INTERNATIONAL STANDARD

ISO 9022-4

> Second edition 2002-10-15

Optics and optical instruments — Environmental test methods —

Part 4: Salt mist

Optique et instruments d'optique — Méthodes d'essais d'environnement —
Partie 4: Brouillard saline
Citat de vierne de la comment de la comment

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

STANDARDSISO.COM. Click to View the full POF of ISO 9002.A. 2002

© ISO 2002

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 9022 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 9022-4 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 1, Fundamental standards.

This second edition cancels and replaces the first edition (ISO 9022-4:1994), which has been technically revised.

ISO 9022 consists of the following parts, under the general title Optics and optical instruments — Environmental test methods:

- Part 1: Definitions, extent of testing
- Part 2: Cold, heat and humidity
- Part 3: Mechanical stress
- Part 4: Salt mist
- Part 5: Combined cold, low air pressure
- Part 6: Dust
- Part 7: Drip, rain
- Part 8: High pressure, low pressure, immersion
- Part 9: Solar radiation
- Part 10: Combined sinusoidal vibration and dry heat or cold
- Part 11 Mould growth
- Part 12: Contamination
- Part 13: Combined shock, bump or free fall and dry heat or cold
- Part 14: Dew, hoarfrost, ice
- Part 15: Combined digitally controlled broad-band random vibration and dry heat or cold
- Part 16: Combined bounce or steady-state acceleration and dry heat or cold
- Part 17: Combined contamination, solar radiation
- Part 18: Combined damp heat and low internal pressure
- Part 19: Temperature cycles combined with sinusoidal or random vibration

ISO 9022-4:2002(E)

- Part 20: Humid atmosphere containing sulfur dioxide or hydrogen sulfide
- Part 21: Combined low pressure and ambient temperature or dry heat

Annex A of this part of ISO 9022 is for information only.

STANDARDS & O.COM. Click to view the full POF of the Ogon A. A. A. S. S. TANDARDS & O.COM.

Introduction

Optical instruments are affected during their use by a number of different environmental parameters which they are required to resist without significant reduction in performance.

The type and severity of these parameters depend on the conditions of use of the instrument (for example, in the laboratory or workshop) and on its geographical location. The environmental effects on optical instrument performance in the tropics and subtropics are totally different from those found when they are used in the arctic regions. Individual parameters cause a variety of different and overlapping effects on instrument performance.

The manufacturer attempts to ensure, and the user naturally expects, that instruments will resist the likely rigours of their environment throughout their life. This expectation can be assessed by exposure of the instrument to a range of simulated environmental parameters under controlled laboratory conditions. The severity of these conditions is often increased to obtain meaningful results in a relatively short period of time.

In order to allow assessment and comparison of the response of optical instruments to appropriate environmental conditions, ISO 9022 contains details of a number of laboratory tests which reliably simulate a variety of different environments. The tests are based largely on IEC standards, modified where necessary to take into account features special to optical instruments.

It should be noted that, as a result of continuous progress in all fields, optical instruments are no longer only precision-engineered optical products, but, depending on their range of application, also contain additional assemblies from other fields. For this reason, the principal function of the instrument must be assessed to determine which International Standard should be used for testing. If the optical function is of primary importance, then ISO 9022 is applicable, but if other functions take precedence then the appropriate International Standard in the field concerned should be applied. Cases may arise where application of both ISO 9022 and other appropriate International Standards will be necessary.

STANDARDS ISO, COM. Click to view the full Path of ISO on P. A. 2002.

Optics and optical instruments — Environmental test methods —

Part 4:

Salt mist

1 Scope

This part of ISO 9022 specifies methods for the testing of optical instruments and instruments containing optical components, under equivalent conditions, for their ability to resist salt mist.

Exposure to salt mist mainly results in the corrosion of metals; effects may also occur by way of clogging or binding of moving parts.

The purpose of testing is to assess as early as possible the ability of the instrument, and particularly of the surfaces and protective coatings of the instrument, to resist the effects of a salt atmosphere.

Normally, representative samples or complete small units are used for testing. Complete large instruments or assemblies are only tested as specified in this part of ISO 9022 in exceptional cases.

2 Normative reference

The following normative document contains provisions which, through reference in this text, constitute provisions of this part of ISO 9022. For dated references, subsequent amendments to, or revisions of, this publication do not apply. However, parties to agreements based on this part of ISO 9022 are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 9022-1:1994, Optics and optical instruments — Environmental test methods — Part 1: Definitions, extent of testing

3 General information and test conditions

3.1 Limitations of testing

3.1.1 General

The aim of salt mist testing is unlikely to be achieved unless the deficiencies and limitations of such testing as detailed in 3.1.2 and 3.1.3 are fully recognized.

