

INTERNATIONAL
STANDARD

ISO
14501

IDF 171

Third edition
2021-05

**Milk and milk powder —
Determination of aflatoxin M₁ content
— Clean-up by immunoaffinity
chromatography and determination
by high-performance liquid
chromatography**

Lait et lait en poudre — Détermination de la teneur en aflatoxine M₁ — Purification par chromatographie d'immunoaffinité et détermination par chromatographie en phase liquide à haute performance

STANDARDSISO.COM : Click to view the full PDF of ISO 14501:2021

Reference numbers
ISO 14501:2021(E)
IDF 171:2021(E)

© ISO and IDF 2021

STANDARDSISO.COM : Click to view the full PDF of ISO 14501:2021

COPYRIGHT PROTECTED DOCUMENT

© ISO and IDF 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11

Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

International Dairy Federation
Silver Building • Bd Auguste Reyers 70/B
B-1030 Brussels
Phone: +32 2 325 67 40
Fax: +32 2 325 67 41
Email: info@fil-idf.org
Website: www.fil-idf.org

Contents

	Page
Forewords	iv
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Principle	2
5 Reagents	2
6 Apparatus	4
7 Sampling	5
8 Procedure	5
8.1 General	5
8.2 Preparation of test samples	5
8.2.1 Milk	5
8.2.2 Milk powder	5
8.3 Immunoaffinity column preparation	6
8.4 Test sample purification	6
8.5 High performance liquid chromatography (HPLC)	6
8.5.1 Pump setting	6
8.5.2 Chromatographic performance	6
8.5.3 Calibration curve of aflatoxin M ₁	7
8.5.4 Analysis of the purified extracts and injection scheme	7
9 Calculation and expression of results	7
9.1 Skimmed milk	7
9.1.1 Calculation	7
9.1.2 Expression of results	7
9.2 Skimmed milk powder	8
9.2.1 Calculation	8
9.2.2 Expression of results	8
10 Precision	8
10.1 Interlaboratory test	8
10.2 Repeatability	8
10.3 Reproducibility	8
11 Test report	9
Annex A (informative) Results of an interlaboratory trial	10
Bibliography	11

Forewords

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products*, and the International Dairy Federation (IDF), in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 302, *Milk and milk products - Methods of sampling and analysis*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement). It is being published jointly by ISO and IDF.

This third edition cancels and replaces the second edition (ISO 14501 | IDF 171:2007), which has been technically revised. The main changes compared with the previous edition are as follows:

- the lack of detailed explanation in some clauses was leading to variability in the way the method was executed from one laboratory to another. Practical information from skilled end users familiar with routine analysis using this protocol was taken into account in this revision to clarify those ambiguous clauses.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

IDF (the International Dairy Federation) is a non-profit private sector organization representing the interests of various stakeholders in dairying at the global level. IDF members are organized in National Committees, which are national associations composed of representatives of dairy-related national interest groups including dairy farmers, dairy processing industry, dairy suppliers, academics and governments/food control authorities.

ISO and IDF collaborate closely on all matters of standardization relating to methods of analysis and sampling for milk and milk products. Since 2001, ISO and IDF jointly publish their International Standards using the logos and reference numbers of both organizations.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. IDF shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

This document was prepared by the IDF *Standing Committee on Analytical Methods for Additives and Contaminants* and ISO Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products*. It is being published jointly by ISO and IDF.

The work was carried out by the IDF-ISO Action Team on A12 of the *Standing Committee on Analytical Methods for Additives and Contaminants* under the aegis of its project leader Mr Paul Jamieson.

STANDARDSISO.COM : Click to view the full PDF of ISO 14501:2021

Milk and milk powder — Determination of aflatoxin M₁ content — Clean-up by immunoaffinity chromatography and determination by high-performance liquid chromatography

CAUTION 1 — The method described in this document requires the use of solutions of aflatoxin M₁. Aflatoxins are carcinogenic to humans. Attention is drawn to the statement made by the International Agency for Research on Cancer (WHO)^{[1][2]}.

