TECHNICAL ISO/IECTR
REPORT 19759

Second edition
2015-10-01

Corrected version
2016-06-01

Software Engineering — Guide o
the Software Engineering Body |of
Knowledge (SWEBOK)

Ingénierie du logiciel — Guide du.eorps de connaissance de
I'ingénierie du logiciel (SWEBOQK)

Reference number

@ m ISO/IEC TR 19759:2016(E)
Y=
©ISO/IEC 2016

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

Www.iso.org

ii © I1SO/IEC 2016 - All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Contents Page
Lo T o o iv
L oo LU T o) v
1 85T o7 o - 1
2 RecoOMMENdAtioNSooieiiiiir 1
3 Revision of the IEEE Computer Society Publication ... ee e s e e ee e e 1
4 V] o [T o= T 1

© ISO/IEC 2016 — All rights reserved iii

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

Foreword

ISO (the International Organization for Standardization) and [IEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards through technical committees established by
the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established
a joint technical committee, ISO/IEC JTC 1.

The| procedures used to develop this document and those intended for itshfufrther
maimtenance are described in the ISO/IEC Directives, Part 1. In particular the\diffgrent
appfoval criteria needed for the different types of document should beCnoted. [This
docyiment was drafted in accordance with the editorial rules of the
ISOJIEC Directives, Part 2 (see www.iso.org/directives).

Attenption is drawn to the possibility that some of the elements of this document may be
the pubject of patent rights. ISO and IEC shall not be held responsible for identifying any or
all quch patent rights. Details of any patent rights identified during the development of the
docyiment will be in the Introduction and/or on,-\the ISO Ilist of patent
declarations received (see www.iso.org/patents).

Any|trade name used in this document is information<{given for the convenience of usérs
and|does not constitute an endorsement.

For [an explanation on the meaning of ISO.specific terms and expressions related to
conformity assessment, as well as information about ISO's adherence to the WTO

pringiples in the Technical Barriers to Trade (TBT), see the following URL: Foreworfl —

Supplementary information.

Thig corrected version of ISO/IECTR 19759:2015 incorporates the following correctiong:
- corrupted paragraphs of text-within the document have been replaced.
ISO[IEC TR 19759 was\prepared by the IEEE Computer Society and was adopted, under a

spe¢ial “fast-track-‘procedure”, by Joint Technical Committee ISO/IEC JTQ 1,
Infofmation technology, in parallel with its approval by national bodies of ISO and IEC.

© ISO/IEC 2016 — All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 197

Introduction

59:2016(E)

The purpose of the Guide to the Software Engineering Body of Knowledge is to provide a consensually validated
characterization of the bounds of the software engineering discipline and to provide a topical access to the Body of
Knowledge supporting that discipline. The Body of Knowledge is subdivided into fifteen software engineering

Knowledge Are

among the
finding a su
knowledge.

as (KA)

bject, readers are referred to key papers or books selected because they succinctly presen

engineering discipline. The goal in developing this update to SWEBOK is to improvs

currency, re
to reflect ch
a Software
Methods KA
now a topig

dability, consistency, and usability of the Guide. All knowledge areas (KAs) have been upd

anges in software engineering since publication of SWEBOK 2004. Foutrnew foundation KAs

Engineering Professional Practices KA have been added. The Software Engineering Tools
has been revised as Software Engineering Models and Methods. Software engineering to
in each of the KAs. Three appendices provide the specifications for the KA descriptior

annotated s¢t of relevant standards for each KA, and a listing of the references cited in the Guide.

An emphas
literature. M
information
prescribes W
helpful. The
standards a
strong relati

s on engineering practice leads the Guide toward . strong relationship with the norm
bst of the computer science, information technology<@and software engineering literature pro
Liseful to software engineers, but a relatively small/portion is normative. A normative docu
hat an engineer should do in a specified situation rather than providing information that mig
normative literature is validated by consensusformed among practitioners and is concentrat
hd related documents. From the beginning;the SWEBOK project was conceived as havi
bnship to the normative literature of software engineering. The two major standards bodie

software en

ineering (IEEE Computer Society Software and Systems Engineering Standards Committeq

ISO/IEC JT@1/SC7) cooperated in the project.

The Guide i
organization|

oriented toward a variety ofiaudiences, all over the world. It aims to serve public and pr

inate

ated

ls is
an

ative
ides
ment
ht be
ed in
ng a
s for
and

vate

in need of a consistent\\view of software engineering for defining education and trafining

requirementp, classifying jobs, developing performance evaluation policies or specifying soft
development tasks. It also addresses. practicing, or managing, software engineers and the officials respon
for making pgublic policy regardinglicensing and professional guidelines. In addition, professional societies
educators defining the certification rules, accreditation policies for university curricula, and guideline
professional| practice will benefit from the SWEBOK Guide, as well as the students learning the soft
engineering |profession.and educators and trainers engaged in defining curricula and course content.

ware
sible
and
5 for
ware

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

TECHNICAL REPORT ISO/IEC TR 1975

9:2016(E)

Software Engineering — Guide to the Software Engineering

Bo

dy of Knowledge (SWEBOK) — Version 3.0

This
acce

2

As a
that
Tech

Guid

3
It ha

any
the 6

The

Scope

Technical report characterizes the boundaries of the software engineering discipline .and pro
ss to the literature supporting that discipline.

Recommendations

Technical Report, this document does not make technical recommendations. The informatio
contained in the following publication (reproduced on the followinhg pages), which is aq
nical Report:

e to the Software Engineering Body of Knowledge (SWEBOK) V3.0, IEEE Computer Society

Revision of the IEEE Computer Society. Publication
5 been agreed with the IEEE Computer Saciety that ISO/IEC JTC 1/SC 7 will be consulted in

revision or amendment of this IEEE Computer Society publication. Consultation will be acco
xisting Category A liaison relationship between SC 7 and IEEE Computer Society.

Publication

report of the IEEE Computer Society appears on the following pages.

vides topical

h provided is
opted as a

the event of
mplished by

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

®
V3.
Guide to the Software
Engineering Body of Knowledge
Editors
Pierre Bourque
Richard E. (Dick) Fairley
<€ IEEE
[EEE@)computer society

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Guide to the Software Engineering
Body of Knowledge

Version 3.0

SWEBOK"

A Project of the IEEE Computer Society

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Guide to the Software Engineering
Body of Knowledge

Version 3.0

= SWEBOK'

X,

Editors

Pierre Bourque,Ecole de technologie supérieure (ETS)
Richard E. (Dick) Fairley, Software and Systems Engineering Associates (S2EA)

<& IEEE Eee@)computer society

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Coj
1)

pyright and Reprint Permissions. Educational or personal use of this material is permitted without fee provided such copies

re not made for profit or in lieu of purchasing copies for classes, and that this notice and a full citatiehto-the original work

apppear on the first page of the copy and 2) do not imply IEEE endorsement of any third-party products orservices. Permission

to 1

eprint/republish this material for commercial, advertising or promotional purposes or for creating-new collective works for

resple or redistribution must be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane,

Piscataway, NJ 08854-4141 or pubs-permissions@jieee.org.

