INTERNATIONAL ISO/IEC
STANDARD 8825-2

Third edition
2002-12-15

Information technology — ASN.1

encoding rules: Specification of Packed
Encoding Rules (PER)

Technologies de l'information —Régles de codage ASN.1:
Spécification des regles de ecodage compact (PER)

Reference number

ISO/IEC 8825-2:2002(E)
S . © ISO/IEC 2002

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© [ISO/IEC 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published by ISO in 2003

Published in Switzerland

i © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002(E)

CONTENTS
INEFOAUCTION . eetiiiiiiiiiiiit ettt ettt e e ettt e e e e ettt e e e s et e et e e e e esanb e et e e e e e eaaanss e eeeeeesesanneeeeeeeseannnaneeeeesenannnen
1 17001
2 NOTMALIVE TETETEIICESeietieniieiiieiieet ettt ettt ettt ettt eae e bt e bt enteesee et e e be e beenteemeesaeesseesaeenseenseenseeneeeneens
2.1 Identical Recommendations | International Standardsccccoviriiiiiniininieeeee e
2.2 Paired Recommendations | International Standards equivalent in technical content............c..ccc..e....
2.3 AddItIONAL TEIETEICESeeeeeietietieeietieiee ettt ettt sttt eee et et e et e s beebesaeebeeneensesensesaesaeas
3 | DTS S TIY e T PP U UPRS
3.1 Specification 0f Basic NOtAtiON..........c.ccvervieciieieiieriieieeieseeseesre e seesreesaeesaesseesseesseesnessnessadas 3eFo
3.2 Information Object SPECIfICAtIONc.eecviriiriieiieiieieeie et see e e eee e Lo
3.3 Constraint SPECIfICAtIONevvieriieiieiesie ettt ettt eeeteseesraesseesseesesnesnnesseenseetesbgs eereneeenns
3.4 Parameterization of ASN.1 Specificationcccceveeevienirieecierieeeeeeeseeeeee e e Ve
3.5 Basic Encoding RUIESccocuiiiiiiiiieiee et s e e e e e
3.6 Additional defiNitioNS......c..coererieiinieieriintirerceteeeet ettt saes et Feae sttt ettt naen
4 ADDTEVIALIONS ...ttt ettt sttt se s o Kot e e ebe ettt et et eaenbenaeenes
5 D03 7212 o) s H USSR UTRPURUN ST SRRSO
6 CONVENEION ...ttt sttt ettt ieesteesteentesetesneesseenseensesnsesseobaee T coneenteeutesteenbeenteeneesaeesaeesbeenseenee
7 Encoding rules defined in this Recommendation | International Standardcccoceeviiiiiiiiininenne.
8 CONTOIINANCEcveenenieiieierie ettt syt e et eb e bt eat et et e be st e ebe e bt ent et entenbeneeenes
9 The approach to encoding used for PERcccoooiiiiiiiic et
9.1 Use Of the tyPe NOTATION ...oveevieiieieeie e ettt ettt et e st e see e e e e seeneeenes
9.2 Use of tags to provide a canonical Orderalf . ittt
0.3 PER-VISIDIE CONSIIAINESeueiiieiieieeie e ¥ttt ettt ettt s st esae e e e e e eneesseeneeenes
9.4 Type and value model used for encOding...........ccoeiiriiiieieeee e e
9.5 Structure of an eNCOAINGcc.eereere T8 ettt ettt sttt et ne e
9.6 Types to De eNCOACH.couiriree B ittt ettt sttt
1 ENcoding ProCeaUurescoueiueie ittt ettt b e bbbt et s ae
10.1 Production of the complefe ENCOAINGcoeeiiiiiiiiii e
10.2 OPEN tYPE fICLAS ...eeitiereiteertierieeti ettt ettt te et e st e steesteesbessaesteesseeseesseesseessessseseesseenseessesssesseenns
10.3 Encoding as a non=negative-binary-iNteEET...........ccoevierrierreeierreerreeresreseesseesesreseesseessesssesseesseenns
10.4 Encoding as a 2”s;Complement-binary-InteEer..........c.coveruiereeieriierieeieeeesieseesreesseeresseesseesseessenns
10.5 Encoding of a‘constrained Whole NUMDETccociivviiiiieiiciieceie et
10.6 Encoding'gPa normally small non-negative Whole NUMDETcceeieriiicieiierienieie e
10.7 Encoding of a semi-constrained Whole NUMDETc..cceeiieiiiieiiieiecieceeeee e
10.8 EncCoding of an unconstrained Whole NUMDETccoviiiriiiriieiieieceeeee e
10.9 . G¢eneral rules for encoding a length determinantccooceeverieriecieecie e
1 Encoding the DOOLEAN tYPEeevieiieiieieiete ettt ettt et et s e st et e e e ensesnsesneenseensesnnesnnenns
1] ENCOAING the INEEEET TYPC .. .eeeeeieiie ettt ettt ettt s et ettt et e et e et e et e enteentesseesaeenseeneesneesneenne
1 Pn{‘nding the enumerated type
14 ENCOING the TEAL EYPEcueeuieeieiie ettt ettt ettt ettt b et e st et et e aesbeebeenees e e s ebesbesaeeneenean
15 ENcoding the DItSIIING tYPC......ueiieriieiieiieieetiestteteetestesee st esteetesetesreesseesseesseesaessaeseessesssesseesseessesnsesssessnenns
16 ENcoding the OCtEtSIIINE LYPE ...ecuveerieriieiieiieieiiere et etesteette st eteesseesbesteesteesseessesssesseessaesseessesseessesssesssessnenns
17 ENcoding the MU EYP@......cciiiieii ettt sttt et et e st et enseensessaessaenseenseensesnnesnnenns
18 ENncoding the SEQUENCE tFPEeeueeuiiieieeiieti ettt ettt ettt ettt e st e st este e e en e eseesse e beeaseenseenseeneeennenne
19 Encoding the SEqUENCE-0F tYPE......uiiiiiieiieieee ettt ettt et et e st e et et e beeteeaeeneesnnenne
20 ENCOAING The SET EYPE ..eevieiiiiiiie ittt sttt et e a e eb et e bt e s e sebe b e e nbeesbeemteeaeesanenne
21 ENcoding the SEt-0f tYPe....coutiiiiiieecteet ettt sb ettt sbe st
22 ENCOdiNg the ChOICE tYPC.....eiiuiiiieiieiicieciteieet ettt ettt st ste et e b e e sbeetaesta e seesseessessaesaesseensesssessnenns

© ISO/IEC 2002 — All rights reserved

O 00 0 1 I A AN O Ui i v D DN NN NN NN === = =

el e e e e e e
W W W= = OO oo

[\ T NG T NG R NS R e e e e e
— = O O O 0O 0NN NN

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC

8825-2:2002(E)

23 Encoding the 0bject IdeNtifler tYPEC.......eiieriirieiieiiereerie ettt ettt s ae s e seeseeaesneesseenseenseenneens 22
24 Encoding the relative object identifier tYPe.......ccvevuieiieieeieiieieeeeeeeee ettt e e eeenne e 22
25 Encoding the embedded-pAV tYPeoeiiimiiiieiieiee ettt ettt en 22
26 Encoding of a value of the eXternal tYPecoueriiriririeieiei ettt sttt 22
27 Encoding the restricted character SIrNG LYPEScoeiuerirerieieieiete ettt ettt s ee e ebesee e eneeneas 23
28 Encoding the unrestricted CharaCter StrNg tYPEC.......ccverueruieriiiieiieriieteeteeeeste et eteseeesbeebeesaesraesseeseessesseeses 25
29 Object identifiers fOr tranSfer SYNEAXES.ccuvecvirierieieie ettt ae st et et e enaeseaeseenbesnsesnneses 25
Annex A — EXamMPIe Of @NCOMINESeeiviiiiiieiieeiietieit ettt te et et e st et et e esteesaessaesseensessaessnesseenseensennsenns 27
A.] — Record that does not use SUDLYPE CONSIIAINES.ceuertieriieieeieitiereeeesie e erte e seeseeeee e seeeseeeeeeneeens 7

A.1.1 ASN.1 description of the record SIIUCIUIEccveiieriieiieie ettt 7

A.1.2 ASN.1 description 0f @ reCOrd ValUEcceeeriiiiiieiininiccreee e 7

A.1.3 ALIGNED PER representation of this record value...........ccocvevvieiinienieneeienieseesne s e D7

A.1.4 UNALIGNED PER representation of this record value........c..ceceeceevevenennnce e, P8

A.J — Record that uses Subtype CONSLIAINTSc.ccveriierieecierieniierieeiesieseesieeeeseeseeeseeeeeseee e s b T 80

A.2.1 ASN.1 description of the record Structurecccceoeverereeeeneesenenenp e e B0

A.2.2 ASN.1 description of @ record ValUEccceevvieiieiiiieiieiecieee e e B0

A.2.3 ALIGNED PER representation of this record value.............cooceven b b e B0

A.2.4 UNALIGNED PER representation of this record value............5 e, B 1

A.J — Record that uses extension MAarkersceeeeeeereeienerienenesieseeseee e B2

A.3.1 ASN.1 description of the record StruCtUIEcccueveeresmurerieeieiceeseese e B2

A.3.2 ASN.1 description of @ record Valuecoeeveveeeee e Y B3

A.3.3 ALIGNED PER representation of this record valu®us.......ceevveeereienienieieieceeeeeeeen B3

A.3.4 UNALIGNED PER representation of this recordWalue..........c.ccceeeeierienineiieieieieiene, B4

A.4 — Record that uses extension addition ZrouPS..........c..catfitii et B6

A.4.1 ASN.1 description of the record StrUCTUIBY.ceuveurerieierieriieierieeiieeeee et BO

A.4.2 ASN.1 description of @ record Value ni . e ii it B6

A.43 ALIGNED PER representation of-this record value...........cccevereniniininininieieeenenee, B6

A.4.4 UNALIGNED PER representation of this record value...........ccoecvveveieveeienieneeeee e B7

Annex B 4 Observations on combining PER-vVISIDIG\CONSIIAINLS.cccerieriieriieiiniieiieie et B8
Annex C - Support for the PER algorithms.....c.... 0 ittt s enne e 13
Annex D + Support for the ASN.1 rules of @XtenSIDILILYc.eevirieiieii e e 14
Annex E + Tutorial annex on concateiation of PER encodingscccooeiiriiiiiiieieieeesese e 5
Annex F o Assignment of object Adentifier VAlUES.cooiiiiiiieieieeee e L6

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established—by—the—respective—organization—to—deal—with—particttar—fields—oftechnicalactivity—SOS, and |IEC
hnical committees collaborate in fields of mutual interest. Other international organizations, governmental
d non-governmental, in liaison with ISO and IEC, also take part in the work. In the field~of ifformation
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Par{ 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national .bodies casting a vote.

Aftention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or-all such patent rights.

ISO/IEC 8825-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information telchnology,
Stibcommittee SC 6, Telecommunications and information.exchange between systems, in collaborgtion with
ITU-T. The identical text is published as ITU-T Rec. X.691.
This third edition cancels and replaces the second edition (ISO/IEC 8825-2:1998), which has been technically
rgvised. It also incorporates the Amendment ISO/IEC 8825-2:1998/Amd.1:2000 and the Technical Qorrigenda
ISO/IEC 8825-2:1998/Cor.1:1999, ISO/IEC 882542:1998/Cor.2:2002 and ISO/IEC 8825-2:1998/Cor.3:2002.

ISO/IEC 8825 consists of the following, parts, under the general title Information technology +— ASN.1
efcoding rules:

— Part 1: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)

— Part 2: Specification of\Packed Encoding Rules (PER)
— Part 3: Specification of Encoding Control Notation (ECN)
— Part 4: XMD.Encoding Rules (XER)

— Part 5:Mapping W3C XML schema definitions into ASN.1

© ISO/IEC 2002 — All rights reserved \4

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002(E)

Introduction

The publications ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC 8824-4 together describe Abstract Syntax Notation One (ASN.1), a
notation for the definition of messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be appiied 10 vamues of types define
using the hotation specified in ITU-T Rec. X.680 | ISO/IEC 8824-1. Application of these encoding rules produees
transfer syjntax for such values. It is implicit in the specification of these encoding rules that they are also to be-ised fq
decoding.

=

There are more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation
International Standard defines a set of Packed Encoding Rules (PER), so called because they achigve’a much mor
compact rgpresentation than that achieved by the Basic Encoding Rules (BER) and its derivatives described in ITU-
Rec. X.69p | ISO/IEC 8825-1 which is referenced for some parts of the specification of these Packéd Encoding Rules.

=1 Y

Vi © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:20

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology —
ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)

1

This Recommendation | International Standard specifies a set of Packed Encoding Rules that may be used-to’ dg
transfer syntax for values of types defined in ITU-T Rec. X.680 | ISO/IEC 8824-1. These Packed Encoding Ru
be applied for decoding such a transfer syntax in order to identify the data values being transferred.

also td

The e

2

The f
consti
were

Recor

valid
valid]

2.1

ral
STUpE

icoding rules specified in this Recommendation | International Standard:

Normative references

llowing Recommendations and International Standards contain provisions which, through reference in th
ute provisions of this Recommendation | International Stanidard. At the time of publication, the editions ind
valid. All Recommendations and Standards are subject to revision, and parties to agreements based d
hmendation | International Standard are encouraged-to investigate the possibility of applying the most
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of cu
nternational Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of cu
TU-T Recommendations.

Identical Recommendations | International Standards

are used at the time of communication;

are intended for use in circumstances where minimizing the size of the fepresentation of values
major concern in the choice of encoding rules;

allow the extension of an abstract syntax by addition of extra<Vvalues, preserving the enc
of the existing values, for all forms of extension described in ITU-F, Rec. X.680 | ISO/IEC 8824-1.

ITU-T Recommendation-X.680 (2002) | ISO/IEC 8824-1:2002, Information technology — Abstract
Notation One (ASN-)-.Specification of basic notation.

ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology — Abstract
Notation Oné(ASN.1): Information object specification.

ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology — Abstract
NotationOne (ASN.1): Constraint specification.

ITUXT Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology — Abstract
Notation One (ASN.1): Parameterization of ASN.1 specifications.

ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology — ASN.1 en

02 (E)

rive a
es are

is the

bdings

S text,
icated
n this
recent
rrently
rrently

Syntax

Syntax

Syntax

Syntax

roding

rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Disting|

ished

2.2

2.3

Encoding Kules (DEKR).

Paired Recommendations | International Standards equivalent in technical content

Additional references
ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange.

ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques.
ISO 2375:1985, Data processing — Procedure for registration of escape sequences.

ISO 6093:1985, Information processing — Representation of numerical values in character strings for

information interchange.

ITU-T Rec. X.691 (07/2002)

1

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

— ISO International Register of Coded Character Sets to be Used with Escape Sequences.

— ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

31 Specification of Basic Notation

For the purposes of this Recommendation | International Standard, all the definitions in ITU-T Rec. X.680 |
ISO/IEE-8824=t=appty-

3.2 Information Object Specification

For the purposes of this Recommendation | International Standard, all the definitions in ITU-T/Rec. X[681 |
ISO/IEC 8824-2 apply.

33 Constraint Specification

This Recommendation | International Standard makes use of the following terms~defined in ITU-T Rec.
ISO/IEC 8824-3:

a) component relation constraint;

>

682 |

b) table constraint.

34 Parameterization of ASN.1 Specification

This Recommendation | International Standard makes use ofcthe following term defined in ITU-T Rec. X.683 |
ISO/TEC 8824-4:

— variable constraint.

35 Basic Encoding Rules

This Recommendation | International Standard’makes use of the following terms defined in ITU-T Rec. X.690 |
ISO/TEC 8825-1:
a) dynamic conformance;
b) static conformance;
¢) data value;
d) encoding (of.a’data value);
e) sender;
f) receiver.
3.6 Additional definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.
3.6.1 2's-complement-binary-integer encoding: The encoding of a whole number into a bit-field (octet-aligned in

the ALIGNED variant) of a specified length, or into the minimum number of octets that will accommodate that whole
number encoded as a 2's-complement-integer, which provides representations for whole numbers that are equal to,
greater than, or less than zero, as specified in 10.4.
NOTE 1 — The value of a two's complement binary number is derived by numbering the bits in the contents octets, starting with
bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numerical value of
ZN, where N is its position in the above numbering sequence. The value of the two's complement binary number is obtained by
summing the numerical values assigned to each bit for those bits which are set to one, excluding bit 8 of the first octet, and then
reducing this value by the numerical value assigned to bit 8 of the first octet if that bit is set to one.

NOTE 2 — Whole number is a synonym for the mathematical term infeger. It is used here to avoid confusion with the ASN.1 type
integer.

2 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

3.6.2 abstract syntax value: A value of an abstract syntax (defined as the set of values of a single ASN.1 type),
which is to be encoded by PER, or which is to be generated by PER decoding.

NOTE — The single ASN.1 type associated with an abstract syntax is formally identified by an object of class ABSTRACT- SYNTAX.

3.6.3 bit-field: The product of some part of the encoding mechanism that consists of an ordered set of bits that are
not necessarily a multiple of eight.

NOTE - If the use of this term is followed by "octet-aligned in the ALIGNED variant", this means that the bit-field is required to
begin on an octet boundary in the complete encoding for the aligned variant of PER.

