26.html. For more information, visit https://www.ieee.org/a

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

### Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE Standards documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page (https://standards.ieee.org/ipr/disclaimers.html), appear in all standards and may be found under the heading "Important Notices and Disclaimers Concerning IEEE Standards Documents."

### Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Board. IEEE develops its standards through an accredited consensus development process, which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed by volunteers with scientific, academic, and industry-based expertise in technical working groups. Volunteers are not necessarily members of IEEE or IEEE SA, and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE makes no warranties or representations concerning its standards, and expressly disclaims all warranties, express or implied, concerning this standard, including but not limited to the warranties of merchantability, fitness for a particular purpose and non-infringement. In addition, IEEE does not warrant or represent that the use of the material contained in its standards is free from patent infringement. IEEE standards documents are supplied "AS IS" and "WITH ALL FAULTS."

Use of an IEEE standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity, nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

### **Translations**

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE is the approved IEEE standard.

### Official statements

A statement, written or oral, that is not processed in accordance with the IEEE SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that the presenter's views should be considered the personal views of that individual rather than the formal position of IEEE, IEEE SA, the Standards Committee, or the Working Group.

### **Comments on standards**

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE or IEEE SA. However, IEEE does not provide interpretations, consulting information, or advice pertaining to IEEE Standards documents.

Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its Societies and Standards Coordinating Committees are not able to provide an instant response to comments, or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in evaluating comments or in revisions to an IEEE standard is welcome to join the relevant IEEE working group. You can indicate interest in a working group using the Interests tab in the Manage Profile & Interests area of the IEEE SA myProject system. An IEEE Account is needed to access the application.

Comments on standards should be submitted using the Contact Us form.

### Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not constitute compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable taws, and these documents may not be construed as doing so.

### **Data privacy**

Users of IEEE Standards documents should evaluate the standards for considerations of data privacy and data ownership in the context of assessing and using the standards in compliance with applicable laws and regulations.

### Copyrights

IEEE draft and approved standards are copyrighted by IEEE under US and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

### **Photocopies**

Subject to payment of the appropriate licensing fees, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400; https://www.copyright.com/. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

### **Updating of IEEE Standards documents**

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every 10 years. When a document is more than 10 years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit IEEE Xplore or contact IEEE For more information about the IEEE SA or IEEE's standards development process, visit the IEEE SA Website.

### **Errata**

Errata, if any, for all IEEE standards can be accessed on the IEEE SA Website. Search for standard number and year of approval to access the web page of the published standard. Errata links are located under the Additional Resources Details section. Errata are also available in IEEE Xptore. Users are encouraged to periodically check for errata.

### **Patents**

IEEE Standards are developed in compliance with the IEEE SA Patent Policy.

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE SA Website at <a href="https://standards.ieee.org/about/sasb/patcom/patents.html">https://standards.ieee.org/about/sasb/patcom/patents.html</a>. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

### IMPORTANT NOTICE

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. IEEE Standards development activities eonsider research and information presented to the standards development group in developing any safety recommendations. Other information about safety practices, changes in technology or technology implementation, or impact by peripheral systems also may be pertinent to safety considerations during implementation of the standard. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

### **Participants**

At the time this standard was completed, the Personal Health Devices Working Group had the following membership:

### Daidi Zhong, Co-Chair Michael J. Kirwan, Co-Chair

Karsten Aalders Charles R. Abbruscato Nabil Abujbara Maher Abuzaid James Agnew Manfred Aigner Jorge Alberola David Aparisi Lawrence Arne Diego B. Arquillo Serafin Arroyo Muhammad Asim Kit August Doug Baird David Baker Anindya Bakshi Abira Balanadarasan Ananth Balasubramanian

Sunlee Bang M. Jonathan Barkley Gilberto Barrón David Bean John Bell

Olivia Bellamou-Huet Rudy Belliardi Kathryn M. Bennett Daniel Bernstein George A. Bertos Chris Biernacki Ola Björsne Thomas Blackadar Marc Blanchet Thomas Bluethner Douglas P. Bogia Xavier Boniface Shannon Boucousis Julius Broma Lyle G. Bullock, Jr Bernard Burg Chris Burns Jeremy Byford-Rew

Satya Calloji Xiaoying Cao Carole C. Carey Craig Carlson Santiago Carot-Nemesio Randy W. Carroll Simon Carter Seungchul Chae Rahul Chauhan Peggy Chien David Chiu

Jinyong Choi

Chia-Chin Chong
Saeed A. Choudhary
Jinhan Chung
John A. Cogan
John T. Collins
Cory Condek
Todd H. Cooper
David Cornejo
Douglas Coup
Nigel Cox
Hans Crommenacker
Tomio Crosley

Allen Curtis

Jesús Daniel Trigo
David Davenport
Russell Davis
Sushil K. Deka
Ciro de la Vega
Pedro de-las-Heras-Quiro
Jim Dello Stritto
Kent Dicks
Hyoungho Do
Jonathan Dougherty
Xiaolian Duan
Sourav Dutta
Jakob Ehrensvard
Fredrik Einberg

Javier Escayola Calvo

Mark Estes Leonardo Estevez Hailing Feng Bosco T. Fernandes Christoph Fischer Morten Flintrup Joseph W. Forler Russell Foster Eric Freudenthal Matthias Frohner Ken Fuchs Jing Gao Qi Gao Marcus Garbe John Garguilo Rick Geimer Igor Gejdos Ferenc Gerbovics Alan Godfrey Nicolae Goga Julian Goldman

Raul Gonzalez Gomez

Chris Gough

Channa Gowda

Charles M. Gropper

Amit Gupta
Jeff Guttmacher
Rasmus Haahr
Christian Habermann
Michael Hagerty
Jerry Hahn
Robert Hall
Shu Han
Nathaniel Hamming

Rickey L. Hampton
Sten Hanke
Aki Harma
Jordan Hartmann
Kai Hassing
Avi Hauser
Wolfgang Heck
Nathaniel Heintzman
Charles Henderson
Jun-Ho Her
Helen B. Hernandez
Timothy L. Hirou
Allen Hobbs
Alex Holland
Arto Holopainen

Anne Huang
Zhiqiang Huang
Zhiyong Huang
Ron Huby
David Hughes
Robert D. Hughes
Jiyoung Huh
Hugh Hunter
Philip O. Isaacson
Atsushi Ito
Michael Jaffe
Praduman Jain
Danny Jochelson

Kris Holtzclaw

Xinyi Hong

Robert Hoy

Di Hu

Akiyoshi Kabe Steve Kahle Tomio Kamioka James J. Kang Kei Kariya Andy Kaschl Junzo Kashihara Colin Kennedy Ralph Kent Laurie M. Kermes Ahmad Kheirandish Junhyung Kim Minho Kim Min-Joon Kim Taekon Kim Tetsuva Kimura Michael J. Kirwan Alfred Kloos Jeongmee Koh Jean-Marc Koller John Koon Patty Krantz Raymond Krasinski Alexander Kraus Ramesh Krishna Geoffrey Kruse Falko Kuester Rafael Laiara Pierre Landau Jaechul Lee JongMuk Lee Kyong Ho Lee Rami Lee Sungkee Lee Woojae Lee Qiong Li Xiangchen Li Yingsong Li Zhuofang Li Patrick Lichter Lin Lin Jisoon Lim Joon-Ho Lim Liang Liu Xiaoming Liu Wei-Jung Lo Charles Lowe Don Ludolph Christian Luszick **Bob MacWilliams** 

Srikkanth Madhurbootheswaran Miriam L. Makhlouf

Romain Marmot Sandra Martinez Miguel Martínez de EsproncedaCámara Peter Mayhew Jim McCain LászlóMeleg Alexander Mense Behnaz Minaci Jinsei Miyazaki Erik Moll Darr Moore Carsten Mueglitz

Soundharya Nagasubramanian

Alex Neefus

Trong-Nghia Nguyen-Dobinsky

Michael E. Nidd Jim Niswander Hongliang Niu Hiroaki Niwamoto Thomas Norgall

Yoshiteru Nozoe Abraham Ofek Brett Olive BegonyaOtal Marco Paleari Bud Panjwani Carl Pantiskas Harry P. Pappas Hanna Park Jong-Tae Park Myungeun Park Soojun Park Phillip E. Pash TongBi Pei Soren Petersen

James Petisce Peter Piction Michael Pliskin Varshney Prabodh Jeff Price Harald Prinzhorn Harry Qiu Tanzilur Rahman Phillip Raymond Terrie Reed Barry Reinhold Brian Reinhold Melvin I. Reynolds John G. Rhoads Jeffrey S. Robbins Chris Roberts Moskowitz Robert Stefan Robert Scott M. Robertson

Timothy Robertson

Patricia Roder

David Rosales

Bill Saltzstein Giovanna Sannino Jose A. Santos-Cadenas Stefan Sauermann John Sawver AloisSchloegl Paul S. Schluter Mark G. Schnell Richard A. Schrenker Antonio Scorpiniti KwangSeok Seo Riccardo Serafin Sid Shaw Frank Shen Min Shih Mazen Shihabi Redmond Shouldice

Sternly K. Simon Marjorie Skubic Robert Smith Ivan Soh Motoki Sone **Emily Sopensky** Rajagopalan Srinivasan Nicholas Steblay Lars Steubesand John (Ivo) Stivoric Raymond A. Strickland ChandrasekaranSubramaniam

Hermanni Suominen Lee Surprenant Ravi Swami Ray Sweidan Na Tang Yi Tang Haruyuyki Tatsumi

Isabel Tejero Tom Thompson Jonas Tirén Janet Traub Gary Tschautscher Masato Tsuchid Ken Tubman Akib Uddin Sunil Unadkat Fabio Urbani Philipp Urbauer Laura Vanzago Alpo Värri

Andrei Vasilateanu

Dalimar Velez Martha Velezis Rudi Voon Barry Vornbrock Isobel Walker David Wang Linling Wang Jerry P. Wang Yao Wang Yi Wang Steve Warren Fujio Watanabe Toru Watsuji David Weissman Kathleen Wible Paul Williamson Jan Wittenber Jia-Rong Wu

Will Wykeham Ariton Xhafa Ricky Yang Shaoqin Ye Melanie S. Yeung Qiang Yin Done-Sik Yoo Zhi Yu Jianchao Zeng Jason Zhang Jie Zhao Thomas Zhao Daidi Zhong Hongyuan Zhong Yuanhong Zhong Miha Zoubek Szymon Zyskoter

### ISO/IEEE 11073-10404:2022(E)

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

Bjoern Andersen Werner Hoelzl Iulian Profir Lyle Bullock Noriyuki Ikeuchi Beth Pumo Keith Chow Atsushi Ito Stefan Schlichting Malcolm Clarke Raj Jain Janek Schumann Kenneth Fuchs Piotr Karocki Walter Struppler David Fuschi Martin Kasparick Oren Yuen Randall Groves Raymond Krasinski Janusz Zalewski Robert Heile H. Moll Daidi Zhong

When the IEEE SA Standards Board approved this standard on 30 January 2020, it had the following membership: membership:

J. Law
Ard Li
Jong Liu
Kevin Lu
Paul Nikolich
Damir Novosel
Jon Walter Rosdahl

S. Law
Ard Li
Jong Liu
Kevin Lu
Paul Nikolich
Damir Novosel
Jon Walter Rosdahl
S. Court. Citch to view the Dorothy Stanley Mehmet Ulema Lei Wang Sha Wei Philip B. Winston Daidi Zhong Jingyi Zhou

a 11073-10404-2020, Health informatics—Personal health device commun.

Pales crimenter.

3. se mable communication between medical devices and external computer syste.

are optimized framework created in IEEE Std 11073-20601-2019<sup>TM</sup> and describes a slope communication approach for the pulse oximeter. These standards align with, and existing clinically focused standards to provide support for communication of data from provide support for communication described suppo

<sup>1</sup> Information on references can be found in Clause 2.

### ISO/IEEE 11073-10404:2022(E)

### **Contents**

| 1. Overview                                                             |    |
|-------------------------------------------------------------------------|----|
| 1.1 Scope                                                               |    |
| 1.2 Purpose                                                             |    |
| 1.3 Context                                                             | 12 |
|                                                                         | 12 |
| 2. Normative references                                                 |    |
| 3. Definitions, acronyms, and abbreviations                             | 12 |
| 3.1 Definitions                                                         | 12 |
| J.1 Demittons                                                           |    |
| 3.2 Acronyms and abbreviations                                          | 14 |
| 4. Introduction to ISO/IEEE 11073 personal health devices               | 14 |
| 4.1 General                                                             | 14 |
| 4.2 Introduction to IEEE 11073-20601 modeling constructs                | 15 |
| 4.3 Compliance with other standards                                     | 15 |
| 1.5 Compitative with other standards                                    | 15 |
| 5. Pulse oximeter device concepts and modalities                        | 16 |
| 5.1 General                                                             | 16 |
| 5.2 Device types                                                        | 16 |
| 5.2 Device types                                                        | 16 |
| 5.4 Collected data                                                      | 17 |
| 5.5 Derived data                                                        | 19 |
| 5.6 Stored data                                                         | 19 |
| 5.7 Device configurations                                               | 19 |
| 5.7 Device configurations                                               |    |
| 6. Pulse oximeter DIM 6.1 Overview                                      | 20 |
| 6.1 Overview                                                            | 20 |
| 6.2 Class extensions                                                    | 20 |
| 6.3 Object instance diagram 6.4 Types of configuration. 6.5 MDS object. | 20 |
| 6.4 Types of configuration                                              | 21 |
| 6.5 MDS object                                                          | 22 |
| 6.6 Numeric objects                                                     |    |
| 6.7 Real-time sample array (RT-SA) objects                              |    |
| 6.8 Enumeration objects                                                 | 37 |
| 6.9 PM-store objects                                                    |    |
| 6.10 Scanner objects                                                    |    |
| 6.11 Class extension objects                                            |    |
| 6.12 Pulse oximeter information model extensibility rules               | 48 |
| 7. Pulse oximeter service model                                         | 48 |
| 7.1 General                                                             |    |
| 7.2 Object access services                                              |    |
| 7.3 Object access EVENT REPORT services                                 |    |
| 3 Object access EVENT REFORT services                                   |    |
| 8. Pulse oximeter communication model                                   | 52 |
| 8.1 Overview                                                            |    |
| 8.2 Communications characteristics                                      |    |
| 8.3 Association procedure                                               |    |
| 8.4 Configuring procedure                                               |    |
| 8.5 Operating procedure                                                 |    |
| 2.6 Time synchronization                                                | 57 |

| 9. Test associations                              | 5     |
|---------------------------------------------------|-------|
| 9.1 Behavior with standard configuration          | 5     |
| 9.2 Behavior with extended configurations         | 5     |
| 7.2 Behavior with extended configurations         |       |
| 10. Conformance                                   | 5     |
| 10.1 Applicability                                |       |
| 10.1 Applicability                                |       |
| 10.2 Conformance specification                    |       |
| 10.3 Levels of conformance                        | 5     |
| 10.4 Implementation conformance statements (ICSs) | 5     |
|                                                   |       |
| Annex A (informative) Bibliography                | No.   |
| · ····································            | . 0   |
| Amory D (namestive) Additional ACN 1 definitions  |       |
| Annex B (normative) Additional ASN.1 definitions  |       |
|                                                   |       |
| Annex C (normative) Allocation of identifiers     |       |
|                                                   |       |
| Annex D (informative) Message sequence examples   |       |
|                                                   | / \ / |
| Annay E (informativa) DDII avamples               |       |
| Annex E (informative) PDO examples                |       |
|                                                   |       |
| Annex F (informative) Revision history            | 8     |
| 9.1 Behavior with standard configuration          |       |
| OM. Clip                                          |       |
|                                                   |       |
| ARDS,                                             |       |
| (AND)                                             |       |
|                                                   |       |
|                                                   |       |
|                                                   |       |
|                                                   |       |
|                                                   |       |
|                                                   |       |

### Health informatics—Personal health device communication

OIEEE 1073-10404:2022 Part 10404: Device specialization-**Pulse oximeter** 

### 1. Overview

### 1.1 Scope

Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard establishes a normative definition of communication between personal telehealth pulse oximeter devices and compute engines (e.g., cell phones, personal computers, personal health appliances, set top boxes) in a manner that enables plug-and-play (PnP) interoperability. It leverages appropriate portions of existing standards including ISO/IEEE 11073 terminology, information models, application profile standards, and transport standards. It specifies the use of specific term codes, formats, and behaviors in telehealth environments restricting optionality in base frameworks in favor of interoperability. This standard defines a common core of communication functionality for personal telehealth pulse oximeters.

### 1.2 Purpose

This standard addresses a need for an openly defined, independent standard for controlling information exchange to and from personal health devices (PHDs) and compute engines (e.g., cell phones, personal computers, personal health appliances, set top boxes). Interoperability is key to growing the potential market for these devices and enabling people to be better informed participants in the management of their health.

### 1.3 Context

See IEEE Std 41073-20601-2019<sup>TM2</sup> for an overview of the environment within which this standard is written.

This standard, IEEE Std 11073-10404, defines the device specialization for the pulse oximeter, being a specific agent type, and provides a description of the device concepts, its capabilities, and its implementation according to this standard.

This standard is based on IEEE Std 11073-20601-2019, which in turn draws information from both ISO/IEEE 11073-10201:2004 [B6]<sup>3</sup> and ISO/IEEE 11073-20101:2004 [B7]. The medical device encoding rules (MDER) used within this standard are fully described in IEEE Std 11073-20601-2019.

<sup>&</sup>lt;sup>2</sup> Information on references can be found in Clause 2.

<sup>&</sup>lt;sup>3</sup> The numbers in brackets correspond to the numbers in the bibliography in Annex A.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

This standard defines specialized nomenclature codes that will be collected in IEEE Std 11073-10101-2019<sup>TM</sup>. Between this standard, IEEE Std 11073-10101-2019, IEEE Std 11073-20601-2019 and other IEEE Std 11073-104xx, all required nomenclature codes for implementation are documented. New codes may be defined in newer versions / revisions of each of these documents. In the case of a conflict, where one term code has been assigned to two separate semantic concepts with different RefIDs, in general the oldest definition that is in actual use should take precedence. The same policy applies when one RefID has two different code values assigned in different specifications. The resolution of such conflicts will be determined through joint action by the responsible work groups and other stakeholders and any corrective action published as corrigenda.

NOTE—In this standard, ISO/IEEE P11073-104zz is used to refer to the collection of device specialization standards that utilize IEEE Std 11073-20601-2019, where zz can be any number from 01 to 99, inclusive.<sup>4</sup>

### 2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so that each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

IEEE Std 11073-20601-2019, Health informatics—Personal health device communication—Part 20601: Application profile—Optimized Exchange Protocol.<sup>5, 6</sup>

IEEE Std 11073-10101-2019, Health informatics—Point-of-care medical device communication—Part 10101: Nomenclature.

See Annex A for all informative material referenced by this standard.

### 3. Definitions, acronyms, and abbreviations

### 3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. The *IEEE Standards Dictionary Online* [B1] should be referenced for terms not defined in this clause.<sup>7</sup>

agent: A node that collects and transmits personal health data to an associated manager.

**class:** In object-oriented modeling, a class describes the attributes, methods, and events that objects instantiated from the class utilize.

compute engine: See: manager.

device: A physical apparatus implementing either an agent or manager role.

handle: An unsigned 16-bit number that is locally unique and identifies one of the object instances within an agent.

<sup>&</sup>lt;sup>4</sup> Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

<sup>&</sup>lt;sup>5</sup> IEEE publications are available from The Institute of Electrical and Electronics Engineers (https://standards.ieee.org/).

<sup>&</sup>lt;sup>6</sup> The IEEE standards or products referred to in Clause 2 are trademarks owned by The Institute of Electrical and Electronics Engineers, Incorporated.

<sup>&</sup>lt;sup>7</sup> IEEE Standards Dictionary Online is available at: http://dictionary.ieee.org. An IEEE Account is required for access to the dictionary, and one can be created at no charge on the dictionary sign-in page.