Re

erence to any specific commercial products, process, or service does not imply ¢fidorsement by IEEE. The views and opin-

ions expressed in this work do not necessarily reflect those of IEEE.

IEEE makes this document available on an “as is” basis and makes no warranty, express or implied, as to the accuracy, capabil-

ity,

efficiency merchantability, or functioning of this document. In fio\event will IEEE be liable for any general, consequential,

indirect, incidental, exemplary, or special damages, even if IEEE(tas been advised of the possibility of such damages.

Co|
Pa;
Pa;

Di

byright © 2014 IEEE. All rights reserved.
erback ISBN-10: 0-7695-5166-1
erback ISBN-13: 978-0-7695-5166-1

ital copies of SWEBOK Guide V3.0 may be downloaded free of charge for personal and academic use via www.swebok.org.

'EE Computer Society Staff for This Publication

Angela Burgess, Executive Director

Anpe Marie Kelly, Associat¢*Executive Director, Director of Governance

Ev

hn M. Butterfield, Director of Products and Services

Jolin Keppler, Senior Manager, Professional Education

K

e Guillemefte,)Product Development Editor

Dofian McClenahan, Education Program Product Developer

Mifhelle Phon, Professional Education & Certification Program Coordinator

JerjnievZhu-Mai, Editorial Designer

IEEE Computer Society Products and Services. The world-renowned IEEE Computer Society publishes, promotes, and dis-

tributes a wide variety of authoritative computer science and engineering journals, magazines, conference proceedings, and

professional education products. Visit the Computer Society at www.computer.org for more information.

© ISO/IEC 2016 — All rights reserved

http://www.computer.org
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

TABLE OF CONTENTS

Foreword Xvii
—Foreword-to-the2004-Edition iX
Editors xi
Coeditors Xxi
Contributing Editors ¥xi
Change Control Board Axi
Knowledge Area Editors xiii
Knowledge Area Editors of Previous SWEBOK Versions XXV
Review Team XXVl
Acknowledgements XXix
Professional Activities Board, 2013 Membership X¥ix
Motions Regarding the Approval of SWEBOK Guide V3.0 XXX
Motions Regarding the Approval of SWEBOK Guide 2004 Version XXX
Introduction to the Guide X¥xi
Chapter 1: Software Requirements 1-1
1. Software Requirements Fundamentals 1-1
1.1. Definition of a Sofiware Requirement 1-1
1.2. Product and Process Requirements 1-2
1.3. Functional and Nonfunctional Requirements 1-3
1.4. Emergent Properties 1-3
1.5. Quantifiable Requirements 1-3
1.6. System Requirements and Seftware Requirements 1-3
2. Requirements Process 1-3
2.1. Process Models 1-4
2.2. Process Actors 1-4
2.3. Process Support und Management 1-4
2.4. Process Quality and Improvement 1-4
3. Requirements:Elicitation 1-5
3.1. Requiremients Sources 1-5
3.2. Elicitation Techniques 1-6
4. Requiréments Analysis 1-7
4.1y Requirements Classification 1-7
4.2. Conceptual Modeling 1-8
4.3. Architectural Design and Requirements Allocation 1-9
4.4. Requirements Negotiation 1-9
4.5. Formal Analysis 1-1
5. Requirements Specification 1-10
5.1. System Definition Document 1-10
5.2. System Requirements Specification 1-10
5.3. Software Requirements Specification 1-11
6. Requirements Validation 1-11
6.1. Requirements Reviews 1-11
6.2. Prototyping 1-12

v © ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

vi SWEBOK® Guide V3.0

6.3. Model Validation 1-12
6.4. Acceptance Tests 1-12
7. Practical Considerations 1-12
7.1. Iterative Nature of the Requirements Process 1-13
7.2. Change Management 1-13
7.3. Requirements Attributes 1-13
Z4—Regqrirenents—traeins 14
7.5. Measuring Requirements 1-14

B. Software Requirements Tools 1-04,
Matrix of Topics vs. Reference Material 1415
Chapter 2: Software Design 2-1
. Software Design Fundamentals 2-2
1.1. General Design Concepts 2-2
1.2. Context of Software Design 2-2
1.3. Software Design Process 2-2
1.4. Software Design Principles 2-3

D. Key Issues in Software Design 2-3
2.1. Concurrency 2-4
2.2. Control and Handling of Events 2-4
2.3. Data Persistence 2-4
2.4. Distribution of Components 2-4
2.5. Error and Exception Handling and Fault Tolerance 2-4
2.6. Interaction and Presentation 2-4
2.7. Security 2-4
B. Software Structure and Architecture 2-4
3.1. Architectural Structures and Viewpoiiits 2-5
3.2. Architectural Styles 2-5
3.3. Design Patterns 2-5
3.4. Architecture Design Decisions 2-5
3.5. Families of Programs and Frameworks 2-5
. User Interface Design 2-5
4.1. General User Interface Design Principles 2-6
4.2. User Interface-Design Issues 2-6
4.3. The Designrof-User Interaction Modalities 2-6
4.4. The Design of Information Presentation 2-6
4.5. Userdnterface Design Process 2-7
4.6. Lo€aljzation and Internationalization 2-7
4.7 Metaphors and Conceptual Models 2-7
b. Software Design Quality Analysis and Evaluation 2-7
3.1, Quality Attributes 2-7
5.2. Quality Analysis and Evaluation Techniques 2-8
5.3. Measures 2-8
6. Software Design Notations 2-8
6.1. Structural Descriptions (Static View) 2-8
6.2. Behavioral Descriptions (Dynamic View) 2-9
7. Software Design Strategies and Methods 2-10
7.1. General Strategies 2-10
7.2. Function-Oriented (Structured) Design 2-10
7.3. Object-Oriented Design 2-10

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Table of Contents vii

7.4. Data Structure-Centered Design 2-10
7.5. Component-Based Design (CBD) 2-10
7.6. Other Methods 2-10

8. Software Design Tools 2-11
Matrix of Topics vs. Reference Material 2-12
——Chapter-3:+Seftware-Construction 3-1
1. Software Construction Fundamentals 3-1
1.1. Minimizing Complexity 3-3
1.2. Anticipating Change 3-3
1.3. Constructing for Verification 3-3
1.4. Reuse 3-3
1.5. Standards in Construction 3-3
2. Managing Construction 3-4
2.1. Construction in Life Cycle Models 314
2.2. Construction Planning I-4
2.3. Construction Measurement I-4
3. Practical Considerations 3-5
3.1. Construction Design I-5
3.2. Construction Languages 35
3.3. Coding 3-6
3.4. Construction Testing 3-6
3.5. Construction for Reuse 3-6
3.6. Construction with Reuse 3-7
3.7. Construction Quality 3-7
3.8. Integration 31-7
4. Construction Technologies 3-8
4.1. API Design and Use 3-8
4.2. Object-Oriented Runtime, Issues 3-8
4.3. Parameterization and Generics 3-8
4.4. Assertions, Desigulby Contract, and Defensive Programming 3-8
4.5. Error Handling, Exception Handling, and Fault Tolerance 31-9
4.6. Executable Models 3-9
4.7. State-Based and Table-Driven Construction Techniques 31-9
4.8. Runtime-Configuration and Internationalization 3410
4.9. Gramimar-Based Input Processing 3410
4.10) €Concurrency Primitives 3410