3.6.4 canonical encoding: A complete encoding of an abstract syntax value obtained by the application of encoding
rules that have no implementation-dependent options; such rules result in the definition of a 1-1 mapping between
unambiguous and unique bitstrings in the transfer syntax and values in the abstract syntax.

3.6.5
string [type.

3.6.6 composite value: The value of a composite type.

3.6.7 constrained whole number: A whole number which is constrained by PER-visible constraints’to lie within a
range [from "Ib" to "ub" with the value "Ib" less than or equal to "ub", and the values of "Ib" and-M'ub" as peymitted
valuey.
NQTE — Constrained whole numbers occur in the encoding which identifies the chosen alternative-of a’choice type, the lepgth of
chgracter, octet and bit string types whose length has been restricted by PER-visible constraints t0.a'maximum length, the cpunt of
thd number of components in a sequence-of or set-of type that has been restricted by PER:-visible constraints to a maximum

number of components, the value of an integer type that has been constrained by PER-yisible constraints to lie within finite
mihimum and maximum values, and the value that denotes an enumeration in an enumesatéd type.

3.6.8 effective size constraint (for a constrained string type): A single finite size constraint that could be applied
to a Huilt-in string type and whose effect would be to permit all and only those lengths that can be present [in the
constrpined string type.

NOTE 1 — For example, the following has an effective size constraint:

A= IASString (SIZE(1..4) | SIZE(10..15))
sinfce it can be rewritten with a single size constraint that applies to-allvalues:
A= IASString (SIZE(1..4 | 10..15))

whereas the following has no effective size constraint since(the string can be arbitrarily long if it does not contain any chgracters
other than 'a', 'b' and 'c":

B ::=1A5String (SIZE(1..4) | FROM"abc’))

NQTE 2 — The effective size constraint is used only:to determine the encoding of lengths.

3.6.9 effective permitted-alphabet constraint (for a constrained restricted character string type): A [single
permifted-alphabet constraint that could.be.applied to a built-in known-multiplier character string type and whose| effect
would be to permit all and only those characters that can be present in at least one character position of any one|of the
valueq in the constrained restricted-character string type.
NQTE 1 — For example, in:

Ax ::= | ABString ((FROM("AB') | FROM"CD'))
Bx ::= I A5Stri'ng) (Sl ZE(1..4) | FROM"abc"))
Ax has an effective permitted-alphabet constraint of " ABCD"'. Bx has an effective permitted-alphabet constraint that donsists
of the entirel /A5St r i ng alphabet since there is no smaller permitted-alphabet constraint that applies to all values of Bx.
NAOTE 2 — The, effective permitted-alphabet constraint is used only to determine the encoding of characters.

3.6.100 enwmeration index: The non-negative whole number associated with an "Enumerationltem" in an enunjerated
type. |The, enumeration indices are determined by sorting the "Enumerationltem"s into ascending order by their
enumeération—vatue—thenby-assiching—an-enumerationindex—starting—with-zero—for-the “Enun ne for
the second, and so on up to the last "Enumerationltem" in the sorted list.

NOTE — "Enumerationltem"s in the "RootEnumeration" are sorted separately from those in the "AdditionalEnumeration".

3.6.11 extensible for PER encoding: A property of a type which requires that PER identifies an encoding of a value
as that of a root value or as that of an extension addition.

NOTE - Root values are normally encoded more efficiently than extension additions.

3.6.12 field-list: An ordered set of bit-fields that is produced as a result of applying these encoding rules to
components of an abstract value.

3.6.13 indefinite-length: An encoding whose length is greater than 64K-1 or whose maximum length cannot be
determined from the ASN.1 notation.

ITU-T Rec. X.691 (07/2002) 3

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

3.6.14 fixed-length type: A type such that the value of the outermost length determinant in an encoding of this type
can be determined (using the mechanisms specified in this Recommendation | International Standard) from the type
notation (after the application of PER-visible constraints only) and is the same for all possible values of the type.

3.6.15 fixed value: A value such that it can be determined (using the mechanisms specified in this Recommendation |
International Standard) that this is the only permitted value (after the application of PER-visible constraints only) of the
type governing it.

3.6.16 known-multiplier character string type: A restricted character string type where the number of octets in the
encoding is a known fixed multiple of the number of characters in the character string for all permitted character string
values. The known-multiplier character string types are |A5String, PrintableString, VisibleString,
Nurreri cString, Uni versal String and BMPSt ri ng.

- or all

3.6.1§ normally small non-negative whole number: A part of an encoding which representsyalues [of an
unbounded non-negative integer, but where small values are more likely to occur than large ones.

3.6.19 normally small length: A length encoding which represents values of an unbounded length, but wherq small
lengths are more likely to occur than large ones.

3.6.200 non-negative-binary-integer encoding: The encoding of a constrained or semi-constrained whole number
into efther a bit-field of a specified length, or into a bit-field (octet-aligned in the ALIGNED variant) of a spgcified
lengthl, or into the minimum number of octets that will accommodate that whole ndmber encoded as a non-negative-
binary-integer which provides representations for whole numbers greater than or equalto zero, as specified in 10.3
NQTE — The value of a two's complement binary number is derived by numbering-the bits in the contents octets, startijg with
bit|1 of the last octet as bit zero and ending the numbering with bit 8 of the first’octet. Each bit is assigned a numerical vialue of
2N] where N is its position in the above numbering sequence. The value of the€two's complement binary number is obtained by
suming the numerical values assigned to each bit for those bits which are sép'to’one.

3.6.21 outermost type: An ASN.1 type whose encoding is included in a non-ASN.1 carrier or as the value of other
ASN.] constructs (see 10.1.1).

NOTE — PER encodings of an outermost type are always an integral multiple of eight bits.

3.6.22 PER-visible constraint: An instance of use of thet ASN.1 constraint notation which affects the PER en¢oding
of a value.

3.6.23 relay-safe encoding: A complete encoding of an abstract syntax value which can be decoded (including any
embedded encodings) without knowledge of thelenvironment in which the encoding was performed.

3.6.24 semi-constrained whole number:-A whole number which is constrained by PER-visible constraints to ¢xceed
or equal some value "lb" with the value 'lb" as a permitted value, and which is not a constrained whole number.
NQTE — Semi-constrained whole numbers occur in the encoding of the length of unconstrained (and in some cases constrained)

chgracter, octet and bit string types} the count of the number of components in unconstrained (and in some cases constrained)
seduence-of and set-of types, and the value of an integer type that has been constrained to exceed some minimum value.

3.6.2§ simple type: A type‘that is not a composite type.

3.6.2¢ textually dependent: A term used to identify the case where if some reference name is used in evaluafing an
element set, the vatue of the element set is considered to be dependent on that reference name, regardless of whether the
actual|set arithmetic being performed is such that the final value of the element set is independent of the actual element
set value assigned to the reference name.

NOTE™~For example, the following definition of Foo is textually dependent on Bar even though Bar has no effect on Foop set of
values (thus, according to 9.3.5 the constraint on Foo is not PER-visible since Bar is constrained by a table constraint anc*S Foo is
textually dependent on Bar).

MY- CLASS ::= CLASS { &nane PrintableString, &ge |NTEGER } W TH SYNTAX{ &ane , &age}
M/Qbj ect Set MY-CLASS ::= { {"Jack", 7} | {"Jill", 5} }

Bar ::= MY-CLASS. &ge ({M/ObjectSet})

Foo ::= INTEGER (Bar | 1..100)

3.6.27 unconstrained whole number: A whole number which is not constrained by PER-visible constraints.
NOTE — Unconstrained whole numbers occur only in the encoding of a value of the integer type.

4 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

4

ISO/IEC 8825-2:20

Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.l Abstract Syntax Notation One

BER Basic Encoding Rules of ASN.1

CER Canonical Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
PER Packed Encoding Rules of ASN.1

02 (E)

16K 16384

32K 32768

48K 49152

64K 65536
5 Notation
This Hecommendation | International Standard references the notation defined by ITU-T Rec.-X'680 | ISO/IEC 8824-1.
6 Convention
6.1 This Recommendation | International Standard defines the value of gach octet in an encoding by use [of the
terms ['most significant bit" and "least significant bit".

NQTE — Lower layer specifications use the same notation to define the order-0fbit transmission on a serial line, or the assignment
of pits to parallel channels.

6.2 For the purposes of this Recommendation | InternationakStandard, the bits of an octet are numbered from 8
to 1, where bit 8 is the "most significant bit" and bit 1 the "least significant bit".
6.3 The term "octet" is frequently used in this Recommendation | International Standard to stand for "eight bits".
The uge of this term in place of "eight bits" does not carry@ny implications of alignment. Where alignment is intended, it
is explicitly stated in this Recommendation | International Standard.
7 Encoding rules defined in this' Recommendation | International Standard
71 This Recommendation | Interhational Standard specifies four encoding rules (together with their assqciated
object] identifiers) which can be usedto encode and decode the values of an abstract syntax defined as the valugs of a
single|(known) ASN.1 type. This clause describes their applicability and properties.
7.2 Without knowledge.of the type of the value encoded, it is not possible to determine the structure [of the
encodjng (under any of the.PER encoding rule algorithms). In particular, the end of the encoding cannot be detefmined

from the encoding itself without knowledge of the type being encoded.

7.3
CHARA

7.4
BASI

PER encadings are always relay-safe provided the abstract values of the types EXTERNAL, EVBEDDED P
CTER STRI NGare constrained to prevent the carriage of OSI presentation context identifiers.

Th¢ most general encoding rule algorithm specified in this Recommendation | International Stand
C<PER, which does not in general produce a canonical encoding.

DV and

ard is

7.5

7.6

A second encoding rule algorithm specified in this Recommendation | International Standard is
CANONICAL-PER, which produces encodings that are canonical. This is defined as a restriction of implementation-
dependent choices in the BASIC-PER encoding.
NOTE 1 — CANONICAL-PER produces canonical encodings that have applications when authenticators need to be applied to
abstract values.
NOTE 2 — Any implementation conforming to CANONICAL-PER for encoding is conformant to BASIC-PER for encoding. Any

implementation conforming to BASIC-PER for decoding is conformant to CANONICAL-PER for decoding. Thus, encodings
made according to CANONICAL-PER are encodings that are permitted by BASIC-PER.

If a type encoded with BASIC-PER or CANONICAL-PER contains EMBEDDED PDV, CHARACTER STRI NG or
EXTERNAL types, then the outer encoding ceases to be relay-safe unless the transfer syntax used for all the EMBEDDED
PDV, CHARACTER STRI NG and EXTERNAL types is relay safe. If a type encoded with CANONICAL-PER contains

ITU-T Rec. X.691 (07/2002)

5

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

EMBEDDED PDV, EXTERNAL or CHARACTER STRI NG types, then the outer encoding ceases to be canonical unless the
transfer syntax used for all the EMBEDDED PDV, EXTERNAL and CHARACTER STRI NGtypes is canonical.

NOTE — The character transfer syntaxes supporting all character abstract syntaxes of the form {i so standard 10646

level -1(1)} are canonical. Those supporting {i so standard 10646 level-2(2)} and {iso
standard 10646 | evel -3(3)} arenotalways canonical. All the above character transfer syntaxes are relay-safe.
7.7 Both BASIC-PER and CANONICAL-PER come in two variants, the ALIGNED variant, and the

UNALIGNED variant. In the ALIGNED variant, padding bits are inserted from time to time to restore octet alignment.
In the UNALIGNED variant, no padding bits are ever inserted.

7.8 There are no interworking possibilities between the ALIGNED variant and the UNALIGNED variant.

7.9 PER encodings are self-delimiting only with knowledge of the type of the encoded value. Encodings are
always a multiple of eight bits. When carried in an EXTERNAL type they shall be carried in the OCTET STRI NG choice
alterngtive, unless the EXTERNAL type itself is encoded in PER, in which case the value may be encoded asga|single
ASN.] type (i.e., an open type). When carried in OSI presentation protocol, the "full encoding" (as defined in [TU-T
Rec. X.226 | ISO/IEC 8823-1) with the OCTET STRI NGchoice alternative shall be used.

7.10 The rules of this Recommendation | International Standard apply to both algorithms and tobotly'variants junless
otherwise stated.

7.11 Annex C is informative, and gives recommendations on which combinations of PER te implement in ofder to
maxinpize the chances of interworking.

8 Conformance

8.1 Dynamic conformance is specified by clause 9 onwards.

8.2 Static conformance is specified by those standards which spéeify the application of these Packed En¢oding
Rules

NQTE — Annex C provides guidance on static conformance in relation.to support for the two variants of the two encodiphg rule
algorithms. This guidance is designed to ensure interworking, while’tecognizing the benefits to some applications of en¢odings
that are neither relay-safe nor canonical.

8.3 The rules in this Recommendation | International Standard are specified in terms of an encoding prodedure.
Implementations are not required to mirror the procedure specified, provided the bit string produced as the complete
encodjng of an abstract syntax value is identical<te’ one of those specified in this Recommendation | Interngtional
Standgrd for the applicable transfer syntax.

8.4 Implementations performing decoding are required to produce the abstract syntax value corresponding fto any
received bit string which could be produced by a sender conforming to the encoding rules identified in the tfansfer
syntay associated with the material being decoded.
NOTE 1 — In general there are n0 altérnative encodings defined for the BASIC-PER explicitly stated in this Recommengation |
Intprnational Standard. The BASIC-PER becomes canonical by specifying relay-safe operation and by restricting some| of the
en¢oding options of other~ISO/IEC Standards that are referenced. CANONICAL-PER provides an alternative to b¢th the
Digtinguished Encoding,Rules and Canonical Encoding Rules (see ITU-T Rec. X.690 | ISO/IEC 8825-1) where a canonifal and
relpy-safe encoding is#equired.

NQTE 2 — When CANONICAL-PER is used to provide a canonical encoding, it is recommended that any resulting en¢rypted
hagh value that i§derived from it should have associated with it an algorithm identifier that identifies CANONICAL-PER as the
trapsformatiof, from the abstract syntax value to an initial bitstring (which is then hashed).

9 The approach to encoding used for PER

9.1 Use of the type notation

9.1.1 These encoding rules make specific use of the ASN.1 type notation as specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, and can only be applied to encode the values of a single ASN.1 type specified using that notation.

9.1.2 In particular, but not exclusively, they are dependent on the following information being retained in the ASN.1
type and value model underlying the use of the notation:

a) the nesting of choice types within choice types;

b) the tags placed on the components in a set type, and on the alternatives in a choice type, and the values
given to an enumeration;

¢) whether a set or sequence type component is optional or not;

6 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

d) whether a set or sequence type component has a DEFAULT value or not;

e) the restricted range of values of a type which arise through the application of PER-visible constraints
(only);
f) whether a component is an open type;

g) whether a type is extensible for PER encoding.

9.2 Use of tags to provide a canonical order

This Recommendation | International Standard requires components of a set type and a choice type to be canonically
ordered independent of the textual ordering of the components. The canonical order is determined by sorting the
outermost tag of each component, as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 8.6.

9.3 PER-visible constraints

NQTE — The fact that some ASN.1 constraints may not be PER-visible for the purposes of encoding and decoding does nof in any
waly affect the use of such constraints in the handling of errors detected during decoding, nor does it imply that values violating
sugh constraints are allowed to be transmitted by a conforming sender. However, this Recommendation | {ntérhational Sfandard
makes no use of such constraints in the specification of encodings.

9.3.1 Constraints that are expressed in human-readable text or in ASN.1 comment are not PER-visible.
9.3.2 Variable constraints are not PER-visible (see ITU-T Rec. X.683 | ISO/IEC 8824%4,,10.3 and 10.4).
9.3.3 Table constraints are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3)).

9.34 Component relation constraints (see ITU-T Rec. X.682 | ISO/IEC 8824-3, 10.7) are not PER-visible.

9.3.5 Constraints whose evaluation is textually dependent on a table eofistraint or a component relation confstraint
are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

9.3.6 Constraints on restricted character string types which are,not\(see ITU-T Rec. X.680 | ISO/IEC 8824-1, [clause
37) knjown-multiplier character string types are not PER-visible (see 3.6.16).

9.3.7 Pattern constraints are not PER-visible.
9.3.8 Subject to the above, all size constraints are PER=visible.

9.3.9 The effective size constraint for a constrairied type is a single size constraint such that a size is permitted|if and
only if there is some value of the constrained typelthat has that (permitted) size.

9.3.10 Permitted-alphabet constraints ofi known-multiplier character string types which are not extensiblg after
applicption of ITU-T Rec. X.680 | ISO/IEC, 8824-1, 48.3 to 48.5, are PER-visible. Permitted-alphabet constraints|which
are ex}ensible are not PER-visible.

9.3.11] The effective permitted-alphabet constraint for a constrained type is a single permitted-alphabet corfstraint
which| allows a character if and)only if there is some value of the constrained type that contains that character] If all
charagters of the type beinglconstrained can be present in some value of the constrained type, then the effective
permifted-alphabet constraint is the set of characters defined for the unconstrained type.

9.3.12) Constraints@pplied to real types are not PER-visible.

9.3.13 An inntey' type constraint applied to an unrestricted character string or embbeded-pdv type is PER-visible only
when [it is used to restrict the value of the syntaxes component to a single value, or when it is used to festrict
i dent|i f.i'eat i on to the fi xed alternative (see clauses 25 and 28).