CAUTION 2 — Adequately protect the laboratory in which the analyses are performed from daylight and keep aflatoxin M₁ standard solutions protected from light, e.g. by using aluminium foil.

CAUTION 3 — The use of non-acid-washed glassware (e.g. tubes, vials, flasks, beakers, syringes) for aqueous aflatoxin solutions can cause loss of aflatoxin M₁. Moreover, brand new laboratory glassware, before coming into contact with aqueous solutions of aflatoxin M₁, should be soaked in dilute acid (e.g. sulfuric acid, $c = 2 \text{ mol/l}$) for several hours, then rinsed well with distilled water to remove all traces of acid (check to ensure pH is in the range 6 to 8).

CAUTION 4 — Use decontamination procedures for laboratory wastes such as solid compounds, solutions in organic solvents, aqueous solutions and spills, and for glassware coming into contact with carcinogenic materials. Suitable decontamination procedures have been developed and validated by the International Agency for Research on Cancer (WHO)^{[1][2]}.

1 Scope

This document specifies a method for the determination of aflatoxin M₁ content in milk and milk powder. The lowest level of validation is 0,08 µg/kg for whole milk powder, i.e. 0,008 µg/l for reconstituted liquid milk. The limit of detection (LOD) is 0,05 µg/kg for milk powder and 0,005 µg/kg for liquid milk. The limit of quantification (LOQ) is 0,1 µg/kg for milk powder and 0,01 µg/kg for liquid milk.

The method is also applicable to low-fat milk, skimmed milk, low-fat milk powder and skimmed milk powder.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at <http://www.electropedia.org/>
- ISO Online browsing platform: available at <https://www.iso.org/obp>

3.1

aflatoxin M₁ content

concentration or mass fraction of substances determined by the procedure specified in this document

Note 1 to entry: Concentration is expressed in µg/l and mass fraction is expressed in µg/kg.

4 Principle

Aflatoxin M₁ is extracted by passing the test portion through an immunoaffinity column that contains specific antibodies bound onto a solid support material.

As the sample passes through the column, the antibodies are selectively bound with any aflatoxin M₁ (antigen) present and form an antibody-antigen complex. All other components of the sample matrix are washed off the column with water. Then aflatoxin M₁ is eluted from the column and the eluate is collected. The amount of aflatoxin M₁ present in this eluate is determined by means of high-performance liquid chromatography (HPLC) coupled with fluorimetric detection.

5 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and distilled or demineralized water or water of equivalent purity.

5.1 Immunoaffinity column.

The immunoaffinity column shall contain antibodies against aflatoxin M₁. The column shall have a maximum capacity of not less than 100 ng of aflatoxin M₁ (which corresponds to 2 µg/l when a volume of 50 ml of a test portion is applied). It shall give a recovery of not less than 80 % for aflatoxin M₁ when a standard solution containing 4 ng of toxin is applied (which corresponds to 80 ng/l when a volume of 50 ml of sample is applied). Any immunoaffinity column meeting the performance specifications mentioned above can be used.¹⁾

The performance of the columns shall be checked regularly and at least once for every batch of columns. The procedure is as follows.

- a) Capacity check:
 - 1) dilute 2,0 ml of aflatoxin M₁ standard stock solution (5.4.2) to 50 ml with water;
 - 2) mix well and apply the whole volume to the immunoaffinity column, carefully following the recommendations given by the manufacturer for the use of columns;
 - 3) wash the column and elute the toxin;
 - 4) determine the amount of aflatoxin M₁ eluted from the column by HPLC after preparing a suitable dilution of the final eluate;
 - 5) calculate the capacity for the aflatoxin;
 - 6) compare the result with the requirements given above.
- b) Recovery check:
 - 1) use a pipette (6.4) to dilute 0,8 ml of aflatoxin M₁ standard working solution of 0,005 µg/ml (5.4.3) to 50 ml with water;
 - 2) mix well and apply the whole volume to the immunoaffinity column, carefully following the recommendations given by the manufacturer for the use of columns;
 - 3) wash the column and elute the toxin;
 - 4) determine the amount of aflatoxin M₁ eluted from the column by HPLC after preparing a suitable dilution of the final eluate;