### ISO/IEEE 11073-10404:2022(E)

IEEE Std 11073-10404-2020

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

**manager:** A node receiving data from one or more associated agent systems. Examples of managers include a cellular phone, health appliance, set top box, or a computer system.

**object:** In object-oriented modeling, a particular instantiation of a class. The instantiation realizes attributes, methods, and events from the class.

obj-handle: See: handle.

personal health device: A device used in personal health applications.

personal telehealth device: See: personal health device.

photoplethysmographic waveform: See: plethysmogram.

**plethysmogram:** Sequence of samples related to the sequential time-varying light absorption due to effects of pulsatile blood flow.

plethysmographic: See: plethysmogram.

**SpO<sub>2</sub>:** Percentage oxygen saturation of haemoglobin as measured by a pulse oximeter, where this measurement is an estimate of the fraction of functional haemoglobin (or hemoglobin) in arterial blood that is saturated with oxygen.

NOTE—For more information about SpO<sub>2</sub>, see ISO 80601-2-61:2017 [B9].

### 3.2 Acronyms and abbreviations

APDU application protocol data unit
ASN.1 Abstract Syntax Notation One
domain information model
EUI-64 extended unique identifier (64 bits)
ICS implementation conformance statement

ID identifier

medical device communication MDC medical device encoding rules **MDER** medical device system **MDS** MOC managed object class object identifier OID **PDU** protocol data unit personal health device **PHD** RT-SA real-time sample array

SpO<sub>2</sub> percentage oxygen saturation of haemoglobin

VMO virtual medical object

### 4. Introduction to ISO/IEEE 11073 personal health devices

### 4.1 General

This standard and the remainder of the series of ISO/IEEE 11073 personal health device (PHD) standards fit in the larger context of the ISO/IEEE 11073 series of standards. The full suite of standards enables agents to interconnect and interoperate with both managers and computerized healthcare information systems. See IEEE Std 11073-20601-2019 for a description of the guiding principles for this series of ISO/IEEE 11073 Personal Health Device standards.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

IEEE Std 11073-20601-2019 supports the modeling and implementation of an extensive set of personal health devices. This standard defines aspects of the pulse oximeter device. It describes all aspects necessary to implement the application layer services and data exchange protocol between an ISO/IEEE 11073 PHD pulse oximetry agent and a manager. This standard defines a subset of the objects and functionality contained in IEEE Std 11073-20601-2019, extending and adding definitions where appropriate.

All nomenclature codes referenced in this standard are collected in Annex C. Annex C may contain definitions of codes that are used by this standard and that are not yet present in the referenced versions of IEEE Std 11073-10101-2019 and IEEE Std 11073-20601-2019.

### 4.2 Introduction to IEEE 11073-20601 modeling constructs

### 4.2.1 General

The ISO/IEEE 11073 series of standards, and in particular IEEE Std 11073-20601-2019, is based on an object-oriented systems management paradigm. The overall system model is divided into three principal components: the domain information model (DIM), the service model, and the communication model. See IEEE Std 11073-20601-2019 for a detailed description of the modeling constructs.

### 4.2.2 Domain information model (DIM)

The DIM is a hierarchical model that describes an agent as a set of objects. These objects and their attributes represent the elements that control behavior and report on the status of the agent and data that an agent can communicate to a manager. Communication between the agent and manager is defined by the application protocol in IEEE Std 11073-20601-2019.

### 4.2.3 Service model

The service model defines the conceptual mechanisms for the data exchange services. Such services are mapped to messages that are exchanged between the agent and manager. Protocol messages within the ISO/IEEE 11073 series of standards are defined in ASN.1. The messages defined in IEEE Std 11073-20601-2019 can coexist with messages defined in other standard application profiles defined in the ISO/IEEE 11073 series of standards.

### 4.2.4 Communication model

In general, the communication model supports the topology of one or more agents communicating over logical point-to-point connections to a single manager. For each logical point-to-point connection, the dynamic system behavior is defined by a connection state machine as specified in IEEE Std 11073-20601-2019.

### 4.2.5 Implementing the models

An agent implementing this standard shall implement all mandatory elements of the information, service, and communication models as well as all conditional elements where the condition is met. The agent should implement the recommended elements, and it may implement any combination of the optional elements. A manager implementing this standard shall utilize at least one of the mandatory, conditional, recommended, or optional elements. In this context, "utilize" means to use the element as part of the primary function of the manager device. For example, a manager whose primary function is to display data would need to display a piece of data in the element in order to utilize it.

### 4.3 Compliance with other standards

Devices that comply with this standard may also be required to comply with other domain- and devicespecific standards that supersede the requirements of this standard with respect to issues including safety,

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

reliability, and risk management. A user of this standard is expected to be familiar with all other such standards that apply and to comply with any higher specifications thus imposed.

Typically, medical devices should comply with the IEC 60601-1 [B2] base standards with respect to electrical and mechanical safety and any device-specific standard as might be defined in the IEC 60601-2 [B3] series of standards. Software aspects may apply through standards such as IEC 62304/EN 62304 [B4]. Devices that comply with this standard implement higher layers of network software and utilize lower layers as appropriate to the application. The requirements on performance of such applications and conformance are defined elsewhere and are outside the scope of this standard. Moreover, the use of any medical equipment is subject to risk assessment and risk management appropriate to the application. Some relevant examples are ISO 14971:2007 [B8] and IEC 80001-1 [B5]. The requirements of such misk assessment, risk management, and conformance are outside the scope of this standard. The applicable versions of the referenced safety related standards may differ per country.

### 5. Pulse oximeter device concepts and modalities

### 5.1 General

This clause presents the general concepts of pulse oximeter equipment. In the context of PHDs in the ISO/IEEE 11073 family of standards, a pulse oximeter, also called an oximeter, provides a noninvasive estimate of functional oxygen of arterial haemoglobin (SpO<sub>2</sub>) from a light signal interacting with tissue, by using the time-dependent changes in tissue optical properties that occur with pulsatile blood flow (see Draft Guidance for Industry and FDA Staff Error! Reference source not found.). Applying the Beer-Lambert law of light absorption through such an arterial network, the fraction of oxygenation of arterial haemoglobin can be estimated. This estimate, normally expressed as a percentage by multiplying that fraction by 100, is known as SpO<sub>2</sub>. Occasionally, this estimate may be referenced as %SpO<sub>2</sub>. ISO 80601-2-61:2017 [B9] contains additional information applicable to pulse oximetry.

### 5.2 Device types

Pulse oximeter systems with applicability in the personal health space may take on a variety of configurations and sensor compositions, and their configurations have suitability in different personal health application spaces. Pulse oximeter equipment comprises a pulse oximeter monitor, a pulse oximeter probe, and a probe cable extender, if provided. Some oximeters are all-in-one assemblies, where the optical probe, processing, and display components are in a single package. Other oximeters may consist of separate sensor and processing/display components. Still others may place the sensor and signal processing in one component, and send that information into an external component for display and storage. Pulse oximeters may place sensors in numerous locations on the body and use transconductance and reflectance of the light path. This standard assumes all measurements are equal and provides a single measure with no differentiation of location. In addition, other configurations may add storage capability into the system. This implies that different information models may be best suited for each particular device configuration.

### 5.3 General concepts

### 53.1 Noninvasive measurement

The scope of this specialization covers the intended use of pulse oximeter equipment, which includes, but is not limited to, the estimation of arterial oxygen haemoglobin saturation and pulse rate. This standard is not applicable to pulse oximeter equipment intended for use in laboratory research applications or to oximeters that require a blood sample (see ISO 80601-2-61:2017 [B9]). This standard does not cover measurement of oxygenation via blood extraction. This standard is not applicable to pulse oximeter equipment solely intended for foetal use.

The sensing mechanism may use either transmissive or reflective methods to measure blood oxygenation.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

In addition, blood oxygenation is usually determined as a ratio of the absorbance of two different wavelengths of light, although more wavelengths may be used.

### 5.3.2 Acquisition modes

### 5.3.2.1 General

Pulse oximeters are used to measure SpO<sub>2</sub> within a variety of use scenarios.

### 5.3.2.2 Spot-check

In a spot-check scenario, a user may simply want to take a single, fully processed reading for transmission to a manager. For example, the user would attach the oximeter, whereupon the agent would take an oximetry and pulse rate reading. The agent would then begin communication with a manager and send that single reading. The manager may acknowledge the transmission so the agent can subsequently disassociate and return to its prior state.

### 5.3.2.3 Continuous monitoring

A continuous monitoring situation involves the pulse oximeter device measuring the user's oxygenation for some period of time greater than that needed to acquire a single measurement. Multiple measurements may be taken to acquire trending information.

### 5.3.2.4 Stored-and-forwarded measurements

Stored-and-forwarded measurements could be considered as a specialized, continuous monitoring application where the pulse oximetry device is not always in communication with a manager, and the oximeter records data over several minutes or hours. In this case, oximetry data are stored in the device for the duration of the study session and subsequently transferred to the manager at an appropriate time. This measurement communication style is distinct from the situation where temporarily stored measurements are transferred when the communication link is restored.

### 5.4 Collected data

### 5.4.1 General

This subclause describes the nature of the data that have been collected based on the acquisition modes described in 5.3.2.

### 5.4.2 Percentage of arterial haemoglobin oxygen saturation

### 5.4.2.1 SpO<sub>2</sub>

Every eximeter sends at least one expression of SpO<sub>2</sub>. This is the primary measurement of a pulse eximeter. It is important to note that this measurement is determined through various signal processing techniques and can be expressed in different ways. Each method and expression has its applicability in particular application spaces (e.g., vital signs monitoring and diagnostic sleep studies). Often the reported SpO<sub>2</sub> has been processed with a variety of techniques in order to present the data for use in a number of ways.

In response to the various physiological phenomena and situations,  $SpO_2$  measurements may be expressed in a variety of ways. Additional modalities for expressing  $SpO_2$  are often used that are better suited to expose or suppress various physiological or environmental phenomena, as seen in 5.4.2.2. The following subclause outlines three expressions of  $SpO_2$  that may be used by a device manufacturer to convey blood oxygenation level.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

It is also conceivable that pulse oximeter equipment may deliver a single  $SpO_2$  that is determined by one of these modalities. Furthermore, several of these distinct expressions may be transmitted concurrently during a measurement session. The manager, upon receiving this collection of information, may choose to display another subset of these expressions. It is required for a pulse oximeter agent to support at least one instance of this measurement.

### 5.4.2.2 Alternative expressions of SpO<sub>2</sub>

One case of SpO<sub>2</sub> measurement involves a user wearing a sensor during unintentional or moderate activity. The result of this activity may be intermittent loss of signal acquisition. The most common expression of SpO<sub>2</sub> may be too sensitive to these effects and could result in a fluctuating (and, therefore, misleading) reading. An SpO<sub>2</sub> measurement modality known as "slow-response" modality has a characteristic that "smooths out" a series of measurements in some fashion, perhaps by changing an averaging parameter or by employing a different algorithm. This modality is defined in this standard.

During a sleep study, an apnea event results in a rapid desaturation of blood oxygenation. This SpO<sub>2</sub> measurement can be expressed by a "fast-response" modality that uses a technique that more effectively captures such events. The technique may vary among device manufacturers, but a distinct expression able to capture these rapid changes is defined in this standard.

The terms *slow-response* and *fast-response* are relative to a particular implementation and are not intended to show a comparison across devices or vendors. Note that these are descriptive terms intentionally left unspecific to allow more flexible interpretations within a particular implementation.

A pulse oximeter will often send SpO<sub>2</sub> measurements periodically; e.g., once every second. In addition, pulse oximeters may begin outputting measurements as soon as it has a reasonable estimate of functional haemoglobin oxygenation. Subsequent measurements may, in some fashion, converge on the oximeter's best estimate. An additional modality, the "spot-check" modality, fulfills the desire to be able to perform and display a single SpO<sub>2</sub> measurement that is also its best estimate of functional haemoglobin oxygenation. In other words, a spot-check is not simply the first measurement, but the first best measurement. The specific manner in which this measurement is produced is specific to the pulse oximeter implementation. Once that measurement is transmitted, the measurement session is complete.

### 5.4.3 Pulse rate

The heart rate measured by a pulse oximeter is produced by a heartbeat, but also requires ejection of blood by the heart and generation of an arterial and tissue pressure wave that is detectable by photoplethysmographic means. Therefore, the pulse rate may be a less reliable measure of heart rate than that of directly measuring by electrocardiograph (ECG). As described in 5.4.2.1 and 5.4.2.2, the reported value or values may be determined in a variety of ways, and corresponding modalities of "slow-response," "fast-response," and "spot-check" are defined for pulse rate measurements. It is required for a pulse oximeter agent to support at least one instance of this feature.

### 5.4.4 Pulsatile occurrence

If a precisely timestamped occurrence of a pulse is transmitted to a manager, that information can be used in conjunction with other reported physiological events to derive another physiological measurement. Other application spaces may wish to indicate pulsatile occurrence with less precision for purposes of displaying, for instance, a flashing heart icon. It is not required for a pulse oximeter agent to support this feature.

### 5.4.5 Plethysmogram

There are applications where it is desired to visualize the sequence of samples related to the time-varying light absorption due to the effects of pulsatile blood flow. Often these samples are taken from a single wavelength light source, usually the wavelength less affected by changes in oxygen saturation. It is not required for a pulse oximeter agent to support this feature.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 5.4.6 Pulsatile quality and signal characterization

Pulse oximeter manufacturers have many ways to characterize the quality of the pulsatile wave. Unfortunately, no industry-wide standard currently exists to quantify the characteristics of the signal. However, signal amplitude metrics among the different vendors provide quantities that can be found to have a linear relationship. One notable characteristic is the amplitude of the signal modulation. Other methods to characterize the quality of the pulsatile wave may be employed. It is not required for a pulse oximeter to support this feature.

### 5.5 Derived data

### 5.5.1 Limit indications

Pulse oximeters may implement indicators based on monitoring physiological values as falling outside predefined limits. The commonly implemented indicators include reaching the thresholds of a high or low SpO<sub>2</sub>, or reaching the thresholds of a high or low pulse rate.

### 5.5.2 Pulsatile status

Pulse oximeters may provide status indications of certain characteristics of a pulsatile wave or irregularities in the waveform.

### 5.5.3 Device and sensor status

Pulse oximeters may provide status indications pertaining to sensor malfunction or dislodgement as well as various signal anomalies.

### 5.6 Stored data

As stated in 5.3.2.4, a pulse oximeter may be used over one or more sessions of several hours without being in contact with a manager to send its data. After the session or sessions are completed, the pulse oximeter agent connects to a manager. The manager is able to select which of the agent's stored sessions to retrieve. The agent then transmits the manager's selection in one or several blocks of messages for processing by a manager or other processing apparatus. The manager is also able to choose a set of sessions for deletion.

### 5.7 Device configurations

Although agents typically have a static configuration, it is permissible and desirable for an agent to support multiple configurations, one of which would be active at any given time. Pulse oximeters may have a rich set of features that can be combined into a collection of different configurations, one of which can be selected by the manager during configuration.

Two general categories of configurations exist. The first category is known as the set of standard configurations. These are intended to describe a relatively limited feature set of a single device specialization, which have predefined configuration identity (ID) codes. Managers may be pre-loaded with these configurations, in which case the configuration process is eliminated and immediate operation is allowed. The second category involves the set of extended configurations. These configurations are more flexible in that they may include concepts particular to one or more device specializations or include other features as defined in this standard.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6. Pulse oximeter DIM

### 6.1 Overview

This clause describes the DIM of the pulse oximeter.

### 6.2 Class extensions

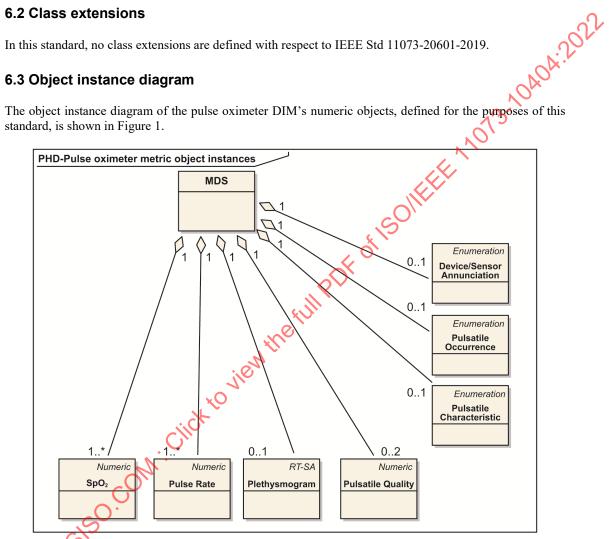



Figure 1—Pulse oximeter DIM for metric objects

The objects of the DIM, as shown in Figure 1, are described in the following subclauses: medical device system (MDS) object (see 6.5), the numeric objects (see 6.6), the real-time sample array (RT-SA) objects (see 6.7), and the enumeration objects (see 6.8). Figure 2 illustrates the PM-store objects (see 6.9), and the scanner objects (see 6.10) are shown in Figure 4. See 6.11 for rules for extending the pulse oximeter information model beyond elements as described in this standard. Each subclause that describes an object of the pulse oximeter contains the following information:

The nomenclature code used to identify the class of the object. One example where this code is used is the configuration event, where the object class is reported for each object. This allows the manager to determine whether the class of the object being specified is a numeric, RT-SA, enumeration, scanner, or PM-store class.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

- The attributes of the object. Each object has attributes that represent and convey information on the physical device and its data sources. Each object has a Handle attribute that identifies the object instance within an agent. Attribute values are accessed and modified using methods such as GET and SET. Attribute types are defined using ASN.1. The ASN.1 definitions for new attribute types specific to this standard are in Annex B, and the ASN.1 definitions for existing attribute types referenced in this standard are in IEEE Std 11073-20601-2019.
- The methods available on the object.
- The potential events generated by the object. Data are sent to the manager using events.
- The available services such as getting or setting attributes.

The attributes for each class are defined in tables that specify the name of the attribute, its value, and its qualifier. The qualifiers are as follows:

— M – Attribute is Mandatory, C – Attribute is Conditional and depends on the condition stated in the Remark or Value column (if IEEE Std 11073-20601-2019 is referenced, then it contains the conditions), R – Attribute is Recommended, O – Attribute is Optional, NR – Attribute is Not Recommended and NA — Attribute is Not Allowed. Mandatory attributes shall be implemented by an agent. Conditional attributes shall be implemented if the condition applies and may be implemented otherwise. Recommended attributes should be implemented by the agent. Optional attributes may be implemented on an agent. Not recommended attributes should not be implemented by the agent. If any attribute defined in the DIM of IEEE Std 11073-20601-2019 is not included in the definition of that object in this standard, it shall not be included in that object by an implementation. Vendor-specific attributes are allowed as described in 6.12.

An attribute is further qualified as static, dynamic, or observational. Static attributes shall not change value during the life of an association. Dynamic attributes have a value that may change during the life of an association. The dynamic attribute value should be sent at configuration time and shall be sent at or before the time when the value would be needed for interpreting a reported observation. Observational attributes have a value that may change during the life of an association. When a set of observational attribute values are received, these values are combined with the available context information (i.e., all related dynamic and static attribute values) to represent the observation at the observation time.

### 6.4 Types of configuration

### 6.4.1 General

As specified in IEEE Std 11073-20601-2019, two styles of configuration are available. The following subclauses briefly introduce standard and extended configurations.

### 6.4.2 Standard configuration

Standard configurations are defined in the ISO/IEEE 11073-104zz specializations (such as this standard) and are assigned a well-known identifier (Dev-Configuration-Id). The usage of a standard configuration is negotiated at configuration time between the agent and manager. If the manager acknowledges that it recognizes and wants to operate using the configuration, then the agent can begin sending measurements immediately. If the manager does not understand the configuration, the agent provides the configuration prior to transmitting measurement information.

### 6.4.3 Extended configuration

In extended configurations, the agent's configuration is not predefined in a standard. The agent determines which objects, attributes, and values that it wants to use in a configuration and assigns a configuration identifier. When the agent associates with a manager, it negotiates an acceptable configuration. Typically,

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

the manager does not know the agent's configuration on the first connection. Therefore, the manager responds that it needs the configuration and the agent transmits its configuration information by sending a configuration event report. If the manager already recognizes the configuration, either because it was preloaded via an installation program or the agent previously associated with the manager, then the manager responds that the configuration is known and no further configuration information needs to be sent.