9.3.1 Constraints on tne useiul types are not PER-visiDIe.
9.3.15 Single value subtype constraints applied to a character string type are not PER-visible.

9.3.16 Subject to the above, all other constraints are PER-visible if and only if they are applied to an integer type or to
a known-multiplier character string type.

9.3.17 In general the constraint on a type will consist of individual constraints combined using some or all of set
arithmetic, contained subtype constraints, and serial application of constraints. The following clauses specify the effect
if some of the component parts of the total constraint are PER-visible and some are not.

NOTE - See Annex B for further discussion on the effect of combining constraints that individually are PER-visible or not
PER-visible.

ITU-T Rec. X.691 (07/2002) 7

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

9.3.18 If a constraint consists of a serial application of constraints, the constraints which are not PER-visible, if any,
do not affect PER encodings, but cause the extensibility (and extension additions) present in any earlier constraints to be
removed as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 46.8.

NOTE 1 — If the final constraint in a serial application is not PER-visible, then the type is not extensible for PER-encodings, and
is encoded without an extension bit.

NOTE 2 - For example:
A= I ASString(Sl ZE(1..4))(FROM"ABCD', . ..))

has an effective permitted-alphabet constraint that consists of the entire |A5String alphabet since the extensible
permitted-alphabet constraint is not PER-visible. It has nevertheless an effective size constraint which is "SI ZE(1. . 4) ".

Similarly,
B ::= I A5String(A)
has the same effective size constraint and the same effective permitted-alphabet constraint.

9.3.19 If a constraint that is PER-visible is part of an | NTERSECTI ON construction, then the resulting constraint is
PER-Yisible, and consists of the | NTERSECTI ON of all PER-visible parts (with the non-PER-visible parts ighored). If a
constrpint which is not PER-visible is part of a UNI ON construction, then the resulting constraint is not PER~visiblg. If a
constrpint has an EXCEPT clause, the EXCEPT and the following value set is completely ignored, whether the value set

following the EXCEPT is PER-visible or not.

NOTE - For example:
A= IABString (SIZE(1..4) | NTERSECTI ON FROM "ABCD',...))
hag an effective size constraint of 1..4 but the alphabet constraint is not visible because it is extensible.

9.3.200 A type is also extensible for PER encodings (whether subsequently constrained or not) if any of the following

ocCC

9.4

ury:

a) it is derived from an ENUMERATED type (by subtyping, type, referencing, or tagging) and therq is an
extension marker in the "Enumerations" production; or

b) itis derived from a SEQUENCE type (by subtyping, type.referencing, or tagging) and there is an extpnsion
marker in the "ComponentTypeLists" or in the "SequenceType" productions; or

c) itis derived from a SET type (by subtyping, type réferencing, or tagging) and there is an extension narker
in the "ComponentTypeLists" or in the "SetType™ productions; or

d) it is derived from a CHO CE type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "AlternativeTypeLists" production.

Type and value model used for encoding

9.4.1 An ASN.1 type is either a simple type or is a type built using other types. The notation permits the use ¢f type
references and tagging of types. For the\purpose of these encoding rules, the use of type references and tagging have no
effectfon the encoding and are invisible'in the model, except as stated in 9.2. The notation also permits the applicajion of
constrpints and of error specifications. PER-visible constraints are present in the model as a restriction of the valugs of a
type. Qther constraints and errOr specifications do not affect encoding and are invisible in the PER type and value model.

9.4.2 A value to be gncoded can be considered as either a simple value or as a composite value built usipg the
structyiring mechanism§ from components which are either simple or composite values, paralleling the structure|of the

ASN.| type definition.

9.4.3 When 'a constraint includes a value as an extension addition that is present in the root, that value is always

encodgd as a-value in the root, not as a value which is an extension addition.

EXAMPEE

I NTEGER (0..10, ..., 5)

-- The value 5 encodes as a root value, not as an extension addition.
9.5 Structure of an encoding

9.5.1 These encoding rules specify:

a) the encoding of a simple value into a field-list; and

b) the encoding of a composite value into a field-list, using the field-lists generated by application of these
encoding rules to the components of the composite value; and

c) the transformation of the field-list of the outermost value into the complete encoding of the abstract
syntax value (see 10.1).

ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

Preamble Length Preamble Length Contents Preamble Length Contents

Contents

NOTE — The preamble, length, and contents are all "fields" which, concatenated together, form a "field-list". The field-list of a
composite type other than the choice type may consist of the fields of several values concatenated together. Either the preamble,
length and/or contents of any value may be missing.

Figure 1 — Encoding of a composite value into a field-list

9.5.2 The encoding of a component of a data value either:

a) consists of three parts, as shown in Figure 1, which appear in the following order:
1) apreamble (see clauses 18, 20 and 22);
2) alength determinant (see 10.9);
3) contents; or

b) (where the contents are large) consists of an arbitrary number of parts, as shown in Figure 2, of which the
first is a preamble (see clauses 18, 20 and 22) and the following parts are,pairs of bit-fields (octet-aligned
in the ALIGNED variant), the first being a length determinant for(a~fragment of the contents, aphd the
second that fragment of the contents; the last pair of fields is identified by the length determinant part, as
specified in 10.9.

Contents
Preamble Length Contents Length Contents e Length (may be
miss|ng)

Figure 2 — Encoding of a long data value

9.5.3 Each of the parts mentioned in 9.5.2 generates either:

a) anull field (nothing); or

b) abit-field (unaligned); or

c) abit-field (octet-alignediin the ALIGNED variant); or

d) a field-list which may contain either bit-fields (unaligned), bit-fields (octet-aligned in the ALIGNED
variant), or both.

9.6 Types to becencoded

9.6.1 The following clauses specify the encoding of the following types into a field-list: boolean, integer,
enumgrated, real, bitstring, octetstring, null, sequence, sequence-of, set, set-of, choice, open, object identifier, rglative
object| identifier, embedded-pdv, external, restricted character string and unrestricted character string types.

9.6.2 The selection type shall be encoded as an encoding of the selected type.

9.6.3 Encoding of tagged types is not included in this Recommendation | International Standard as, except as stated
in 9.2, tagging is not visible in the type and value model used for these encoding rules. Tagged types are thus encoded
according to the encoding of the type which has been tagged.

9.6.4 The following "useful types" shall be encoded as if they had been replaced by their definitions given in ITU-T
Rec. X.680 | ISO/IEC 8824-1, clause 41:

— generalized time;
— universal time;

— object descriptor.

Constraints on the useful types are not PER-visible. The restrictions imposed on the encoding of the generalized time
and universal time types by ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.7 and 11.8, shall apply here.

ITU-T Rec. X.691 (07/2002) 9

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

9.6.5 A type defined using a value set assignment shall be encoded as if the type had been defined using the
production specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 15.8.

10 Encoding procedures

10.1 Production of the complete encoding

10.1.1 Ifan ASN.1 type is encoded using any of the encoding rules identified by the object identifiers listed in clause
29.2 (or by direct textual reference to this Recommendation | International Standard), and the encoding is included in:

a) an ASN.I bitstring or an ASN.1 octetstring (with or without a contents constraint); or
b) ah A S AN Qpep e o

* J P
c) any part of an ASN.1 external or embedded pdv type; or

d) any carrier protocol that is not defined using ASN.1

then that ASN.1 type is defined as an outermost type for this application, and clause 10.1.2 shall apply to all encpdings
of its yalues.
NOTE 1 — This means that all complete PER encodings (for all variants) that are used in this way aré-always an integral nultiple
of pight bits.

NOTE 2 — It is possible using the Encoding Control Notation (see ITU-T Recommendation X:692/ ISO/IEC 8825-3) to spjecify a
vatiant of PER encodings in which the encoding is not padded to an octet boundary as specified in 10.1.2. Many tools suppport this
option.

NOTE 3 — It is recognized that a carrier protocol not defined using ASN.1 need not.explicitly carry the additional zero pits for
padlding (specified in 10.1.2), but can imply their presence.

10.1.2) The field-list produced as a result of applying this Recommendation | International Standard to an apstract
value pf an outermost type shall be used to produce the complete encoding of that abstract syntax value as follow§: each
field ipn the field-list shall be taken in turn and concatenated to the end of the bit string which is to form the complete
encodjng of the abstract syntax value preceded by additional zero bits for padding as specified below.

10.1.3] In the UNALIGNED variant of these encoding rulés, all fields shall be concatenated without padding|If the
result [of encoding the outermost value is an empty bit string; the bit string shall be replaced with a single octet with all
bits sdt to 0. If it is a non-empty bit string and it is not a taultiple of eight bits, (zero to seven) zero bits shall be appgended
to it td produce a multiple of eight bits.

10.1.4 In the ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without
padding, and any octet-aligned bit-fields shall\be concatenated after (zero to seven) zero bits have been concatengted to
make the length of the encoding produced so“far a multiple of eight bits. If the result of encoding the outermost vplue is
an empty bit string, the bit string shall be.replaced with a single octet with all bits set to 0. If it is a non-empty biff string
and it[is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.

NQTE — The encoding of the outermost value is the empty bit string if, for example, the abstract syntax value is of the null type or
of hn integer type constrained(to ja‘single value.

—

10.1.5§ The resulting bitstring is the complete encoding of the abstract syntax value of an outermost type.

10.2 Open type-fields

10.2.1] In order’to encode an open type field, the value of the actual type occupying the field shall be encoddd to a
field-lgst which shall then be converted to a complete encoding of an abstract syntax value as specified in 10.1 to
produge’an octet string of length "n" (say).

10.2.2 The field-list for the value in which the open type is to be embedded shall then have added to it (as specified
in 10.9) an unconstrained length of "n" (in units of octets) and an associated bit-field (octet-aligned in the ALIGNED
variant) containing the bits produced in 10.2.1.

NOTE — Where the number of octets in the open type encoding is large, the fragmentation procedures of 10.9 will be used, and

the encoding of the open type will be broken without regard to the position of the fragment boundary in the encoding of the type
occupying the open type field.

10.3 Encoding as a non-negative-binary-integer

NOTE — (Tutorial) This subclause gives precision to the term "non-negative-binary-integer encoding", putting the integer into a
field which is a fixed number of bits, a field which is a fixed number of octets, or a field that is the minimum number of octets
needed to hold it.

10 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

10.3.1 Subsequent subclauses refer to the generation of a non-negative-binary-integer encoding of a non-negative
whole number into a field which is either a bit-field of specified length, a single octet, a double octet, or the minimum
number of octets for the value. This subclause (10.3) specifies the precise encoding to be applied when such references
are made.

10.3.2 The leading bit of the field is defined as the leading bit of the bit-field, or as the most significant bit of the first
octet in the field, and the trailing bit of the field is defined as the trailing bit of the bit-field or as the least significant bit
of the last octet in the field.

10.3.3 For the following definition only, the bits shall be numbered zero for the trailing bit of the field, one for the
next bit, and so on up to the leading bit of the field.

10.3.4 In a non-negative-binary-integer encoding, the value of the whole number represented by the encoding shall be
the sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n" which is set to
"1" hds the value 2".

10.3. The encoding which sums (as defined above) to the value being encoded is an encoding of that value.

NOTE — Where the size of the encoded field is fixed (a bit-field of specified length, a single octet, or a double ©gtet), then there is
a unique encoding which sums to the value being encoded.

10.3.4 A minimum octet non-negative-binary-integer encoding of the whole number (which“do€s not predet¢grmine
the nymber of octets to be used for the encoding) has a field which is a multiple of eight bits and also satisfles the
condifiion that the leading eight bits of the field shall not all be zero unless the field is precisely’eight bits long.

NOTE — This is a necessary and sufficient condition to produce a unique encoding.

104 Encoding as a 2's-complement-binary-integer

NOTE — (Tutorial) This subclause gives precision to the term "2's-complement-binary-integer encoding”, putting a signed [integer
intp a field that is the minimum number of octets needed to hold it. Theses procedures are referenced in later ercoding
spdcifications.

10.4.1 Subsequent subclauses refer to the generation of a 2's-compleément-binary-integer encoding of a whole number
(which may be negative, zero, or positive) into the minimum pumber of octets for the value. This subclause [(10.4)
specifjes the precise encoding to be applied when such references are made.

10.4.2) The leading bit of the field is defined as the mostsignificant bit of the first octet, and the trailing bit of thie field
is defined as the least significant bit of the last octet.

10.4.3 For the following definition only, the bits\shall be numbered zero for the trailing bit of the field, one for the
next bjit, and so on up to the leading bit of the field-

10.4.4 In a 2's-complement-binary-integer-encoding, the value of the whole number represented by the encoding shall

be the| sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n" which is
set to |'1" has the value 2" unless it is'the leading bit, in which case it has the (negative) value —2".

10.4.§ Any encoding which.sums (as defined above) to the value being encoded is an encoding of that value.

10.4.¢ A minimum octet 2’s-complement-binary-integer encoding of the whole number has a field-width thht is a
multigle of eight bits and-also satisfies the condition that the leading nine bits of the field shall not all be zero and shall
not al] be ones.

NQTE - This is aJtecessary and sufficient condition to produce a unique encoding.

10.5 Encoding of a constrained whole number
NQTE~- (Tutorial) This subclause is referenced by other clauses, and itself references earlier clauses for the production off a non-

ne ﬂliVC"Uillaly‘llllCéCl Ul a ﬂ'b'bUlllp‘lClllCllL“L}illdly‘illlcscl CllbU\,‘lills. FUI LllC {JYI‘IALIGI‘IED ValiallL LllC leuc ib aiwa_yb lcoded
in the minimum number of bits necessary to represent the range (defined in 10.5.3). The rest of this Note addresses the ALIGNED
variant. Where the range is less than or equal to 255, the value encodes into a bit-field of the minimum size for the range. Where
the range is exactly 256, the value encodes into a single octet octet-aligned bit-field. Where the range is 257 to 64K, the value
encodes into a two octet octet-aligned bit-field. Where the range is greater than 64K, the range is ignored and the value encodes
into an octet-aligned bit-field which is the minimum number of octets for the value. In this latter case, later procedures (see 10.9)
also encode a length field (usually a single octet) to indicate the length of the encoding. For the other cases, the length of the
encoding is independent of the value being encoded, and is not explicitly encoded.

10.5.1 This subclause (10.5) specifies a mapping from a constrained whole number into either a bit-field (unaligned)
or a bit-field (octet-aligned in the ALIGNED variant), and is invoked by later clauses in this Recommendation |
International Standard.

ITU-T Rec. X.691 (07/2002) 11

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

10.5.2 The procedures of this subclause are invoked only if a constrained whole number to be encoded is available,
and the values of the lower bound, "1b", and the upper bound, "ub", have been determined from the type notation (after
the application of PER-visible constraints).

NOTE — A lower bound cannot be determined if M N evaluates to an infinite number, nor can an upper bound be determined if
MAX evaluates to an infinite number. For example, no upper or lower bound can be determined for | NTEGER(M N. . MAX) .

10.5.3 Let "range" be defined as the integer value ("ub" —"1b" + 1), and let the value to be encoded be "n".
10.5.4 If"range" has the value 1, then the result of the encoding shall be an empty bit-field (no bits).

10.5.5 There are five other cases (leading to different encodings) to consider, where one applies to the UNALIGNED
variant and four to the ALIGNED variant.

10.5.6 In the case of the UNALIGNED variant the value ("n"—"lb") shall be encoded as a non-negative-
binary-integer in a bit-1icld as specilied in 0.3 with the minimum number ol bits necessary to represent the range.

NQTE — If "range" satisfies the inequality 2™ < "range" < 2™ * | then the number of bits =m + 1.

10.5.7 In the case of the ALIGNED variant the encoding depends on whether:

a) "range" is less than or equal to 255 (the bit-field case);

b) '"range" is exactly 256 (the one-octet case);

c) '"range" is greater than 256 and less than or equal to 64K (the two-octet case);

d) '"range" is greater than 64K (the indefinite length case).

10.5.7.1 (The bit-field case.) If "range" is less than or equal to 255, then invoeatien of this subclause requites the
genergtion of a bit-field with a number of bits as specified in the table below, and eontaining the value ("n" — "lb[') as a
non-nggative-binary-integer encoding in a bit-field as specified in 10.3.

"range" Bit-field size (in bits)
2

3,4
5,6,7,8
9to 16

17 to 32
33 to 64
6510128
129 to 255

0 9 AN N B W N

10.5.72 (The one-octet case.) If therange has a value of 256, then the value ("n" — "lb") shall be encoded in a on¢-octet
bit-field (octet-aligned in the ALIGNED variant) as a non-negative-binary-integer as specified in 10.3.

10.5.7.3 (The two-octet case.)If the "range" has a value greater than or equal to 257 and less than or equal to 64K, then
the vdlue ("n" — "lb") shall-be encoded in a two-octet bit-field (octet-aligned in the ALIGNED variant) as 4 non-
negative-binary-integereneoding as specified in 10.3.

10.5.74 (The indefinite length case.) Otherwise, the value ("n" — "Ib") shall be encoded as a non-negative-Qinary-
integer in a bit:field (octet-aligned in the ALIGNED variant) with the minimum number of octets as specified i 10.3,
and the numbet of octets "len" used in the encoding is used by other clauses that reference this subclause to spe¢ify an
encodjng-of the length.

10.6 Encoding of a normally small non-negative whole number
NOTE - (Tutorial) This procedure is used when encoding a non-negative whole number that is expected to be small, but whose
size is potentially unlimited due to the presence of an extension marker. An example is a choice index.