4. N Middleware 3410
4.12. Construction Methods for Distributed Software 3411
4.13. Constructing Heterogeneous Systems 3411
4.14. Performance Analysis and Tuning 3411
4.15. Platform Standards 3-11
4.16. Test-First Programming 3-11

5. Software Construction Tools 3-12
5.1. Development Environments 3-12
5.2. GUI Builders 3-12
5.3. Unit Testing Tools 3-12
5.4. Profiling, Performance Analysis, and Slicing Tools 3-12
Matrix of Topics vs. Reference Material 3-13

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

viii

SWEBOK® Guide V3.0

Chapter 4: Software Testing 4-1
1. Software Testing Fundamentals 4-3
1.1. Testing-Related Terminology 4-3
1.2. Key Issues 4-3
1.3. Relationship of Testing to Other Activities 4-4
2. Test Levels 4-5
2t—Thetaraet-of-thetest 43
2.2. Objectives of Testing 4-5

B. Test Techniques 4=,
3.1. Based on the Sofiware Engineer’s Intuition and Experience 448
3.2. Input Domain-Based Techniques 4-8
3.3. Code-Based Techniques 4-8
3.4. Fault-Based Techniques 4-9
3.5. Usage-Based Techniques 4-9
3.6. Model-Based Testing Techniques 4-10
3.7. Techniques Based on the Nature of the Application 4-10
3.8. Selecting and Combining Techniques 4-11
1. Test-Related Measures 4-11
4.1. Evaluation of the Program Under Test 4-11
4.2. Evaluation of the Tests Performed 4-12

b. Test Process 4-12
5.1. Practical Considerations 4-13
5.2. Test Activities 4-14

b. Software Testing Tools 4-15
6.1. Testing Tool Support 4-15
6.2. Categories of Tools 4-15
Matrix of Topics vs. Reference Material 4-17
Chapter 5: Software Maintenance 5-1
|. Software Maintenance Fundamentals 5-1
1.1. Definitions and Terminolégy 5-1
1.2. Nature of Maintenanée 5-2
1.3. Need for Maintenance 5-3
1.4. Majority of Maintenance Costs 5-3
1.5. Evolution of Seftware 5-3
1.6. Categories of Maintenance 5-3

D. Key Issues)in Software Maintenance 5-4
2.1. Te¢hnical Issues 5-4
2.2 Management Issues 5-5
2. 3 Maintenance Cost Estimation 5-6
2.4. Software Maintenance Measurement 5-7
3. Maintenance Process 5-7
3.1. Maintenance Processes 5-7
3.2. Maintenance Activities 5-8
4. Techniques for Maintenance 5-10
4.1. Program Comprehension 5-10
4.2. Reengineering 5-10
4.3. Reverse Engineering 5-10
4.4. Migration 5-10
4.5. Retirement 5-11

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Table of Contents ix

5. Software Maintenance Tools
Matrix of Topics vs. Reference Material -
Chapter 6: Software Configuration Management 6-1
1. Management of the SCM Process 6-2
1.1. Organizational Context for SCM 6-2
2 —Constratits-and-Gridancetor-the-SChM-Process 4-3
1.3. Planning for SCM 4-3
1.4. SCM Plan 4-5
1.5. Surveillance of Software Configuration Management 4-5
2. Software Configuration Identification @-6
2.1. Identifying Items to Be Controlled 4-6
2.2. Software Library 4-8
3. Software Configuration Control 4-8
3.1. Requesting, Evaluating, and Approving Software Changes 4-8
3.2. Implementing Software Changes 4-9
3.3. Deviations and Waivers 6410
4. Software Configuration Status Accounting 6410
4.1. Software Configuration Status Information 6410
4.2. Software Configuration Status Reporting 6410
5. Software Configuration Auditing 6410
5.1. Software Functional Configuration Audit 6411
5.2. Software Physical Configuration Audit 6411
5.3. In-Process Audits of a Sofiware Baseline 6411
6. Software Release Management and Deliyery 611
6.1. Software Building 6411
6.2. Software Release Management 6412
7. Software Configuration Managethent Tools 6412
Matrix of Topics vs. Reference-Material 6413
Chapter 7: Software Engineering Management 11
1. Initiation and Scope Definition 1-4
1.1. Determination and Negotiation of Requirements (-
1.2. Feasibility-Analysis &
1.3. Progess-for the Review and Revision of Requirements (-
2. Software. Project Planning 1-5
2.l Process Planning (-
2.2y "Determine Deliverables -
2.3. Effort, Schedule, and Cost Estimation (-
2.4. Resource Allocation (-
2.5. Risk Management (-
2.6. Quality Management 7-6
2.7. Plan Management 7-7
3. Software Project Enactment 7-7
3.1. Implementation of Plans 7-7
3.2. Software Acquisition and Supplier Contract Management 7-7
3.3. Implementation of Measurement Process 7-7
3.4. Monitor Process 7-7
3.5. Control Process 7-8
3.6. Reporting 7-8

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

X SWEBOK® Guide V3.0

4. Review and Evaluation 7-8
4.1. Determining Satisfaction of Requirements 7-8
4.2. Reviewing and Evaluating Performance 7-9

5. Closure 7-9
5.1. Determining Closure 7-9
5.2. Closure Activities 7-9

b—Software-EnaineeriaMeasurement 79
6.1. Establish and Sustain Measurement Commitment 7-9
6.2. Plan the Measurement Process 700
6.3. Perform the Measurement Process 741
6.4. Evaluate Measurement 7-11

/. Software Engineering Management Tools 7-11

Matrix of Topics vs. Reference Material 7-13

Chapter 8: Software Engineering Process 8-1

. Software Process Definition 8-2
1.1. Software Process Management 8-3
1.2. Software Process Infrastructure 8-4

D. Software Life Cycles 8-4
2.1. Categories of Software Processes 8-5
2.2. Software Life Cycle Models 8-5
2.3. Software Process Adaptation 8-6
2.4. Practical Considerations 8-6

B. Software Process Assessment and Improvement 8-6
3.1. Software Process Assessment Models 8-7
3.2. Software Process Assessment Methods 8-7
3.3. Software Process Improvement Models 8-7
3.4. Continuous and Staged Software Process Ratings 8-8