If the device uses concepts and terms outside of this device specialization or terms defined in the private partition of IEEE 11073-10101, it is considered a proprietary device.

### 6.5 MDS object

### 6.5.1 MDS object attributes

Table 1 summarizes the attributes of the pulse oximeter MDS object. The nomenclature code to identify the MDS class is MDC MOC VMS MDS SIMP.

If a standard configuration is chosen, the timestamp type of MDS shall be consistent with the timestamp type of the metric objects in the chosen standard configuration.

In the response to a Get MDS Object command, only implemented attributes and their corresponding values are returned.

See IEEE Std 11073-20601-2019 for descriptive explanations of the individual attributes as well as information on attribute ID and attribute type.

The Dev-Configuration-Id attribute holds a locally unique 16-bit identifier that identifies the device configuration. For a pulse oximetry agent with extended configuration, this identifier is chosen in the range of extended-config-start to extended-config-end (see IEEE Std 11073-20601-2019) as shown in Table 1. The agent sends the Dev-Configuration-Id during the Associating state (see 8.3) to identify its configuration for the duration of the association. If the manager already holds the configuration information relating to the Dev-Configuration-Id, it recognizes the Dev-Configuration-Id. Then the Configuring state (see 8.4) is skipped, and the agent and manager enter the Operating state. If the manager does not recognize the Dev-Configuration-Id, the agent and manager enter the Configuring state.

If an agent implements multiple EEE 11073-104zz specializations, System-Type-Spec-List is a list of type/version pairs, each referencing the respective device specialization and version of that specialization.

IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Table 1—MDS object attributes

|                                   |                                                                                                   |               | Qual: 1                                       |                                        |
|-----------------------------------|---------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------|----------------------------------------|
| Attribute name                    | Value                                                                                             | Extended      | Standard<br>configuration                     | Standard configuration                 |
|                                   |                                                                                                   | configuration | (Dev-Configuration-<br>Id = 0x0190 or 0x0191) | (Dev-Configuration-<br>Id = $0x0192$ ) |
| Handle                            | 0                                                                                                 | M             | M                                             | M                                      |
| System-Type                       | Attribute not present. See IEEE Std 11073-20601-2019.                                             | o<br>O        | ر<br>کر                                       | C                                      |
| System-Model                      | {"Manufacturer", "Model"}                                                                         | M             | M                                             | M                                      |
| System-Id                         | EUI-64                                                                                            | M             | M                                             | M                                      |
| Dev-Configuration-Id              |                                                                                                   | W             | M                                             | M                                      |
|                                   | Standard config. 0x0192 (402) Extended configs: 0x4000–0x7FFF                                     |               |                                               |                                        |
| Attribute-Value-Map               | See IEEE Std 11073-20601-2019.                                                                    | C             | C                                             | C                                      |
| Production-Specification          | See IEEE Std 11073-20601-2019.                                                                    | 0             | 0                                             | 0                                      |
| Mds-Time-Info                     | See IEEE Std 11073-20601-2019.                                                                    | C             | C                                             | M                                      |
| Date-and-Time                     | See IEEE Std 11073-20601-2019.                                                                    | Э             | NR (0x0190)<br>M (0x0191)                     | NA                                     |
| Base-Offset-Time                  | See IEEE Std 11073-20601-2019.                                                                    | R             | NA                                            | M                                      |
| Relative-Time                     | See IEEE Std 11073-20601-2019.                                                                    | Э             | C (0x0190)<br>NR (0x0191)                     | NR                                     |
| HiRes-Relative-Time               | See IEEE Std 11073-20601-2019.                                                                    | Э             | C (0x0190)<br>NR (0x0191)                     | NR                                     |
| Date-and-Time-Adjustment          | See IEEE Std 11073-20601-2019 🔾                                                                   | С             | C                                             | С                                      |
| Power-Status                      | onBattery or onMains                                                                              | R             | R                                             | R                                      |
| Battery-Level                     | See IEEE Std 11073-20601-2019.                                                                    | R             | R                                             | R                                      |
| Remaining-Battery-Time            | See IEEE Std 11073-20601-2019.                                                                    | R             | R                                             | R                                      |
| Reg-Cert-Data-List                | See IEEE Std 11073-20601-2019.                                                                    | 0             | 0                                             | 0                                      |
| System-Type-Spec-List             | {MDC_DEY_SPEC_PROFILE_PULS_OXIM, 2}                                                               | M             | M                                             | M                                      |
| Confirm-Timeout                   | See IEEE Std 11073-20601-2019.                                                                    | 0             | 0                                             | 0                                      |
| NOTE 1 See IEEE Std 11073 20601 2 | NOTE 1. See IEEE 94 11072 20601 2010 for he mostion on whether on attribute is storic or dimensio |               |                                               |                                        |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

 $23 \\ {\rm Copyright} \, @ \, 2021 \, {\rm IEEE.} \, \, {\rm All} \, \, {\rm rights} \, {\rm reserved}.$ 

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6.5.2 MDS object methods

Table 2 defines the methods (actions) of the MDS object. These methods are invoked using the ACTION service. In Table 2, the Subservice type name column defines the name of the method. The Mode column defines whether the method is invoked as an unconfirmed action (i.e., roiv-cmip-action from IEEE Std 11073-20601-2019) or a confirmed action (i.e., roiv-cmip-confirmed-action). The Subservice type (action-type) column defines the nomenclature code to use in the action-type field of an action request and response (see IEEE Std 11073-20601-2019). The Parameters (action-info-args) column defines the associated ASN.1 data structure (see IEEE Std 11073-20601-2019 for ASN.1 definitions) to use in the action message for the action-info-args field of the request. The Results (action-info-args) column defines the structure to use in the action-info-args of the response.

### Table 2—MDS object methods

| Service | Subservice type name             | Mode      | Subservice type<br>(action-type) | Parameters (action-info-args) | Results (action-info-args) |
|---------|----------------------------------|-----------|----------------------------------|-------------------------------|----------------------------|
| ACTION  | Set-Time                         | Confirmed | MDC_ACT_SET_TIME                 | SetTimeInvoke                 | _                          |
| ACTION  | Set-Time<br>Set-Base-Offset-Time | Confirmed | MDC_ACT_SET_BO_TIME              | SetBOTimeInvoke               |                            |

### - Set-Time:

This method allows the manager to set a real-time clock in the agent with the absolute time. The agent indicates whether the Set-Time command is valid using the mds-time-capab-set-clock bit in the Mds-Time-Info attribute (see IEEE Std 11073-20601-2019).

The Set-Time method can be supported only if the Absolute-Time-Stamp attribute is supported.

### — Set-Base-Offset-Time:

This method allows the manager to set a real-time clock in the agent with the base time and offset. The agent indicates whether the Set-Base-Offset-Time command is valid using the mds-time-capab-set-clock bit in the Mds-Time-Info attribute (see IEEE Std 11073-20601-2019).

The Set-Base-Offset-Time method can be supported only if the Base-Offset-Time-Stamp attribute is supported.

Agents following only this device specialization and no others send event reports by using agent-initiated measurement data transmission. However, the manager may control transmission of data through use of the scanner object to send data.

### 6.5.3 MDS object events

Table 3 defines the events that can be sent by the pulse oximeter MDS object.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Table 3—Pulse oximeter MDS object events

| Service         | Subservice type name                     | Mode                     | Subservice type<br>(event-type)   | Parameters<br>(event-info) | Results<br>(event-reply-<br>info) |
|-----------------|------------------------------------------|--------------------------|-----------------------------------|----------------------------|-----------------------------------|
|                 | MDS-<br>Configuration-<br>Event          | Confirmed or Unconfirmed | MDC_NOTI_CONFIG                   | ConfigReport               | ConfigReportRsp                   |
|                 | MDS-Dynamic-<br>Data-Update-<br>Var      | Confirmed or Unconfirmed | MDC_NOTI_SCAN_<br>REPORT_VAR      | ScanReportInfoVar          | _                                 |
| EVENT<br>REPORT | MDS-Dynamic-<br>Data-Update-<br>Fixed    | Confirmed or Unconfirmed | MDC_NOTI_SCAN_<br>REPORT_FIXED    | ScanReportInfoFixed        | - 240A;                           |
|                 | MDS-Dynamic-<br>Data-Update-<br>MP-Var   | Confirmed or Unconfirmed | MDC_NOTI_SCAN_<br>REPORT_MP_VAR   | ScanReportInfoMPVar        | - VO                              |
|                 | MDS-Dynamic-<br>Data-Update-<br>MP-Fixed | Confirmed or Unconfirmed | MDC_NOTI_SCAN_<br>REPORT_MP_FIXED | ScanReportInfoMPFixed      | 0                                 |

### — MDS-Configuration-Event:

This event is sent by the pulse oximetry agent during the configuring procedure if the manager does not already know the pulse oximeter agent's configuration from past associations or because the manager has not been implemented to recognize the configuration according to the pulse oximeter device specialization. The event provides static information about the supported measurement capabilities of the pulse oximetry agent.

### — MDS-Dynamic-Data-Update-Var:

This event provides dynamic measurement data from the pulse oximetry agent for the numeric and enumeration object(s). This is reported using a generic attribute list variable format. The event is sent as an unsolicited message by the agent (i.e., an agent-initiated measurement data transmission). See 8.5.3 for more information on unsolicited event reporting.

### — MDS-Dynamic-Data-Update-Fixed:

This event provides dynamic measurement data from the pulse oximeter agent for the numeric and enumeration objects. This is reported in the fixed format defined by the Attribute-Value-Map attribute of the object(s). The event is sent as an unsolicited message by the agent (i.e., an agent-initiated measurement data transmission). See 8.5.3 for more information on unsolicited event reporting.

### — MDS-Dynamic-Data-Update-MP-Var:

This is the same as MDS-Dynamic-Data-Update-Var, but allows inclusion of data from multiple people.

### MDS-Dynamic-Data-Update-MP-Fixed:

This is the same as MDS-Dynamic-Data-Update-Fixed, but allows inclusion of data from multiple people.

NOTE—IEEE Std 11073-20601-2019 requires that managers support all of the MDS object events listed above.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6.5.4 Other MDS services

### 6.5.4.1 GET service

A pulse oximetry agent shall support the GET service, which is provided by the MDS object to retrieve the values of all implemented MDS object attributes. The GET service can only be invoked after the Manager has confirmed selection of the Agent's configuration.

The manager may request the MDS object attributes of the pulse oximeter agent, in which case the manager shall send the "Remote Operation Invoke | Get" message (see roiv-cmip-get in IEEE Std 11073-20601-2019) with the reserved MDS handle value of 0. The pulse oximeter agent shall report either a list or its entire set of attributes of its MDS object attributes to the manager using the "Remote Operation Response | Get" message (see rors-cmip-get in IEEE Std 11073-20601-2019). See Table 4 for a summary of the GET service including some message fields.

Table 4—Pulse oximeter MDS object GET service

| Service | Subservice type name | Mode                             | Subservice<br>type | Parameters                                                              | Result                                                   |
|---------|----------------------|----------------------------------|--------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| GET     | <na></na>            | <implied confirmed=""></implied> | <na></na>          | GetArgumentSimple<br>= (obj-handle = 0)<br>attribute-id-list *optional> | GetResultSimple<br>= (obj-handle = 0),<br>attribute-list |

See 8.5.2 for details on the procedure for getting the MDS object attributes.

### 6.5.4.2 SET service

The pulse oximeter specialization does not require an implementation to support the MDS object SET service. However, a pulse oximetry agent vendor may implement a private SET service for the limited purposes of setting private attributes, which avoids any notion of remote control of the pulse oximetry agent. The implementation conformance statement (ICS) table should include information related to accessing private attributes in this manner.

### 6.6 Numeric objects

### 6.6.1 General

The pulse oximeter DIM for metric objects (see Figure 1) contains one mandatory numeric object for expressing SpO<sub>2</sub>, one mandatory numeric object for pulse rate, several optional numeric objects for additional SpO<sub>2</sub>, pulse rate modalities, pulse amplitude, and the reporting of current settings of physiological threshold limits. These are described in 6.6.2, 6.6.3, and 6.6.4.

Sometimes, the interpretation of one attribute value in an object depends on other attribute values in the same object. For example, Unit-Code and Unit-LabelString provide context for the observed values. Whenever a contextual attribute changes, the agent shall report these changes to the manager using an MDS object event (see 6.5.3) prior to reporting any of the dependent values.

### 6.6.2 SpO₂

Table 5 summarizes the attributes for reporting an SpO<sub>2</sub> measurement. The nomenclature code to identify the numeric class is MDC\_MOC\_VMO\_METRIC\_NU. At least one SpO<sub>2</sub> numeric object shall be supported by a pulse oximeter agent.

# IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Table 5—SpO<sub>2</sub> numeric object attributes

|                             |                                                                        |       |                                                                                                                    |               | 3                                                                              | Ī     |
|-----------------------------|------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|-------|
| Attribute name              | Extended configuration                                                 |       | Standard Configuration<br>(Dev-Configuration-Id = 0x0190 or 0x0191)                                                | _             | Standard Configuration<br>(Dev-Configuration-1d = 0x0192)                      |       |
|                             | Value                                                                  | Qual. | Value                                                                                                              | Qual.         | Value                                                                          | Qual. |
| Handle                      | See IEEE Std 11073-20601-2019.                                         | M     | 1                                                                                                                  | M             | 2/                                                                             | M     |
| Type                        | {MDC_PULS_OXIM_SAT_02}                                                 | M     | {MDC_PART_SCADA, MDC_PULS_OXIM_SAT_O2}                                                                             | M             | {MDC_PART_SCADA,<br>MDC_PULS_OXIM_SAT_02}                                      | M     |
| Supplemental-Types          | See NOTE 1 and NOTE 2.                                                 | C     | See IEEE Std 11073-20601-2019 and NOTE 1 and NOTE 2.                                                               | ĸ             | See IEEE Std 11073-20601-2019 and NOTE 1 and NOTE 2.                           | N.    |
| Metric-Spec-Small           | mss-avail-stored-data, mss-acc-agent-initiated. See NOTE 1 and NOTE 2. | M     | mss-avail-stored-data, mss-acc-agent-initiated.<br>See NOTE 1 and NOTE 2.                                          | M             | mss-avail-stored-data, mss-acc-agent-initiated.<br>See NOTE 1 and NOTE 2.      | M     |
| Metric-Structure-<br>Small  | See IEEE Std 11073-20601-2019.                                         | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | X             | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | N.    |
| Measurement-Status          | See IEEE Std 11073-20601-2019 and NOTE 1 and NOTE 2.                   | С     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | 0             | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0     |
| Metric-Id                   | See IEEE Std 11073-20601-2019.                                         | NR    | Attribute not initially present. If present follow IEEE Std 11073-20601-2019.                                      | NR<br>M       | Attribute not initially present. If present. follow IEEE Std 11073-20601-2019. | N.    |
| Metric-Id-List              | See IEEE Std 11073-20601-2019.                                         | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | NR            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| Metric-Id-Partition         | See IEEE Std 11073-20601-2019.                                         | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | N.            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| Unit-Code                   | MDC_DIM_PERCENT                                                        | M     | MDC_DIM_PERCENT                                                                                                    | M             | MDC_DIM_PERCENT                                                                | M     |
| Attribute-Value-Map         | See IEEE Std 11073-20601-2019 and NOTE 1 and NOTE 2.                   | С     | When Dev-Configuration-Id = 0x0190: MDC ATTR NU VAL OBS BASIC                                                      | M             |                                                                                | M     |
|                             |                                                                        |       | When Dev-Configuration-Id = 0x0191:                                                                                |               | MDC_ATTR_NU_VAL_OBS_BASIC,<br>then MDC_ATTR_TIME_STAMP_BO                      |       |
|                             |                                                                        |       | MDC_ATTR_NU_VAL_OBS_BASIC,                                                                                         |               |                                                                                |       |
| Source-Handle-<br>Reference | See IEEE Std 11073-20601-2019.                                         | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | NR            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| Label-String                | See IEEE Std 11073-20601-2019.                                         | 0     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | 0             | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0     |
| Unit-LabelString            | See IEEE Std 11073-20601-2019                                          | 0     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                     | 0             | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0     |
| Absolute-Time-Stamp         | See IEEE Std 11073-20601 2019.                                         | С     | When Dev-Configuration-Id = 0x0190: Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0x0190:<br>NR | Attribute not allowed.                                                         | NA    |
|                             |                                                                        |       | When Dev-Configuration-Id = 0x0191:<br>See IEEE Std 11073-20601-2019.                                              | 0x0191:<br>M  |                                                                                |       |
| Base-Offset-Time-<br>Stamp  | See IEEE Std 11073-20601-2019.                                         | R     | Attribute not allowed.                                                                                             | NA            | See IEEE Std 11073-20601-2019.                                                 | M     |
|                             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                  |       |                                                                                                                    |               |                                                                                |       |

### IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Table 5—SpO<sub>2</sub> numeric object attributes (continued)

|                                       |                                                                                            |                                         | Chandend Canting                                                                                                                                                                                                                                   |          | Chandand Changian                                                                                                                                                                                                                                   |        |
|---------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Attribute name                        | Extended configuration                                                                     |                                         | Dev-Configuration-Id = 0x0190 or 0x0191)                                                                                                                                                                                                           | <u> </u> | Dev-Configuration-Id = $0x0192$ )                                                                                                                                                                                                                   |        |
|                                       | Value                                                                                      | Qual.                                   | Value                                                                                                                                                                                                                                              | Qual.    | Value                                                                                                                                                                                                                                               | Qual.  |
| Relative-Time-Stamp                   | See IEEE Std 11073-20601-2019.                                                             | C /                                     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | C        | Attribute not mivially present. If present, follow IEEE Std A1073-20601-2019.                                                                                                                                                                       | NR     |
| HiRes-Time-Stamp                      | See IEEE Std 11073-20601-2019.                                                             | C /                                     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | C        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | NR     |
| Measure-Active-<br>Period             | See IEEE Std 11073-20601-2019.                                                             | NR /                                    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | NR       | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | NR     |
| Simple-Nu-Observed-<br>Value          | See IEEE Std 11073-20601-2019.                                                             | C L L L L L L L L L L L L L L L L L L L | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise the conditions from IEEE Std 11073-20601-2019 apply. |          | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 apply. | O      |
| Compound-Simple-<br>Nu-Observed-Value | See IEEE Std 11073-20601-2019.                                                             | C /I                                    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | C        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | C      |
| Basic-Nu-Observed-<br>Value           | See IEEE Std 11073-20601-2019.                                                             | C E E E                                 | See IEEE Std 11073-20601-2009. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 apply.                                                | C        | See IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 apply.                                                 | ن<br>ت |
| Compound-Basic-Nu-<br>Observed-Value  | See IEEE Std 11073-20601-2019.                                                             | C /                                     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | С        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | C      |
| Nu-Observed-Value                     | See IEEE Std 11073-20601-2019.                                                             | C /                                     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | C        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | C      |
| Compound-Nu-<br>Observed-Value        | See IEEE Std 11073-20601-2019.                                                             | C                                       | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | C        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | C      |
| Accuracy                              | See IEEE Std 11073-20601-2019.                                                             |                                         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                     | R        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                                                                      | Я      |
| Alert-Op-State                        | If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019. | 0.4                                     | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                                                                        | С        | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                                                                         | C      |
| Current-Limits                        | If thresholding is to be used this attribute is mandatory. See IEEE Std 11073-20601-2019.  | 0                                       | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                                                                        | С        | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                                                                         | C      |
| Alert-Op-Text-String                  | See IEEE Std 11073-20601-2019.                                                             | 0                                       | See IEEE Std 11073-20601-2019.                                                                                                                                                                                                                     | NR       | See IEEE Std 11073-20601-2019.                                                                                                                                                                                                                      | NR     |
| NOTE 1—See IEEE St                    | d 11073-20601-2019 for information on wl                                                   | hether                                  | NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.                                                                                                                                 |          |                                                                                                                                                                                                                                                     |        |
| NOTE 2—See 6.3 for a                  | -See 6.3 for a description of the qualifiers.                                              |                                         |                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                     |        |

 $28 \\ \text{Copyright} @ 2021 \text{ IEEE. All rights reserved.}$ 

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6.6.2.1 SpO<sub>2</sub>—Extended configuration

A pulse oximeter agent may instantiate more than one SpO<sub>2</sub> numeric object. Typically, a pulse oximeter contains a single SpO<sub>2</sub> numeric object. However, a pulse oximeter may contain multiple SpO<sub>2</sub> numeric objects if it is designed to transmit multiple modalities of SpO<sub>2</sub> either successively or concurrently.