1) Examples of immuno affinity columns: Afla Test P Vicam®, Aflaprep® M R-Biopharm. Similar products are also available from Romer Labs®, Bioo Scientific® and Neogen®. These products are examples of suitable products available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO and/or IDF of these products.

- 5) calculate the recovery for the aflatoxin;
- 6) compare the result with the requirements given above. The concentration shall not be less than 0,064 µg/l. Recovery checks can also be conducted with commercially available reference materials.

5.2 Acetonitrile, pure, HPLC grade.

5.2.1 Acetonitrile solution, volume fraction of 25 % in water.

Add 250 ml of acetonitrile (5.2) to 750 ml of water and mix. Other volumes in the same proportion may be used. Degas the solution (eluent) before using it.

5.2.2 Acetonitrile solution, volume fraction of 10 % in water.

Add 100 ml of acetonitrile (5.2) to 900 ml of water and mix. Other volumes in the same proportion may be used. Degas the solution (eluent) before using it.

5.3 Nitrogen gas.

5.4 Aflatoxin M₁ standard solutions.

5.4.1 Aflatoxin M₁ standard calibration solution, (mass concentration $\rho = 10 \text{ } \mu\text{g/ml}$ aflatoxin M₁ in acetonitrile).

Prepare an aflatoxin M₁ standard calibration solution by dissolving aflatoxin M₁ ($\text{C}_{17}\text{H}_{12}\text{O}_7$) in acetonitrile (5.2) to give a nominal concentration of 10 µg/ml. Determine the actual aflatoxin M₁ concentration by measurement of the absorbance at the maximum absorption wavelength of the solution as follows.

Use the spectrophotometer (6.13) to record the absorbance of the aflatoxin M₁ standard calibration solution against acetonitrile (5.2) as blank at wavelengths between 330 nm and 370 nm. Measure the absorbance, A , at its maximum absorption wavelength, λ_{\max} , which is close to 350 nm.

Calculate the concentration, ρ_1 , expressed in micrograms per millilitre, by using [Formula \(1\)](#):

$$\rho_1 = A \times M \times \frac{100}{d \times \varepsilon} \quad (1)$$

where

A is the numerical value of the absorbance at λ_{\max} ;

M is the molar mass of aflatoxin M₁, in grams per mole ($M = 328 \text{ g/mol}$);

d is the optical path length, in centimetres ($d = 1 \text{ cm}$);

ε is the numerical value of the absorption coefficient of the toxin in acetonitrile, in square metres per mole ($\varepsilon = 1\,985 \text{ m}^2 \cdot \text{mol}^{-1}$).

Alternatively, certified reference materials are available commercially (for example BCR-423 10 µg/ml aflatoxin M₁ in chloroform).

5.4.2 Aflatoxin M₁ standard stock solution, ($\rho = 0,1 \text{ } \mu\text{g/ml}$ aflatoxin M₁ in acetonitrile).

After checking its concentration, dilute the aflatoxin M₁ standard calibration solution (5.4.1) with 25 % acetonitrile (5.2.1) to an aflatoxin M₁ standard stock solution of 0,1 µg/ml. The standard stock solution shall be well-stoppered and wrapped in aluminium foil to protect it from light.

Store the aflatoxin M₁ standard stock solution in a refrigerator at a temperature between 1 °C and 5 °C in the dark. Under these conditions the stock solution is stable for at least two months. If the standard stock solution is more than two months old, determine the aflatoxin M₁ concentration before use. If there is any change, discard the solution and prepare a fresh standard stock solution.