10.6.1 If the non-negative whole number, "n", is less than or equal to 63, then a single-bit bit-field shall be appended
to the field-list with the bit set to 0, and "n" shall be encoded as a non-negative-binary-integer into a 6-bit bit-field.

10.6.2 If "n" is greater than or equal to 64, a single-bit bit-field with the bit set to 1 shall be appended to the field-list.
The value "n" shall then be encoded as a semi-constrained whole number with "lb" equal to 0 and the procedures of
10.9 shall be invoked to add it to the field-list preceded by a length determinant.

12 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

10.7 Encoding of a semi-constrained whole number

NOTE — (Tutorial) This procedure is used when a lower bound can be identified but not an upper bound. The encoding procedure
places the offset from the lower bound into the minimum number of octets as a non-negative-binary-integer, and requires an
explicit length encoding (typically a single octet) as specified in later procedures.

10.7.1 This subclause specifies a mapping from a semi-constrained whole number into a bit-field (octet-aligned in the
ALIGNED variant), and is invoked by later clauses in this Recommendation | International Standard.

10.7.2 The procedures of this subclause (10.7) are invoked only if a semi-constrained whole number ("n" say) to be
encoded is available, and the value of "Ib" has been determined from the type notation (after the application of
PER-visible constraints).

NOTE — A lower bound cannot be determined if M N evaluates to an infinite number. For example, no lower bound can be
determined for | NTEGER(M N. . MAX) .

10.7.3] The procedures of this subclause always produce the indefinite length case.

10.7.4 (The indefinite length case.) The value ("n" — "Ib") shall be encoded as a non-negative-binary-integer ir} a bit-
field (octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 10.35and the number
of octpts "len" used in the encoding is used by other clauses that reference this subclause to specify an €ncoding|of the
length{

10.8 Encoding of an unconstrained whole number

NQTE — (Tutorial) This case only arises in the encoding of the value of an integer type with 'vio lower bound. The prqcedure
eng¢odes the value as a 2's-complement-binary-integer into the minimum number of octets required to accommodate the engoding,
andl requires an explicit length encoding (typically a single octet) as specified in later proéedures.

10.8.1] This subclause (10.8) specifies a mapping from an unconstrained whole number ("n" say) into a bit-field
(octetaligned in the ALIGNED variant), and is invoked by later clauses in this Recommendation | Interngtional
Standgrd.

10.8.2] The procedures of this subclause always produce the indefinite length case.

10.8.3 (The indefinite length case.) The value "n" shall be encoded as a 2's-complement-binary-integer in a bjt-field
(octetqaligned in the ALIGNED variant) with the minimum humber of octets as specified in 10.4, and the number of
octets|"len" used in the encoding is used by other clausesithat reference this subclause to specify an encoding |of the
length{

10.9 General rules for encoding a length-determinant

NQTE 1 — (Tutorial) The procedures of this-stbeclause are invoked when an explicit length field is needed for some parf of the
engoding regardless of whether the length count is bounded above (by PER-visible constraints) or not. The part of the encoding to
whiich the length applies may be a bit string (with the length count in bits), an octet string (with the length count in odtets), a
knpwn-multiplier character string (withithe length count in characters), or a list of fields (with the length count in componepts of a
sequence-of or set-of).
NQTE 2 — (Tutorial) In the case,of the ALIGNED variant if the length count is bounded above by an upper bound that is lgss than
64K, then the constrained whele number encoding is used for the length. For sufficiently small ranges the result is a bjt-field,
otlerwise the unconstrained deéngth ("n" say) is encoded into an octet-aligned bit-field in one of three ways (in order of incfeasing
sizp):
a) ("n" lesSthan 128) a single octet containing "n" with bit 8 set to zero;
b) ("n"Jessthan 16K) two octets containing "n" with bit 8 of the first octet set to 1 and bit 7 set to zero;
c¢) arge "n") a single octet containing a count "m" with bit 8 set to 1 and bit 7 set to 1. The count "m" is one to four, and
the length indicates that a fragment of the material follows (a multiple "m" of 16K items). For all values of "m", the
fragment is then followed by another length encoding for the remainder of the material.
NQTE-3 — (Tutorial) In the UNALIGNED variant. if the length count is bounded above by an upper bound that is less than 64K,

then the constrained whole number encoding is used to encode the length in the minimum number of bits necessary to represent
the range. Otherwise, the unconstrained length ("n" say) is encoded into a bit-field in the manner described above in Note 2.

10.9.1 This subclause is not invoked if, in accordance with the specification of later clauses, the value of the length
determinant, "n", is fixed by the type definition (constrained by PER-visible constraints) to a value less than 64K.

10.9.2 This subclause is invoked for addition to the field-list of a field, or list of fields, preceded by a length
determinant "n" which determines either:

a) the length in octets of an associated field (units are octets); or

b) the length in bits of an associated field (units are bits); or

¢) the number of component encodings in an associated list of fields (units are components of a set-of or
sequence-of); or

ITU-T Rec. X.691 (07/2002) 13

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/1

10.9.3

EC 8825-2:2002 (E)

d) the number of characters in the value of an associated known-multiplier character string type (units are

characters).

(ALIGNED variant) The procedures for the ALIGNED variant are specified in 10.9.3.1 to 10.9.3.8.4. (The
procedures for the UNALIGNED variant are specified in 10.9.4.)

10.9.3.1 As a result of the analysis of the type definition (specified in later clauses) the length determinant (a whole
number "n") will have been determined to be either:

a) anormally small length with a lower bound "lb" equal to one; or

b) a constrained whole number with a lower bound "Ib" (greater than or equal to zero), and an upper bound

"ub" less than 64K; or

c) asemi-constrained whole number with a lower bound "Ib" (greater than or equal to zero), or a constrained

10.9.32 The subclauses invoking the procedures of this subclause will have determined a value for "Ib); the

bound

if therp is no upper bound determinable from PER-visible constraints.

WIToIT TTUmber WitlT @ tower bournd 1b“(greater tam or equat 1o Zero) and amm upper pound “ub g

than or equal to 64K.

of the length (this is zero if the length is unconstrained), and for "ub", the upper bound of the lenigth: "ub" i

reater

lower
unset

10.9.3.3 Where the length determinant is a constrained whole number with "ub" less than 64K then the field-list shall

have 4

is nonl-zero, this shall be followed by the associated field or list of fields, completing.thése procedures. If "n"

there {
N(

N(

whien these procedures are invoked to add an octet-aligned-bit-figld\of zero length, unless required by 10.5.

10.9.3
field {
binary,

greater than 64, a single-bit bit-field shall be appénded to the field-list with the bit set to 1, followed by the encod

n.n

n" as
10.9.3

N(
set]

10.9.3

associpted fields as specified-below.

N(

10.9.3
proce
This s
field d

N(

ppended to it the encoding of the constrained whole number for the length determinarit as specified in 10.5.

hall be no further addition to the field-list, completing these procedures.

TE 1 — For example:
A ::=1A5String (SIZE (3..6)) -- Length is encoded j<n,a 2-bit bit-field.
B ::= 1A5String (SIZE (40000..40254)) -- Length is encoded in an 8-bit bit-field.
C::=1A5String (SIZE (0..32000)) -- Length is encoded in a 2-octet

-- bit-fieldNoetet-aligned in the ALI GNED variant}.

D::=1A5String (SIZE (64000)) -- Length Gi'sonot encoded.

If "n"
S ZCro

TE 2 — The effect of making no addition in the case of "n" equals zero is that padding to an octet boundary does not occur

.4 Where the length determinant is a normally small’' length and "n" is less than or equal to 64, a single-l

it bit-

hall be appended to the field-list with the bit set\to 0, and the value "n—1" shall be encoded as a non-negative-

-integer into a 6-bit bit-field. This shall be followed by the associated field, completing these procedures. If

an unconstrained length determinant followed by the associated field, according to the procedures of 10.9
.8.4.

TE — Normally small lengths are onlyrused to indicate the length of the bitmap that prefixes the extension addition valy
or sequence type.

LS Otherwise (unconstrained”length, or large "ub"), "n" is encoded and appended to the field-list followed

TE — The lower bound, “Ib", does not affect the length encodings specified in 10.9.3.6 to 10.9.3.8.4.

L6 If "n" is leSs“than or equal to 127, then "n" shall be encoded as a non-negative-binary-integer (usi

lures of 10.3)rinto bits 7 (most significant) to 1 (least significant) of a single octet and bit 8 shall be set t

hall be appended to the field-list as a bit-field (octet-aligned in the ALIGNED variant) followed by the assq

r list of fields, completing these procedures.

TE ~For example, if in the following a value of A is 4 characters long, and that of B is 4 items long:
A - - = | ARString

B ::= SEQUENCE (S| ZE (4..123456)) OF | NTEGER

Hnl’ iS
ing of
3.5t0

esofa
by the
hg the

Zero.
ciated

both values are encoded with the length octet occupying one octet, and with the most significant set to 0 to indicate that the length

is 1

14

ess than or equal to 127:

0 0000100 4 characters/items

Length Value

ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

10.9.3.7 If "n" is greater than 127 and less than 16K, then "n" shall be encoded as a non-negative-binary-integer (using
the procedures of 10.3) into bit 6 of octet one (most significant) to bit 1 of octet two (least significant) of a two-octet bit-
field (octet-aligned in the ALIGNED variant) with bit 8 of the first octet set to 1 and bit 7 of the first octet set to zero.
This shall be appended to the field-list followed by the associated field or list of fields, completing these procedures.
NOTE - If in the example of 10.9.3.6 a value of A is 130 characters long, and a value of B is 130 items long, both values are

encoded with the length component occupying 2 octets, and with the two most significant bits (bits 8 and 7) of the octet set to 10
to indicate that the length is greater than 127 but less than 16K.

10 000000 10000010

130 characters/items

Length Value

t-field
D, 3 or
of the

10.9.3.8 If "n" is greater than or equal to 16K, then there shall be appended to the field-list a single octet il a b
(octetqaligned in the ALIGNED variant) with bit 8 set to 1 and bit 7 set to 1, and bits 6 to 1 encoding the value 1,
4 as 4 non-negative-binary-integer (using the procedures of 10.8). This single octet shall be followéd by part
associpted field or list of fields, as specified below.

NOTE — The value of bits 6 to 1 is restricted to 1-4 (instead of the theoretical limits of 0-63) so as todimit the number of items
that an implementation has to have knowledge of to a more manageable number (64K instead of 1024K)>

10.9.3.8.1 The value of bits 6 to 1 (1 to 4) shall be multiplied by 16K giving a counfA"m" say). The choice
integef in bits 6 to 1 shall be the maximum allowed value such that the associated field ‘or list of fields contain
than or exactly "m" octets, bits, components or characters, as appropriate.

NQTE 1 — The unfragmented form handles lengths up to 16K. The fragmentation thefefore provides for lengths up to 64K
grgnularity of 16K.

of the
more

with a

NQTE 2 — If in the example of 10.9.3.6 a value of "B" is 144K + 1 (i.e.,,.64K + 64K + 16K + 1) items long, the value is
fragmented, with the two most significant bits (bits 8 and 7) of the first threefragments set to 11 to indicate that one to four{blocks
eadh of 16K items follow, and that another length component will follow the last block of each fragment:
| | K |
11 1000100 64K items 11 000100 64K items N 000001 16K items 0 0000001 1 itgm
| | | |
[ength Value Length Value Length Value Length Vilue
10.9.3(8.2 That part of the contents specified by "m" shall then be appended to the field-list as either:
a) a single bit-field (octet-aligned in the ALIGNED variant) of "m" octets containing the first "m" odtets of
the associated field, fortunits which are octets; or
b) a single bit-field (gctet-aligned in the ALIGNED variant) of "m" bits containing the first "m" bits|of the
associated fields/for. units which are bits; or
c) the list of fields encoding the first "m" components in the associated list of fields, for units which are
components_of a set-of or sequence-of types; or
d) a single-bit-field (octet-aligned in the ALIGNED variant) of "m" characters containing the firyt "m"
characters of the associated field, for units which are characters.
10.9.3(8.3 The procedures of 10.9 shall then be reapplied to add the remaining part of the associated field or|list of
fields [to_the field-list with a length which is a semi-constrained whole number equal to ("n" — "m") with a lower bound
of zer¢.

NOTE - If the last fragment that contains part of the encoded value has a length that is an exact multiple of 16K, it is followed by
a final fragment that consists only of a single octet length component set to 0.

10.9.3.8.4

The addition of only a part of the associated field(s) to the field-list with reapplication of these proc

is called the fragmentation procedure.

10.9.4

procedures for the ALIGNED variant are specified in 10.9.3).

edures

(UNALIGNED variant) The procedures for the UNALIGNED variant are specified in 10.9.4.1 to 10.9.4.2 (the

10.9.4.1 If the length determinant "n" to be encoded is a constrained whole number with "ub" less than 64K, then ("n"-
"Ib") shall be encoded as a non-negative-binary-integer (as specified in 10.3) using the minimum number of bits
necessary to encode the "range" ("ub" — "Ib" + 1), unless "range" is 1, in which case there shall be no length encoding. If

ITU-T Rec. X.691 (07/2002) 15

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

"n" is non-zero this shall be followed by an associated field or list of fields, completing these procedures. If "n" is zero
there shall be no further addition to the field-list, completing these procedures.

NOTE — If "range" satisfies the inequality 2™ < "range" < 2™ * ! then the number of bits in the length determinant is m + 1.
10.9.4.2 If the length determinant "n" to be encoded is a normally small length, or a constrained whole number with

"ub" greater than or equal to 64K, or is a semi-constrained whole number, then "n" shall be encoded as specified in
10.9.3.4t0 10.9.3.8.4.

NOTE — Thus, if "ub" is greater than or equal to 64K, the encoding of the length determinant is the same as it would be if the
length were unconstrained.

11 Encoding the boolean type

11.1 A value of the boolean type shall be encoded as a bit-field consisting of a single bat.
11.2 The bit shall be set to 1 for TRUE and 0 for FALSE.

11.3 The bit-field shall be appended to the field-list with no length determinant.

12 Encoding the integer type

NQTE 1 — (Tutorial ALIGNED variant) Ranges which allow the encoding of all values into on€ ectét or less go into a mifimum-
sizpd bit-field with no length count. Ranges which allow encoding of all values into two\ottets go into two octety in an
ocfet-aligned bit-field with no length count. Otherwise, the value is encoded into the minimum number of octets (usirjg non-
negative-binary-integer or 2's-complement-binary-integer encoding as appropriate) and a 1€ngth determinant is added. In thjs case,
if the integer value can be encoded in less than 127 octets (as an offset from any lowerdound that might be determined), arnld there
is fo finite upper and lower bound, there is a one-octet length determinant, else the length is encoded in the fewest number of bits
ne¢ded. Other cases are not of any practical interest, but are specified for completeness.

=

NQTE 2 — (Tutorial UNALIGNED variant) Constrained integers are encodéd ii'the fewest number of bits necessary to represent
thq range regardless of its size. Unconstrained integers are encoded as in Nete'1.

12.1 If an extension marker is present in the constraint specification of the integer type, then a single bit shall be
added|to the field-list in a bit-field of length one. The bit shall*be set to 1 if the value to be encoded is not within the
range [of the extension root, and zero otherwise. In the formeér case, the value shall be added to the field-list| as an
unconftrained integer value, as specified in 12.2.4 to 12.26, completing this procedure. In the latter case, the valug shall
be endoded as if the extension marker is not present.

12.2 If an extension marker is not present.in the constraint specification of the integer type, then the following
applie

12

12.2.1] If PER-visible constraints restrict the integer value to a single value, then there shall be no addition to thg field-
list, cgmpleting these procedures.

12.2.2) If PER-visible constraifits~testrict the integer value to be a constrained whole number, then it shall be
convefted to a field accordingto, the procedures of 10.5 (encoding of a constrained whole number), and the procpdures
of 12.D.5 to 12.2.6 shall therCb¢applied.

12.2.3 If PER-visiblevcenstraints restrict the integer value to be a semi-constrained whole number, then it shall be
convelted to a field according to the procedures of 10.7 (encoding of a semi-constrained whole number), and the
procedlures of 12.26"shall then be applied.

12.2.4 If PER-visible constraints do not restrict the integer to be ecither a constrained or a semi-constrained [whole
numbgr, thert it shall be converted to a field according to the procedures of 10.8 (encoding of an unconstrained [whole
numbg¢r)yand the procedures of 12.2.6 shall then be applied.

12.2.5 If the procedures invoked to encode the integer value into a field did not produce the indefinite length case
(see 10.5.7.4 and 10.8.2), then that field shall be appended to the field-list completing these procedures.

12.2.6 Otherwise, (the indefinite length case) the procedures of 10.9 shall be invoked to append the field to the field-
list preceded by one of the following:

a) A constrained length determinant "len" (as determined by 10.5.7.4) if PER-visible constraints restrict the
type with finite upper and lower bounds and, if the type is extensible, the value lies within the range of
the extension root. The lower bound "lb" used in the length determinant shall be 1, and the upper bound
"ub" shall be the count of the number of octets required to hold the range of the integer value.