For a pulse oximeter agent with extended configuration, the AttrValMap structure (see IEEE Std 11073-20601) of the Attribute-Value-Map attribute may need to accommodate information pertaining to threshold status information in addition to other attributes such as the observed value and timestamp information.

The Supplemental-Types attribute is used to distinguish the modality of a particular SpO<sub>2</sub> measurement. In order to express the fast-response SpO<sub>2</sub> measurement, MDC\_MODALITY\_FAST shall be used as the value for the Supplemental-Types attribute. In order to express the slow-response SpO<sub>2</sub> measurement, MDC\_MODALITY\_SLOW shall be used as the value for the Supplemental-Types attribute. In order to express the spot-check SpO<sub>2</sub> measurement, MDC\_MODALITY\_SPOT shall be used as the value for the Supplemental-Types attribute. If there is no desire to distinguish a modality, the Supplemental-Types attribute shall not be used.

Certain combinations of Supplemental-Types are allowed. If it is desired to express that a spot-check measurement also uses a fast-response technique, the SupplementalTypeList structure of the SupplementalTypes attribute should contain the two values MDC\_MODALITY\_SPOT and MDC\_MODALITY\_FAST. Similarly, a spot-check using a slow-response measurement should contain the values MDC\_MODALITY\_SPOT and MDC\_MODALITY\_SLOW in its SupplementalTypeList. It is not recommended to combine the values MDC\_MODALITY\_SLOW and MDC\_MODALITY\_FAST.

The Metric-Spec-Small attribute may comprise several values, and one or more of these bits may be set:

### - mss-avail-stored-data:

If this bit is set, the pulse oximeter agent may send up to 25 temporarily stored measurements in an event report.

### — mss-msmt-aperiodic:

This bit is set if the measurement is not sent at a fixed interval. If a spot-check modality is used, this bit shall be set in addition to the use of the appropriate setting of the Supplemental-Types attribute. This bit may also be set when the spot-check modality is not used.

### — mss-acc-agent-initiated:

This bit is set if the object's reportable values are transmitted via event reports. This does not mean that an agent shall send data in this manner, only that it is capable of doing so. This bit shall be set if this object reports its measurement data with an agent-initiated event report issued by the MDS object at any time during the association. If this object is scanned only by a scanner object (see 6.10), this bit shall not be set as the manager controls the data flow through the use of the Operational-State attribute. An agent implementation should make careful use of agent-initiated transfers that are not scanner objects, as the manager has little, if any, control of the bandwidth utilization of the data link. If agent-initiated transfers are used, they should be for either intermittent or periodic event reports of a small number of object values.

Exactly one among the Absolute-Time-Stamp and Base-Offset-Time-Stamp attribute in the SpO<sub>2</sub> numeric object shall be present when using the spot-check modality.

### 6.6.2.1.1 Threshold settings and status attributes

Three attributes (Alert-Op-State, Current-Limits, Alert-Op-Text-String) of the SpO<sub>2</sub> numeric object are provided to report the threshold settings of agent, and the Measurement-Status attribute reports the threshold status, i.e., whether the measurement has reached or crossed beyond the threshold boundaries.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

The Current-Limits attribute stores the threshold values as FLOAT-Type values. If a Basic-Nu-Observed-Value attribute is used to express the measurement value, the values in the Current-Limits attribute shall be expressed within the range and precision of a SFLOAT value.

### 6.6.2.2 SpO<sub>2</sub>—Standard configurations

The first standard configuration defined in this standard contains two numeric objects, one of which is the  $SpO_2$  numeric object, described in the Standard Configuration column in Table 1. This standard configuration is provided to describe a most basic pulse oximeter implementation.

A second standard configuration is intended for spot-check use cases. In addition to assigning the Dev-Configuration-Id to 0x0191, the SpO<sub>2</sub> object attributes are modified from Dev-Configuration-Id = 0x0190 as follows:

- The Supplemental-Types attribute shall contain a single entry in its Supplemental TypeList, and its value shall be MDC MODALITY SPOT.
- The AttrValMap structure (see IEEE Std 11073-20601) of the Attribute-Value-Map attribute differs from Table 5 in that it shall contain the attribute ID and attribute length information of the Basic-Nu-Observed-Value and Absolute-Time-Stamp (or Base-Offset-Time-Stamp) attribute in this stated order.
- The Metric-Spec-Small attribute shall set the following two bits appropriately:

### — mss-avail-stored-data:

If this bit is set, the pulse oximeter agent may send up to 25 temporarily stored measurements in an event report.

### - mss-acc-agent-initiated:

Since the standard configuration contains two numeric objects, the bandwidth requirements are intended to be relatively light.

If an implementation is more capable than that provided by either of these standard configurations, it shall use an extended configuration.

The third standard configuration has the Dev-Configuration-Id=0x0192. It is the 'Base-Offset-Time' version of the second standard configuration (Dev-Configuration-Id=0x0191). The only difference between them is the format of timestamp, and correspondingly the content of Attribute-Value-Map.

### 6.6.2.3 SpO<sub>2</sub>—Methods, events, services

The SpO<sub>2</sub> numeric object does not support any methods, events, or other services.

See IEEE Std 11073-20601-2019 for descriptive explanations of the individual attributes as well as information on attribute ID and attribute type.

### 6.6.3 Pulse rate

Table 6 summarizes the attributes for reporting a pulse rate measurement. The nomenclature code to identify the numeric class is MDC\_MOC\_VMO\_METRIC\_NU. At least one pulse rate numeric object shall be supported by a pulse oximeter agent.

# IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Table 6—Pulse rate numeric object attributes

| See   EEE Std   11073-20601-2019.   M   MDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                |       |                                                                                               |               | 3                                                                              |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------|-----------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|-------|
| See   IEEE Std   11073-2060 -2019.   M   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Attribute name              | Extended configuration         |       | Standard configuration (Dev-Configuration–Id = $0x0190$ or $0x0191$ )                         | 191)          | Standard configuration (Dev-Configuration-Id = $0x0192$ )                      |       |
| emental-   See IEEE Std 11073-20601-2019, M   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Value                          | Qual. | Value                                                                                         | Qual.         | Name                                                                           | Qual. |
| ## See NOTE 1 and NOTE 2.  ## See NOTE 1 and NOTE 2.  ## C-Spec-  ## Bent-initiated. See NOTE 1 and NOTE 2.  ## Bent-initiated. See NOTE 1 and note 3.  ## Bent-initiated. See IEEE Std 11073-20601-2019.  ## And Note 3.  ## Bent-initiated. See IEEE Std 11073-20601-2019.  ## And Note 3.  ## Bent-initiated. See IEEE Std 11073-20601-2019.  ## Bent-initiat | Tandle                      |                                | M     | 10                                                                                            | М             | 2/ 01                                                                          | M     |
| emental- See NOTE 1 and NOTE 2. C S  c-Spec- mss-avail-stored-data, mss-acc- M n agent-initiated. See NOTE 1 and NOTE 2.  See IEEE Std 11073-20601-2019. NR f in NOTE 2.  See IEEE Std 11073-20601-2019. NR f c-1d-List See IEEE Std 11073-20601-2019. NR f code MDC_DIM_BEAT_PER_MIN M N  ute- See IEEE Std 11073-20601-2019. C W well-app See IEEE Std 11073-20601-2019. C W  See IEEE Std 11073-20601-2019. NR f code MDC_DIM_BEAT_PER_MIN M N  ute- See IEEE Std 11073-20601-2019. C W  See IEEE Std 11073-20601-2019. O f String See IEEE Std 110 | Гуре                        | _RATE}                         | M     |                                                                                               | M             | {MDC_PART_SCADA,<br>MDC_PULS_OXIM_PULS_RATE}                                   | ×     |
| c-Spec- mss-avail-stored-data, mss-acc- agent-initiated. See NOTE 1 and NOTE 2.  See IEEE Std 11073-20601-2019.  Mute- See IEEE Std 11073-20601-2019.  String St | Supplemental-<br>Types      |                                | C     | See IEEE Std 11073-20601-2019 and NOTE 1 and NOTE 2.                                          | NR            | See IEEE Std 11073-20601-2019 and NOTE 1 and NOTE 2.                           | NR    |
| bure-Small  Literate See IEEE Std 11073-20601-2019.  Lode MDC_DIM_BEAT_PER_MIN M N Nute-  See IEEE Std 11073-20601-2019.  Code MDC_DIM_BEAT_PER_MIN M N Nute-  See IEEE Std 11073-20601-2019.  Code MDC_DIM_BEAT_PER_MIN M N Nute-  See IEEE Std 11073-20601-2019.  Code MDC_DIM_BEAT_PER_MIN N N Nute-  See IEEE Std 11073-20601-2019.  See IEEE Std 11073-20601-2019.  String | Metric-Spec-<br>Small       |                                | M     | mss-avail-stored-data, mss-acc-agent-<br>initiated. See NOTE 1 and NOTE 2.                    | M             | nos avail-stored-data, mss-acc-agent-initiated.                                | M     |
| Lement- See IEEE Std 11073-20601-2019. C f f f c-1d See IEEE Std 11073-20601-2019. NR f c-1d-List See IEEE Std 11073-20601-2019. NR f f code MDC_DIM_BEAT_PER_MIN M N wite- See IEEE Std 11073-20601-2019. C W well comes See IEEE Std 11073-20601-2019. C W String See IEEE Std 11073-20601-2019. C W wite-Time- See IEEE Std 11073-20601-2019. C W wite-Time- See IEEE Std 11073-20601-2019. C W W wite-Time- See IEEE Std 11073-20601-2019. C W W W with the composition of t | Metric-<br>structure-Small  |                                | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                | NE            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| e-Id See IEEE Std 11073-20601-2019. NR fs-1d-List See IEEE Std 11073-20601-2019. NR fs-1d-Bear MDC_DIM_BEAT_PER_MIN M N ute- See IEEE Std 11073-20601-2019. C W ute- See IEEE Std 11073-20601-2019. C W well-map See IEEE Std 11073-20601-2019. C W well-map See IEEE Std 11073-20601-2019. O fs-1d-Time- See IEEE Std 11073-20601-2019. O fs-1d | Measurement-<br>Status      | See IEEE Std 11073-20601-2019. | C     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                | ٥.            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0     |
| e-Handle- See IEEE Std 11073-20601-2019.  NR A  cold MDC_DIM_BEAT_PER_MIN M N  ute- Map  Handle- See IEEE Std 11073-20601-2019.  C-Handle- See IEEE Std 11073-20601-2019.  See IEEE Std 11073-20601-2019.  See IEEE Std 11073-20601-2019.  String  See IEEE Std 11073-20601-2019.  M  W  W  W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Metric-Id                   |                                | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019                 | NR            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| e-Handle- See IEEE Std 11073-20601-2019. NR A-bon MDC_DIM_BEAT_PER_MIN M N Nute-  We-Handle- See IEEE Std 11073-20601-2019. C W Wence See IEEE Std 11073-20601-2019. NR A-bonce See IEEE Std 11073-20601-2019. NR A-bonce See IEEE Std 11073-20601-2019. O A-bonce See IEEE Std 11073-20601 | Metric-Id-List              |                                | NR    | Attribute not initially present, If present, follow IEEE Std 11073-20601-2019.                | NR            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| Code MDC DIM BEAT PER MIN M Nute- See IEEE Std 11073-20601-2019. C W  -Map  e-Handle- See IEEE Std 11073-20601-2019. W  e-Handle- See IEEE Std 11073-20601-2019. NR  f f f  String See IEEE Std 11073-20601-2019. O f  f f  tute-Time- See IEEE Std 11073-20601-2019. C W  W  W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metric-Id-<br>Partition     |                                | NR    | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                | NR            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| e-Handle- See IEEE Std 11073-20601-2019. C W e-Handle- See IEEE Std 11073-20601-2019. NR f ence String See IEEE Std 11073-20601-2019. O f String See IEEE Std 11073-20601-2019. O f f tute-Time- See IEEE Std 11073-20601-2019. C W w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jnit-Code                   |                                | M     | MDC_DIM_BEAT_PER_MIN                                                                          | M             | MDC_DIM_BEAT_PER_MIN                                                           | M     |
| e-Handle- See IEEE Std 11073-20601-2019. NR A Fine See IEEE Std 11073-20601-2019. OF A String See IEEE Std 11073-20601-2019. OF A String See IEEE Std 11073-20601-2019. C W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Attribute-<br>Value-Map     | See IEEE Std 11073-20601-2019. | C     | When Dev-Configuration-Id = 0x0190: MDC_ATTR_NU_VAL_OBS_BASIC                                 | M             |                                                                                | Z     |
| e-Handle- See IEEE Std 11073-20601-2019. NR free since See IEEE Std 11073-20601-2019. Or free String See IEEE Std 11073-20601-2019. Or free IEEE Std 11073-20601-2019. Or free IEEE Std 11073-20601-2019. Cr W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                | •     | When Deve Configuration-Id = 0x0191:  MDE_ATTR_NU_VAL_OBS_BASIC, Then MDC_ATTR_TIME_STAMP_ABS |               | MDC_ATIR_NO_VAL_OBS_BASIC, then MDC_ATTR_TIME_STAMP_BO                         |       |
| See IEEE Std 11073-20601-2019.  See IEEE Std 11073-20601-2019.  O A String  ute-Time- See IEEE Std 11073-20601-2019.  C W  W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source-Handle-<br>Reference |                                | NR.   | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                | NR            | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | NR    |
| String See IEEE Std 11073-20601-2019. O A fr the Time- See IEEE Std 11073-20601-2019. C W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _abel-String                |                                | 6     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                | 0             | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0     |
| www.rte-Time- See IEEE Std 11073-20601-2019. C W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jnit-<br>JabelString        | )·                             | 0     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                | 0             | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019. | 0     |
| 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Absolute-Time-<br>Stamp     |                                | C     | ent,                                                                                          | 0x0190:<br>NR | Attribute not allowed.                                                         | NA    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 10                             |       | When Dev-Configuration-Id = 0x0191:<br>See IEEE Std 11073-20601-2019.                         | 0x0191:<br>M  |                                                                                |       |
| Base-Offset- See IEEE Std 11073-20601-2019. R Attribute not allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3ase-Offset-<br>Fime-Stamp  | See IEEE Std 11073-20601-2019. | R     | Attribute not allowed.                                                                        | NA            | See IEEE Std 11073-20601-2019.                                                 | M     |

### IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Table 6—Pulse rate numeric object attributes (continued)

| Attribute name                            | Extended configuration                                                                     |           | Standard configuration (Dev-Configuration–Id = 0x0190 or 0x0191)                                                                                                                                    | £     | Standard configuration (Dev-Configuration-Id = $0x0192$ )                                                                                                                                           |       |
|-------------------------------------------|--------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                           | Value                                                                                      | Qual.     | Value                                                                                                                                                                                               | Qual. | Value                                                                                                                                                                                               | Qual. |
| Relative-Time-Stamp                       | See IEEE Std 11073-20601-2019.                                                             | C         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | NR    |
| HiRes-Time-<br>Stamp                      | See IEEE Std 11073-20601-2019.                                                             | C         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     | Attribute not fuitfally present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | NR    |
| Measure-<br>Active-Period                 | See IEEE Std 11073-20601-2019.                                                             | NR        | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | NR    | Attribute not initially present. If present, follow IEEF 5td 11073-20601-2019.                                                                                                                      | NR    |
| Simple-Nu-<br>Observed-Value              | See IEEE Std 11073-20601-2019.                                                             | C         | See IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 apply. | S     | See IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 apply. | O     |
| Compound-<br>Simple-Nu-<br>Observed-Value | See IEEE Std 11073-20601-2019.                                                             | C         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | Ü     |
| Basic-Nu-<br>Observed-Value               | See IEEE Std 11073-20601-2019.                                                             | С         | See IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 appro- | C     | See IEEE Std 11073-20601-2019. If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2019 apply. | C     |
| Compound-<br>Basic-Nu-<br>Observed-Value  | See IEEE Std 11073-20601-2019.                                                             | С         | Attribute not initially present. If present, follow IEEE Std-51073-20601-2019.                                                                                                                      | C     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     |
| Nu-Observed-<br>Value                     | See IEEE Std 11073-20601-2019.                                                             | C         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     |
| Compound-Nu-<br>Observed-Value            | See IEEE Std 11073-20601-2019.                                                             | С         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | С     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | C     |
| Accuracy                                  | See IEEE Std 11073-20601-2019.                                                             | R         | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | R     | Attribute not initially present. If present, follow IEEE Std 11073-20601-2019.                                                                                                                      | R     |
| Alert-Op-State                            | If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019. | O         | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                         | NR    | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                         | NR    |
| Current-Limits                            | If thresholding is to be used this attribute is mandatory. See TEFE Std 11073-20601-2019.  | 0         | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                         | NR    | Attribute initially not present. If thresholding is to be used, this attribute is mandatory. See IEEE Std 11073-20601-2019.                                                                         | NR    |
| Alert-Op-Text-<br>String                  | See IEEE Std 11073320601-2019.                                                             | 0         | See IEEE Std 11073-20601-2019.                                                                                                                                                                      | NR    | See IEEE Std 11073-20601-2019.                                                                                                                                                                      | NR    |
| NOTE 1—See IE                             | EE Std 11073-20601-2019 for informat                                                       | tion on w | NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.                                                                                  | amic. |                                                                                                                                                                                                     |       |

32 Copyright © 2021 IEEE. All rights reserved.

NOTE 2—See 6.3 for a description of the qualifiers.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6.6.3.1 Pulse rate—Extended configuration

A pulse oximeter agent may instantiate more than one pulse rate numeric object. Typically, a pulse oximeter contains a single pulse rate numeric object. However, a pulse oximeter may contain multiple pulse rate numeric objects if it is designed to transmit multiple modalities of pulse rate either successively or concurrently.

For a pulse oximeter agent with extended configuration, the AttrValMap structure (see IEEE Std 11073-20601-2019) of the Attribute-Value-Map attribute may need to accommodate information pertaining to threshold status information in addition to other attributes such as the observed value and timestamp information.

The Supplemental-Types attribute is used to distinguish the modality of a particular pulse rate measurement. In order to express a fast-response pulse rate measurement, MDC\_MODALITY\_FAST shall be used in the Supplemental-Types attribute. In order to express a slow-response pulse rate measurement, MDC\_MODALITY\_SLOW shall be used in the Supplemental-Types attribute. In order to express the single spot-check pulse rate measurement, MDC\_MODALITY\_SPOT shall be used in the Supplemental-Types attribute. If there is no desire to distinguish a modality, the Supplemental-Types attribute shall not be used.

Certain combinations of Supplemental-Types are allowed. If it is desired to illustrate that a spot-check measurement also uses a fast-response technique, the SupplementalTypeList structure of the SupplementalTypes attribute should contain the two values MDC\_MODALITY\_SPOT and MDC\_MODALITY\_FAST. Similarly, a spot-check using a slow-response measurement should contain the values MDC\_MODALITY\_SPOT and MDC\_MODALITY\_SLOW in its SupplementalTypeList. It is not recommended to combine the values MDC\_MODALITY\_SLOW and MDC\_MODALITY\_FAST.

The Metric-Spec-Small attribute may comprise several values, and one or more of these bits may be set:

# - mss-avail-stored-data:

If this bit is set, the pulse oximeter agent may send up to 25 temporarily stored measurements in an event report.

# — mss-msmt-aperiodic:

This bit is set if the measurement is not sent at a fixed interval. If a spot-check modality is used, this bit shall be set in addition to the use of the appropriate setting of the Supplemental-Types attribute. This bit may also be set when the spot-check modality is not used.