. Software Measurement 8-8
4.1. Software Process and Product-Measurement 8-9
4.2. Quality of Measurement Results 8-10
4.3. Software Informationl Models 8-10
4.4. Software Processi\Measurement Techniques 8-11

b. Software Engineeriig*Process Tools 8-12

Matrix of Topics ys.;Reference Material 8-13

Chapter 9: Software Engineering Models and Methods 9-1

|. Modeling 9-1
1.1, Modeling Principles 9-2
V. 2xProperties and Expression of Models 9-3
1.3, Syntax, Semantics, and Pragmatics 9-3
1.4. Preconditions, Postconditions, and Invariants 9-4

2. Types of Models 9-4
2.1. Information Modeling 9-5
2.2. Behavioral Modeling 9-5
2.3. Structure Modeling 9-5

3. Analysis of Models 9-5
3.1. Analyzing for Completeness 9-5
3.2. Analyzing for Consistency 9-6

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Table of Contents xi

3.3. Analyzing for Correctness 9-6
3.4. Traceability 9-6
3.5. Interaction Analysis 9-6
4. Software Engineering Methods 9-7
4.1. Heuristic Methods 9-7
4.2. Formal Methods 9-7
43 DLrotopineMehods -8
4.4. Agile Methods -9
Matrix of Topics vs. Reference Material 9410

Chapter 10: Software Quality

1. Software Quality Fundamentals
1.1. Sofiware Engineering Culture and Ethics
1.2. Value and Costs of Quality
1.3. Models and Quality Characteristics
1.4. Sofiware Quality Improvement
1.5. Software Safety

2. Software Quality Management Processes
2.1. Software Quality Assurance
2.2. Verification & Validation
2.3. Reviews and Audits

3. Practical Considerations

o e e R —
1
N

3.1. Software Quality Requirements 14-9
3.2. Defect Characterization 10410
3.3. Sofiware Quality Management Techgiques 10911
3.4. Software Quality Measurement 10412

4. Software Quality Tools 10412
Matrix of Topics vs. Reference Matetial 10414
Chapter 11: Software Engineering Professional Practice 11-1
1. Professionalism 11-2
1.1. Accreditation, Certification, and Licensing 11-3
1.2. Codes of Ethics and Professional Conduct 1]-4
1.3. Nature,and*Role of Professional Societies 1]-4
1.4. Natureand Role of Software Engineering Standards 1]-4
1.5. Ecenomic Impact of Software 11-5
1.6 Employment Contracts 14-5
1.7y'Legal Issues 14-5
1.8. Documentation 1{-7
1.9. Tradeoff Analysis 14-8

2. Group Dynamics and Psychology 11-9
2.1. Dynamics of Working in Teams/Groups 11-9
2.2. Individual Cognition 11-9
2.3. Dealing with Problem Complexity 11-10
2.4. Interacting with Stakeholders 11-10
2.5. Dealing with Uncertainty and Ambiguity 11-10
2.6. Dealing with Multicultural Environments 11-10

3. Communication Skills 11-11
3.1. Reading, Understanding, and Summarizing 11-11

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
xii SWEBOK® Guide V3.0

3.2. Writing 11-11
3.3. Team and Group Communication 11-11
3.4. Presentation Skills 11-12
Matrix of Topics vs. Reference Material 11-13
Chapter 12: Software Engineering Economics 12-1
1.1. Finance 12-3
1.2. Accounting 12-3
1.3. Controlling 1243
1.4. Cash Flow 12-3
1.5. Decision-Making Process 12-4
1.6. Valuation 12-5
1.7. Inflation 12-6
1.8. Depreciation 12-6
1.9. Taxation 12-6
1.10. Time-Value of Money 12-6
1.11. Efficiency 12-6
1.12. Effectiveness 12-6
1.13. Productivity 12-6

D. Life Cycle Economics 12-7
2.1. Product 12-7
2.2. Project 12-7
2.3. Program 12-7
2.4. Portfolio 12-7
2.5. Product Life Cycle 12-7
2.6. Project Life Cycle 12-7
2.7. Proposals 12-8
2.8. Investment Decisions 12-8
2.9. Planning Horizon 12-8
2.10. Price and Pricing 12-8
2.11. Cost and Costing 12-9
2.12. Performance Measurement 12-9
2.13. Earned Value-Management 12-9
2.14. Terminatign Pecisions 12-9
2.15. Replacement and Retirement Decisions 12-10

B. Risk and Uneertainty 12-10
3.1. Goaly,"Estimates, and Plans 12-10
3.2, Estimation Techniques 12-11
I IAddressing Uncertainty 12-11
3.4. Prioritization 12-11
3.5. Decisions under Risk 12-11
3.6. Decisions under Uncertainty 12-12
4. Economic Analysis Methods 12-12
4.1. For-Profit Decision Analysis 12-12
4.2. Minimum Acceptable Rate of Return 12-13
4.3. Return on Investment 12-13
4.4. Return on Capital Employed 12-13
4.5. Cost-Benefit Analysis 12-13

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Table of Contents xiii

4.6. Cost-Effectiveness Analysis 12-13
4.7. Break-Even Analysis 12-13
4.8. Business Case 12-13
4.9. Multiple Attribute Evaluation 12-14
4.10. Optimization Analysis 12-14

5. Practical Considerations 12-14
St—Fhe—Good-Enonsh—Principe +2-14
5.2. Friction-Free Economy 12415
5.3. Ecosystems 12415
5.4. Offshoring and Outsourcing 12415
Matrix of Topics vs. Reference Material 12416
Chapter 13: Computing Foundations 13-1
1. Problem Solving Techniques 13-3
1.1. Definition of Problem Solving 13-3

1.2. Formulating the Real Problem
1.3. Analyze the Problem

1.4. Design a Solution Search Strategy
1.5. Problem Solving Using Programs

. Abstraction

2.1. Levels of Abstraction
2.2. Encapsulation

2.3. Hierarchy

2.4. Alternate Abstractions

. Programming Fundamentals

3.1. The Programming Process
3.2. Programming Paradigms

. Programming Language Basics

4.1. Programming Language-Overview

4.2. Syntax and Semantics of Programming Languages
4.3. Low-Level Prografaming Languages

4.4. High-Level Programming Languages

4.5. Declarative vs. Imperative Programming Languages

. Debugging Teols and Techniques

5.1. Types-of-Errors
5.2. Debugging Techniques
5.3rDebugging Tools

. Data Structure and Representation

6.1. Data Structure Overview
6.2. Bypes of Data Structure

[N NN
1 1 1
w w w

L L L ot
AN NN

fugtud o
| 1
L D

[N N DN DN O
SR
NN

NN T
A
Co Co o0

IICEN
1
O

[T T T T e T T TR T e e T T e U
L
[[
o i

L
©

6.3. Operations on Data Structures 13-9
7. Algorithms and Complexity 13-10
7.1. Overview of Algorithms 13-10
7.2. Attributes of Algorithms 13-10
7.3. Algorithmic Analysis 13-10
7.4. Algorithmic Design Strategies 13-11
7.5. Algorithmic Analysis Strategies 13-11
8. Basic Concept of a System 13-11
8.1. Emergent System Properties 13-11