NOTE - The encoding of the value "foo |NTEGER (256..1234567) ::= 256" would thus be encoded
as 00xxxxxx00000000, where each 'x' represents a zero pad bit that may or may not be present depending on

16 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

where within the octet the length occurs (e.g., the encoding is 00 xxxxxx 00000000 if the length starts on an octet
boundary, and 00 00000000 if it starts with the two least signigicant bits (bits 2 and 1) of an octet).

b) An unconstrained length determinant equal to "len" (as determined by 10.7 and 10.8) if PER-visible
constraints do not restrict the type with finite upper and lower bounds, or if the type is extensible and the
value does not lie within the range of the extension root.

13 Encoding the enumerated type

NOTE — (Tutorial) An enumerated type without an extension marker is encoded as if it were a constrained integer whose subtype
constraint does not contain an extension marker. This means that an enumerated type will almost always in practice be encoded as
a bit-field in the smallest number of bits needed to express every enumeration. In the presence of an extension marker, it is
encoded as a normally small non-negative whole number if the value is not in the extension root.

13.1 The enumerations in the enumeration root shall be sorted into ascending order by their enumeration valye, and
shall then be assigned an enumeration index starting with zero for the first enumeration, one for the second, and,sq on up
to the|last enumeration in the sorted list. The extension additions (which are always defined in ascending ©order) shall be
assigned an enumeration index starting with zero for the first enumeration, one for the second, and so‘on.Gp to the last
enumgration in the extension additions.

NQTE — ITU-T Rec. X.680 | ISO/IEC 8824-1 requires that each successive extension addition shall hdveld greater enumeration
value than the last.

13.2 If the extension marker is absent in the definition of the enumerated type, then the enumeration index shall be
encodpd. Its encoding shall be as though it were a value of a constrained integer type, for which there is no extension
marker present, where the lower bound is 0 and the upper bound is the largest enumeration index associated wjth the
type, ¢gompleting this procedure.

13.3 If the extension marker is present, then a single bit shall be added/to the field-list in a bit-field of length one.
The bjt shall be set to 1 if the value to be encoded is not within the exténsion root, and zero otherwise. In the former
case, the enumeration additions shall be sorted according to 13.1 and<the value shall be added to the field-ligt as a
normdlly small non-negative whole number whose value is the enumeration index of the additional enumeratign and
with "llb" set to 0, completing this procedure. In the latter case, the value shall be encoded as if the extension mayker is
not present, as specified in 13.2.

NQTE — There are no PER-visible constraints that can be applied to an enumerated type that are visible to these encoding rjiles.

14 Encoding the real type

NOTE — (Tutorial) A real uses the contents octets of CER/DER preceded by a length determinant that will in practice be 4 single
octet.

14.1 If the base of the abstract value is 10, then the base of the encoded value shall be 10, and if the base|of the
abstrapt value is 2 the base of the encoded value shall be 2.

14.2 The encoding of REAL specified for CER and DER in ITU-T Rec. X.690 | ISO/IEC 8825-1 shall be applied to
give g bit-field (octet-aligned i’ the ALIGNED variant) which is the contents octets of the CER/DER encoding. The
contejts octets of this eneoding consists of "n" (say) octets and is placed in a bit-field (octet-aligned in the ALIGNED
variant) of "n" octets. The-procedures of 10.9 shall be invoked to append this bit-field (octet-aligned in the ALIGNED
varianit) of "n" octets\to-the field-list, preceded by an unconstrained length determinant equal to "n".

15 Encoding the bitstring type
NQTE3 (Tutorial) Bitstrings constrained to a fixed length less than or equal to 16 bits do not cause octet alignment. [Larger

. dlC '-: 'l C A -"' vdlld . C ICIE T XCU DY O . dlldl C Uppc DOU . C 1’164K,
there is no explicit length encoding, otherwise a length encoding is included which can take any of the forms specified earlier for
length encodings, including fragmentation for large bit strings.

15.1 PER-visible constraints can only constrain the length of the bitstring.

15.2 Where there are no PER-visible constraints and ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.7, applies the value
shall be encoded with no trailing 0 bits (note that this means that a value with no 1 bits is always encoded as an empty
bit string).

15.3 Where there is a PER-visible constraint and ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.7, applies (i.e. the
bitstring type is defined with a "NamedBitList"), the value shall be encoded with trailing 0 bits added or removed as
necessary to ensure that the size of the transmitted value is the smallest size capable of carrying this value and satisfies
the effective size constraint.

ITU-T Rec. X.691 (07/2002) 17

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

15.4 Let the maximum number of bits in the bitstring (as determined by PER-visible constraints on the length) be
"ub" and the minimum number of bits be "Ib". If there is no finite maximum we say that "ub" is unset. If there is no
constraint on the minimum, then "lb" has the value zero. Let the length of the actual bit string value to be encoded be
"n" bits.

15.5 When a bitstring value is placed in a bit-field as specified in 15.6 to 15.11, the leading bit of the bitstring value
shall be placed in the leading bit of the bit-field, and the trailing bit of the bitstring value shall be placed in the trailing
bit of the bit-field.

15.6 If an extension marker is present in the size constraint specification of the bitstring type, a single bit shall be
added to the field-list in a bit-field of length one. The bit shall be set to 1 if the length of this encoding is not within the
range of the extension root, and zero otherwise. In the former case, 15.11 shall be invoked to add the length as a semi-
constrained whole number to the field-list, followed by the bitstring value. In the latter case the length and value shall be

1 oyl - . 1 - " -
encodpdasiftheextenstomrmmarker s ot presentt

15.7 If an extension marker is not present in the constraint specification of the bitstring type, then 15:8)to| 15.11
apply |
15.8 If the bitstring is constrained to be of zero length ("ub" equals zero), then it shall not be encodéd (no addlitions

to thelfield-list), completing the procedures of this clause.

15.9 If all values of the bitstring are constrained to be of the same length ("ub" equals ~1b") and that length |is less
than or equal to sixteen bits, then the bitstring shall be placed in a bit-field of the constrained-length "ub" which shall be
appenfled to the field-list with no length determinant, completing the procedures of this clause.

15.10| Ifall values of the bitstring are constrained to be of the same length ("ub" equals "1b") and that length is greater
than sfxteen bits but less than 64K bits, then the bitstring shall be placed in a bit-field (octet-aligned in the ALIGNED
varianft) of length "ub" (which is not necessarily a multiple of eight bits) and shall be appended to the field-list with no
lengthl determinant, completing the procedures of this clause.

15.11 If 15.8-15.10 do not apply, the bitstring shall be placed in d\bit-field (octet-aligned in the ALIGNED vhpriant)
of length "n" bits and the procedures of 10.9 shall be invoked toradd this bit-field (octet-aligned in the ALIGNED
variant) of "n" bits to the field-list, preceded by a length determifiant equal to "n" bits as a constrained whole nurhber if
"ub" i set and is less than 64K or as a semi-constrained wholéumber if "ub" is unset. "lb" is as determined abovq.

NQTE — Fragmentation applies for unconstrained or large "ub™after 16K, 32K, 48K or 64K bits.

16 Encoding the octetstring type

NOTE — Octet strings of fixed length less than‘or.equal to two octets are not octet-aligned. All other octet strings are octet-pligned
in the ALIGNED variant. Fixed length octet.strings encode with no length octets if they are shorter than 64K. For uncongtrained
ocfet strings the length is explicitly encoded (with fragmentation if necessary).

16.1 PER-visible constraints can only constrain the length of the octetstring.

16.2 Let the maximum nymber of octets in the octetstring (as determined by PER-visible constraints on the length)
be "ul)" and the minimum ndmber of octets be "Ib". If there is no finite maximum we say that "ub" is unset. If therp is no
constrpint on the minimuiathen "lb" has the value zero. Let the length of the actual octetstring value to be encogled be

n.n

n" ogtets.

16.3 If there-is/a PER-visible size constraint and an extension marker is present in it, a single bit shall be added to
the fidld-list in‘a\bit-field of length one. The bit shall be set to 1 if the length of this encoding is not within the rapge of
the exftensionytoot, and zero otherwise. In the former case 16.8 shall be invoked to add the length as a semi-consfrained
whole| number to the field-list, followed by the octetstring value. In the latter case the length and value shall be ejcoded
as if the extension marker is not present

16.4 If an extension marker is not present in the constraint specification of the octetstring type, then 16.5 to 16.8
apply.
16.5 If the octetstring is constrained to be of zero length ("ub" equals zero), then it shall not be encoded (no

additions to the field-list), completing the procedures of this clause.

16.6 If all values of the octetstring are constrained to be of the same length ("ub" equals "1b") and that length is less
than or equal to two octets, the octetstring shall be placed in a bit-field with a number of bits equal to the constrained
length "ub" multiplied by eight which shall be appended to the field-list with no length determinant, completing the
procedures of this clause.

16.7 If all values of the octetstring are constrained to be of the same length ("ub" equals "Ib") and that length is
greater than two octets but less than 64K, then the octetstring shall be placed in a bit-field (octet-aligned in the

18 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

ALIGNED variant) with the constrained length "ub" octets which shall be appended to the field-list with no length
determinant, completing the procedures of this clause.

16.8 If 16.5 to 16.7 do not apply, the octetstring shall be placed in a bit-field (octet-aligned in the ALIGNED
variant) of length "n" octets and the procedures of 10.9 shall be invoked to add this bit-field (octet-aligned in the
ALIGNED variant) of "n" octets to the field-list, preceded by a length determinant equal to "n" octets as a constrained
whole number if "ub" is set, and as a semi-constrained whole number if "ub" is unset. "lIb" is as determined above.

NOTE - The fragmentation procedures may apply after 16K, 32K, 48K, or 64K octets.

17 Encoding the null type

NOTE — (Tutorial) The null type is essentially a place holder, with practical meaning only in the case of a choice or an optional

set-or sequence component Identification of the null in a choice ar its presence as an npfinna] element ig pprfnrmpﬂ in these
engoding rules without the need to have octets representing the null. Null values therefore never contribute to the octets of an
en¢oding.

There|shall be no addition to the field-list for a null value.

18 Encoding the sequence type

NQTE — (Tutorial) A sequence type begins with a preamble which is a bit-map. If the sequencel type has no extension fnarker,
than the bit-map merely records the presence or absence of default and optional components inth€type, encoded as a fixed length
bitifield. If the sequence type does have an extension marker, then the bit-map is preceded by-a\single bit that says whether values
of pxtension additions are actually present in the encoding. The preamble is encoded without-any length determinant provided it is
lesp than 64K bits long, otherwise a length determinant is encoded to obtain fragmentation="The preamble is followed by thp fields
that encode each of the components, taken in turn. If there are extension additions)then immediately before the first|one is
engoded there is the encoding (as a normally small length) of a count of the miumber of extension additions in the typ¢ being
engoded, followed by a bit-map equal in length to this count which records thie presence or absence of values of each exfension
addlition. This is followed by the encodings of the extension additions as if edch ne was the value of an open type field.

18.1 If the sequence type has an extension marker, then a single bit shall first be added to the field-list in a byt-field
of length one. The bit shall be one if values of extension additiong;are present in this encoding, and zero otherwise} (This
bit is [called the "extension bit" in the following text.) If theré.is no extension marker, there shall be no extensfon bit
added

18.2 If the sequence type has "n" components in the extension root that are marked OPTI ONAL or DEFAULT, [then a
single|bit-field with "n" bits shall be produced for addition to the field-list. The bits of the bit-field shall, taken in|order,
encodp the presence or absence of an encoding of-each optional or default component in the sequence type. A bif value
of 1 shall encode the presence of the encoding ef the component, and a bit value of 0 shall encode the absence|of the
encodjng of the component. The leading bituin the preamble shall encode the presence or absence of the first optignal or
default component, and the trailing bit shall'encode the presence or absence of the last optional or default compondnt.

18.3 If "n" is less than 64K, the bit-field shall be appended to the field-list. If "n" is greater than or equal t¢ 64K,
then the procedures of 10.9 shall-be invoked to add this bit-field of "n" bits to the field-list, preceded by a [length
determinant equal to "n" bits-as.a’constrained whole number with "ub" and "Ib" both set to "n".

NOTE — In this case, Jub™vand "1b" will be ignored by the length procedures. These procedures are invoked here in grder to
pravide fragmentation™of“a’large preamble. The situation is expected to arise only rarely.

18.4 The preamble shall be followed by the field-lists of each of the components of the sequence value which are
present, taken it turn.

18.5 Forr€ANONICAL-PER, encodings of components marked DEFAULT shall always be absent if the valug to be
encodpdis the default value. For BASIC-PER, encodings of components marked DEFAULT shall always be absent if the

1 = dad s stla dofo 1 1 £ M la + L 2 L8N 4+l 3 i das! £ hatl tt
value tooeehrcoaeatSthecactraurt—vardcotr=a STIIPTC Ty PO CT O 0207 OtICT WISTTIT 15— SCITUCT SO PO wITO T OT not to

encode it.

18.6 This completes the encoding if the extension bit is absent or is zero. If the extension bit is present and set to
one, then the following procedures apply.

18.7 Let the number of extension additions in the type being encoded be "n", then a bit-field with "n" bits shall be
produced for addition to the field-list. The bits of the bit-field shall, taken in order, encode the presence or absence of an
encoding of each extension addition in the type being encoded. A bit value of 1 shall encode the presence of the
encoding of the extension addition, and a bit value of 0 shall encode the absence of the encoding of the extension
addition. The leading bit in the bit-field shall encode the presence or absence of the first extension addition, and the
trailing bit shall encode the presence or absence of the last extension addition.

NOTE - If conformance is claimed to a particular version of a specification, then the value "n" is always equal to the number of
extension additions in that version.

ITU-T Rec. X.691 (07/2002) 19

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

18.8 The procedures of 10.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" as a normally small length.

NOTE — "n" cannot be zero, as this procedure is only invoked if there is at least one extension addition being encoded.

18.9 This shall be followed by field-lists containing the encodings of each extension addition that is present, taken in
turn. Each extension addition that is a "ComponentType" (i.e., not an "ExtensionAdditionGroup") shall be encoded as if it
were the value of an open type field as specified in 10.2.1. Each extension addition that is an "ExtensionAdditionGroup" shall
be encoded as a sequence type as specified in 18.2 to 18.6, which is then encoded as if it were the value of an open type field
as specified in 10.2.1. If all components values of the "ExtensionAdditionGroup" are missing then, the
"ExtensionAdditionGroup" shall be encoded as a missing extension addition (i.e., the corresponding bit in the bit-field
described in 18.7 shall be set to 0).

NOTE 1 - If an "ExtensionAdditionGroup" contains components marked OPTIONAL or DEFAULT, then the
"ExtensionAdditionGroup" is prefixed with a bit-map that indicates the presence/absence of values for each component marked
OPTLONAL or DFEAULT

NQTE 2 — "RootComponentTypeList" components that are defined after the extension marker pair are encoded as if'thgy were
defined immediately before the extension marker pair.

19 Encoding the sequence-of type
19.1 PER-visible constraints can constrain the number of components of the sequence-of type.

19.2 Let the maximum number of components in the sequence-of (as determined. by PER-visible constraiits) be
"ub" domponents and the minimum number of components be "Ib". If there is no finite-maximum or "ub" is great¢r than
or equal to 64K we say that "ub" is unset. If there is no constraint on the minimumythen "1b" has the value zero. LLet the

n.n

numbg¢r of components in the actual sequence-of value to be encoded be "n" components.

19.3 The encoding of each component of the sequence-of will generate-a number of fields to be appended|to the
field-list for the sequence-of type.

194 If there is a PER-visible constraint and an extension markérlis present in it, a single bit shall be added|to the
field-ljst in a bit-field of length one. The bit shall be set to 1 if the himber of components in this encoding is not within
the E%ge of the extension root, and zero otherwise. In the~former case 10.9 shall be invoked to add the |length
determinant as a semi-constrained whole number to the field-list, followed by the component values. In the lattgr case
the length and value shall be encoded as if the extension marker is not present.

19.5 If the number of components is fixed ("ub".equals "Ib") and "ub" is less than 64K, then there shall be no|length
determinant for the sequence-of, and the fields of\e€ach component shall be appended in turn to the field-list [of the
sequepce-of.

19.6 Otherwise, the procedures of 10.9'shall be invoked to add the list of fields generated by the "n" compongnts to

the figld-list, preceded by a length detérminant equal to "n" components as a constrained whole number if "ub"[is set,

and aq a semi-constrained whole number if "ub" is unset. "Ib" is as determined above.
NOTE 1 — The fragmentation procedures may apply after 16K, 32K, 48K, or 64K components.

NOTE 2 — The break-points_for fragmentation are between fields. The number of bits prior to a break-point are not necessarily a
myltiple of eight.

20 Encoding the set type

The s¢t type shall’have the elements in its "RootComponentTypeList" sorted into the canonical order specified in [TU-T
Rec. X.680 ISO/IEC 8824-1, 8.6, and additionally for the purposes of determining the order in which components are
encodpd_when one or more component is an untagged cho1ce type each untagged ch01ce type is ordered as thougk it has
a tag cqUa types
nested within. Thc set elements that occur in the "RootComponentTypeL1st" shall then be encoded as if it had been
declared a sequence type. The set elements that occur in the "ExtensionAdditionList" shall be encoded as though they were
components of a sequence type as specified in 18.9 (i.e., they are encoded in the order in which they are defined).