### — mss-acc-agent-initiated:

This bit is set if the object's reportable values are transmitted via event reports. This does not mean that an agent shall send data in this manner, only that it is capable of doing so. This bit shall be set if this object reports its measurement data with an agent-initiated event report issued by the MDS object at any time during the association. If this object is scanned only by a scanner object (see 6.10), this bit shall not be set as the manager controls the data flow through the use of the Operational-State attribute. An agent implementation should make careful use of agent-initiated transfers that are not scanner objects, as the manager has little, if any, control of the bandwidth utilization of the data link. If agent-initiated transfers are used, they should be for either intermittent or periodic event reports of a small number of object values.

Exactly one among the Absolute-Time-Stamp and Base-Offset-Time-Stamp attribute in the pulse rate numeric object shall be present when using the spot-check modality.

# 6.6.3.1.1 Threshold settings and status attributes

See 6.6.2.1.1.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6.6.3.2 Pulse rate—Standard configuration

The first standard configuration defined in this standard contains two numeric objects, one of which is the pulse rate numeric object, described in the Standard Configuration column in Table 6. The standard configuration is provided to describe a most basic pulse oximeter implementation.

A second standard configuration is intended for spot-check use cases. In addition to assigning the Dev-Configuration-Id to 0x0191, the pulse rate object attributes are modified from Dev-Configuration-Id = 0x0190 as follows:

- The Supplemental-Types attribute shall contain a single entry in its SupplementalTypeList, and its value shall be MDC\_MODALITY\_SPOT.
- The AttrValMap structure (see IEEE Std 11073-20601) of the Attribute-Value-Map attribute differs from Table 6 in that it shall contain the attribute ID and attribute length information of the Basic-Nu-Observed-Value and Absolute-Time-Stamp (or Base-Offset-Time-Stamp) attribute in this stated order.
- The Metric-Spec-Small attribute shall set the following two bits appropriately:

# — mss-avail-stored-data:

If this bit is set, the pulse oximeter agent may send up to 25 temporarily stored measurements in an event report.

# — mss-acc-agent-initiated:

Since the standard configuration contains two numeric objects, the bandwidth requirements are intended to be relatively light.

If an implementation is more capable than that provided by this standard configuration, it shall use an extended configuration.

The third standard configuration has the Dev-Configuration-Id=0x0192. It is the 'Base-Offset-Time' version of the second standard configuration (Dev-Configuration-Id=0x0191). The only difference between them is the format of timestamp, and correspondingly the content of Attribute-Value-Map.

# 6.6.3.3 Pulse rate—Methods, events, services

The pulse rate numeric object does not support any methods, events, or other services.

See IEEE Std 11073-20601-2019 for descriptive explanations on the individual attributes as well as information on attribute ID and attribute type.

# 6.6.4 Pulsatile quality

Pulse oximeter vendors have various methods to express pulse amplitude, perfusion factor, or similar measure. These methods may comprise complex averaging formulas, scaling factors, and the like. In many cases, these various methods result in measurements that differ by a constant scaling value, but no standardized methodology currently exists to unify the notion of such a metric.

This numeric object serves as a container for expressing a quantifying element, which could be the modulation of the pulsatile signal or some other formulation, and agent implementers may choose the methods and attributes to express this numeric.

Since there are multiple ways to quantify the pulsatile waveform, more than one of these objects may be instantiated. For instance, one object can contain a pulse amplitude measurement, and a second object could contain some formulation of a defined pulsatile index.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

Agent implementers should describe the implementation in the ICS tables described in Table 25 and Table 26. Information suitable for the DIM MOC ICS table should include the following:

- General implementation support of the measurement
- Commentary relating to guiding the use of the measurement value

Information suitable for the MOC attribute ICS table should include the following:

- Background on any unit code that may be used
- Description of any averaging method used
- Description of normalization values (e.g., the number reported is related to a root-mean-square value of peak)
- Information on which wavelength or wavelengths are used to calculate the measurement

Table 7 summarizes the attributes for building a framework to assist in expressing pulsatile quality.

Table 7—Pulsatile quality numeric object attributes

| Attribute name                        | Extended configuration                   |    |  |  |
|---------------------------------------|------------------------------------------|----|--|--|
| Attribute name                        | Value                                    |    |  |  |
| Handle                                | See IEEE Std 11073-20601-2019            | M  |  |  |
| Туре                                  | {MDC_PART_SCADA, MDC_PULS_OXIM_PERF_REL} | M  |  |  |
|                                       | or {MDC_PART_SCADA,MDC_SAT_O2_QUAL}      |    |  |  |
| Supplemental-Types                    | See IEEE Std 11073-20601-2019.           | NR |  |  |
| Metric-Spec-Small                     | mss-acc-agent-initiated                  | M  |  |  |
| Metric-Structure-Small                | See IEEE Std 11073-20601-2019.           | NR |  |  |
| Measurement-Status                    | See IEEE Std 11073-20601-2019.           | О  |  |  |
| Metric-Id                             | See IEEE Std 11073-20601-2019.           | О  |  |  |
| Metric-Id-List                        | See IEEE Std 11073-20601-2019.           | NR |  |  |
| Metric-Id-Partition                   | See IEEE Std 11073-20601-2019.           | NR |  |  |
| Unit-Code                             | See NOTE 1 and NOTE 2.                   | О  |  |  |
| Attribute-Value-Map                   | See IEEE Std 11073-20601-2019.           | О  |  |  |
| Source-Handle-Reference               | See IEEE Std 11073-20601-2019.           | О  |  |  |
| Label-String                          | See NOTE 1 and NOTE 2.                   | R  |  |  |
| Unit-LabelString                      | See NOTE 1 and NOTE 2.                   | R  |  |  |
| Absolute-Time-Stamp                   | See IEEE Std 11073-20601-2019.           | NR |  |  |
| Base-Offset-Time-Stamp                | See IEEE Std 11073-20601-2019.           | R  |  |  |
| Relative-Time-Stamp                   | See IEEE Std 11073-20601-2019.           | NR |  |  |
| HiRes-Time-Stamp                      | See IEEE Std 11073-20601-2019.           | NR |  |  |
| Measure-Active-Period                 | See IEEE Std 11073-20601-2019.           | О  |  |  |
| Simple-Nu-Observed-Value              | See IEEE Std 11073-20601-2019.           | С  |  |  |
| Compound-Simple-Nu-Observed-<br>Value | See IEEE Std 11073-20601-2019.           | С  |  |  |
| Basic-Nu-Observed-Value               | See IEEE Std 11073-20601-2019.           | С  |  |  |
| Compound-Basic-Nu-Observed-<br>Value  | See IEEE Std 11073-20601-2019.           | С  |  |  |
| Nu-Observed-Value                     | See IEEE Std 11073-20601-2019.           | С  |  |  |
| Compound-Nu-Observed-Value            | See IEEE Std 11073-20601-2019.           | С  |  |  |
| Accuracy                              | See IEEE Std 11073-20601-2019.           | О  |  |  |
|                                       |                                          |    |  |  |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

The unit code MDC DIM DIMLESS is the recommended dimension if this object is expressing a form of pulse amplitude, indicated by the type field set to MDC PULS OXIM PERF REL. Private unit codes may be used at the implementer's discretion, but could hinder the interoperability of the personal health infrastructure. If the type field contains MDC\_SAT\_O2\_QUAL, the recommended dimension is MDC\_DIM\_PERCENT.

Similarly, the Label-String and Unit-LabelString attributes would be useful in conveying to the user more information regarding the characteristic being conveyed.

The pulsatile quality numeric object does not support any methods, events, or other services.

See IEEE Std 11073-20601-2019 for descriptive explanations on the individual attributes as information on attribute ID and attribute type.

6.7 Real-time sample array (RT-SA) objects

6.7.1 Plethysmographic waveform

A representation of the pulsatile wave may be transmitted as a series of sample.

Table 8 defines the attributes of the plesythmogram RT-SA object. This object is optional for this standard. The nomenclature code to identify the RT-SA object class is MDC\_MOC\_VMO\_METRIC\_SA\_RT.

Table 8—Plethysmogram object attributes

| Attribute name                | Extended configuration         |       |  |  |
|-------------------------------|--------------------------------|-------|--|--|
| Attribute name                | Value                          | Qual. |  |  |
| Handle                        | See IEEE Std 11073-20601-2019. | M     |  |  |
| Туре                          | {MDC_PART_SCADA,               | M     |  |  |
|                               | MDC_PULS_OXIM_PLETH }          |       |  |  |
| Supplemental-Types            | See IEEE Std 11073-20601-2019. | NR    |  |  |
| Metric-Spec-Small             | See NOTE 1 and NOTE 2.         | M     |  |  |
| Measurement-Status            | See IEEE Std 11073-20601-2019. | О     |  |  |
| Metric-Id                     | See IEEE Std 11073-20601-2019. | NR    |  |  |
| Unit-Code                     | See NOTE 1 and NOTE 2.         | О     |  |  |
| Attribute-Value-Map           | See IEEE Std 11073-20601-2019. | C     |  |  |
| Source-Handle-Reference       | See NOTE 1 and NOTE 2.         | О     |  |  |
| Label-String                  | See IEEE Std 11073-20601-2019. | О     |  |  |
| Unit-LabelString              | See IEEE Std 11073-20601-2019. | О     |  |  |
| Absolute-Time-Stamp           | See IEEE Std 11073-20601-2019. | C     |  |  |
| Base-Offset-Time-Stamp        | See IEEE Std 11073-20601-2019. | R     |  |  |
| Relative-Time-Stamp           | See IEEE Std 11073-20601-2019. | NR    |  |  |
| HiRes-Time-Stamp              | See IEEE Std 11073-20601-2019. | NR    |  |  |
| Sample-Period                 | See IEEE Std 11073-20601-2019. | M     |  |  |
| Simple-Sa-Observed-Value      | See IEEE Std 11073-20601-2019. | M     |  |  |
| Scale-and-Range-Specification | See IEEE Std 11073-20601-2019. | M     |  |  |
| Sa-Specification              | See IEEE Std 11073-20601-2019. | M     |  |  |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

An agent should use the unit code of MDC\_DIM\_DIMLESS units as the basic value, as the sample points are often expressed as dimensionless units.

Several attributes in the plethysmogram are optional, and such flexibility allows implementations reasonable latitude in expressing details that the various vendors deem significant.

The plethysmogram data should be made available only through a scanner object. Asserting the mss-accagent-initiated bit is not recommended, as this implies that this object's data are transmitted via MDS event reports.

NOTE—The values in the RT-SA are intended to represent a plethysmogram, and these values may be related to the same values used to convey pulse amplitude information. The common practice of displaying a plethysmogram is such that the profile of the waveform will be an inversion of the absorbance waveform, in that a pulsatile inrush is seen as an upward deflection on a display. The manager is not required to perform any post-processing in order to invert the waveform, but the manager may need to be aware of this difference in order to present a more viewable waveform.

# 6.8 Enumeration objects

### 6.8.1 General

The pulse oximeter DIM (see Figure 1) contains three optional enumeration objects. The Pulsatile Occurrence enumeration object informs the user when a pulsatile wave is detected. The Pulsatile Characteristic object provides additional information about the pulsatile occurrence. Finally, an enumeration object is provided to enable an agent to report additional conditions concerning sensor status, general signal conditions, and device status in the device and sensor annunciation status object.

# 6.8.2 Pulsatile occurrence

Pulse oximeters often convey that they are detecting a pulsatile occurrence. One application of this object is to facilitate the flashing of a real-time display icon each time a pulsatile event is reported. Another application involves the ability to precisely timestamp the maximal inrush of a pulsatile wave. The nomenclature code to identify the enumeration object class is MDC\_MOC\_VMO\_METRIC\_ENUM. Refer to Table 9 for the set of attributes of this object.

This object is instantiated only in extended configurations, and it is optional to instantiate, but enables the ability to report the occurrence of a pulse. A manager should support the interpretation of this object in order to indicate the occurrence of a pulse.

If the Source-Handle-Reference is defined, it should point to either the Pulsatile Quality numeric object or the Plethysmogram RT-SA object.

Explicit expression of the existence of a pulsatile event is realized by sending the appropriate value in the Enum-Observed-Value-Simple-OID attribute. When reporting that a pulsatile occurrence has occurred, the value sent shall be MDC\_TRIG\_BEAT. If reporting that the maximal inrush of the pulsatile wave has occurred, the value sent shall be MDC\_TRIG\_BEAT\_MAX\_INRUSH.

The precise definition of "maximal inrush" in terms of slope or amplitude is vendor-dependent and should be defined in the appropriate ICS section.

If this object is sent within a periodic configurable scanner object and its object elements are reported using fixed format value messages (see 6.10.2), a placeholder value of MDC\_METRIC\_NOS may be sent to indicate that no pulsatile event occurred within the period that the Buf-Scan-Report-\* event was emitted.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

Table 9—Pulsatile occurrence enumeration object attributes

| Attribute name                     | Extended configuration         |            |  |  |
|------------------------------------|--------------------------------|------------|--|--|
| Attribute name                     | Value                          | Qual.      |  |  |
| Handle                             | See IEEE Std 11073-20601-2019. | M          |  |  |
| Туре                               | {MDC_PART_SCADA, MDC_TRIG }    | M          |  |  |
| Supplemental-Types                 | See IEEE Std 11073-20601-2019. | О          |  |  |
| Metric-Spec-Small                  | mss-acc-agent-initiated        | M          |  |  |
| Metric-Structure-Small             | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Measurement-Status                 | See IEEE Std 11073-20601-2019. | 0          |  |  |
| Metric-Id                          | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Metric-Id-List                     | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Metric-Id-Partition                | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Attribute-Value-Map                | See IEEE Std 11073-20601-2019. | <b>5</b> C |  |  |
| Source-Handle-Reference            | See NOTE 1 and NOTE 2.         | О          |  |  |
| Label-String                       | See IEEE Std 11073-20601-2019. | О          |  |  |
| Absolute-Time-Stamp                | See IEEE Std 11073-20601-2019. | С          |  |  |
| Base-Offset-Time-Stamp             | See IEEE Std 11073-20601-2019. | R          |  |  |
| Relative-Time-Stamp                | See IEEE Std 11073-20601-2019. | NR         |  |  |
| HiRes-Time-Stamp                   | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Enum-Observed-Value-Simple-OID     | See IEEE Std 11073-20601-2019. | R          |  |  |
| Enum-Observed-Value-Simple-Bit-Str | See NOTE 1 and NOTE 2.         | NR         |  |  |
| Enum-Observed-Value-Basic-Bit-Str  | See following text.            | NR         |  |  |
| Enum-Observed-Value-Simple-Str     | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Enum-Observed-Value                | See NOTE 1 and NOTE 2.         | NR         |  |  |
| Enum-Observed-Value-Partition      | See IEEE Std 11073-20601-2019. | О          |  |  |
| Capability-Mask-Simple             | See IEEE Std 11073-20601-2019. | NR         |  |  |
| Capability-Mask-Basic              | See IEEE Std 11073-20601-2019. | NR         |  |  |
| State-Flag-Simple                  | See IEEE Std 11073-20601-2019. | NR         |  |  |
| State-Flag-Basic                   | See IEEE Std 11073-20601-2019. | NR         |  |  |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

# 6.8.3 Pulsatile characteristic

Pulse oximeters may convey additional information about the pulsatile wave. The Pulsatile Characteristic object includes indication of adequate perfusion. The nomenclature code to identify the enumeration object class is MDC\_MOC\_VMO\_METRIC\_ENUM. Refer to Table 10 for the set of attributes of this object.

This object is instantiated only in extended configurations, and it is optional to instantiate, but enables the ability to report certain pulsatile conditions or artifacts. A manager should support the interpretation of this object in order to indicate characteristic information about a pulsatile wave.

If the Source-Handle-Reference is defined, it should point to either the Pulse Amplitude numeric object or the Plethysmogram RT-SA object.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

Table 10 —Pulse characteristic enumeration object attributes

| A 44                               | Extended configuration                        |       |  |  |
|------------------------------------|-----------------------------------------------|-------|--|--|
| Attribute name                     | Value                                         | Qual. |  |  |
| Handle                             | See IEEE Std 11073-20601-2019.                | M     |  |  |
| Туре                               | {MDC_PART_SCADA,<br>MDC_PULS_OXIM_PULS_CHAR } | M     |  |  |
| Supplemental-Types                 | See IEEE Std 11073-20601-2019.                | О     |  |  |
| Metric-Spec-Small                  | mss-acc-agent-initiated                       | M     |  |  |
| Metric-Structure-Small             | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| Measurement-Status                 | See IEEE Std 11073-20601-2019.                | 0     |  |  |
| Metric-Id                          | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| Metric-Id-List                     | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| Metric-Id-Partition                | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| Attribute-Value-Map                | See IEEE Std 11073-20601-2019.                | С     |  |  |
| Source-Handle-Reference            | See NOTE 1 and NOTE 2.                        | О     |  |  |
| Label-String                       | See IEEE Std 11073-20601-2019.                | О     |  |  |
| Absolute-Time-Stamp                | See IEEE Std 11073-20601-2019.                | С     |  |  |
| Base-Offset-Time-Stamp             | See IEEE Std 11073-20601-2019.                | R     |  |  |
| Relative-Time-Stamp                | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| HiRes-Time-Stamp                   | See IEEE Std 11073-20601-2019                 | NR    |  |  |
| Enum-Observed-Value-Simple-OID     | One of the codes defined in Table 11.         | R     |  |  |
| Enum-Observed-Value-Simple-Bit-Str | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| Enum-Observed-Value-Basic-Bit-Str  | See IEEE Std 11073-20601-2019.                | О     |  |  |
| Enum-Observed-Value-Simple-Str     | See IEEE Std 11073-20601-2019.                | NR    |  |  |
| Enum-Observed-Value                | See NOTE 1 and NOTE 2.                        | NR    |  |  |
| Enum-Observed-Value-Partition      | See IEEE Std 11073-20601-2019.                | 0     |  |  |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

Explicit expression of the existence of characteristic events is realized by sending OID code via the Enum-Observed-Value-Simple-OID attribute, as defined in Table 11. The Enum-Observed-Value attribute should not be used as it complicates the modeling of the object.

If a manager supports the interpretation of this object, it shall be able to interpret the entire set of presented characteristics, defined in Table 11. An agent is not required to implement all the features specified in Table 11. An agent shall report each time there is a change in status in a condition. Note that a manager shall interpret these OID codes only within the context of this attribute and only within this device specialization, as other specializations may use corresponding terms for different purposes.

Table 11 — Mapping of pulse characteristics to object OID attribute

| Pulsatile characteristic                                                                                       | Codes                                |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Quality of the detected pulse is nominal, in that there are no recognized abnormalities in the detected pulse. | MDC_PULS_OXIM_PULS_CHAR_NOMINAL      |
| Perfusion or quality of the detected pulse is marginal.                                                        | MDC_PULS_OXIM_PULS_CHAR_MARGINAL     |
| Perfusion or quality of the detected pulse is minimal.                                                         | MDC_PULS_OXIM_PULS_CHAR_MINIMAL      |
| Perfusion or quality of the detected pulse is unacceptable.                                                    | MDC_PULS_OXIM_PULS_CHAR_UNACCEPTABLE |

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 6.8.4 Device and sensor annunciation conditions

The device and sensor annunciation status object reports on several aspects of the pulse oximeter equipment, including sensor displacement, faulty sensor detection, signal irregularities and loss-of-signal-tracking, and low-perfusion determination. The status of each aspect is reported by a specific status bit.

The device and sensor annunciation object containing the running status of the device, general signal condition, and sensor assembly is also provided. If this object is to be implemented, then the OID-Type and bit assignments shall be implemented as described in this subclause. Status bits in this object are distinguished from similar bits in the Pulsatile Characteristic object in that information in this object pertain to the general signal condition, whereas those in the Pulsatile Characteristic object are limited to a single pulsatile occurrence. The nomenclature code to identify the enumeration object class is MDC MOC\_VMO\_METRIC\_ENUM. Refer to Table 12 for the set of attributes of this object.