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

xiv SWEBOK® Guide V3.0

8.2. Systems Engineering 13-12
8.3. Overview of a Computer System 13-12
9. Computer Organization 13-13
9.1. Computer Organization Overview 13-13
9.2. Digital Systems 13-13
9.3. Digital Logic 13-13
Q4 —Computer-txpraession-of-Data 1313
9.5. The Central Processing Unit (CPU) 13-14
9.6. Memory System Organization 13-04,
9.7. Input and Output (I/0) 13414
1 0. Compiler Basics 13-15
10.1. Compiler/Interpreter Overview 13-15
10.2. Interpretation and Compilation 13-15
10.3. The Compilation Process 13-15
| 1. Operating Systems Basics 13-16
11.1. Operating Systems Overview 13-16
11.2. Tasks of an Operating System 13-16
11.3. Operating System Abstractions 13-17
11.4. Operating Systems Classification 13-17
| 2. Database Basics and Data Management 13-17
12.1. Entity and Schema 13-18
12.2. Database Management Systems (DBMS) 13-18
12.3. Database Query Language 13-18
12.4. Tasks of DBMS Packages 13-18
12.5. Data Management 13-19
12.6. Data Mining 13-19
| 3. Network Communication Basics 13-19
13.1. Types of Network 13-19
13.2. Basic Network Components 13-19
13.3. Networking Protocols and, Standards 13-20
13.4. The Internet 13-20
13.5. Internet of Things 13-20
13.6. Virtual Private Network (VPN) 13-21
| 4. Parallel and Distributed Computing 13-21
14.1. Parallel and-Distributed Computing Overview 13-21
14.2. Difference.between Parallel and Distributed Computing 13-21
14.3. Paral{el and Distributed Computing Models 13-21
14.4. Main*Issues in Distributed Computing 13-22
| 5. BasicUser Human Factors 13-22
5N Input and Output 13-22
1Y.2. Error Messages 13-23
15.3. Software Robustness 13-23
16. Basic Developer Human Factors 13-23
16.1. Structure 13-24
16.2. Comments 13-24
17. Secure Software Development and Maintenance 13-24
17.1. Software Requirements Security 13-24
17.2. Software Design Security 13-25
17.3. Software Construction Security 13-25
17.4. Software Testing Security 13-25

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Table of Contents xv

17.5. Build Security into Software Engineering Process 13-25
17.6. Software Security Guidelines 13-25
Matrix of Topics vs. Reference Material 13-27
Chapter 14: Mathematical Foundations 14-1
1. Set, Relations, Functions 14-1
Ll —Set-Operations +4-2
1.2. Properties of Set 14-3
1.3. Relation and Function 14-4

2. Basic Logic 14-5
2.1. Propositional Logic 14-5
2.2. Predicate Logic 14-5
3. Proof Techniques 14-6
3.1. Methods of Proving Theorems 14-6
4. Basics of Counting 14-7
5. Graphs and Trees 14-8
5.1. Graphs 14-8
5.2. Trees 14410
6. Discrete Probability 14413
7. Finite State Machines 14414
8. Grammars 14415
8.1. Language Recognition 14416

9. Numerical Precision, Accuracy, and Errors 14417
10. Number Theory 1418
10.1. Divisibility 14418
10.2. Prime Number, GCD 14419
11. Algebraic Structures 14419
11.1. Group 14419
11.2. Rings 1490
Matrix of Topics vs. Reference Material 1421
Chapter 15: Engineering)Foundations 15-1
1. Empirical Methods and Experimental Techniques 13-1
1.1. Designed-Experiment 13-1
1.2. Observational Study 13-2
1.3. Retrospective Study 13-2
2. Statistical Analysis 1§-2
2. 1y"Unit of Analysis (Sampling Units), Population, and Sample 13-2
2.2. Concepts of Correlation and Regression 13-5
3. Measurement 13-5
3.1. Levels (Scales) of Measurement 15-6
3.2. Direct and Derived Measures 15-7
3.3. Reliability and Validity 15-8
3.4. Assessing Reliability 15-8

4. Engineering Design 15-8
4.1. Engineering Design in Engineering Education 15-8
4.2. Design as a Problem Solving Activity 15-9
4.3. Steps Involved in Engineering Design 15-9

5. Modeling, Simulation, and Prototyping 15-10
5.1. Modeling 15-10

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

xvi SWEBOK® Guide V3.0

5.2. Simulation 15-11

5.3. Prototyping 15-11

6. Standards 15-12

7. Root Cause Analysis 15-12

7.1. Techniques for Conducting Root Cause Analysis 15-13

Matrix of Topics vs. Reference Material 15-14

A]Lpendix A: Knowledge Area Description Specifications A-1
Appendix B: IEEE and ISO/IEC Standards Supporting the Software Engineering

Bady of Knowledge (SWEBOK) B-1

Appendix C: Consolidated Reference List C-1

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

FOREWORD

Every profession is based on a body of knowl-

defined in a concise manner. In cases where no
formality exists, the body of knowledge is “gen-
erally recognized” by practitioners and may
be codified in a variety of ways for a variety of
different uses. But in many cases, a guide to a
body of knowledge is formally documented, usu-
ally in a form that permits it to be used for such
purposes as development and accreditation of
academic and training programs, certification of
specialists, or professional licensing. Generally,
a professional society or similar body maintains
stewardship of the formal definition of a body of
knowledge.

During the past forty-five years, software engi-
neering has evolved from a conference catch-
phrase into an engineering profession, character-
ized by 1) a professional society, 2) standards that
specify generally accepted professional practices,
3) a code of ethics, 4) conference proceedings,
5) textbooks, 6) curriculum guidelinestand cur-
ricula, 7) accreditation criteria and“accredited
degree programs, 8) certificationsand licensing,
and 9) this Guide to the Body,of*Knowledge.

In this Guide to the Software Engineering Body
of Knowledge, the IEEE Gomputer Society pres-
ents a revised and updated version of the body of
knowledge formerly documented as SWEBOK
2004; this revis¢drand updated version is denoted
SWEBOK ¥ 3:This work is in partial fulfillment
of the [Soeiety’s responsibility to promote the
advancement of both theory and practice for the
profession of software engineering.