5.4.3 Aflatoxin M₁ standard working solutions, ($\rho = 0,005 \mu\text{g/ml}$ aflatoxin M₁ in a mixture of nine parts per volume of water and one part per volume of acetonitrile).

Before preparing the aflatoxin M₁ standard working solutions, allow the standard stock solution (5.4.2) to attain ambient temperature. Prepare the standard working solutions on the day of use.

Dilute the aflatoxin M₁ standard stock solution (5.4.2) with the 10 % acetonitrile solution (5.2.2) to an aflatoxin M₁ concentration of 0,005 µg/ml.

Remove aliquots of the diluted standard stock solution to prepare a series of five standard working solutions containing, for example, 0,05 ng/ml, 0,10 ng/ml, 0,20 ng/ml, 0,40 ng/ml, and 0,80 ng/ml of aflatoxin M₁ by diluting with the 10 % acetonitrile solution (5.2.2). Other final dilutions may be chosen, depending on the injection loop volume.

In some cases, better peak shape may be obtained with diluting the aflatoxin M₁ standard stock solution (5.4.2) with a mixture of water and acetonitrile in the same acetonitrile/water ratio as the eluent (5.2.1).

6 Apparatus

Usual laboratory equipment and, in particular, the following:

- 6.1 Disposable syringes**, of capacities 10 ml and 50 ml.
- 6.2 Vacuum system**, e.g. Büchner flask, Vac-Elut system²⁾ or peristaltic pump.
- 6.3 Centrifuge**, capable of producing a radial acceleration of at least 2 000 g.
- 6.4 Pipettes**, of capacities 1,0 ml, 2,0 ml and 50,0 ml, or suitable autopipette.
- 6.5 Glass beakers**, of capacity 250 ml.
- 6.6 One-mark volumetric flask**, of capacity 100 ml.
- 6.7 Water baths**, capable of operating at 30 °C ± 2 °C, at between 35 °C and 37 °C and 50 °C ± 5 °C.
- 6.8 Filter paper**, Whatman No. 4² or equivalent.
- 6.9 Graduated conical glass tubes**, with ground glass neck and stopper of capacities 5 ml, 10 ml and 20 ml.
- 6.10 HPLC apparatus**, equipped with a pulse-free pump, capable of producing a constant volume flow rate of about 1 ml/min, and an injector system, with a fixed or variable injection volume loop, capable of injecting volumes of 20 µl to 500 µl.

2) The Vac-Elut system and Whatman are examples of suitable products available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO or IDF of these products.

6.11 Reversed phase HPLC analytical column, with 3 µm or 5 µm octadecyl silica packing and a guard column filled with reverse phase material.

6.12 Fluorescence detector, capable of providing about 365 nm excitation and 425 nm emission wavelengths and of detecting (signal to noise ratio: 5) aflatoxin M₁ when 0,02 ng is injected under appropriate chromatographic conditions.

6.13 Spectrophotometer, capable of measuring at wavelengths from 200 nm to 400 nm, with quartz cuvettes of optical pathlength 1 cm.

6.14 Analytical balance, capable of weighing to the nearest 0,01 g.

7 Sampling

A representative sample should have been sent to the laboratory. It should not have been damaged or changed during transport or storage. Sampling is not part of the method specified in this document. A recommended sampling method is given in ISO 707 | IDF 50^[3].

8 Procedure

8.1 General

Carry out the procedure with daylight excluded, as far as possible.

Notice that the procedures for loading the sample on to the affinity columns, for washing the column and elution will vary slightly between column manufacturers. Follow precisely, therefore, the specific instructions supplied with the columns.

8.2 Preparation of test samples

8.2.1 Milk

Warm the test sample in the water bath (6.7) to between 35 °C and 37 °C. Either filter the sample through filter paper(s) (6.8) using several filters, if necessary, or centrifuge it at a radial acceleration of at least 2 000 g for 15 min. Collect at least 50 ml of the thus prepared skimmed milk sample. Continue as specified in 8.4.