EXAMPLE — In the following which assumes a tagging environment of | MPLI CI T TAGS:

= SET
{

a [3] I NTEGER

b [1] CHOCE

{
c [2] I NTEGER
d [4] | NTEGER

}s

20 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

e CHO CE
{ f CHO CE
{ g [5] | NTEGER
h [6] | NTEGER
i}, CHA CE
i j [0] | NTEGER

}

the order in which the components of the set are encoded will always be e, b, a, since the tag [0] sorts lowest,
then[1], then[3] .

21 Encoding the set-of type

21.1 For CANONICAL-PER the encoding of the component values of the set-of type shall appear in asc¢nding
order,|the component encodings being compared as bit strings padded at their trailing ends with'as'many as seven| 0 bits
to an pctet boundary, and with 0-octets added to the shorter one if necessary to make thé length equal to that|of the
longeq one.

NATE — Any pad bits or pad octets added for the sort do not appear in the actual encoding.

21.2 For BASIC-PER the set-of shall be encoded as if it had been declared atsequence-of type.

22 Encoding the choice type

NQTE — (Tutorial) A choice type is encoded by encoding an index specifying the chosen alternative. This is encoded gs for a
cofstrained integer (unless the extension marker is present in the choice type, in which case it is a normally small non-nggative
whole number) and would therefore typically occupy a fixed length bit-field of the minimum number of bits needed to encpde the
index. (Although it could in principle be arbitrarily large.) This»is followed by the encoding of the chosen alternativp, with
alt¢rnatives that are extension additions encoded as if they wére the value of an open type field. Where the choice has omnly one
alt¢rnative, there is no encoding for the index.

221 Encoding of choice types are not affected,by)PER-visible constraints.

22.2 Each component of a choice has an index associated with it which has the value zero for the first alternative in
the ropt of the choice (taking the alternatives,in the canonical order specified in ITU-T Rec. X.680 | ISO/IEC 8g824-1,
8.6), ¢ne for the second, and so on up to_the last component in the extension root of the choice. An index value is
similafly assigned to each "NamedType' within the "ExtensionAdditionAlternativesList", starting with 0 just as wjith the
compgnents of the extension root. Let.'n" be the value of the largest index in the root.

NOTE — ITU-T Rec. X.680 | ISO/TEC 8824-1, 28.4, requires that each successive extension addition shall have a greater tag value
than the last added to the "ExtensionAdditionAlternativesList".

22.3 For the purposés-of canonical ordering of choice alternatives that contain an untagged choice, each unfagged
choicg type shall be erdered as though it has a tag equal to that of the smallest tag in the extension root of either that
choicg type or any sntagged choice types nested within.

22.4 If theschoice has only one alternative in the extension root, there shall be no encoding for the index [if that
alterngtive,iSehosen.

22.5 If the choice type has an extension marker, then a single bit shall first be added to the field-list in a bit-fleld of
length one. The bit shall be 1 if a value of an extension addition is present in the encoding, and zero otherwise. (This bit
is called the "extension bit" in the following text.) If there is no extension marker, there shall be no extension bit added.

22.6 If the extension bit is absent, then the choice index of the chosen alternative shall be encoded into a field
according to the procedures of clause 12 as if it were a value of an integer type (with no extension marker in its subtype
constraint) constrained to the range 0 to "n", and that field shall be appended to the field-list. This shall then be followed
by the fields of the chosen alternative, completing the procedures of this clause.

22.7 If the extension bit is present and the chosen alternative lies within the extension root, the choice index of the
chosen alternative shall be encoded as if the extension marker is absent, according to the procedure of clause 12,
completing the procedures of this clause.

22.8 If the extension bit is present and the chosen alternative does not lie within the extension root, the choice index
of the chosen alternative shall be encoded as a normally small non-negative whole number with "lb" set to 0 and that

ITU-T Rec. X.691 (07/2002) 21

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

field shall be appended to the field-list. This shall then be followed by a field-list containing the encoding of the chosen
alternative encoded as if it were the value of an open type field as specified in 10.2, completing the procedures of this
clause.

NOTE — Version brackets in the definition of choice extension additions have no effect on how "ExtensionAdditionAlternatives"
are encoded.

23 Encoding the object identifier type

NOTE - (Tutorial) An object identifier type encoding uses the contents octets of BER preceded by a length determinant that will
in practice be a single octet.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is the
contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is placed
in a bjt-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 10.9 shall be invoked to, gppend
this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by a length determinant equal\to """ as a
semi-¢onstrained whole number octet count.

24 Encoding the relative object identifier type

NOTE — (Tutorial) A relative object identifier type encoding uses the contents octets of BER preceded by a length detefminant
that will in practice be a single octet. The following text is identical to that of clause 23.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in thie ALIGNED variant) whicl] is the
conterts octets of the BER encoding. The contents octets of this BER encoding comsists of "n" (say) octets and is placed
in a bjt-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 10.9 shall be invoked to gppend
this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by a length determinant equal to "p" as a
semi-¢onstrained whole number octet count.

25 Encoding the embedded-pdv type

25.1 There are two ways in which an embedded-pdv typeean be encoded:

a) the syntaxes alternative of the embedded-pdv type is constrained with a PER-visible innef type
constraint to a single value or i denti f i“eat i on is constrained with a PER-visible inner type constfaint to
the fixed alternative, in which ease only the data-val ue shall be encoded; this is call¢gd the
"predefined" case;

b) an inner type constraint is n0t employed to constrain the synt axes alternative to a single value, [nor to
constrain i dentificatioh, to the fixed alternative, in which case both the i dentificatidn and
dat a- val ue shall be eficoded; this is called the "general" case.

25.2 In the "predefined" case, the encoding of the value of the embedded-pdv type shall be the PER-encoding of a
value [of the OCTET STRI NG(type. The value of the OCTET STRI NG shall be the octets which form the complete
encodjng of the single data.value referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 33.3 a).

25.3 In the "general", case, the encoding of a value of the embedded-pdv type shall be the PER encoding of the type
defingd in ITU-T Ree~X.680 | ISO/IEC 8824-1, 33.5, with the dat a- val ue- descri pt or element removed (that is,
there phall be ne~OPTI ONAL bit-map at the head of the encoding of the SEQUENCE). The value of the dat a- yal ue
compgnent of-type OCTET STRI NG shall be the octets which form the complete encoding of the single datal value
referepced inFTU-T Rec. X.680 | ISO/IEC 8824-1, 33.3 a).

26 Encoding of a value of the external type

26.1 The encoding of a value of the external type shall be the PER encoding of the following sequence type,
assumed to be defined in an environment of EXPLI CI T TAGS, with a value as specified in the subclauses below:

[UNI VERSAL 8] | MPLICI T SEQUENCE {

di rect-reference OBJECT | DENTI FI ER OPTI ONAL,
i ndi rect-reference I NTEGER OPTI ONAL,
dat a- val ue-descri pt or Chj ect Descri ptor OPTI ONAL,
encodi ng CHO CE {
si ngl e- ASNL-t ype [0] ABSTRACT- SYNTAX. &Type,
octet-aligned [1] IMPLIC T OCTET STRI NG
arbitrary [2] IMPLICIT BIT STRRNG} }

22 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

NOTE - This sequence type differs from that in ITU-T Rec. X.680 | ISO/IEC 8824-1 for historical reasons.

26.2

26.3

26.4

8824-1, 33.5, to the external type components di r ect - r ef er ence and i ndi r ect - r ef er ence defined in 26.1.

The value of the components depends on the abstract value being transmitted, which is a value of the type
specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 33.5.

The dat a- val ue- descri pt or above shall be present if and only if the dat a- val ue- descri pt or is present
in the abstract value, and shall have the same value.

Values of direct-reference and i ndi rect-reference above shall be present or absent in accordance
with Table 1. Table 1 maps the external type alternatives of i denti fi cati on defined in ITU-T Rec. X.680 | ISO/IEC

Table 1 — Alternative encodings for "identification"

identification direct-reference indirect-reference
syntlaxes **% CANNOT OCCUR *** *** CANNOT OCCUR ***
syntlax syntax ABSENT
pregentation-context-id ABSENT presentation-context-id

cont|

ext-negoti ation

transfer-syntax

presentation-cantext-id

tran

sf er-synt ax

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

fixdg

d

CANNOT OCCUR ***

*** CANNOT OCCUR ***

26.5
in an 4

26.6
this d.
shall

26.7

octets
N(
oct

26.8
of oct

26.9
in 10.]

N(

asgociated with the di r ect > 'ef er ence, and/or the integer value associated with the i ndi r ect - r ef er ence.

26.10
negoti

26.11
negoti

The data value shall be encoded according to the transfer syntax identified by the encoding, and shall be
Iternative of the encodi ng choice as specified below.

nta value are those specified in this Recommendation | Interhational Standard, then the sending implemey
se the si ngl e- ASN1- t ype alternative.

Otherwise, if the encoding of the data value, using'the agreed or negotiated encoding, is an integral nun
then the sending implementation shall encode as o¢tiet - al i gned.
TE — A data value which is a series of ASN.1 types, and for which the transfer syntax specifies simple concatenatior]
et strings produced by applying the ASN.1 Basic Eneoding Rules to each ASN.1 type, falls into this category, not that of

Otherwise, if the encoding of the data'value, using the agreed or negotiated encoding, is not an integral n
ts, the encodi ng choice shall be ar bitrary.

If the encodi ng choice is chosen as si ngl e- ASNL- t ype, then the ASN.1 type shall be encoded as sp
P with a value equal to the data value to be encoded.
TE — The range of values which might occur in the open type is determined by the registration of the object identifig

If the encodi_ng-choice is oct et - al i gned, then the data value shall be encoded according to the agr
ated transfer syntax, and the resulting octets shall form the value of the octetstring.

If the encodi ng choice is arbitrary, then the data value shall be encoded according to the agr
ated transfer syntax, and the result shall form the value of the bitstring.

placed

If the data value is the value of a single ASN.1 data type (see the Note in 26.7), and if the encoding rules for

itation

ber of

of the
26.6.

umber

ecified

r value

ced or

bed or

27

e reodime-therestricted ol VIS

NOTE 1 — (Tutorial ALIGNED variant) Character strings of fixed length less than or equal to two octets are not octet-aligned.
Character strings of variable length that are constrained to have a maximum length of less than two octets are not octet-aligned.
All other character strings are octet-aligned in the ALIGNED variant. Fixed length character strings encode with no length octets
if they are shorter than 64K characters. For unconstrained character strings or constrained character strings longer than 64K—1, the
length is explicitly encoded (with fragmentation if necessary). Each NumericString, Printabl eString, VisibleString
(1 S0646String), 1 A5String, BMPString and Uni versal String character is encoded into the number of bits that is the
smallest power of two that can accommodate all characters allowed by the effective permitted-alphabet constraint.

NOTE 2 — (Tutorial UNALIGNED variant) Character strings are not octet-aligned. If there is only one possible length value there
is no length encoding if they are shorter than 64K characters. For unconstrained character strings or constrained character strings
longer than 64K-1, the length is explicitly encoded (with fragmentation if necessary). Each Nunmeri cStri ng, Pri nt abl eStri ng,
Vi sibleString (1 SO646String), | A5String, BMPSt ri ng and Uni ver sal Stri ng character is encoded into the number of bits
that is the smallest that can accommodate all characters allowed by the effective permitted-alphabet constraint.

ITU-T Rec. X.691 (07/2002) 23

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

NOTE 3 — (Tutorial on size of each encoded character) Encoding of each character depends on the effective permitted-alphabet
constraint (see 9.3.11), which defines the alphabet in use for the type. Suppose this alphabet consists of a set of characters ALPHA
(say). For each of the known-multiplier character string types (see 3.6.16), there is an integer value associated with each character,
obtained by reference to some code table associated with the restricted character string type. The set of values BETA (say)
corresponding to the set of characters ALPHA is used to determine the encoding to be used, as follows: the number of bits for the
encoding of each character is determined solely by the number of elements, N, in the set BETA (or ALPHA). For the
UNALIGNED variant is the smallest number of bits that can encode the value N — 1 as a non-negative binary integer. For the
ALIGNED variant this is the smallest number of bits that is a power of two and that can encode the value N — 1. Suppose the
selected number of bits is B. Then if every value in the set BETA can be encoded (with no transformation) in B bits, then the
value in set BETA is used to represent the corresponding characters in the set ALPHA. Otherwise, the values in set BETA are
taken in ascending order and replaced by values 0, 1, 2, and so on up to N — 1, and it is these values that are used to represent the
corresponding character. In summary: minimum bits (taken to the next power of two for the ALIGNED variant) are always used.
Preference is then given to using the value normally associated with the character, but if any of these values cannot be encoded in
the minimum number of bits a compaction is applied.

271 The following restricted character string types are known-multiplier character string types: Nurmeri ¢St|ri ng,
Printlabl eString, VisibleString (I S0646String), | A5String, BMPStri ng, and Uni ver sal Stri ng,“Effective

permifted-alphabet constraints are PER-visible only for these types.

27.2 The effective size constraint notation may determine an upper bound "aub" for the lengthlof the apstract

charadter string. Otherwise, "aub" is unset.

27.3 The effective size constraint notation may determine a non-zero lower bound "alb” for the length [of the

abstraft character string. Otherwise, "alb" is zero.

NQTE — PER-visible constraints only apply to known-multiplier character string types. For otherrestricted character string types
"ayb" will be unset and "alb" will be zero.

27.4 If the type is extensible for PER encodings (see 9.3.16), then a bit-field¢consisting of a single bit shall befadded
to the| field-list. The single bit shall be set to zero if the value is within the tange of the extension root, and fo one
otherwise. If the value is outside the range of the extension root, then the following encoding shall be as if there Wwas no
effective size constraint, and shall have an effective permitted-alphabet ¢onstraint that consists of the set of characters of

the unconstrained type.

NQTE - Only the known-multiplier character string types can be exténsible for PER encodings. Extensibility markers oh other
chgracter string types do not affect the PER encoding.

27.5 This subclause applies to known-multiplier character strings. Encoding of the other restricted character|string

types |s specified in 27.6.

27.5.1] The effective permitted alphabet is defined to be that alphabet permitted by the permitted-alphabet congtraint,

or theentire alphabet of the built-in type if there«dg.no PermittedAlphabet constraint.

27.5.21 Let N be the number of charactersinthe effective permitted alphabet. Let B be the smallest integer such| that 2
to the [power B is greater than or equal to N. Let B2 be the smallest power of 2 that is greater than or equal to B. Tlhen in
the ALIGNED variant, each character-shall encode into B2 bits, and in the UNALIGNED variant into B bits. ILet the

numbgr of bits identified by this rulé be "b".
217.

5.3 A numerical value "y™is associated with each character by reference to ITU-T Rec. X.680 | ISO/IEC 8g824-1,

clausd 39 as follows. For Universal String, the value is that used to determine the canonical order in ITU-T Rec.
X.680) | ISO/IEC 8824-1739.3 (the value is in the range 0 to 232 — 1). For BMPStri ng, the value is that used to
determine the canonicahorder in ITU-T Rec. X.680 | ISO/IEC 8824-1, 39.3 (the value is in the range 0 to 216 — 1)). For
Nurrer|li cString and PrintableString and VisibleString and | A5String the value is that defined fpr the
ISO/TEC 646 eneoding of the corresponding character. (For | A5St ri ng the range is 0 to 127, for Vi si bl eStri g it is

32

to| 126, for Numeri cString it is 32 to 57, and for Printabl eString it is 32 to 122. For | A5Strirg and

Vi si bl eStri ng all values in the range are present, but for Nuneri cString and Pri nt abl eStri ng not all values in

the range-are in use.)

27.

5.4 Let the smallest value in the range for the set of characters in the permitted alphabet be "lb" and the largest

value be "ub". Then the encoding of a character into "b" bits is the non-negative-binary-integer encoding of the value "v"
identified as follows:

24

a) if "ub" is less than or equal to 2° — 1, then "v" is the value specified in above; otherwise

b) the characters are placed in the canonical order defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 39.
The first is assigned the value zero and the next in canonical order is assigned a value that is one greater
than the value assigned to the previous character in the canonical order. These are the values "v".

NOTE - Item a) above can never apply to a constrained or unconstrained Nuneri cStri ng character, which always
encodes into four bits or less using b).

ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

27.5.5 The encoding of the entire character string shall be obtained by encoding each character (using an appropriate
value "v") as a non-negative-binary-integer into "b" bits which shall be concatenated to form a bit-field that is a multiple
of "b" bits.

27.5.6 If "aub" equals "alb" and is less than 64K, then the bit-field shall be added to the field-list as a field (octet-
aligned in the ALIGNED variant) if "aub" times "b" is greater than 16, but shall otherwise be added as a bit-field that is
not octet-aligned. This completes the procedures of this subclause.

27.5.7 If "aub" does not equal "alb" or is greater than or equal to 64K, then 10.9 shall be invoked to add a length
determinant with "n" as a count of the characters in the character string with a lower bound for the length determinant of
"alb" and an upper bound of "aub". The bit-field shall then be added as a field (octet-aligned in the ALIGNED variant) if
"aub" times "b" is greater than or equal to 16, but shall otherwise be added as a bit-field that is not octet-aligned. This
completes the procedures of this subclause.

N(QTE — Both 27.5.6 and 27.5.7 specily no alignment iI aub. times "D is Iess than 10, and aligniment il thc product is jgreater
than 16. For a value exactly equal to 16, 27.5.6 specifies no alignment and 27.5.7 specifies alignment.