It should be noted that this Guide does not
present the entire the body of knowledge for soft-

In 1958, John Tukey, the world-renowned stat-
istictan—commedthetermsofbrare—Thetermsqft-
ware engineering was used in the title of a NATO
conference held in Germany in 1968. The IEEE
Computer Society first published its Tramsactidns
on Software Engineering in 19724and a comniit-
tee for developing software ~engineering stgn-
dards was established within"the' IEEE Compufer
Society in 1976.
In 1990, planning.was begun for an interfa-
tional standard to provide an overall view of sqft-
ware engineering\Fhe standard was completed| in
1995 with designation ISO/IEC 12207 and givlen
the title of Standard for Software Life Cycle Pjo-
cesses. The IEEE version of 12207 was published
in 1996 and provided a major foundation for (Lhe
body of knowledge captured in SWEBOK 20
The current version of 12207 is designated |as
ISO/IEC 12207:2008 and IEEE 12207-2008] it
provides the basis for this SWEBOK V3.
This Guide to the Software Engineering Bddy
of Knowledge is presented to you, the reader,|as
a mechanism for acquiring the knowledge yjou
need in your lifelong carcer development af a
software engineering professional.

Dick Fairley, Chair
Sofitware and Systems Engineering Commitfee
IEEE Computer Socigty

Don Shafer, Vice Presid¢nt
Professional Activities Boqrd
IEEE Computer Socigty

ware engineering but rather serves as a guide to
the body of knowledge that has been developed
over more than four decades. The software engi-
neering body of knowledge is constantly evolv-
ing. Nevertheless, this Guide constitutes a valu-
able characterization of the software engineering
profession.

xvii

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

FOREWORD TO THE 2004 EDITION

In this Guide, the IEEE Computer Society estab-

standards. These workshops involved practitio-

Lishes—for—the—frst—tine—a-baselne—forthe-body
of knowledge for the field of software engineer-
ing, and the work partially fulfills the Society’s
responsibility to promote the advancement of
both theory and practice in this field. In so doing,
the Society has been guided by the experience
of disciplines with longer histories but was not
bound either by their problems or their solutions.

It should be noted that the Guide does not pur-
port to define the body of knowledge but rather to
serve as a compendium and guide to the body of
knowledge that has been developing and evolv-
ing over the past four decades. Furthermore,
this body of knowledge is not static. The Guide
must, necessarily, develop and evolve as software
engineering matures. It nevertheless constitutes
a valuable element of the software engineering
infrastructure.

In 1958, John Tukey, the world-renowned stat-
istician, coined the term software. The tetnisofi-
ware engineering was used in the title efa NATO
conference held in Germany in 1968~The IEEE
Computer Society first published-its Transactions
on Software Engineering in 1972. The committee
established within the IEEE "Computer Society
for developing softwate yéngineering standards
was founded in 1976.

The first holistic*view of software engineer-
ing to emerge-frem the IEEE Computer Society
resulted from.an effort led by Fletcher Buckley
to develop\EEE standard 730 for software qual-
ity aSstrance, which was completed in 1979.
The-purpose of IEEE Std. 730 was to provide
uniform, minimum acceptable requirements for
preparation and content of software quality assur-

ners-sharina-theH-experiences—with-existingstan-
dards. The workshops also held sessions on‘plgn-
ning for future standards, including one ifivolving
measures and metrics for software lenginepr-
ing products and processes. Thepldnning also
resulted in IEEE Std. 1002, Taxenomy of Softwqre
Engineering Standards (1986), which providedl a
new, holistic view of software engineering. Tlhe
standard describes the form and content of a sqft-
ware engineering standards taxonomy. It explajns
the various typéshof software engineering stgn-
dards, their functional and external relationships,
and the role of various functions participating|in
the software life cycle.

1184990, planning for an international stgn-
dard/with an overall view was begun. The plgn-
ning focused on reconciling the software proc¢ss
views from IEEE Std. 1074 and the revised US
DoD standard 2167A. The revision was evenfu-
ally published as DoD Std. 498. The international
standard was completed in 1995 with desiglla-
tion, ISO/IEC 12207, and given the title of Stqn-
dard for Software Life Cycle Processes. Std. SO/
IEC 12207 provided a major point of departyre
for the body of knowledge captured in this bogk.

It was the IEEE Computer Society Board|of
Governors’ approval of the motion put forwgrd
in May 1993 by Fletcher Buckley which resulfed
in the writing of this book. The Association for
Computing Machinery (ACM) Council approyed
arelated motion in August 1993. The two motigns
led to a joint committee under the leadership|of
Mario Barbacci and Stuart Zweben who served|as
cochairs. The mission statement of the joint com-
mittee was “To establish the appropriate sets|s)

ance plans. This standard was influential in com-
pleting the developing standards in the following
topics: configuration management, software test-
ing, software requirements, software design, and
software verification and validation.

During the period 1981-1985, the IEEE Com-
puter Society held a series of workshops con-
cerning the application of software engineering

Xix

© ISO/IEC 2016 — All rights reserved

of criteria and norms for professional practice of
software engineering upon which industrial deci-
sions, professional certification, and educational
curricula can be based.” The steering committee
organized task forces in the following areas:

1. Define Required Body of Knowledge and
Recommended Practices.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

xx SWEBOK® Guide V3.0

2. Define Ethics and Professional Standards.
3. Define Educational Curricula for undergradu-
ate, graduate, and continuing education.

This book supplies the first component: required
body of knowledge and recommend practices.

ISO/IEC TR 19759:2016(E)

It is hoped that readers will find this book use-
ful in guiding them toward the knowledge and
resources they need in their lifelong career devel-
opment as software engineering professionals.

The book is dedicated to Fletcher Buckley in
recognition of his commitment to promoting soft-

are-enaineetinaaca nrafaccianal dicad and
Vo < S-a-Pro+esst

Fhe—code—oi—ethics—and—professionalpractice
for software engineering was completed in 1998
and approved by both the ACM Council and the
IEEE Computer Society Board of Governors. It
hap been adopted by numerous corporations and
other organizations and is included in several
re¢ent textbooks.

The educational curriculum for undergraduates
is peing completed by a joint effort of the IEEE
Cqmputer Society and the ACM and is expected
to|be completed in 2004.

Every profession is based on a body of knowl-
edege and recommended practices, although they
ar¢ not always defined in a precise manner. In
mgny cases, these are formally documented, usu-
ally in a form that permits them to be used for
sufh purposes as accreditation of academic pro-
grims, development of education and training
prpgrams, certification of specialists, or profes-
signal licensing. Generally, a professional society
or|related body maintains custody of such a for-
mal definition. In cases where no such formality
exjsts, the body of knowledge and recommended
prictices are “generally recognized” by-practitio-
nefs and may be codified in a variéty of ways for
different uses.

—

pline
HEHeeH & P Har-eiSeiprie-ahe

his excellence as a software engineering practi-
tioner in radar applications.