Failure to remove fat can cause blockage of the cartridge. To aid in the removal of fat after centrifugation, the sample can be cooled to 4 °C to 10 °C until the fat is solidified.

8.2.2 Milk powder

Weigh, to the nearest 0,01 g, 10 g of test sample into a 250 ml beaker (6.5). Add 50 ml water, prewarmed in the water bath (6.7) to 50 °C, in small amounts to the test sample. Mix, using a stirring rod, until a homogeneous mixture is obtained.

If the test sample does not become completely suspended, place the beaker in a water bath (6.7) set at 50 °C for at least 30 min. Stir the mixture frequently.

Allow the test solution to cool to between 20 °C and 25 °C. Then, quantitatively transfer the test solution to a 100 ml one-mark volumetric flask (6.6) using small amounts of water. Dilute to the 100 ml mark with water. Filter enough of the reconstituted sample through filter paper(s) (6.8) or centrifuge it at a radial acceleration of at least 2 000 g for 15 min. Collect at least 50 ml of the prepared milk powder sample. Continue as specified in 8.4.

8.3 Immunoaffinity column preparation

Attach the barrel of a 50 ml disposable syringe (6.1) to the top of an immunoaffinity column (5.1). Connect the immunoaffinity column to the vacuum system (6.2).

8.4 Test sample purification

Add 50 ml of the prepared test sample (8.2.1 or 8.2.2) into the 50 ml syringe barrel (6.1). Allow it to pass through the immunoaffinity column at a rate of 2 ml/min to 3 ml/min while controlling the volume flow by using the vacuum system (6.2).

Replace the 50 ml syringe barrel by a clean 10 ml syringe barrel. Wash the column with 2×10 ml water by allowing it to pass through the column at a steady volume flow rate. Blow the column to completely dry it after washing.

Disconnect the column from the vacuum system. Elute aflatoxin M₁ slowly from the column by passing 4 ml pure acetonitrile (5.2) in about 60 s through the column using a 10 ml syringe. Control the volume flow rate by means of the syringe plunger. Consider the manufacturer's instructions.

Collect the eluate in a conical tube (6.9). Reduce the eluate to dryness by placing the tube in the water bath (6.7) set at 50 °C and blowing a gentle stream of nitrogen (5.3) over it.

Make up to a final eluate volume, $V_f = 10V_e$, i.e. 500 µl to 5 000 µl, with water (see NOTE).

Alternatively, 25 ml of samples can be applied to the immunoaffinity column and the final reconstitution volume decreased to 200 µl.

NOTE If the acetonitrile content of the injected extract containing aflatoxin M₁ exceeds the 10 % (volume fraction) limit, peak broadening will occur on the HPLC chromatogram. However, a water content of over 90 % (volume fraction) has no influence on the peak-shape^[4].

8.5 High performance liquid chromatography (HPLC)

8.5.1 Pump setting

Pump the eluent (5.2.1) at a constant flow rate through the HPLC column. Depending on the type of column used, adjust the acetonitrile/water ratio of the HPLC eluent (5.2.1), if necessary, to ensure an optimal separation of the aflatoxin M₁ from other extract components.

NOTE The flow rate of the eluent (5.2.1) also depends on the column (6.11) used. As guidelines for conventional columns with a length of approximately 25 cm: internal diameter about 4,6 mm, the optimal flow rate is approximately 1 ml/min; with internal diameter about 3 mm, the optimal flow rate is approximately 0,5 ml/min and typical elution conditions isocratic eluents (mixture of 80 parts per volume of water, 12 parts per volume of isopropanol and 8 parts per volume of acetonitrile or a mixture of 1 000 parts per volume of water, 275 parts per volume of methanol and 275 parts per volume of acetonitrile) depending on the column.

It is advisable to ascertain optimal conditions by using a sample extract (preferably free from aflatoxin M₁), which is injected separately and in combination with an aflatoxin M₁ standard working solution (5.4.3).