27.6 This subclause applies to character strings that are not known-multiplier character strings(i’ thi§ case,
constrpints are never PER-visible, and the type can never be extensible for PER encoding.

27.6.1 For BASIC-PER, reference below to "base encoding” means the contents octets of .a |BER encodink. For
CANQNICAL-PER it means the contents octets of the encoding specified for the CER and DERin ITU-T Rec. X.690 |
ISO/TEC 8825-1.

namn

27.6.2] The "base encoding" shall be applied to the character string to give a field of "noCtets.

27.6.3 Subclause 10.9 shall be invoked to add an unconstrained length determigant with "n" as a count in octgts and
the fidld of "n" octets shall be added as a bit-field (octet-aligned in the ALIGNED.vdriant), completing the procedyires of
this sybclause.

28 Encoding the unrestricted character string type

28.1 There are two ways in which an unrestricted character string type can be encoded:

a) the synt axes alternative of the unrestricted character string type is constrained with a PER-visibl¢ inner
type constraint to a single value or i dentifi“cati on is constrained with a PER-visible inngr type
constraint to the f i xed alternative, in which,case only the st ri ng- val ue shall be encoded; this is|called
the "predefined" case;

b) an inner type constraint is not employed to constrain the synt axes alternative to a single value, |nor to
constrain i dentifi cati on to_the fi xed alternative, in which case both the i dentificatidn and
st ri ng- val ue shall be encaded; this is called the "general" case.

28.2 For the "predefined" case, the, encoding of the value of the CHARACTER STRI NG type shall be the| PER-
encodjng of a value of the OCTET STRI NG type. The value of the OCTET STRI NG shall be the octets which form the
complete encoding of the character string value referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 40.3 a).

28.3 In the "general" case; the encoding of a value of the unrestricted character string type shall be th¢ PER
encodjng of the type defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 40.5, with the dat a- val ue- descr| pt or
compgnent removed (that is, there shall be no OPTI ONAL bit-map at the head of the encoding of the SEQUENCE). The
value pf the st ri ng-val ue component of type OCTET STRI NGshall be the octets which form the complete encoding of
the chpracter string value referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 40.3 a).

29 Object identifiers for transfer syntaxes

29.1 The encoding rules specified in this Recommendation | International Standard can be referenced and applied
whenever there is a need to specify an unambiguous bit string representation for all of the values of a single ASN.1 type.

29.2 The following object identifiers and object descriptor values are assigned to identify and describe the encoding
rules specified in this Recommendation | International Standard:

For BASIC-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) aligned (0)}
"Packed encodi ng of a single ASN.1 type (basic aligned)"

For BASIC-PER, UNALIGNED variant:

{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) unaligned (1)}
"Packed encodi ng of a single ASN. 1 type (basic unaligned)"

ITU-T Rec. X.691 (07/2002) 25

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

For CANONICAL-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) aligned (0)}
"Packed encodi ng of a single ASN. 1 type (canonical aligned)"

For CANONICAL-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) unaligned (1)}
"Packed encodi ng of a single ASN. 1 type (canonical unaligned)"

29.3 Where an application standard defines an abstract syntax as a set of abstract values, each of which is a value of
some specifically named ASN.1 type defined using the ASN.1 notation, then the object identifier values specified
in 29.2 may be used with the abstract syntax name to identify those transfer syntaxes which result from the application of
the encoding rules specified in this Recommendation | International Standard to the specifically named ASN.1 type used
in defining the abstract syntax.

if the

itions of 29.3 for the definition of the abstract syntax are not met.

26 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

Annex A

Example of encodings

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates the use of the Packed Encoding Rules specified in this Recommendation | International Standard
by showing representations in octets of a (hypothetical) personnel record which is defined using ASN.1.

Al Record that does not use subtype constraints

A.1.1| ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified)in [TU-T
Rec. X.680 | ISO/IEC 8824-1 for defining types. This is identical to the example defined in ITU:T Rec. X.690 |
ISO/IEC 8825-1, Annex A.

Per sonnel Record ::= [APPLI CATION 0] IMPLICI T SET {
nane Nane,
title [0] VisibleString,
nunber Enpl oyeeNunber,
dateOHre [1] Date,
nanef Spouse [2] Nane,
chil dren [3] IMPLICT
SEQUENCE COF Chil dI nformati on DEFAULT A} }
Childinformation ::= SET
{ name Nane,
dateOBirth [0] Date}
Name ::= [APPLICATION 1] IMPLIC T SEQUENCE
{ gi venNane Vi si bl eString,
initial Vi si bleStri ng,
fam | yNane Vi si'bl eString}
Enpl oyeeNunber ::= [APPLI CATI.GN 2] | MPLICI T | NTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMVDD

A.l.2 ASN.1 description of a record value

The value of John Smith's personnel record.is formally described below using ASN.1.

{ nane {givenNane'"John",initial "P',fam|lyNane "Snmith"},

titlée "Director",

nupber 51,

dateO H re "19710917",

nanme Spouse {givenNane "Mary",initial "T",fam|lyNane "Smi{h"},
chil dren

{{name {givenNane "Ral ph",initial "T",fam|lyNane "Snmith"},
dateOBirth "19571111"},

{name {givenNane "Susan",initial "B',fam|yNane "Jones"},
dateOf Birth "19590717"}}}

A.13 ALIGNED PER representation of this record value

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding Rules
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary.

The length of this encoding is 94 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 84 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

ITU-T Rec. X.691 (07/2002) 27

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

A.1.3.1 Hexadecimal view

80044A6F 686E0150 05536D69 74680133 08446972 6563746F 72083139 37313039
3137044D 61727901 5405536D 69746802 0552616C 70680154 05536D69 74680831
39353731 31313105 53757361 6E014205 4A6F6E65 73083139 35393037 3137

A.1.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; and an 'x' represents a zero pad bit that is used from time to time to align fields on an octet boundary.

I XXXXFXX Bitula}) lUlt — iudiuatcb "\,‘ui‘ldlcuu ia PT sent
00000100 Length of name.givenName = 4
01001¢1001101111 01101000 01101110 name.givenName = "John"

00000001 Length of name.initial = 1

01010000 name.initial = "P"

00000101 Length of name.farhilyName = 5
01010011 01101101 01101001 01110100 01101000 name.familyNarhe,= "Smith"
00000001 Length of (employee) number = 1
00110011 (employée) number = 51

00001000 Length.of title = 8

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010 _ titlé)= "Director"

00001000 Length of dateOfHire = 8

00110001 00111001 00110111 00110001 00110000 00111001 00110001 00110941 dateOfHire ="19710917"

00000100 Length of nameOfSpouse.givenName = @
01001101 01100001 01110010 01111001 nameOfSpouse.givenName = "Mary"
00000001 Length of nameOfSpouse.initial = 1
01010100 nameOfSpouse.initial = "T"

00000101 Length of nameOfSpouse.familyName 5 5
01010011 01101101 01101001 01110100 01101000 nameOfSpouse.familyName = "Smith"
00000010 Number of children

00000101 Length of children[0].givenName = 5
01010010 01100001 01101100 01110000 01101000 children[0].givenName = "Ralph"
00000001 Length of children[0].initial = 1
01010100 children[0].initial = "T"

00000101 Length of children[0].familyName = 5
01010011 01101101 01101061N01110100 01101000 children[0].familyName = "Smith"
00001000 Length of children[0].dateOfBirth = 8
00110001 00111001©0%10101 00110111 00110001 00110001 00110001 00110001 children[0].dateOfBirth = "19571111"
00000101 Length of children[1].givenName = 5
01010011 01140101 01110011 01100001 01101110 children[1].givenName = "Susan"
00000001 Length of children[1].initial = 1
010006+6 chitdrenttnitrat=—B"

00000101 Length of children[1].familyName = 5
01001010 01101111 0110111001100101 01110011 children[1].familyName = "Jones"
00001000 Length of children[1].dateOfBirth = 8

00110001 00111001 00110101 00111001 00110000 00110111 00110001 00110111 children[1].dateOfBirth = "19590717"

A.1.4 UNALIGNED PER representation of this record value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

28 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

The length of this encoding is 84 octets. For comparison, the same PersonnelRecord value encoded using the ALIGNED
variant of PER is 94 octets, BER with the definite length form is at least 136 octets, and BER with the indefinite length

form is at least 161 octets.

A.1.4.1 Hexadecimal view

824ADFA3 700DO05A 7B74FAD0 02661113 4F2CB8FA 6FE410C5 CB762C1C B16E0937
OF2F2035 O0169EDD3 D340102D 2C3B3868 01A80BAF 6E9E9A02 18B96ADD 8B162CAL

69F5E787 700C2059 5BF765E6 10C5CB57 2C1BB16E

A.1.4.2 Binary view

So as[to make 1t easier to read the binary view of the data, blank lines are used to group fields that logically belong
togethier (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters wiithin a
charagter string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad-the findl octet

to an ¢ctet boundary.
1

0000010.0
1001010 .1101111 1.101000 11.01110

000.00001
101.0000

0000.0101
1010.011 11011.01 110100.1 1110100 .1101000

0.0000001
0.0110011

0.0001000
1.000100 11.01001 111.0010 1100.101 11000.11 111010.0 1101111 1110010

0.0001j000
0.110001 01.11001 011.0111 0110.001 01100.00 011100.1 0KO001 .0110111

0.00001100
1.001101 11.00001 111.0010 1111.001

000004001
10101400

00000].01
10100].1 1101101 .1101001 1.110100~[1:01000

000.00010

000.001101
101.00110 1100.001 11011.,00\11000.0 1101000

.00000001
.10101)00

0.00001101
1.010011 1161301 110.1001 1110.100 11010.00

000001.01
101001.1 1110101 .1110011 1.100001 11.01110

000.00001
100.0010

0000.0101
1001.100 11011.11 110111.0 1100101 .1110011

0.0001000
0.110001 01.11001 011.0101 0111.001 01100.00 011011.1 0110001 .0110111x

Bitmap bit = 1 indicatesy"children" is pr¢sent

Length of name.givienName = 4
name.givenNanie = "John"

Length of nameinitial = 1
name.initial) = "P"

Length.of name.familyName = 5
name.familyName = "Smith"

Length of (employee) number = 1
(employee) number = 51

Length of title = 8
title = "Director"

Length of dateOfHire = 8
dateOfHire = "19710917"

Length of nameOfSpouse.givenName =@
nameOfSpouse.givenName = "Mary"

Length of nameOfSpouse.initial = 1
nameOfSpouse.initial ="T"

Length of nameOfSpouse.familyName 5 5
nameOfSpouse.familyName = "Smith"

Number of children

Length of children[0].givenName = 5
children[0].givenName = "Ralph"

Length of children[0].initial = 1
children[0].initial = "T"

Length of children[0].familyName = 5
children[0].familyName = "Smith"

fch

Length of children[0].dateOfBirth = 8

Length of children[1].givenName = 5
children[1].givenName = "Susan"

Length of children[1].initial = 1
children[1].initial = "B"

Length of children[1].familyName = 5
children[1].familyName = "Jones"

Length of children[1].dateOfBirth = 8
children[1].dateOfBirth = "19590717"

ITU-T Rec. X.691 (07/2002) 29

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

A2 Record that uses subtype constraints

This example is the same as that shown in clause A.1, except that it makes use of the subtype notation to impose
constraints on some items.

A2.1 ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1 for defining types.

Per sonnel Record ::= [APPLI CATION 0] IMPLICI T SET {
nane Nane,
title [0] VisibleString,
numnber Enpl oyeeNunber,
dateCfH re [1] Dat e
namef Spouse [2] Nane,
children [3] IMPLICT
SEQUENCE CF Chil dInformation DEFAULT {} }
Childinformation ::= SET
{ nane Nane,
dateO Birth [0] Date}
Nane ::= [APPLI CATION 1] I MPLIC T SEQUENCE
{ gi venNane NameSt ri ng,
initial NameString (SIZE(1)),
fam | yNane NameSt ri ng}
Enpl oyeeNunrber ::= [APPLI CATION 2] I MPLICI T | NTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString
(FROM"0".."9")Y A“SI ZE(8)) -- YYYYMVDD
NaneString ::= VisibleString (FROM"a"..xz™ | "A".."Z" | "-.") N SIZE(1..64))

A.2.2| ASN.1 description of a record value

The value of John Smith's personnel record is formally described below using ASN.1.

{ nanme {givenNane "John",initial "P', fam|lyNane "Snith"},

title “Director",

nunber 51,

dateOHre "19710917",

naneCf Spouse {givenNarme "Mary",initial "T",fam|lyName "Sm{h"},
chil dren

{{name {givenNane "Ral ph",initial "T",fam|lyNane "Snith"},
dateO'Birth "19571111"},
{nare {givenNane "Susan",initial "B',fam|yNane "Jones"},
dateO'Birth "19590717"}}}

A.2.3| ALIGNED PER representation of this record value

The r¢presentation of the,record value given above (after applying the ALIGNED variant of the Packed Encoding| Rules
defingd in this Recgmiriendation | International Standard) is shown below. The encoding is shown in hexaddcimal,
followed by a commented description of the encoding shown in binary. In the binary view an 'x' is used to represent pad
bits that are encoded as zero-bits; they are used to align the fields from time to time.

The lpngth '0f this encoding is 74 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 61 octets, BER with the definite length form is at least 136 octets, and BER thh the
indefinite Tength form is at least 101 octets.

A.2.3.1 Hexadecimal view

864A6F68 6E501053 6D697468 01330844 69726563 746F7219 7109170C 4D617279
5410536D 69746802 1052616C 70685410 536D6974 68195711 11105375 73616E42
104A6F6E 65731959 0717

A.2.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; and an 'x' represents a zero pad bit that is used from time to time to align fields on an octet boundary.

30 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

1

000011x
01001010 01101111 01101000 01101110

01010000

000100xx
01010011 01101101 01101001 01110100 01101000

00000001
00110011

00001000
01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010

ISO/IEC 8825-2:2002 (E)

Bitmap bit = 1 indicates "children" is present

Length of name.givenName = 4
name.givenName = "John"

name.initial = "P"

Length of name.familyName = 5
name.familyName = "Smith"

Length of (employee) number = 1
(employee) number = 51

Length of title = 8
title = "Director"

0001

00001
01001

01010

00010
01010

00000

00010
01010

01010

00010
01010

0001

00010
01010

01000

00010
01001

0001

A24

The 1¢
Rules
follow
UNAI

The 19
varian
form i

A.2.4/
865D

00T OITI 000T 0000 T00T 0001 OTT1

XX
01 01100001 01110010 01111001

00

XX
1101101101 01101001 01110100 01101000

10

XX
10 01100001 01101100 01110000 01101000

00

XX
1101101101 01101001 01110100 01101000

001 0101 0111 0001 0001 0001 0001

XX
1101110101 01110011 01100001 01101110

10

XX
1001101111 01101110 01100101 01110011

001 0101 1001 0000 0111 0001 0111

UNALIGNED PER representation of this record value

dateOtHire = "19710917"

Length of nameOfSpouse.givenNaine =
nameOfSpouse.givenName = "Mary"

nameOfSpouse.initial = """

Length of nameOfSpouse/familyName 5
nameOfSpouse.familyName = "Smith"

Number of children

Length of children[0].givenName = 5
children{0].givenName = "Ralph"

children[0].initial = "T"

Length of children[0].familyName = 5
children[0].familyName = "Smith"

children[0].dateOfBirth = "19571111"

Length of children[1].givenName = 5
children[1].givenName = "Susan"

children[1].initial = "B"

Length of children[1].familyName = 5
children[1].familyName = "Jones"

children[1].dateOfBirth = "19590717"

presentation of the record valug ‘given above (after applying the UNALIGNED variant of the Packed En
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadd
ed by a commented des¢ription of the encoding shown in binary. Note that pad bits do not occur

LIGNED variant, andCharacters are encoded in the fewest number of bits possible.

ngth of this encoding is 61 octets. For comparison, the same PersonnelRecord value encoded using the ALI
t of PER is 74 Gctets, BER with the definite length form is at least 136 octets, and BER with the indefinite

5 at least 161 ‘octets.

1 Hexadecimal view

b1D2 888A5125 F1809984 44D3CB2E 3E9BFOOC B8848B86 7396E8A8 8A5125F1

oding
cimal,
in the

GNED
length

81089B93 Dr71AA229 4497C632 AE222222 985CE521 885D54C1 70CAC838 B8

A2A4.