Leonard L. Tripp, IEEE Fellow 2003
Chair, Professional Practices Committee, IEEE
Computer Society (2001-2003)

Chair, Joint IEEE Computer Society and ACM
Steering Commit{ee‘for the Establishment of
Software Engineering.as a Profession (1998—1999)

Chair, Software Engineering Standards Committee,
IEEE Computer Society (1992—1998)

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

EDITORS

Pierre Bourque, Department of Software and IT Engineering, Ecole de technologie supéricure (ETS),

COEDITORS

Alain Abran, Department of Software and IT Engineering, Ecole de technologie supérieure (ETS),
Canada, alain.abran@etsmtl.ca
Juan Garbajosa, Universidad Politecnica de Madrid (Technical University of Madrid, UPM), Spai
juan.garbajosa@upm.es
Gargi Keeni, Tata Consultancy Services, India; gargi@ieee.org
Beijun Shen, School of Software, Shanghai Jiao Tong University, China, bjshen@sjtu.edu.cn

R

CONTRIBUTING EDITORS

The following persons contributed to editing the SWEBOK Guide V3:
Don Shafer
Linda Shafer
Mary Jane Willshire
Kate Guillemette

CHANGE CONTROL BOARD

The following persons served on the SWEBOK Guide V3 Change Control Board:
Pierre Bourque
Richard E. (Dick) Fairley, Chair
Dennis Frailey
Michael Gayle
Thomas Hilburn
Paul Joannou
James W. Moore
Don Shafer
Steve Tockey

© ISO/IEC 2016 — All rights reserved

xxi

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

KNOWLEDGE AREA EDITORS

Software Requirements

gerald@comp.lancs.ac.uk
Peter Sawyer, School of Computing and Communications, Lancaster University, UK,
sawyer@comp.lancs.ac.uk

Software Design
Yanchun Sun, School of Electronics Engineering and Computer Science, Peking"University, Chin
sunyc@pku.edu.cn

Software Construction
Xin Peng, Software School, Fudan University, China, pengxin@fudan.edu.cn

Software Testing
Antonia Bertolino, ISTI-CNR, Italy, antonia:bertolino@isti.cnr.it
Eda Marchetti, ISTI-CNR, Italy, eda.marchetti@isti.cnr.it

Software Maintenance
Alain April, Ecole de technologie supérigure (ETS), Canada, alain.april@etsmtl.ca
Mira Kajko-Mattsson, School of Iiformation and Communication Technology,
KTH Royal Institute of Technology, mekm2@kth.se

Software¢-Configuration Management

Roger Champagne, Ecole de teehnologie supérieure (ETS), Canada, roger.champagne@etsmtl.cq

Alain April, Ecole de technologie supérieure (ETS), Canada, alain.april@etsmtl.ca

Software Engineering Management
James McDonald, Department of Computer Science and Software Engineering,
Monmouth University, USA, jamesmc@monmouth.edu

Software Engineering Process
Annette Reilly, Lockheed Martin Information Systems & Global Solutions, USA,
annette.reilly@computer.org
Richard E. Fairley, Software and Systems Engineering Associates (S2EA), USA,
dickfairle mail.com

\’W

Software Engineering Models and Methods
Michael F. Siok, Lockheed Martin Aeronautics Company, USA, mike.f.siok@lmco.com

Software Quality
J. David Blaine, USA, jdavidblaine@gmail.com

Durba Biswas, Tata Consultancy Services, India, durba.biswas@tcs.com

xxiii

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Xxiv

SWEBOK® Guide V3.0

Software Engineering Professional Practice
Aura Sheffield, USA, arsheff(@acm.org
Hengming Zou, Shanghai Jiao Tong University, China, zou@sjtu.edu.cn

Software Engineering Economics
Christof Ebert, Vector Consulting Services, Germany, christof.ebert@vector.com

Computing Foundations
Hengming Zou, Shanghai Jiao Tong University, China, zou@sjtu.edu.cn

Mathematical Foundations
Nabendu Chaki, University of Calcutta, India, nabendu@jieee.org

Engineering Foundations
Amitava Bandyopadhayay, Indian Statistical Institute, India, bamitava@isieal.ac.in
Mary Jane Willshire, Software and Systems Engineering Associates{S2EA), USA,

mj.fairley@gmail.com

Appendix B: IEEE and ISO/IEC Standards Supperting SWEBOK
James W. Moore, USA, James.W.Moore@jieee.org

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

KNOWLEDGE AREA EDITORS
OF PREVIOUS SWEBOK VERSIONS

for

the 2004 Verson.

Software Requirements
Peter Sawyer, Computing Department, Lancaster University, UK
Gerald Kotonya, Computing Department, Lancaster University, UK

Software Design
Guy Tremblay, Département d’informatique, UQAM,_Canada

Software Construction
Steve McConnell, Construx Software, USA
Terry Bollinger, the MITRE Corppration, USA
Philippe Gabrini, Département d’informatique, UQAM, Canada
Louis Martin, Département d’informatique, UQAM, Canada

Software Testing
Antonia Bertolino, ISTI-CNR, Italy
Eda Marclietti, ISTI-CNR, Italy

Software Maintenance
Thomas’M. Pigoski, Techsoft Inc., USA
Alain Apsil, Ecole de technologie supérieure, Canada

Software Configuration Management
John A.*Scott, Lawrence Livermore National Laboratory, USA
David Nisse, USA

Software Engineering Management
Dennis Frailey, Raytheon Company, USA
Stephen G. MacDonell, Auckland University of Technology, New Zealand
Andrew R. Gray, University of Otago, New Zealand

Software Engineering Process
Khaled El Emam, served while at the Canadian National Research Council, Canada

Software Engineering Tools and Methods
David Carrington, School of Information Technology and Electrical Engineering,
The University of Queensland, Australia

XXV
© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
xxvi SWEBOK® Guide V3.0

Software Quality
Alain April, Ecole de technologie supérieure, Canada
Dolores Wallace, retired from the National Institute of Standards and Technology, USA
Larry Reeker, NIST, USA

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

REVIEW TEAM

The people listed below participated in the public review process of SWEBOK Guide V3. Member-
ship of the IEEE Computer Society was not a requirement to participate in this review process, and

collected and duly adjudicated.

Carlos C. Amaro, USA
Mark Ardis, USA
Mora-Soto Arturo, Spain
Ohad Barzilay, Israel
Gianni Basaglia, Italy
Denis J. Bergquist, USA
Alexander Bogush, UK
Christopher Bohn, USA
Steve Bollweg, USA

Reto Bonderer, Switzerland
Alexei Botchkarev, Canada
Pieter Botman, Canada
Robert Bragner, USA
Kevin Brune, USA

Ogihara Bryan, USA

Luigi Buglione, Italy

Rick Cagle, USA

Barbara Canody, USA
Rogerio A. Carvalho, Brazil
Daniel Cerys, USA
Philippe Cohard, Frafice
Ricardo Colomo-Palacios, Spain
Mauricio Corja, Argentina
Marek Cruz; UK