Table 12 — Device and sensor annunciation status object attributes

| Attribute name                     | Extended configuration         |       |
|------------------------------------|--------------------------------|-------|
| Attribute name                     | Value                          | Qual. |
| Handle                             | See IEEE Std 11073-20601-2019. | M     |
| Type                               | {MDC_PART_SCADA,               | M     |
|                                    | MDC_PULS_OXIM_DEV_STATUS }.    |       |
| Supplemental-Types                 | See IEEE Std 11073-20601-2019. | O     |
| Metric-Spec-Small                  | mss-acc-agent-initiated.       | M     |
| Metric-Structure-Small             | See IEEE Std 11073-20601-2019. | NR    |
| Measurement-Status                 | See IEEE Std 11073-20601-2019. | О     |
| Metric-Id                          | See IEEE Std 11073-20601-2019. | NR    |
| Metric-Id-List                     | See IEEE Std 1073-20601-2019.  | NR    |
| Metric-Id-Partition                | See IEEE Std 11073-20601-2019. | NR    |
| Attribute-Value-Map                | See IEEE Std 11073-20601-2019. | С     |
| Source-Handle-Reference            | See NOTE 1 and NOTE 2.         | NR    |
| Label-String                       | See IEEE Std 11073-20601-2019. | О     |
| Absolute-Time-Stamp                | See IEEE Std 11073-20601-2019. | С     |
| Base-Offset-Time-Stamp             | See IEEE Std 11073-20601-2019. | R     |
| Relative-Time-Stamp                | See IEEE Std 11073-20601-2019. | NR    |
| HiRes-Time-Stamp                   | See IEEE Std 11073-20601-2019. | NR    |
| Enum-Observed-Value-Simple-OID     | See IEEE Std 11073-20601-2019. | NR    |
| Enum-Observed-Value-Simple-Bit-Str | See IEEE Std 11073-20601-2019. | NR    |
| Enum-Observed-Value-Basic-Bit-Str  | See NOTE 1 and NOTE 2.         | R     |
| Enum-Observed-Value-Simple-Str     | See IEEE Std 11073-20601-2019. | NR    |
| Enum-Observed-Value                | See NOTE 1 and NOTE 2.         | NR    |
| Enum-Observed-Value-Partition      | See IEEE Std 11073-20601-2019. | О     |
| Capability-Mask-Simple             | See IEEE Std 11073-20601-2019. | С     |
| Capability-Mask-Basic              | See IEEE Std 11073-20601-2019. | R     |
| State-Flag-Simple                  | See IEEE Std 11073-20601-2019. | С     |
| State-Flag-Basic                   | See IEEE Std 11073-20601-2019. | R     |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static, observational, or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

This object is instantiated only in extended configurations. A manager should support the interpretation of this object to enable reporting of these conditions. An agent should support this object to transmit these conditions.

Similarly, the Source-Handle-Reference is inappropriate, as this object monitors the status of the equipment.

Explicit expression of the existence of annunciations is realized by the setting of the appropriate bit in the Enum-Observed-Value-Basic-Bit-Str attribute, as defined in Table 13. It is recommended to use the Enum-Observed-Value-Basic-Bit-Str attribute, as it consumes fewer payload octets than the Enum-Observed-Value-Simple-Bit-Str attribute. The Enum-Observed-Value attribute should not be used, as it unnecessarily complicates the modeling of the object. If a manager supports the interpretation of this object, it shall be able to interpret the entire set of presented conditions, defined in Table 13 by the PulseOxDevStatt entity. An agent is not required to implement all the features specified in Table 13. An agent shall report each time there is a change in status in a condition. Note that a manager shall interpret these bits only within the context of this attribute and only within this device specialization as other specializations may use corresponding terms for different purposes.

Table 13 — Mapping of device, sensor and signal status to object Bit-Str attribute

| Device or sensor condition                                                                                                       | PulseOxDevStat mnemonic        |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Agent reports that the sensor is disconnected from the instrument.                                                               | sensor-disconnected            |
| Agent reports that the sensor is malfunctioning or faulting.                                                                     | sensor-malfunction             |
| Agent reports that the sensor is not properly attached or has been dislodged, and accurate measurement is, therefore, prevented. | sensor-displaced               |
| An unsupported sensor is connected to the agent.                                                                                 | sensor-unsupported             |
| Agent reports that sensor is not connected to the user.                                                                          | sensor-off                     |
| Agent reports that there is interference due to ambient light or electrical phenomena.                                           | sensor-interference            |
| Signal analysis is currently in progress prior to measurement availability.                                                      | signal-searching               |
| Agent determines that a questionable pulse is detected.                                                                          | signal-pulse-questionable      |
| Agent detects a nonpulsatile signal.                                                                                             | signal-non-pulsatile           |
| Agent reports that the signal is erratic or is not plausible.                                                                    | signal-erratic                 |
| Agent reports a consistently low perfusion condition exists.                                                                     | signal-low-perfusion           |
| Agent reports a poor signal exists, possibly affecting accuracy.                                                                 | signal-poor                    |
| Agent reports that the incoming signal cannot be analyzed or is inadequate for producing a meaningful result.                    | signal-inadequate              |
| Agent has determined that some irregularity has been detected while processing the signal.                                       | signal-processing-irregularity |
| A general device fault has occurred in the agent.                                                                                | device-equipment-malfunction   |
| An extended display update is currently active.                                                                                  | device-extended-update         |

The specific bit mappings of PulseOxDevStat are defined in B.1.

# 6.9 PM-store objects

# 6.9.1 General

Several use cases illustrate that a pulse oximetry agent may store many minutes or hours worth of oximetry data while unable to remain in communication with a manager, or it is impractical to send multiple event reports of blocks of temporarily stored measurements. After the long-term acquisition is complete, the manager retrieves the data from the agent. This mechanism is allowed in extended configurations.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# 6.9.2 Persistent store model

The wide range of potential combinations of data layouts makes it impractical to provide a specification for a single normative persistent store data model. As such, a pulse oximetry agent has considerable latitude in selecting the format and set of data elements to transmit. If a pulse oximetry agent supports this function, the framework in the following subclause suggests a possible data layout. The intent of this approach is to provide a "file system description" of the data layout, as opposed to a "file format specification." In other words, following the guides provided in this standard should enable an implementer to store and retrieve the data within this model, but the specifics for determining the specific nature of the data layout and the subsequent visualization, mining, or other managing of the retrieved data is outside the scope of this standard.

The pulse oximeter in this use case stores oximetry data in a number of different ways, depending on the particular needs of the acquisition. The information model for the persistent store hierarchy is shown in Figure 2. As an example and pattern, Figure 3 illustrates the relationship between the various objects for the PM-store implementation. The PM-segments could group data in different ways. It could contain all varieties of data within one session, or multiple PM-segments could be created, with one containing all SpO<sub>2</sub> measurements for the session and a second containing all pulse rate measurements for that same session. However, the hierarchy of the PM-segment, entry, and elements should take the form seen in Figure 3.

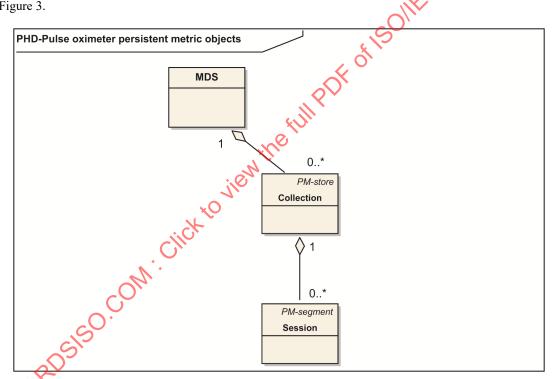



Figure 2—Pulse oximeter DIM for the PM-store hierarchy

This example illustrates a PM-store realization with two PM-segments. In this case, each PM-segment stores data from a distinct contiguous session. Figure 3 shows each PM-segment entry containing two data elements: the first representing an SpO<sub>2</sub> measurement and the second representing a pulse rate measurement. Since each entry contains the set of consistently ordered data sampled at a single point in time, one could place timestamp information in the SegEntryHdr, indicating the occurrence of each reading. If the samples are taken at fixed intervals, then the start time and sampling interval should be stored in the PM-segment attributes MDC\_ATTR\_TIME\_START\_SEG and MDC\_ATTR\_TIME\_PD\_ SAMP, and the SegEntryHdr may be left empty, whereas if the samples are not taken at fixed intervals, the timestamp of each sample must be stored in each SegEntryHdr.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

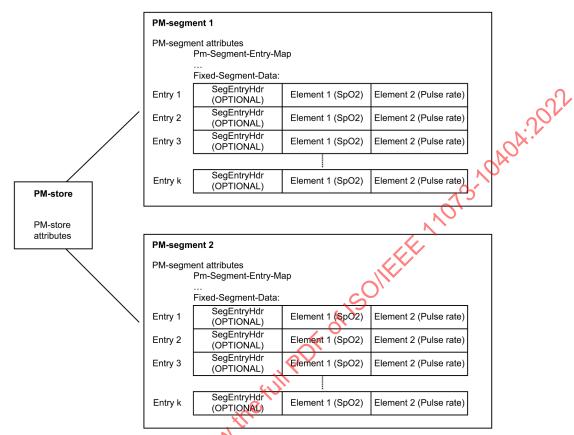



Figure 3—PM-store usage for pulse oximeter

# 6.9.3 PM-store object attributes

Table 14 lists the attributes for the PM-store object.

# Table 14—PM-store object attributes

| Q4-21-44               | Extended configuration         |       |
|------------------------|--------------------------------|-------|
| Attribute name         | Value                          | Qual. |
| Handle                 | See IEEE Std 11073-20601-2019. | M     |
| PM-Store-Capab         | See IEEE Std 11073-20601-2019. | M     |
| Store-Sample-Algorithm | See IEEE Std 11073-20601-2019. | M     |
| Store-Capacity-Count   | See IEEE Std 11073-20601-2019. | O     |
| Store-Usage-Count      | See IEEE Std 11073-20601-2019. | О     |
| Operational-State      | See IEEE Std 11073-20601-2019. | M     |
| PM-Store-Label         | See IEEE Std 11073-20601-2019. | О     |
| Sample-Period          | See IEEE Std 11073-20601-2019. | C     |
| Number-Of-Segments     | See IEEE Std 11073-20601-2019. | M     |
| Clear-Timeout          | See IEEE Std 11073-20601-2019. | M     |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# 6.9.4 PM-store object methods

Table 15 defines the methods used by the PM-store object.

Table 15—PM-store object methods

| Service | Subservice type name           | Mode      | Subservice type<br>(action-type) | Parameters<br>(action-info-<br>args) | Results (action-info-args) |
|---------|--------------------------------|-----------|----------------------------------|--------------------------------------|----------------------------|
| ACTION  | Clear-<br>Segments             | Confirmed | MDC_ACT_SEG_CLR                  | SegmSelection                        | -                          |
|         | Get-<br>Segment-<br>Info       | Confirmed | MDC_ACT_SEG_GET_INFO             | SegmSelection                        | SegmentInfoList            |
|         | Trig-<br>Segment-<br>Data-Xfer | Confirmed | MDC_ACT_SEG_TRIG_XFER            | TrigSegmData<br>XferReq              | TrigSegmDataXfe<br>rRsp    |

# 6.9.5 PM-store object events

Table 16 defines the events sent by the PM-store object.

Table 16 - PM-store object events

| Event         | Mode      | Event type            | ~/ | Event info parameter | Event-reply-info  |
|---------------|-----------|-----------------------|----|----------------------|-------------------|
| Segment-Data- | Confirmed | MDC_NOTI_SEGMENT_DATA | U  | SegmentDataEvent     | SegmentDataResult |
| Event         |           | X                     | ľ  |                      |                   |

To facilitate a practical level of device support, a Segment-Data-Event report size shall be no larger than 8192 octets. A PM-segment containing data in excess of this size shall transfer its data using multiple Segment-Data-Event reports as described in IEEE Std 11073-20601-2019.

# 6.9.6 PM-store object services

The GET service shall be provided by an agent implementing one or more PM-store objects. This service shall be available while the agent is in the Operating state. Refer to IEEE Std 11073-20601-2019 for further details.

# 6.9.7 PM-segment objects

Table 17 defines the attributes of the PM-segment object contained in the PM-store object managing the stored measurements. The nomenclature code to identify the PM-segment class is MDC\_MOC\_PM\_SEGMENT

The Fixed-Segment-Data attribute serves as the container of the stored measurements. The exact data format or data type of this attribute is vendor-specific.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

Table 17—PM-segment object attributes

| A 44                     | Extended configuration         | Extended configuration |  |  |  |
|--------------------------|--------------------------------|------------------------|--|--|--|
| Attribute name           | Value                          | Qual.                  |  |  |  |
| Instance Number          | See IEEE Std 11073-20601-2019. | M                      |  |  |  |
| PM-Segment-Entry-Map     | See IEEE Std 11073-20601-2019. | M                      |  |  |  |
| PM-Seg-Person-Id         | See IEEE Std 11073-20601-2019. | С                      |  |  |  |
| Sample-Period            | See IEEE Std 11073-20601-2019. | С                      |  |  |  |
| Operational-State        | See IEEE Std 11073-20601-2019. | M                      |  |  |  |
| Segment-Label            | See IEEE Std 11073-20601-2019. | О                      |  |  |  |
| Segment-Start-Abs-Time   | See IEEE Std 11073-20601-2019. | NR                     |  |  |  |
| Segment-End-Abs-Time     | See IEEE Std 11073-20601-2019. | NR                     |  |  |  |
| Date-and-Time-Adjustment | See IEEE Std 11073-20601-2019. | C N                    |  |  |  |
| Segment-Start-BO-Time    | See IEEE Std 11073-20601-2019. | AR)                    |  |  |  |
| Segment-End-BO-Time      | See IEEE Std 11073-20601-2019. | O R                    |  |  |  |
| Segment-Usage-Count      | See IEEE Std 11073-20601-2019. | О                      |  |  |  |
| Segment-Statistics       | See IEEE Std 11073-20601-2019. | 0                      |  |  |  |
| Fixed-Segment-Data       | Specified by vendor.           | M                      |  |  |  |
| Confirm-Timeout          | See IEEE Std 11073-20601-2019. | О                      |  |  |  |
| Transfer-Timeout         | See IEEE Std 11073-20601-2019. | M                      |  |  |  |

# 6.10 Scanner objects

# 6.10.1 General

The scanner object class is a powerful construct that enables efficient grouping of several metrics into a single payload. It is also helpful in conveying the continuous nature of annunciations expressed within enumeration objects, as the scanner object can periodically query or observe the enumeration object dedicated to a particular part of status recording. The information model for the scanner hierarchy is shown in Figure 4. The periodic or episodic configurable scanner objects are instantiated only in extended configurations. The nomenclature code to identify the periodic configurable scanner object class is MDC\_MOC\_SCAN\_CFG\_PERI, and the code to identify the episodic configurable scanner is MDC\_MOC\_SCAN\_CFG\_EPI.

A simple example of the scanner configuration and data reporting can be found in E.6.

The episodic configurable scanner can be used to send episodic observations, e.g., the pulse occurrence, only when these observations happen.

Since IEEE Std 11073-20601-2019 requires the manager to support grouped format event reports, a manager must support the interpretation of this object class if the agent transmits data using periodic or episodic scanner objects. Otherwise, if the agent presents the bulk of its data with scanner objects, the manager cannot receive the data presented by such an agent.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

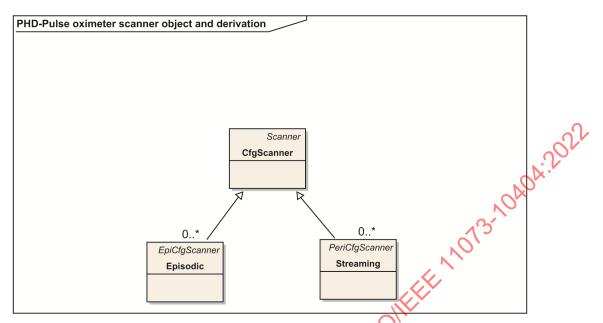



Figure 4—Pulse oximeter DIM for the periodic configurable scanner object

# 6.10.2 Periodic configurable scanner attributes

Table 18 shows the attributes applicable to the periodic configurable scanner object.

Table 18—Periodic configurable scanner object attributes

| Attribute name           | Extended configuration         |       |  |
|--------------------------|--------------------------------|-------|--|
| Attribute name           | Value                          | Qual. |  |
| Handle                   | See IEEE Std 11073-20601-2019. | M     |  |
| Operational-State        | See IEEE Std 11073-20601-2019. | M     |  |
| Scan-Handle-List         | See IEEE Std 11073-20601-2019. | C     |  |
| Scan-Handle-Attr-Val-Map | See IEEE Std 11073-20601-2019. | C     |  |
| Confirm-Mode             | See IEEE Std 11073-20601-2019. | M     |  |
| Confirm-Timeout          | See IEEE Std 11073-20601-2019. | C     |  |
| Transmit-Window          | See IEEE Std 11073-20601-2019. | О     |  |
| Reporting-Interval       | See IEEE Std 11073-20601-2019. | M     |  |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

With regard to the Confirm-Mode attribute, an agent may support either or both confirmed or unconfirmed scan reports; the manager shall support both confirmed and unconfirmed scan reports.

One or more periodic configurable scanner objects may be employed by a pulse oximeter in order to greatly increase the efficiency of delivering physiological and device information to the manager.

The events in Table 19 define the events sent by the pulse oximeter's periodic configurable scanner object.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

Table 19 — Periodic configurable scanner object events

| Event                              | Mode                     | Event type                              | Event info parameter        | Event-<br>reply-info |
|------------------------------------|--------------------------|-----------------------------------------|-----------------------------|----------------------|
| Buf-Scan-<br>Report-Var            | Confirmed or unconfirmed | MDC_NOTI_BUF_SCAN_REPORT_VAR            | ScanReportInfoVar           |                      |
| Buf-Scan-<br>Report-<br>Fixed      | Confirmed or unconfirmed | MDC_NOTI_BUF_SCAN_REPORT_<br>FIXED      | ScanReportInfoFixed         | _                    |
| Buf-Scan-<br>Report-<br>Grouped    | Confirmed or unconfirmed | MDC_NOTI_BUF_SCAN_REPORT_<br>GROUPED    | ScanReportInfoGroupe<br>d   | - A.                 |
| Buf-Scan-<br>Report-MP-<br>Var     | Confirmed or unconfirmed | MDC_NOTI_BUF_SCAN_REPORT_MP _VAR        | ScanReportInfoMPVar         | 1040                 |
| Buf-Scan-<br>Report-MP-<br>Fixed   | Confirmed or unconfirmed | MDC_NOTI_BUF_SCAN_REPORT_MP<br>_ FIXED  | ScanReportInfoMPEixe<br>d   | _                    |
| Buf-Scan-<br>Report-MP-<br>Grouped | Confirmed or unconfirmed | MDC_NOTI_BUF_SCAN_REPORT_MP<br>_GROUPED | ScanReportinfoMPGro<br>uped | _                    |

# 6.10.3 Episodic configurable scanner attributes

Table 20 shows the attributes applicable to the episodic configurable scanner object.

Table 20 —Episodic configurable scanner object attributes

| Value                          | Qual.                                                                                                                                                                                     |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Quai.                                                                                                                                                                                     |
| See IEEE Std 11073-20601-2019. | M                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | M                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | C                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | C                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | M                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | C                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | О                                                                                                                                                                                         |
| See IEEE Std 11073-20601-2019. | M                                                                                                                                                                                         |
|                                | See IEEE Std 11073-20601-2019. |

NOTE 1—See IEEE Std 11073-20601-2019 for information on whether an attribute is static or dynamic.

NOTE 2—See 6.3 for a description of the qualifiers.

With regard to the Confirm-Mode attribute, an agent may support either or both confirmed or unconfirmed scan reports. The manager shall support both confirmed and unconfirmed scan reports.

One or more episodic configurable scanner objects may be employed by a pulse oximeter in order to greatly increase the efficiency of delivering physiological and device information to the manager.