8.5.2 Chromatographic performance

Check the stability of the chromatographic system by repeatedly injecting a fixed amount of aflatoxin M₁ standard working solution (5.4.3) until stable peak areas are achieved. Consecutive injections shall not differ more than 5 % in peak area.

The responses in retention time of the aflatoxin M₁ peaks depend on the temperature. Therefore, to compensate for drift in the detection system, inject a fixed amount of aflatoxin M₁ standard working solution (5.4.3) at regular intervals. If needed, the result for the standard working solution used can be corrected for the observed drift.

8.5.3 Calibration curve of aflatoxin M₁

Inject, in sequence, suitable volumes of the standard working solutions (5.4.3) containing for example 0,05 ng/ml, 0,10 ng/ml, 0,20 ng/ml, 0,40 ng/ml and 0,80 ng/ml of aflatoxin M₁ into the HPLC apparatus via the injection loop. Prepare a calibration graph by plotting the obtained peak area for each standard working solution against the mass of aflatoxin M₁ injected.

8.5.4 Analysis of the purified extracts and injection scheme

Inject a similar volume of the eluate (8.3) to that used for the standard working solutions (5.4.3) into the HPLC apparatus via the injection loop. Separate the aflatoxin M₁ present, using the same conditions as for the standard solutions. Perform the injection of standards and sample extracts according to a specified injection scheme.

When a series of sample eluates is to be injected one after the other, it is recommended that an aflatoxin M₁ standard working solution is injected after every five injections of sample eluates.

Determine the area of the aflatoxin M₁ peak of the sample eluate. Calculate, from the calibration graph, the mass, in nanograms, of aflatoxin M₁ in the sample extract.

If the peak area of aflatoxin M₁ in the sample eluate is greater than that of the highest standard solution, dilute the eluate quantitatively with water. Re-inject the diluted extract into the HPLC apparatus as described above.

9 Calculation and expression of results

9.1 Skimmed milk

9.1.1 Calculation

Calculate the aflatoxin M₁ content, as a concentration, of the test sample, ρ , in micrograms per litre, by using [Formula \(2\)](#):

$$\rho = m_a \times \left(\frac{V_f}{V_i} \right) \times \left(\frac{1}{V_t} \right) \quad (2)$$

where

m_a is the mass of aflatoxin M₁ corresponding to the area of the aflatoxin M₁ peak of the sample eluate, in nanograms;

V_i is the volume of the test sample eluate injected, in microlitres;

V_f is the final volume of the test sample eluate, in microlitres;

V_t is the volume of the prepared test solution passing through the column, in millilitres.

9.1.2 Expression of results

Express the test results to three decimal places for liquid milk.

9.2 Skimmed milk powder

9.2.1 Calculation

Calculate the aflatoxin M₁ content, as a mass fraction, of the test sample, w , in micrograms per kilogram, by using [Formula \(3\)](#):

$$w = m_a \times \left(\frac{V_f}{V_i} \right) \times \left(\frac{1}{m_t} \right) \times f \quad (3)$$

where

m_t is the mass of the test sample present in 50 ml of the prepared test sample [\(8.4\)](#), in grams;
 f is the dilution factor of the test sample (for undiluted solutions, $f = 1$).

9.2.2 Expression of results

Express the test results to two decimal places for milk powders.

10 Precision

10.1 Interlaboratory test

The values for repeatability and reproducibility derived from the interlaboratory test were determined in accordance with ISO 5725-1^[5] and ISO 5725-2^[6]. Details of the test are summarized in [Annex A](#).

The values obtained can not be applicable to concentration ranges and matrices other than those given.

10.2 Repeatability

In not more than 5 % of cases, the absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will be greater than the values given in [Table A.1](#).

10.3 Reproducibility

In not more than 5 % of cases, the absolute difference between two independent single test results, obtained using the same method on identical test material in different laboratories with different operators using different equipment, will be greater than the values given in [Table A.1](#).