3.1.2 Suitability

Salt mist testing is considered suitable for:

- a) the assessment of the resistance of optical and other functional layers;
- b) assessing the anticorrosion effect of metallic and non-metallic coatings;
- c) early detection of the unacceptability of material combinations.

3.1.3 Unsuitability

Salt mist tests as specified in this part of ISO 9022 shall not be performed in the following cases:

- a) as a general corrosion test, as no verified data are available showing that there is a direct relationship between salt mist corrosion and corrosion caused by other attacking corrosive media or environments;
- b) on separate components or assemblies that are used only in assembled or any other configurations protected from corrosion:
- c) as a true duplication of natural marine environment.

NOTE Generally the salt mist test is unreliable for comparing the corrosion resistance of different materials, or the anticorrosive effect of coatings, exposed to varying climatic conditions, nor is it suitable for predicting the service life of such materials or coatings. Some idea of the service life of different specimens of identical or closely related metals, or of different specimens of identical or comparable protective coating combinations, can be gained by the salt mist test provided that, by correlating field service test data with laboratory tests, such relationships can be demonstrated as exist in the case of aluminium alloys. Such correlation tests are essential if data are required on the accelerating effect (if any) of laboratory testing as compared to performance under natural service conditions.

3.2 Specimens

Specimens shall be made of the basic materials used for the instrument under test; coatings (finishing coatings, protective coatings, thin films on optical parts), if any, shall be of the same structure as those used for the instrument components and surfaces to be assessed.

Specimens for testing metallic and non-metallic coatings shall preferably be metal sheets (sample sheets) as shown in Figure 1. The coating under test shall completely cover the sample sheet, especially the outer edges and edges of holes. Where this is not feasible, exposed metal edges shall be protected by a means that does not affect the coating under test. Marking of the sample sheets shall not damage the coating to be tested (e.g. punch-marking shall be carried out prior to applying the coating).

t = thickness of sample sheet

a Marking area (on the back)

Figure 1 — Sample sheet

Where the instruments or instrument components to be assessed are made of cast material, the use of specimens originating from the same batch shall be agreed upon and documented in the test report.

Dimensions in millimetres

In the test of optical and other functional layers, specimens shall be used as test-pieces which consist of the same basic materials as the original components.

Complete large instruments and assemblies, or separate components that are used in assembled configurations only, shall not be tested in accordance with this part of ISO 9022 unless as an exception. If necessary, essential areas of such specimens and of specimens other than sample sheets (e.g. electrically insulated components, open assemblies) may be used for assessment by agreement between the parties concerned.

3.3 Apparatus (see Figure 2)

The test apparatus essentially comprises the components described below. All parts of the test apparatus that come into contact with the salt mist or the test solution shall be made of a material that will not affect the corrosiveness of the test solution or the salt mist.

3.3.1 Test chamber, used for salt mist tests including a heated exposure chamber providing pressure balance and measuring/controlling means to adjust and maintain the test temperature to 35 $^{\circ}$ C \pm 2 $^{\circ}$ C within the closed chamber. The test chamber shall have a volume of not less than 400 l; it shall be constructed so as to prevent condensate dripping from overhead, and from the sidewalls, onto the specimens. The dripping of condensate from overhead can be avoided by inclining the exposure chamber at least 30 $^{\circ}$ to the horizontal.

Test solution once atomized shall not return into the salt solution reservoir.

The exposure zone is that part of the test chamber which is not covered by the cone-shaped spray, and where uniform distribution of the mist can be demonstrated in accordance with 3.5.2.

3.3.2 Atomizing nozzles, made of polymethylmethacrylate or polyvinylchloride and having an orifice of 1 mm diameter; their dispersion angle is approximately 30° and they are operated at a positive pressure of between 70 kPa and 140 kPa, and a suction level of 200 mm to 500 mm salt mist has proved to be best produced by self-priming compressed-air nozzles without a regulating or quick-cleaning needle. It is useful to provide a means for measuring and controlling the flow of fluid (see Figure 2), serving to adjust and control the amount of salt solution to be atomized so that the condensate collected per hour in the exposure chamber is kept within the acceptable tolerances specified in 3.5.2.