The events in Table 21 define the events sent by the pulse oximeter's episodic configurable scanner object.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

| Table 21 —Episodic | configurable scanner | object events |
|--------------------|----------------------|---------------|
|                    |                      |               |

| Event                                | Mode                     | Event type                             | Event info<br>parameter     | Event-<br>reply-info |
|--------------------------------------|--------------------------|----------------------------------------|-----------------------------|----------------------|
| Unbuf-Scan-<br>Report-Var            | Confirmed or unconfirmed | MDC_NOTI_UNBUF_SCAN_REPORT_VAR         | ScanReportInfo<br>Var       |                      |
| Unbuf-Scan-<br>Report-Fixed          | Confirmed or unconfirmed | MDC_NOTI_UNBUF_SCAN_REPORT_FIXED       | ScanReportInfo<br>Fixed     |                      |
| Unbuf-Scan-<br>Report-Grouped        | Confirmed or unconfirmed | MDC_NOTI_UNBUF_SCAN_REPORT_GROUPED     | ScanReportInfo<br>Grouped   | _                    |
| Unbuf-Scan-<br>Report-MP-Var         | Confirmed or unconfirmed | MDC_NOTI_UNBUF_SCAN_REPORT_MP_VAR      | ScanReportInfo<br>MPVar     | - ×                  |
| Unbuf-Scan-<br>Report-MP-<br>Fixed   | Confirmed or unconfirmed | MDC_NOTI_UNBUF_SCAN_REPORT_MP_FIXED    | ScanReportInfo<br>MPFixed   | 10A                  |
| Unbuf-Scan-<br>Report-MP-<br>Grouped | Confirmed or unconfirmed | MDC_NOTI_UNBUF_SCAN_REPORT_MP_GROUPE D | ScanReportInfo<br>MPGrouped |                      |

# 6.11 Class extension objects

In this standard, no class extension objects are defined with respect to IEEE Std 11073-20601-2019.

# 6.12 Pulse oximeter information model extensibility rules

The pulse oximeter DIM of this standard may be extended by including vendor-specific metrics and attributes as required. Any object or attribute extensions implemented should follow the guidelines of this standard as closely as possible. Such vendor-specific attributes shall be identified by assigning nomenclature codes from the private numbering space (0xF000 – 0xFFFF) within the corresponding partition as defined in IEEE Std 11073-20601-2019.

A pulse oximeter agent having a configuration with extensions beyond the standard configuration, as specified in this standard, shall use a configuration ID in the range of IDs reserved for extended configurations (see IEEE Std 11073-20601-2019).

# 7. Pulse oximeter service model

# 7.1 General

The service model defines the conceptual mechanisms for data exchange services. These services are mapped to messages that are exchanged between the agent and manager. Protocol messages within the ISO/IEEE 11073 series of standards are defined in ASN.1. See IEEE Std 11073-20601-2019 for a detailed description of the PHD service model. The following subclauses define the specifics of object access and event reporting services for a pulse oximeter agent according to this standard.

# 7.2 Object access services

The object access services of IEEE Std 11073-20601-2019 are used to access the objects defined in the DIM of the pulse oximeter.

The following generic object access services are supported by a pulse oximeter agent according to this standard:

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

- GET service: used by the manager to retrieve the values of the agent MDS object and PM-store object attributes. The list of pulse oximeter MDS object attributes is given in 6.5.4.1.
- SET service: used by the manager to set the values of the agent object attributes. If the agent supports scanner objects, then the SET service shall be supported. If the agent does not support scanner objects, the SET service is optional. Note that although MDS attributes may be set, this standard does not allow the use of settable attributes as a mechanism for remote control.
- EVENT REPORT service: used by the agent to send configuration reports and measurement data to the manager. The list of event reports for the pulse oximeter device specialization is given in Table 3, Table 16, and Table 19.
- ted by the absolute full potential f ACTION service: used by the manager to invoke actions (or methods) supported by the agent. An example is Set-Time action which is used to set a real-time clock with the absolute time at

IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# Table 22—Pulse oximeter object access services

| Service         | Subservice type name         | Mode                                   | Subservice type                       | Parameters                                                                                            | Result                                                                              | Remarks                                                                                                       |
|-----------------|------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| GET             | <na></na>                    | <implied<br>Confirmed&gt;</implied<br> | <na></na>                             | GetArgumentSimple = (obj-handle = 0), attribute-id-list <optional></optional>                         | GetResultSimple<br>= (obj-handle = 0)<br>attribute-list                             | Allows the manager to retrieve the value of an attribute of an object in the agent.                           |
|                 | <na></na>                    | <implied<br>Confirmed&gt;</implied<br> | <na></na>                             | GetArgumentSimple = (obj-handle = handle of PM-store object), attribute-id-list <optional></optional> | GetResultSimple<br>= (obj.handle = handle<br>of PM-store object),<br>athribute-list | Allows the manager to retrieve the values of all PM-store object attributes.                                  |
| EVENT<br>REPORT | MDS-Configuration-<br>Event  | Confirmed                              | MDC_NOTI_CONFIG                       | ConfigReport                                                                                          | ConfigReportRsp                                                                     | Configuration report to inform manager of the configuration of the agent.                                     |
|                 | MDS-Scan-Report-<br>Var      | Confirmed or<br>Unconfirmed            | MDC_NOTI_SCAN_<br>REPORT_VAR          | ScanReportInfoVar                                                                                     |                                                                                     | Data report to provide dynamic data to manager for some or all of the agent's objects in variable format.     |
|                 | MDS-Scan-Report-<br>Fixed    | Confirmed or<br>Unconfirmed            | MDC_NOTI_SCAN_<br>REPORT_FIXED        | ScanReportInfoFixed                                                                                   |                                                                                     | Data report to provide dynamic data to manager for some or all of the agent's objects in fixed format.        |
|                 | MDS-Scan-Report<br>MP-Var    | Confirmed or<br>Unconfirmed            | MDC_NOTI_SCAN_<br>REPORT_MP_VAR_      | ScanReportInfoMPVar                                                                                   |                                                                                     | This is the same as MDS-<br>Dynamic-Data-Update-Var,<br>but allows inclusion of data<br>from multiple people. |
|                 | MDS-Scan-Report-<br>MP-Fixed | Confirmed or<br>Unconfirmed            | MDC_NOTI_SCAN_<br>REPORT_MP_FIXED     | ScanReportInfoMPFixed                                                                                 |                                                                                     |                                                                                                               |
|                 | Segment-Data-Event           | Confirmed                              | MDC_NOTI_SEGMENT_<br>DATA             | SegmentDataEvent                                                                                      | SegmentDataResult                                                                   |                                                                                                               |
|                 | Buf-Scan-Report-Var          | Confirmed or<br>Unconfirmed            | ADC_NOTI_BUF_SCAN_<br>REPORT_VAR      | ScanReportInfoVar                                                                                     |                                                                                     |                                                                                                               |
|                 | Buf-Scan-Report-<br>Fixed    | Confirmed or Unconfirmed               | MDC_NOTI_BUF_SCAN_<br>REPORT_FIXED    | ScanReportInfoFixed                                                                                   |                                                                                     |                                                                                                               |
|                 | Buf-Scan-Report-<br>Grouped  | Confirmed or Unconfirmed               | MDC_NOTI_BUF_SCAN_<br>REPORT_GROUPED  | ScanReportInfoGrouped                                                                                 |                                                                                     |                                                                                                               |
|                 | Buf-Scan-Report-MP-Var       | Confirmed or<br>Unconfirmed            | MDC_NOTI_BUF_SCAN_<br>REPORT_MP_VAR   | ScanReportInfoMPVar                                                                                   |                                                                                     |                                                                                                               |
|                 | Buf-Scan-Report-MP-<br>Fixed | Confirmed or<br>Unconfirmed            | MDC_NOTI_BUF_SCAN_<br>REPORT_MP_FIXED | ScanReportInfoMPFixed                                                                                 |                                                                                     |                                                                                                               |
|                 |                              |                                        |                                       |                                                                                                       |                                                                                     |                                                                                                               |

IEEE Std 11073-10404-2020 Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

| (continued) |
|-------------|
| services    |
| t access    |
| objec       |
| oximeter    |
| -Pulse      |
| Table 22    |

| Service | Subservice tyne name             | Mode                        | Subservice type                               | Parameters                  | Result                  | Remarks                                                                  |
|---------|----------------------------------|-----------------------------|-----------------------------------------------|-----------------------------|-------------------------|--------------------------------------------------------------------------|
|         | Buf-Scan-Report-MP-<br>Grouped   | Confirmed or<br>Unconfirmed | MDC_NOTI_BUF_SCAN_<br>REPORT_MP_GROUPED       | ScanReportInfo<br>MPGrouped | O.S.                    |                                                                          |
|         | Unbuf-Scan-Report-<br>Var        | Confirmed or<br>Unconfirmed | MDC_NOTI_UNBUF_<br>SCAN_REPORT_VAR            | ScanReportInfoVar           | 2, 6,                   |                                                                          |
|         | Unbuf-Scan-Report-<br>Fixed      | Confirmed or<br>Unconfirmed | MDC_NOTI_UNBUF_<br>SCAN_REPORT_FIXED          | ScanReportInfoFixed         | -                       |                                                                          |
|         | Unbuf-Scan-Report-<br>Grouped    | Confirmed or<br>Unconfirmed | MDC_NOTI_UNBUF_<br>SCAN_REPORT_GROUPE<br>D    | ScanReportInfoGrouped       |                         |                                                                          |
|         | Unbuf-Scan-Report-<br>MP-Var     | Confirmed or<br>Unconfirmed | MDC_NOTI_UNBUF_<br>SCAN_REPORT_MP_VAR         | ScanReportInfoMPVar         |                         |                                                                          |
|         | Unbuf-Scan-Report-<br>MP-Fixed   | Confirmed or<br>Unconfirmed | MDC_NOTI_UNBUF_<br>SCAN_REPORT_MP_FIXE<br>D   | ScanReportInfoMPFIxed       |                         |                                                                          |
|         | Unbuf-Scan-Report-<br>MP-Grouped | Confirmed or<br>Unconfirmed | MDC_NOTI_UNBUF_<br>SCAN_REPORT_MP_GRO<br>UPED | ScanReportinfo<br>MPGrouped |                         |                                                                          |
| ACTION  | Set-Time                         | Confirmed                   | MDC_ACT_SET_TIME                              | *SetTimeInvoke              |                         | Manager method to invoke the agent to set time to requested value.       |
|         | Set-Base-Offset-Time             | Confirmed                   | MDC_ACT_SET_BO_VI                             | SetBOTimeInvoke             | I                       | Manager method to invoke the agent to set time to requested value.       |
|         | Clear-Segments                   | Confirmed                   | MDC_ACT_SEG_CLR                               | SegmSelection               |                         |                                                                          |
|         | Get-Segment-Info                 | Confirmed                   | MDC_ACT_SEG_GET_<br>INFO                      | SegmSelection               | SegmentInfoList         |                                                                          |
|         | Trig-Segment-Data-<br>Xfer       | Confirmed                   | MDC_ACT_SEG_TRIGXFER_                         | TrigSegmDataXferReq         | TrigSegmDataXferRs<br>p | Allows the manager to begin sending segment data.                        |
| SET     | <na></na>                        | J).                         | <na></na>                                     | SetArgumentSimple           |                         | Allows the manager to control the operational state of a scanner object. |

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# 7.3 Object access EVENT REPORT services

The EVENT REPORT service (see Table 22) is used by the agent to report its information (e.g., measurements). Event reports in this standard are a property of the MDS object only. The event reports used in this standard are defined in IEEE Std 11073-20601-2019.

The following conditions apply for a pulse oximeter agent according to this standard:

- Event reports transmitting measurement data may be used either in confirmed or unconfirmed mode.
- Some agent implementations support agent-initiated mode only through MDS object emission. These implementations should take care to not send any relatively high-bandwidth measurements such as plethysmogram data in this manner.
- Some agent implementations support agent-initiated mode only through the use of periodic or episodic configurable scanner objects. The manager shall be aware of the behavior of scanner object data transfer by controlling the Operational-State attribute of the appropriate scanner object.

A pulse oximeter agent designed to operate in an environment where data may be collected from multiple people may use one of the multiple-person event report styles to transmit all the data from each person in a single event. If this functionality is not required, the agent may use the single-person event report styles, which have reduced overhead.

A manager shall support both single-person and multiple-person event reports. A pulse oximeter agent shall support single-person event reports and may support multiple-person event reports. The formats for single and multiple-person reports are described in IEEE Std 11073-20601-2019.

# 8. Pulse oximeter communication model

# 8.1 Overview

The following subclauses describe the general communication model and procedures of the pulse oximeter agent as defined in IEEE Std 11073-20601-2019. Therefore, the respective parts of IEEE Std 11073-20601-2019 are not reproduced, rather the specific choices and restrictions with respect to optional elements (e.g., attributes and procedures) and specific extensions (e.g., nomenclature terms) are specified.

For an illustrative overview of the various message transactions during a typical measurement session, see the sequence diagram for the example use case in Annex D and the corresponding protocol data unit (PDU) examples in Annex E.

# 8.2 Communications characteristics

For a pulse oximeter agent implementing no other device specialization except this standard, the maximum size of an application protocol data unit (APDU) sent using medical device encoding rules (MDER) shall be not larger than  $N_{tx}$ . For this standard,  $N_{tx} = 9216$  octets, based on the maximum APDU size that could be expected from a pulse oximetry agent implementing persistent metric capability (see 6.9.5). In the absence of the persistent metric capability,  $N_{tx} = 5120$  octets, based on the maximum APDU size that could be expected from a pulse oximetry agent allowing sufficient capacity for several OCTET STRING entities within the MDS Production Specification attribute. An agent according to this definition shall be capable of receiving an APDU using MDER up to the size of at least  $N_{rx}$ . For this standard,  $N_{rx} = 240$  octets, based on an Association Response with an allowance for a set of information in the option-list element of the PHDAssociationInformation structure of an Association Request.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

If an agent implementing this device specialization implements functions from other device specializations, the following upper bound estimates for transmitted and received APDUs may serve as guidance:

An agent shall not transmit any APDU larger than the sum of  $N_{tx}$  of all the device specializations implemented and shall be capable of receiving any APDU up to the sum of  $N_{rx}$  of all the device specializations implemented. If these numbers are higher than the maximum size determined in IEEE Std 11073-20601-2019, the latter shall be applied.

# 8.3 Association procedure

### 8.3.1 General

Unless otherwise stated, the association procedure for a pulse oximetry agent and manager according to this standard shall be pursued as specified in IEEE Std 11073-20601-2019.

Table 23 lists the valid combinations of protocol version and nomenclature version. In the association procedure, an agent indicating support to a specific protocol version shall indicate support to the corresponding nomenclature version as well. In the association procedure, a manager selecting a specific protocol version shall select the corresponding nomenclature version.

Table 23 —Valid combinations of protocol and nomenclature version

| Protocol version | Bit value  | Corresponding nomenclature version | Bit value  |
|------------------|------------|------------------------------------|------------|
| 1                | 0x80000000 |                                    | 0x80000000 |
| 2                | 0x40000000 | Q٢                                 | 0x80000000 |
| 3                | 0x20000000 | 2                                  | 0x40000000 |
| 4                | 0x10000000 | 3                                  | 0x20000000 |

To indicate support for multiple protocol versions, the bit values are combined. For example, if the agent supports protocol-version2, protocol-version3 and protocol-version4, it shall use protocol version bits 0x70000000 and nomenclature-version bits 0xE00000000.

Future versions of this specification may include further valid combinations that can be used by implementations that comply with that future version.

# 8.3.2 Agent procedure—Association request

In the Association Request message sent by the agent to the manager, the following points apply:

- The version of the association procedure used by the agent shall be set to assoc-version1 (i.e., assoc-version = 0x80000000).
- The DataProtoList structure element of the data protocol identifier shall be set to data-proto-id-20601 (i.e., data-proto-id = 0x5079).
  - The *data-proto-info* field shall contain a Phd Association Information structure, which shall contain the following parameter values:
  - The version of the data exchange protocol shall be set to protocol-version4 (i.e., protocol-version = 0x10000000). Support for any other version may be indicated by setting additional bits. When protocols lower than protocol-version4 are used, the agent shall use only features in that protocol.
  - At least the MDER shall be supported (i.e., encoding-rules = 0x8000).
  - The protocol version bits and nomenclature version bits shall consist of valid combinations of bits as defined in Table 23.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

- The *functional-units* field may have the test association bits set, but shall not have any other bits set.
- The system-type field shall be set to sys-type-agent (i.e., system-type = 0x00800000).
- The system-id field shall be set to the value of the System-Id attribute of the MDS object of the agent. The manager may use this field to determine the identity of the pulse oximeter with which it is associating and, optionally, to implement a simple access restriction policy.
- The *dev-config-id* field shall be set to the value of the Dev-Configuration-Id attribute of the MDS object of the agent.

If the agent supports only the pulse oximeter specialization, then the field indicating the data request modes (data-req-mode-capab) supported by the pulse oximeter agent shall be set based on the communication capabilities of the agent.

If the agent supports agent-initiated measurement transfer, then data-req-mode-capab shall have the data-req-supp-init-agent bit set. The data-req-init-manager-count shall be set to zero, and data-req-init-agent-count shall be set to 1.

# 8.3.3 Manager procedure—Association response

In the Association Response message sent by the manager, the following points apply:

- The result field shall be set to an appropriate response from the responses defined in IEEE Std 11073-20601-2019. For example, if all other conditions of the association protocol are satisfied, accepted is returned when the manager recognizes the dev-config-id of the agent and accepted-unknown-config otherwise.
- In the DataProtoList structure element, the data protocol identifier shall be set to data-proto-id-20601 (i.e., *data-proto-id* = 0x5079).
- The *data-proto-info* field shall be filled in with a Phd Association Information structure, which shall contain the following parameter values:
  - The manager following this specialization shall support protocol-version4. The manager may support additional protocol versions and select them if the agent offers them. When protocols lower than protocol-version4 are used, the manager shall use only features in that protocol.
  - The manager shall respond with a single selected encoding rule that is supported by both agent and manager. The manager shall support at least the MDER.
  - The manager shall select a valid combination of protocol version and nomenclature version as defined in Table 23.

The functional-units field shall have all bits reset except for those relating to a test association.

- The *system-type* field shall be set to sys-type-manager (i.e., *system-type* = 0x80000000).
- The system-id field shall contain the unique system ID of the manager device, which shall be a valid EUI-64 type identifier.
- The *dev-config-id* field shall be manager-config-response (0).
- The data-req-mode-capab-flags field shall be 0.
- The *data-reg-init-\*-count* fields shall be 0.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# 8.4 Configuring procedure

### 8.4.1 General

The agent enters the Configuring state if it receives an Association Response of accepted-unknown-config. In this case, the configuration procedure as specified in IEEE Std 11073-20601-2019 shall be followed. The following subclauses specify the configuration notification and response messages for a pulse oximetry , 10A0A: 2022 agent with standard configuration ID 0x0192. Normally, a manager would already know the standard configuration. However, for the purposes of this example, it does not.