2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad the final octet
to an octet boundary:

ITU-T Rec. X.691 (07/2002)

31

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

1

000011
0.01011 101.010 10001.1 101001

0.10001

000.100
01010.0 101000 1.00100 101.111 10001.1

0000000.1
0011001.1

0000100.0
1000100 .1101001 1.110010 11.00101 110.0011 1110.100 11011.11 111001.0

Bitmap bit = 1 indicates "children" is present

Length of name.givenName = 4
name.givenName = "John"

name.initial = "P"

Length of name.familyName = 5
name.familyName = "Smith"

Length of (employee) number = 1
(employee) number = 51

Length of title = 8
title = "Director"

0001 J00.T OTTT 000.T 0000 T0O0.T 000T OTT.T

00001
0.01110 011.100 10110.1 110100

0.1010ft

000.100
010100 101000 1.00100 101.111 10001.1

0000001.0

00010
0.1001j1 011.100 10011.1 101011 1.00011

010.10ft

000100
01010¢ 1.01000 100.100 10111.1 100011
0.001 1001 0.101 0111 0.001 0001 0.001 0001

0.001

010.100 11000.0 101110 0.11100 101.001
00001 J1

00010
0.0101ft 101.010 10100.1 100000 1.01110

000.1 j1001 010.1 1001 000.0 0111 000.1 0111xxx

A3 Record that uses extension markers

A.3.1| ASN.1 description of the'record structure

dateOtHire = "19710917"

Length of nameOfSpouse.givenName = f#
nameOfSpouse.givenName = "Mary"

nameOfSpouse.initial = "T"

Length of nameOfSpouse’familyName = 5
nameOfSpouse.familyName = "Smith"

Number of children

Length of children[0].givenName = 5
children{0].givenName = "Ralph"

children[0].initial = "T"

Length of children[0].familyName = 5
children[0].familyName = "Smith"
children[0].dateOfBirth = "19571111"

Length of children[1].givenName = 5
children[1].givenName = "Susan"

children[1].initial = "B"

Length of children[1].familyName = 5
children[1].familyName = "Jones"

children[1].dateOfBirth = "19590717"

The structure of the hypothétical personnel record is formally described below using ASN.1 speciffed in

ITU-T Rec. X.680 | ISO/IEC8824-1 for defining types:

Per sgnnel Record :: = [APPLI CATI ON 0]

IMPLICIT SET {

SEQUENCE{SHZE(2— 1 OF Chi+gh-niorration—CPFHONAL— |

| MPLI O T ENUVERATED { mal e(1),

femal e(2),

unknown(3)} OPTI ONAL

hame Nane,
title [0] VisibleString,
numnber Enpl oyeeNunber,
dateOHre [1] Date,
name Spouse [2] Nane,
chil dren [3] IMPLICT
}
Childlnformation ::= SET
{ name Name,
dateOBirth [0] Date,
sex [1]
}
Nane ::= [APPLI CATION 1] I MPLIC T SEQUENCE
{ gi venNane NaneStri ng,
initial NaneString (Sl ZE(1)),

32 ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

A3.2

ISO/IEC 8825-2:2002 (E)
fam | yNane NanmeStri ng,
}

Enmpl oyeeNunber ::= [APPLI CATION 2] I MPLICI T I NTEGER (0..9999, ...)
Date ::= [APPLICATION 3] IMPLICIT VisibleString

(FROM"0".."9") ~ SIZE(8, ..., 9..20)) -- YYYYMVDD
NameString ::= VisibleString

(FROM"a".."z" | "A".."zZ" | "-.") ™ SIZE(1..64, ...))

ASN.1 description of a record value

The value of John Smith's personnel record is formally described below using ASN.1:

A3.3

The rg
defing
follow
bits th|

The 1

{ name {givenNane "John",initral "P',famlyName "Smth"},

title "Director",

nunber 51,

dateOHre "19710917",

name Spouse {givenNane "Mary",initial "T",fam|yNape " Snm
children

{{name {gi venNane "Ral ph",initial "T",fam|yNane tSni'th"},
dateOBirth "19571111"},
{name {givenNanme "Susan",initial "B',fam|yNdne "Jones"},
dateO'Birth "19590717", sex fenmale}}}

ALIGNED PER representation of this record value

presentation of the record value given above (after applying the ALIGNED\variant of the Packed Encoding
d in this Recommendation | International Standard) is shown below, The encoding is shown in hexadg
ed by a commented description of the encoding shown in binary. Inthe binary view an 'x' is used to represe
at are encoded as zero-bits; they are used to align the fields from time to time.

h"},

Rules
cimal,
nt pad

ength of this encoding is 83 octets. For comparison, the’same PersonnelRecord value encoded usipg the

ith the

belong
ithin a
ry:
Record
bent

UNALIGNED variant of PER is 65 octets, BER with the definité/length form is at least 139 octets, and BER w
indefipite length form is at least 164 octets.

A.3.3J1 Hexadecimal view

40COAA6F 686E5008 536D6974 68000033 08446972 6563746F 72001971 0917034D
61727954 08536D69 74680100 52616C70 68540853 6D697468 00195711 11820053
7573p16E 42084A6F 6E657300 119590717 010140

A.3.32 Binary view

So as|to make it easier to read the binary view of the data, blank lines are used to group fields that logically
togetheer (typically length/valu¢ pairs); a newline is used to delineate fields; space is used to delineate characters w
charagter string; and an 'x' répresents a zero pad bit that is used from time to time to align fields on an octet bounds
0 No extension values present in Personnel
1 Bitmap bit = 1 indicates "children" is pre
0 No extension values present in "name"

0 Length is within range of extension root
0000 | Llxxxxxx Length of name.givenName = 4
0100101601101111 01101000 01101110 name.givenName = "John"

01010000 name.initial = "P"

0 Length is within range of extension root
000100x Length of name.familyName = 5
01010011 01101101 01101001 01110100 01101000 name.familyName = "Smith"

0XXXXXXX Value is within range of extension root
00000000 00110011 (employee) number = 51

00001000 Length of title = 8

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010 title = "Director"

OXXXXXXX Length is within range of extension root
0001 1001 0111 0001 0000 1001 0001 0111 dateOfHire ="19710917"

ITU-T Rec. X.691 (07/2002)

33

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

0
0

000011
01001101 01100001 01110010 01111001

01010100

0

000100x
01010011 01101101 01101001 01110100 01101000

0

No extension values present in nameOfSpouse

Length is within range of extension root
Length of nameOfSpouse.givenName = 4
nameOfSpouse.givenName = "Mary"

nameOfSpouse.initial = "T"

Length is within range of extension root
Length of nameOfSpouse.familyName = 5
nameOfSpouse.familyName = "Smith"

Number of "children" is within the range of the
extension root

No extension values present in children[Q]

00010
01010

01010

00010
01010

0xXXxXXX

0001

00010
01010

01000

00010
01001

0xXXXX)
0001

00000

1
00000

01xxxx

A.3.4
The rq

XX XXXX
10 01100001 01101100 01110000 01101000

00

X
1101101101 01101001 01110100 01101000

XX
001 0101 0111 0001 0001 0001 0001

DXXXXXXX
1101110101 01110011 01100001 01101110

10

X
1001101111 01101110 01100101 01110011

(XX
001 0101 1001 0000 0111 0001)0111

0

01
XX

Rules

UNALIGNED PER representation of this record value

presentation of the record value given above (after applying the UNALIGNED variant of the Packed En
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadg

No extension values present in
children[0].name

Length is within range of extension root
Length of children[0].givénName = 5
children[0].givenName,=|"Ralph"

children[0].initial="P"

Length is withifirange of extension root
Length ofchildren[0].familyName = 5
childreqf0}-familyName = "Smith"

Length 1s within range of extension root
children[0].dateOfBirth = "19571111"

Extension value(s) present in children[1]

No extension values present in
children[1].name

Length is within range of extension root
Length of children[1].givenName = 5
children[1].givenName = "Susan"

children[1].initial = "B"

Length is within range of extension root
Length of children[1].familyName = 5
children[1].familyName = "Jones"

Length is within range of extension root
children[1].dateOfBirth = "19590717"

Length of extension addition bitmap
for children[1] =1
Indicate extension value for "sex" is pres¢nt

Length of the complete encoding of "sex
Complete encoding of "sex" = female

oding
cimal,

followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

The length of this encoding is 65 octets. For comparison, the same PersonnelRecord value encoded using the ALIGNED
variant of PER is 83 octets, BER with the definite length form is at least 139 octets, and BER with the indefinite length

form 1

A34.

40CBAA3A 5108A512 5F180330 889A7965 CrD37F20
E3011372 7AE35422 94497C61 95711118 22985CE5

80

34

s at least 164 octets.

1 Hexadecimal view

ITU-T Rec. X.691 (07/2002)

CB8848B8 19CE5BA2 Al114A24B
21842EAA 60B832B2 O0E2E0202

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

A34.

2 Binary view

ISO/IEC 8825-2:2002 (E)

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad the final octet
to an octet boundary:

0 No extension values present in PersonnelRecord

1 Bitmap bit = | indicates "children" is present

0 No extension values present in "name"

0 Length is within range of extension root

0000.11 Length of name.givenName = 4

001011 .101010 10.0011 1010.01 name.givenName = "John"

01000 name.initial = "P"

.0 Length is within range of extenSion’root

00010 Length of name.familyNamé & 5

0.10100 101.000 10010.0 101111 1.00011 name.familyName = "Smith”"

0 Value is within range-of €xtension root

00.00000011.0011 (employee) number ='51

0000.10000 Length of titles8

1000.100 11010.01 111001.0 1100101 1100011 1.110100 11.01111 111.0010 title = "Director”

0 Lengtliis within range of extension root

000.1 |1001 011.1 0001 000.0 1001 000.1 0111 dat€QfHire = "19710917"

0 No extension values present in nameOfYpouse

0 Length is within range of extension root

0.0001ft Length of nameOfSpouse.givenName =@

001.11p 01110.0 101101 1.10100 nameOfSpouse.givenName = "Mary"

010.10ft nameOfSpouse.initial ="T"

0 Length is within range of extension root

0001.00 Length of nameOfSpouse.familyName 5 5

01010¢ .101000 10.0100 1011.11 100011 nameOfSpouse.familyName = "Smith"

.0 Number of "children" is within the rangg of the
extension root

0 No extension values present in children[P]

0 No extension values present in
children[0].name

0 Length is within range of extension root

0001.00 Length of children[0].givenName = 5

01001] .011100 10.0111_1010.11 100011 children[0].givenName = "Ralph"

.0101011 children[0].initial = "T"

0 Length is within range of extension root

0.00100 Length of children[0].familyName = 5

010.100 10100.0 100100 1.01111 100.011 children[0].familyName = "Smith"

0 Length is within range of extension root

0001 .1001 0101 .0111 0001 .0001 0001 .0001 children[0].dateOfBirth = "19571111"

1 Extension value(s) present in children[1]

0 No extension values present in
children[1].name

0 Length is within range of extension root

0.00100 Length of children[1].givenName = 5

010.100 11000.0 101110 0.11100 101.001 children[1].givenName = "Susan"

00001.1 children[1].initial = "B"

0 Length is within range of extension root

000100 Length of children[1].familyName = 5

ITU-T Rec. X.691 (07/2002) 35

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

ISO/IEC 8825-2:2002 (E)

.001011 10.1010 1010.01 100000 .101110

0
0.001 1001 0.101 1001 0.000 0111 0.001 0111

children[1].familyName = "Jones"

Length is within range of extension root
children[1].dateOfBirth = "19590717"

0.000000 Length of extension addition bitmap for
children[1] =1

1 Indicate extension value for "sex" is present

0.0000001 Length of the complete encoding of "sex"

0.1XXXXXX Complete encoding of "sex" = female

X Pad bit to create complete encoding of
PersonnelRecord

A4 Record that uses extension addition groups

A.4.1| ASN.1 description of the record structure

The structure of the hypothetical customer record is formally described below using ASN.1 specified in [TU-T

Rec. X.680 | ISO/IEC 8824-1 for defining types. AUTOVATI C TAGS is assumed:

Ax ::= SEQUENCE {
a | NTEGER (250. . 253),
b BOOLEAN,
c CHO CE {
d I NTEGER,
[l
e BOCOLEAN,
f 1A5String
11,

g NunericString (SIZE(3)Y,
h BOOLEAN OPTI ONAL

i BMPSt ri ng OPTI ONAL,
j Printabl eStrd ng OPTI ONAL
}

A.4.2| ASN.1 description of a record.value
The v4lue of Ax is formally described-below using ASN.1:
{ a (253, b TRUE, c e:

A4.3 ALIGNED PER representation of this record value

TRUE,

g "123", h TRUE}

The r
define
follow|
bits th

d in this Recommendation | International Standard) is shown below. The encoding is shown in hexadd
ed by a.cenfmented description of the encoding shown in binary. In the binary view an 'x' is used to represe
at are ‘€ncoded as zero-bits; they are used to align the fields from time to time.

ppresentation 0f-the value given above (after applying the ALIGNED variant of the Packed Encoding|Rules

cimal,
nt pad

The l¢

ngth of this encoding is 8 octets. For comparison, the same value encoded using the UNALIGNED variant of

PER is

8 octets, BER with the definite length form is at least 22 octets, and BER with the indefinite length form is at least 26 octets.

A4.3.

1 Hexadecimal view

9E000180 010291A4

A4.3.

2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; and an X' represents a zero pad bit that is used from time to time to align fields on an octet boundary:

36

ITU-T Rec. X.691 (07/2002)

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

1

ISO/IEC 8825-2:20

Extension addition values present in Ax

02 (E)

00 Bitmap bits = 0 indicates optional fields (i & j) absent
11 a=253
1 b=TRUE
1 c's choice value is an extension addition value
0000000 xx Choice index selects c.e
00000001 Length of c.e
IXXXXXXX c.e=TRUE
0000000 Number of extension additions defined in Ax =1
1 First extension addition is present
00000010 Length of extension addition encoding =2
1 Bitmap = 1 indicates ‘h’ is present
0010 0p11 0100 g="123"
Ixx h=TRUE
A.4.4| UNALIGNED PER representation of this record value
The r¢presentation of the record value given above (after applying the UNALIGNED variant of the Packed Engoding
Rules|defined in this Recommendation | International Standard) is shown below. The encedirig is shown in hexadgcimal,
followed by a commented description of the encoding shown in binary. Note that‘pad bits do not occur |in the
UNALIGNED variant, except possibly at the end of the encoding of the outermost, value — and thus implicitly at the end
of the|value carried by an open type.
The lgngth of this encoding is 8 octets. For comparison, the same value enceded using the ALIGNED variant of PHR is 8
octets{ BER with the definite length form is at least 22 octets, and BER withythe indefinite length form is at least 26 octets.
A4.4]1 Hexadecimal view
9EO0P600 040A4690
A.4.42 Binary view
So as|to make it easier to read the binary view of the-data, blank lines are used to group fields that logically belong
togethler (typically length/value pairs); a newline issuséd to delineate fields; space is used to delineate characters wiithin a
charagter string; a period (.) is used to mark octét-boundaries; and an 'x' represents a zero-bit used to pad the findl octet
to an ¢ctet boundary:
1 Extension addition values present in Ax
00 Bitmap bits = 0 indicates optional fields (i & j) absent
11 a=253
1 b=TRUE
1 c's choice value is an extension addition value
0.000000 Choice index selects c.e
00.000001 Length of c.e
IX.XXXXXX c.e=TRUE
00.00000 Number of extension additions defined in Ax = 1
1 First extension addition is present
00.0000T0 Length of extension addition encoding =2
1 Bitmap = 1 indicates ‘h’ is present
0.010 0011 0.100 g="123"
IxxxX h=TRUE
ITU-T Rec. X.691 (07/2002) 37

https://standardsiso.com/api/?name=7408468468ea5465f08641256ca71355

	Information technology — ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)
	Contents
	Foreword
	Introduction
	Information technology – ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Additional references

	3 Definitions
	3.1 Specification of Basic Notation
	3.2 Information Object Specification
	3.3 Constraint Specification
	3.4 Parameterization of ASN.1 Specification
	3.5 Basic Encoding Rules
	3.6 Additional definitions

	4 Abbreviations
	5 Notation
	6 Convention
	7 Encoding rules defined in this Recommendation | International Standard
	8 Conformance
	9 The approach to encoding used for PER
	9.1 Use of the type notation
	9.2 Use of tags to provide a canonical order
	9.3 PER-visible constraints
	9.4 Type and value model used for encoding
	9.5 Structure of an encoding
	9.6 Types to be encoded

	10 Encoding procedures
	10.1 Production of the complete encoding
	10.2 Open type fields
	10.3 Encoding as a non-negative-binary-integer
	10.4 Encoding as a 2's-complement-binary-integer
	10.5 Encoding of a constrained whole number
	10.6 Encoding of a normally small non-negative whole number
	10.7 Encoding of a semi-constrained whole number
	10.8 Encoding of an unconstrained whole number
	10.9 General rules for encoding a length determinant

	11 Encoding the boolean type
	12 Encoding the integer type
	13 Encoding the enumerated type
	14 Encoding the real type
	15 Encoding the bitstring type
	16 Encoding the octetstring type
	17 Encoding the null type
	18 Encoding the sequence type
	19 Encoding the sequence-of type
	20 Encoding the set type
	21 Encoding the set-of type
	22 Encoding the choice type
	23 Encoding the object identifier type
	24 Encoding the relative object identifier type
	25 Encoding the embedded-pdv type
	26 Encoding of a value of the external type
	27 Encoding the restricted character string types
	28 Encoding the unrestricted character string type
	29 Object identifiers for transfer syntaxes
	Annex A - Example of encodings
	A.1 Record that does not use subtype constraints
	A.2 Record that uses subtype constraints
	A.3 Record that uses extension markers
	A.4 Record that uses extension addition groups

	Annex B - Combining PER-visible and non-PER-visible constraints
	B.1 General
	B.2 Extensibility and visibility of constraints in PER
	B.3 Examples

	Annex C - Support for the PER algorithms
	Annex D - Support for the ASN.1 rules of extensibility
	Annex E - Tutorial annex on concatenation of PER encodings
	Annex F - Assignment of object identifier values