The spray shall not impinge upon the specimens. It may therefore be necessary to direct the spray against one of the chamber walls (see Figure 2, Example 2) or, if the nozzle is installed at the bottom of the chamber, to provide a guide tube (see Figure 2, Example 1).

The number and location of the atomizing nozzles shall be selected so that the requirements for the available exposure space as specified in 3.5.2 are met.

Other types of nozzles may be used provided that the materials of which they are made do not affect the corrosiveness of the salt mist, and that the salt mist produced by such nozzles meets the requirements specified in 3.5.2.

- **3.3.3 Levelling receptacle and supply line**, for the salt solution to be atomized, designated and constructed so that the suction level remains constant throughout the duration of the test.
- **3.3.4** Airline including oil and solid matter trap, and humidifier, designed and constructed so that the compressed air remains saturated with water at the required temperature throughout the duration of the test. A pressure gauge for measuring the air pressure at the nozzle shall be installed in the airline running from the humidifier to the exposure chamber.
- **3.3.5** Racks, permitting the arrangement of the specimens within the available exposure space so that they do not come into contact with each other.

Major surfaces of representative samples and, if possible, of assemblies shall be inclined at least 60° to the horizontal.

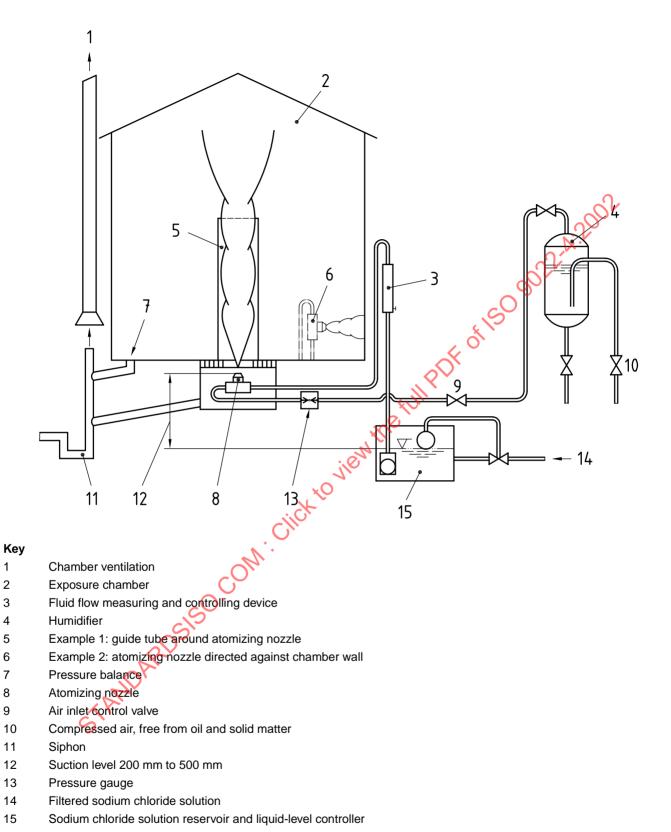


Figure 2 — Schematic representation of test apparatus, showing two different locations of atomizing nozzle

Sample sheets shall be placed on edge at an angle of 60° to 75° to the horizontal. Unless otherwise specified in the relevant specification, instruments and, if required, assemblies shall be installed in the exposure chamber in their operating position.

The specimens shall be arranged in the exposure chamber in such a manner that they do not overlap or come into contact with each other and that condensate cannot drip down upon them. Care shall be taken to prevent contact corrosion (e.g. electrolytic action or crevice corrosion) where the specimens come into contact with the supporting racks.

The supporting racks for the specimens shall be made of one of the following materials: glass, polypropylene, non-plasticized PVC (polyvinyl chloride), PA 66 (polyamide), PA 6, etc.

Supporting devices shall not damage the surface coatings or release agents which change the surface of the test piece or react with the coatings.

3.4 Reagents

3.4.1 Test solution, 5 % mass fraction aqueous solution of sodium chloride obtained by dissolving 50 g \pm 10 g of sodium chloride (NaCl), containing not more than 1 % total impurities in 950 g of water at ambient temperature. The pH of the sodium chloride solution shall be adjusted so that the pH of the collected condensate will be in the range 6,5 to 7,2 measured at a temperature of 25 °C \pm 2 °C. Only chemically pure dilute hydrochloric acid or sodium hydroxide solution shall be used to adjust the pH. The pH shall be measured either electrometrically using a glass electrode at a temperature of 25 °C \pm 2 °C, or colorimetrically using bromothymol blue as indicator (see annex A). The concentration of sodium chloride in the collected condensate shall be 50 g/l \pm 10 g/l.