# 8.4.2 Pulse oximeter—Standard configuration

### 8.4.2.1 Agent procedure

The agent performs the configuration procedure using a "Remote Operation Invoke | Confirmed Event Report" message with an MDC NOTI CONFIG event to send its configuration to the manager (see IEEE Std 11073-20601-2019). The ConfigReport structure is used for the event-info field (see Table 3). For a pulse oximetry agent with standard configuration ID 0x0192, the format and contents of the configuration notification message are as follows:

```
APDU CHOICE Type (PrstApdu)
0xE7 0x00
                              CHOICE.length = 112
0x00 0x70
                              OCTET STRING.length = 110
0x00 0x6E
                              invoke-id (differentiates this from other outstanding messages)
0x12 0x35
0x01 0x01
                              CHOICE(Remote Operation Invoke | Confirmed Event Report)
0x00 0x68
                              CHOICE.length = 104
                              obj-handle = 0 (MDS object)
0x00 0x00
0xFF 0xFF 0xFF 0xFF
                              event-time = 0xFFFFFFFF
                              event-type = MDC NOTI CONFIG
0x0D 0x1C
0x00 0x56
                              event-info.length = 86 (start of ConfigReport)
                              config-report-id = 0x0192
0x01 0x92
0x00 0x02
                              config-obj-list.count = 2 Measurement objects will be "announced"
0x00 0x58
                              config-obj-list.length = 88
0x00 0x06
                              obj-class = MDC_MOC_VMO_METRIC_NU
                              obj-handle = 1 (\rightarrow 1<sup>st</sup> Measurement is SpO<sub>2</sub>)
0x00 0x01
0x00 0x04
                              attributes.count = 4
0x00 0x24
                              attributes.length = 36
                              attribute-id = MDC ATTR ID TYPE
0x09 0x2F
0x00 0x04
                              attribute-value.length = 4
0x00 0x02
                              MDC PART SCADA | MDC PULS OXIM SAT O2
                   0xB8
                              attribute-id = MDC ATTR METRIC SPEC SMALL
0x0A 0x46
0 \times 00 \ 0 \times 02
                              attribute-value.length = 2
0x40 0x40
                              avail-stored-data, acc-agent-init, measured
0x09\0x96
                              attribute-id = MDC ATTR UNIT CODE
0x00 0x02
                              attribute-value.length = 2
                              MDC_DIM_PERCENT
0x02 0x20
0x0A 0x55
                              attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00 0x08
                              attribute-value.length = 8
0x00 0x01
                              AttrValMap.count = 1
0x00 0x04
                              AttrValMap.length = 4
                              MDC ATTR NU VAL OBS BASIC | value length = 2
0x0A 0x4C 0x00 0x02
0x0A 0x82 0x00 0x08
                              MDC_ATTR_TIME_STAMP_BO | value length = 8
```

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

```
0x00 0x06
                                  obj-class = MDC MOC VMO METRIC NU
                                  obj-handle = 10 \quad (\rightarrow 2^{nd} \text{ Measurement is pulse rate})
0x00 0x0A
0x00 0x04
                                  attributes.count = 4
                                  attributes.length = 36
0x00 0x24
0x09 0x2F
                                  attribute-id = MDC ATTR ID TYPE
0x00 0x04
                                  attribute-value.length = 4
                                  MDC PART SCADA | MDC PULS OXIM PULS RATE
0x00 0x02 0x48 0x1A
                                 MDC_DIM_BEAT_PER_MIN
attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
attribute-value.length = 8
AttrValMap.count = 1
AttrValMap.length = 4
MDC_ATTR_NU_VAI_CT
MDC_ATTR_NU_VAI_CT
0x0A 0x46
0x00 0x02
0x40 0x40
0x09 0x96
0x00 0x02
0x0A 0xA0
0x0A 0x55
0x00 0x08
0x00 0x01
0x00 0x04
0x0A 0x4C 0x00 0x02
                                  MDC ATTR TIME STAMP BO | value length = 8
0x0A 0x82 0x00 0x08
```

# 8.4.2.2 Manager procedure

The manager shall respond to a configuration notification message using a "Remote Operation Response Confirmed Event Report" data message with an MDC\_NOTI\_CONFIG event using the ConfigReportRsp structure for the event-info field (see Table 3). An example configuration notification response message (corresponding to the configuration notification request message described in 8.4.2.1) can be seen as follows:

|               |      | XX.                                                         |
|---------------|------|-------------------------------------------------------------|
| $0 \times E7$ | 0x0  | APDU CHOICE Type (PrstApdu)                                 |
| 0x00          | 0x16 | CHOICE length = 22                                          |
| 0x0           | 0x14 | OCTET STRING.length = 20                                    |
| 0x12          | 0x35 | invoke-id = $0x1235$ (mirrored from invocation)             |
| 0x02          | 0x01 | CHOICE (Remote Operation Response   Confirmed Event Report) |
| 0x0           | 0x0E | CHOICE.length = 14                                          |
| 0x0           | 0x0  | obj-handle = $0$ (MDS object)                               |
| 0x0           | 0x0  | $0 \times 0 = 0$ currentTime = 0                            |
| 0x0D          | 0x1C | event-type = MDC_NOTI_CONFIG                                |
| 0x0           | 0x04 | event-reply-info.length = 4                                 |
| 0x01          | 0x92 | ConfigReportRsp.config-report-id = 0x0192                   |
| 0x00          | 0x00 | ConfigReportRsp.config-result = accepted-config             |
|               |      |                                                             |

# 8.5 Operating procedure

# 8.5.1 General

Measurement data and status information are communicated from the pulse oximetry agent during the Operating state. If not stated otherwise, the operating procedure for a pulse oximetry agent of this standard shall be as specified in IEEE Std 11073-20601-2019.

# 8.5.2 GET pulse oximeter MDS attributes

See Table 4 for a summary of the GET service.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

If the manager leaves the attribute-id-list field in the roiv-cmip-get service message empty, the pulse oximetry agent shall respond with a rors-cmip-get service message in which the attribute-list contains a list of all implemented attributes of the MDS object.

If the manager requests specific MDS object attributes, indicated by the elements in attribute-id-list, the pulse oximetry agent shall respond with a rors-cmip-get service message in which the attribute-list contains a list of the requested attributes of the MDS object that are implemented.

# 8.5.3 Measurement data transmission

See Table 3, Table 16, and Table 19 for a summary of the EVENT REPORT services available for measurement data transfer.

Measurement data transfer for a pulse oximetry agent of this standard is initiated by the agent; however the manager may control transmission of data through use of the scanner object. To limit the amount of data being transported within an APDU, the pulse oximetry agent shall not include more than 25 temporarily stored measurements in a single event report. If more than 25 pending measurements are available for transmission, they may be sent either using multiple event reports or by incorporating a persistent store facility. If multiple oximetry measurements are available, up to 25 measurements should be transmitted within a single event report. Alternatively, they may be transmitted using a single event report for each oximetry measurement. However, the former strategy is recommended to reduce overall message size and power consumption.

# 8.6 Time synchronization

Time synchronization may be employed between a pulse eximetry agent and a manager to coordinate the clocks used when reporting physiological events. Note that the mechanism for synchronizing an agent to a manager is outside the scope of this standard. If time synchronization is used, then this shall be reported in the Mds-Time-Info attribute of the MDS object.

# 9. Test associations

A pulse oximeter may implement a wide range of behaviors in a test association that enable a manufacturer to test features of a product in a comprehensive manner. It is also possible for a pulse oximeter to not support test associations at all. This clause defines a simple behavior that simulates the generation of a measurement in the context of a standard device configuration.

# 9.1 Behavior with standard configuration

In order to facilitate automated standardized test processes, a pulse oximeter that presents the standard configuration 1D and enters into a test association should be able to simulate the arrival of measurement data from the device sensors. It should not be necessary for an operator to stimulate the sensors in order for the measurement data to be generated.

After the agent enters the Operating state, it simulates the reception of an event from the sensors representing an SpO<sub>2</sub> measurement of 123% and a pulse rate of 456 beats per minute. To the extent possible, this measurement is seen only by those components of the agent that understand the test association. When the event is propagated into a numeric object, the test-data bit of the measurement-status attribute shall be set if the measurement-status attribute is supported. An agent is not required to use the measurement-status attribute if it would not normally do so outside of a test association.

The agent should send the events reports for all simulated measures within 30 s of entering the Operating state. The test association is terminated in a manner consistent with the agent's normal behavior for terminating an association.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# 9.2 Behavior with extended configurations

This specification does not define a test association that uses an extended configuration.

# 10. Conformance

# 10.1 Applicability

This standard shall be used in conjunction with IEEE Std 11073-20601-2019.

An implementation or a system can conform to the following elements of this standard:

- DIM class hierarchy and object definitions (object attributes, notifications, methods, and data type definitions)
- Nomenclature code values
- Protocol and service models
- Communication service model (association and configuration)

# 10.2 Conformance specification

This standard offers levels of conformance with respect to strict adherence to the standard device and the use of extensions for the following:

- Information model of a specific device
- Use of attributes, value ranges, and access methods

A vendor shall specify the level of conformance for an implementation based on this standard and provide details of the way in which the definitions of this standard and any extensions are applied.

Specifications shall be provided in the form of a set of ICSs as detailed in 10.4.

Since this standard is used in conjunction with IEEE Std 11073-20601-2019, the ICS should be created for this standard first. The ICS created for IEEE Std 11073-20601-2019 may then refer to the ICS for this standard where applicable

# 10.3 Levels of conformance

# 10.3.1 General

This standard defines two levels of conformance in 10.3.2 and 10.3.3.

# 10.3.2 Conformance Level 1: Base conformance

The application uses elements of the information, service, and communication models (object hierarchy, actions, event reports, and data type definitions) and the nomenclature scheme defined in IEEE Std 11073-20601-2019 and the ISO/IEEE P11073-104zz standards. All mandatory features defined in the object definition tables and in the ICS tables are implemented. Further, any conditional, recommended, or optional features that are implemented shall follow the requirements in IEEE Std 11073-20601-2019 and the ISO/IEEE P11073-104zz standards.

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### 10.3.3 Conformance Level 2: Extended nomenclature (ASN.1 and/or IEEE 11073-10101)

Conformance Level 2 meets conformance level 1, but also uses or adds extensions in at least one of the information, service, communication, or nomenclature models. These extensions shall conform to nomenclature codes from ASN.1 and/or within the IEEE 11073-10101 framework (0xF000 – 0xFFFF). These extensions should be defined in ICS tables pointing towards their reference.

# 10.4 Implementation conformance statements (ICSs)

# 10.4.1 General format

The ICSs are provided as an overall conformance statement document that comprises a set of specific ICS tables in the form given by the templates in 10.4.2 through 10.4.6.

Each ICS table has the following columns:

| Index | Feature | Reference | Req./Status | Support | Comment |
|-------|---------|-----------|-------------|---------|---------|

The table column headings have the following meanings:

- Index, which is an ID (e.g., a tag) of a specific feature.
- Feature, which briefly describes the characteristic for which a conformance statement is being made.
- Reference, which is to the clause or subclause within this standard or an external source for the definition of the feature (may be empty).
- Req./Status, which specifies the conformance requirement (e.g., mandatory or recommended).
   In some cases, this standard does not specify conformance requirements, but requests that the status of a particular feature be provided.
- Support, which specifies the presence or absence of a feature and any description of the characteristics of the feature in the implementation. This column is to be filled out by the implementer.
- Comment, which contains any additional information on the feature. This column is to be filled out by the implementer.

# 10.4.2 General ICS

The general ICS specifies the versions/revisions that are supported by the implementation and high-level system behavior.

Table 24 shows the general ICS.

IEEE Std 11073-10404-2020

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# Table 24 —IEEE 11073-10404 general ICS

| Index                      | Feature                                       | Reference            | Req./Status                                                                                                                                                                                                                                                                  | Support                                                                              | Comment |
|----------------------------|-----------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
| GEN<br>11073-<br>10404-1   | Implementation<br>Description                 | _                    | Identification of the device/application. Description of functionality.                                                                                                                                                                                                      |                                                                                      |         |
| GEN<br>11073-<br>10404-2   | Standards<br>Followed and<br>Their Revisions  | (standard documents) | (set of existing revisions)                                                                                                                                                                                                                                                  | (set of<br>supported<br>revision)                                                    |         |
| GEN<br>11073-<br>10404-3   | Nomenclature<br>Document Used<br>and Revision | (standard documents) | (set of existing revisions)                                                                                                                                                                                                                                                  | (set of<br>supported<br>revisions)                                                   | Š       |
| GEN<br>11073-<br>10404-4   | Conformance<br>Adherence<br>- Level 1 -       | See 10.3.2           | Base conformance declaration that device meets the following IEEE 11073-10404 conformance requirements:  A) All mandatory requirements shall be implemented.  B) If implemented, conditional, recommended, and optional requirements shall conform to this standard.         | Yes/No (No is not expected as no implies that the implementation is NON- conformant) | 3,7040, |
| GEN<br>11073-<br>10404-5   | Conformance<br>Adherence<br>- Level 2 -       | See 10.3.3           | In addition to GEN 11073-10404-4, if the device implements extensions and/or additions, they shall conform to nomenclature codes from ASN.1 and/or IEEE 11073-10101 framework. These extensions should also be defined in ICS tables pointing towards their reference.       | Yes/No                                                                               |         |
| GEN<br>11073-<br>10404-6   | Object<br>Containment<br>Tree                 | See 6.3              | Provide object containment diagram showing relations between object instances used by the application. A conforming implementation uses only object relations as defined in the DIM.                                                                                         |                                                                                      |         |
| GEN<br>11073-<br>10404-7   | Nomenclature<br>Document Used<br>and Revision | (standard documents) | (set of existing revisions)                                                                                                                                                                                                                                                  | (set of<br>supported<br>revision)                                                    |         |
| GEN<br>11073-<br>10404-8   | Data Structure<br>Encoding                    | Click                |                                                                                                                                                                                                                                                                              | description of<br>encoding<br>method(s) for<br>ASN.1 data<br>structures              |         |
| GEN<br>11073-<br>10404-9   | Use of Private<br>Objects                     | _                    | Does the implementation use objects that are not defined in the DIM?                                                                                                                                                                                                         | Yes/No<br>[If yes: explain<br>in Table 25]                                           |         |
| GEN<br>11073-<br>10404-102 | Use of Private<br>Nomenclature<br>Extensions  | _                    | Does the implementation use private extensions to the nomenclature (i.e., 0xF000–0xFFFF codes from IEEE 11073-10101)?  Private nomenclature extensions are allowed <i>only</i> if the standard nomenclature does not include the specific terms required by the application. | Yes/No [If yes: explain in the Table 28]                                             |         |
| GEN<br>11073-<br>10404-11  | IEEE Std<br>11073-20601<br>Conformance        |                      | Provide the conformance report required by IEEE Std 11073-20601-2019.                                                                                                                                                                                                        |                                                                                      |         |

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# **10.4.3 DIM MOC ICS**

The DIM MOC ICS defines which objects are implemented. Information on each object shall be provided as a separate row in the template of Table 25.

Table 25 — Template for DIM MOC ICS

| Index | Feature            | Reference                                                                                        | Req./Status | Support                                                                  | Comment |
|-------|--------------------|--------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|---------|
| MOC-n | Object description | Reference to the clause<br>in this standard or other<br>location where the<br>object is defined. | Implemented | Specify restrictions,<br>e.g., maximum number<br>of supported instances. | Q.      |

The n in the Index column should be the object handle for implementations that have predefined objects. Otherwise, the Index column shall be simply a unique number (1..m).

All private objects should be specified and include a reference to the definition for the object. Where no publicly available reference is available, the definition of the object should be appended to the conformance statement.

The Support column should indicate any restrictions for the object implementation.

An object containment diagram (class instance diagram) should be provided as part of the DIM MOC ICS.

# 10.4.4 MOC attribute ICS

For each supported object as defined in the DIM MOC ICS, a MOC attribute ICS has to be provided that defines which attributes are used/supported by the implementation, including any inherited attributes. Table 26 is a template only.

Table 26—Template for MOC attribute ICS

| Index    | Feature                                                                                  | Reference             | Req./Status                      | Support                                           | Comment |
|----------|------------------------------------------------------------------------------------------|-----------------------|----------------------------------|---------------------------------------------------|---------|
| ATTR-n-x | Attribute                                                                                | Fill in the           | M Mandatory/                     | Implemented?                                      |         |
|          | Name.                                                                                    | reference to          | C = Conditional/                 | Yes/No                                            |         |
|          | Extended attributes shall include the the the attribute is not defined in this standard. | structure if          | R = Recommended/<br>O = Optional | Static/Dynamic                                    |         |
|          |                                                                                          |                       |                                  | Specify restrictions, e.g., value                 |         |
|          |                                                                                          | [as per definition in | ranges.                          |                                                   |         |
|          |                                                                                          | this standard.        | attribute definition tables]     | Describe how attribute is                         |         |
|          | Attribute _                                                                              |                       |                                  | accessed (e.g., Get, Set, sent in                 |         |
|          | ID also                                                                                  |                       |                                  | config event report, sent in a data event report) |         |
|          | SO.                                                                                      |                       |                                  | Describe any specific restrictions.               |         |

All private attributes should be specified and include reference to the definition for the attribute. Where no publicly available reference is available, the definition of the attribute should be appended to the conformance statement.

The Support column shall specify whether the attribute is implemented; for extension attributes, whether the attribute value is static or dynamic; any value ranges; restrictions on attribute access or availability; and any other information.

The n in the Index column refers to the ID of the managed object for which the table is supplied (i.e., the index of the managed object as specified in the MOC ICS). There is one separate table for each supported managed object.

The x in the Index column is a unique serial number (1..m).

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

# 10.4.5 MOC notification ICS

The MOC notification ICS specifies all implemented notifications (typically in form of the EVENT REPORT service) that are emitted by the agent. Table 27 provides a template for use. One table has to be provided for each object that supports special object notifications.

Table 27 — Template for MOC notification ICS

| Index    | Feature                                     | Reference                                                                              | Req./Status | Support                                                                             | Comment |
|----------|---------------------------------------------|----------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------|---------|
| NOTI-n-x | Notification<br>Name and<br>Notification ID | Reference to the clause in this standard or other location where the event is defined. |             | The Support column shall specify how the notification is sent and any restrictions. | OAOA.   |

The n in the Index column refers to the ID of the managed object for which the table is supplied (i.e., the index of the managed object as specified in the MOC ICS). There is one separate table for each managed object that supports specific object notifications (i.e., events).

The x in the Index column is a unique serial number (1..m).

All private notifications should be specified and include reference to the definition for the notification. Where no publicly available reference is available, the definition of the notification should be appended to the conformance statement.

# 10.4.6 MOC nomenclature ICS

The MOC nomenclature ICS specifies all nonstandard nomenclature codes that are utilized by the agent. Table 28 provides a template for use. One row of the table is to be used for each nomenclature element.

Table 28 — Template for MOC nomenclature ICS

| Index  | Feature            | Reference                                  | Req./Status | Support                             | Comment |
|--------|--------------------|--------------------------------------------|-------------|-------------------------------------|---------|
| NOME-n | Nomenclature       | Reference to the clause in this            |             | Describe how the                    |         |
|        | Name and           | standard or other location                 |             | nomenclature is used.               |         |
|        | Nomenclature value | where the nomenclature is defined or used. |             | Describe any specific restrictions, |         |

The n in the Index column is a unique serial number (1..m).

Health informatics—Personal health device communication—Part 10404: Device specialization—Pulse oximeter

### Annex A

(informative)

# **Bibliography**

- [B1] Draft Guidance for Industry and FDA Staff Pulse Oximeters Premarket Notification Submissions [510(k)s], July 19, 2007.
- [B2] IEC 60601-1, Ed. 3, Medical electrical equipment—Part 1: General requirements for basic safety and essential performance.<sup>8</sup>
- [B3] IEC 60601-2 (all parts), Medical electrical equipment—Part 2: Particular requirements for the basic safety and essential performance for specific device.
- [B4] IEC 62304 /EN 62304, Medical device software—Software life-cycle processes.
- [B5] IEC 80001-1, Application of risk management for IT-networks incorporating medical devices—Part 1: Roles, responsibilities, and activities.
- [B6] ISO/IEEE 11073-10201:2004, Health informatics—Point-of-care medical device communication—Part 10201: Domain information model.<sup>9</sup>
- [B7] ISO/IEEE 11073-20101:2004, Health informatics—Point-of-care medical device communication—Part 20101: Application Profiles—Base Standard.
- [B8] ISO 14971:2007, Medical devices—Application of risk management to medical devices.
- [B9] ISO 80601-2-61:2017, Medical electrical equipment Particular requirements for basic safety and essential performance of pulse oximeter equipment.
- [B10] ITU-T Rec. X.680, Information technology Abstract Syntax Notation One (ASN.1): Specification of basic notation. <sup>10</sup>

<sup>8</sup> EN publications are available from the European Committee for Standardization (CEN) (http://www.cenorm.be).

\_

<sup>&</sup>lt;sup>9</sup> ISO publications are available from the International Organization for Standardization (https://www.iso.org/) and the American National Standards Institute (https://www.ansi.org/).

<sup>10</sup> ITU-T publications are available from the International Telecommunications Union (http://www.itu.int/).