The water used to prepare the test solution shall be distilled of demineralized (completely softened); its electrical conductivity at a temperature of 25 $^{\circ}$ C \pm 2 $^{\circ}$ C shall not exceed 20 μ S/cm and the proportion of solid matter shall not be more than 100 ppm.

The test solution shall be filtered before use to remove any solid matter which might block the aperture of the spraying device.

The sprayed solution shall not be able to return to the sodium chloride solution reservoir, nor shall it be reused.

3.4.2 Compressed air, used for atomizing the test solution, at a positive pressure of 70 kPa to 140 kPa, and free from dirt, oil and other impurities. It shall therefore be passed through standard oil and liquid separators, followed by a ceramic compressed-air cleaner, so that at least 99,5 % of the impurities are removed.

1 m³ of purified air shall contain less than 0,2 mg of oil and dust particles of less than 5 μm in size.

The purified air shall then be saturated with water (using a humidifier operating on demineralized water) at such a temperature that the air reaches approximately 35 °C after expansion (see annex A).

NOTE It is necessary to saturate the compressed air with water in order to prevent an increase of the sodium chloride concentration in the atomized solution.

3.5 Salt spray test conditions

3.5.1 Temperature

During testing, the temperature in the exposure zone of the closed test chamber shall be 35 $^{\circ}$ C \pm 2 $^{\circ}$ C. If it becomes necessary to open the test chamber, the temperature may be allowed to fall by a few degrees. It shall be measured sufficiently in order to record all temperature changes, if possible.

NOTE It is recommended to record the temperature curve by means of the thermograph and to ensure a uniform temperature distribution by providing adequate thermal insulation of the test chamber.

3.5.2 Salt mist

The amount of salt solution to be atomized per unit of time within the exposure chamber shall be such that over a period of not less than 16 h a mean of 1,5 ml \pm 0,5 ml of solution per hour for each 80 cm² of horizontal collecting area is collected in a receptacle placed in the bottom of the test chamber.

As regards the atomizing nozzles (3.3.2), it has proved useful to adjust only by means of the external flow measuring and controlling device the amount of salt solution to be atomized at a given constant positive pressure of the compressed air and a constant suction level.

Other methods of adjusting the amount of salt solutions to be atomized are acceptable provided that they ensure uniform distribution of the salt mist within the exposure zone and do not impair the deposition characteristics of the salt mist. In order to permit verification of the uniformity of salt mist distribution within the exposure zone, a minimum of two collecting receptacles shall be placed in the bottom of the chamber near the racks supporting the specimens, one near a nozzle and one distant from the nozzles. The receptacles shall be arranged in such a manner that they cannot collect condensate dripping down from the chamber ceiling or walls, or from the racks or specimens. Receptacles suitable for collecting the atomized solution are, for instance, glass or plastics funnels of 10 cm diameter (corresponding to a collecting area of approximately 78,5 cm²), fitted into a glass or plastics measuring cylinder by means of a plug.

3.6 Test interruption and opening of test chamber

Salt mist tests shall be conducted as uninterrupted trials. The salt solution shall be continuously atomized throughout the exposure period. Atomizing shall not be interrupted during the exposure period unless it is necessary to open the test chamber for the purpose of removing specimens for assessment or to replace them.

If intermediate inspections are required, care shall be taken to prevent the specimens from becoming dry; wet them, if appropriate, using test solution (3.4.1) at room temperature. Under no circumstances shall intermediate inspections take more than 30 min for each 24 h of test duration.

4 Conditioning method 40: Salt mist

See Table 1.

Table 1 — Degrees of severity for conditioning method 40: Salt mist

Degree of severity		01	02	03	04	05	06	07
Exposure time	0	2 h	4 h	8 h	16 h	2 d	4 d	8 d
State of operation	R				1 or 2			

5 Procedure

5.1 General

The test shall be conducted in accordance with the requirements of the relevant specification and with ISO 9022-1.

5.2 Preconditioning (specimen preparation)

If not specified in the relevant specification, the surface of the specimen shall be properly cleaned prior to exposure. To this end, only such neutral cleaning agents shall be used as do not leave a film on or attack the surface of the specimen. After cleaning, the specimen shall be restored to service condition, e.g. by the application of protective grease.