Stephen Danckert, USA
BipulKxDas, Canada
James'D. Davidson, USA
Jon Dehn, USA

Lincoln P. Djang, USA
Andreas Doblander, Austria

Istvan Fay, Hungary

Jose L. Fernandez-SanchezySpain
Dennis J. Frailey, USA¢

Tihana Galinac Grbac, Croatia
Colin Garlick, New-Zealand
Garth J.G. Glynuy UK

Jill Gostiny USA
Christiane-Gresse von Wangenheim, Brazil
Thomas*Gust, USA

HIN. Mok, Singapore

Jon D. Hagar, USA

Anees Ahmed Haidary, India
Duncan Hall, New Zealand
James Hart, USA

Jens H.J. Heidrich, Germany
Rich Hilliard, USA

Bob Hillier, Canada

Norman M. Hines, USA

Dave Hirst, USA

Theresa L. Hunt, USA

Kenneth Ingham, USA
Masahiko Ishikawa, Japan
Michael A. Jablonski, USA

G. Jagadeesh, India

Sebastian Justicia, Spain

Umut Kahramankaptan, Belgium
Pankaj Kamthan, Canada

Perry Kapadia, USA

Tarig A. Khalid, Sudan

Michael K.A. Klaes, Germany

Yi-Ben Doo, USA

Scott J. Dougherty, UK
Regina DuBord, USA
Fedor Dzerzhinskiy, Russia
Ann M. Eblen, Australia
David M. Endres, USA
Marilyn Escue, USA
Varuna Eswer, India

xXxvii

Maged Koshty, Egypt
Claude C. Laporte, Canada
Dong Li, China

Ben Linders, Netherlands
Claire Lohr, USA

Vladimir Mandic, Serbia
Matt Mansell, New Zealand
John Marien, USA

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
xxviii SWEBOK® Guide V3.0

Stephen P. Masticola, USA

Nancy Mead, USA

Fuensanta Medina-Dominguez, Spain
Silvia Judith Meles, Argentina

Oscar A. Mondragon, Mexico

David W. Mutschler, USA

Mara Nelson Braal

Thom Schoeffling, USA
Reinhard Schrage, Germany
Neetu Sethia, India

Cindy C. Shelton, USA
Alan Shepherd, Germany
Katsutoshi Shintani, Japan

John Noblin, USA

Bryan G. Ogihara, USA
Takehisa Okazaki, Japan
Hanna Oktaba, Mexico

Chin Hwee Ong, Hong Kong
Venkateswar Oruganti, India
Birgit Penzenstadler, Germany
[_arry Peters, USA

S.K. Pillai, India

Vaclav Rajlich, USA

Kiron Rao, India

[_uis Reyes, USA

Hassan Reza, USA

Steve Roach, USA

Teresa L. Roberts, USA
PDennis Robi, USA

Warren E. Robinson, USA
Jorge L. Rodriguez, USA
Alberto C. Sampaio, Portugal
Fd Samuels, USA
Maria-Isabel Sanchez-Segura, Spain
Vineet Sawant, USA

R. Schaaf, USA

James C. Schatzman, USA
Dscar A. Schivo, Argentina
Florian Schneider, Germany

Hrik Shreve USA
Jaguaraci Silva, Brazil

M. Somasundaram, India

Peraphon Sophatsathit, Thailand
John Standen, UK

Joyce Statz, USA

Perdita P. Stevens, UK

David Struble, USA

Ohno Susumu, Japan

Urcun Tanik, USA

Talin Tasciyan, USA

J. Barrie Thompson, UK

Steve Tockey, USA

Miguel Eduardo Torres Moreno, Colombia
Dawid Trawczynski, USA
Adam,Trendowicz, Germany
Norio*Ueno, Japan

Cenk Uyan, Turkey

Chandra Sekar Veerappan, Singapore
Oruganti Venkateswar, India

Jochen Vogt, Germany

Hironori Washizaki, Japan

Ulf Westermann, Germany

Don Wilson, USA

Aharon Yadin, Israel

Hong Zhou, UK

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

ACKNOWLEDGEMENTS

Funding for the development of SWEBOK Guide various ways: Pieter Botman, Evan Butterfield,
V3 has been prov1ded by the IEEE Computer Carine Chauny, Pierce Gibbs, Diane G1rard John

1mp011ant work performed by the KA edltors and uel Redwine, Annette Rellly, and Pam Thompso.
the contributing editors as well as by the the mem- Finally, there are surely other people who hdve
bers of the Change Control Board. The editorial ~contributed to this Guide, either directly or infi-
team must also acknowledge the indispensable rectly, whose names we have inady¢rtently onjit-
contribution of reviewers. ted. To those people, we offer, our tacit apppe-
The editorial team also wishes to thank the fol- ciation and apologize for having omitted explicit
lowing people who contributed to the project in recognition.

IEEE COMPUTER SOCIETY®RESIDENTS

Dejan Milojicic, 2014\President
David Alan Grier, 2013 President
Thomas Contep2015 President

PROFESSIONAL ACTIVITIES BOARD,
2013 MEMBERSHIP

Donald F. Shafer, Chair
Pieter Botman, CSDP
Pierre Bourque
Richard Fairley, CSDP
Dennis Frailey
S. Michael Gayle
Phillip Laplante, CSDP
Jim Moore, CSDP
Linda Shafer, CSDP
Steve Tockey, CSDP
Charlene “Chuck” Walrad

XXix

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
xxx SWEBOK® Guide V3.0

MOTIONS REGARDING THE APPROVAL
OF SWEBOK GUIDE V3.0

vember 2013 with the following question: “Do you approve this manuscript of the SWEBOK Guide,
3.0 to move forward to formatting and publication?”
The results of this ballot were 259 Yes votes and 5 No votes.

The following motion was unanimously adopted by the Professional Activities Board of the AEEE Com-
puter Society in December 2013:

The Professional Activities Board of the IEEE Computer Society finds that the Guide to the Soft-
ware Engineering Body of Knowledge Version 3.0 has been successfully completed; and endorses
the Guide to the Software Engineering Body of Knowledge Version 3.0Nand commends it to the
IEEE Computer Society Board of Governors for their approval.

The following motion was adopted by the IEEE Computer Society Board of Governors in December 2013:

TH
pr

TH

MOVED, that the Board of Governors of the IEEE Computer Society approves Version 3.0 of the
Guide to the Software Engineering Body of Knowledge and authorizes the Chair of the Profes-
sional Activities Board to proceed with printing.

MOTIONS REGARDING THE APPROVAL
OF SWEBOQK GUIDE 2004 VERSION

e following motion was unanimously adopted by the Industrial Advisory Board of the SWEBOK Guide
bject in February 2004

The Industrialddvisory Board finds that the Software Engineering Body of Knowledge project ini-
tiated in 1998\has been successfully completed; and endorses the 2004 Version of the Guide to the
SWEBQKand commends it to the IEEE Computer Society Board of Governors for their approval.

e following motion was adopted by the IEEE Computer Society Board of Governors in February 2004:

MOVED, that the Board of Governors of the IEEE Computer Society approves the 2004 Edition of
the Guide to the Software Engineering Body of Knowledge and authorizes the Chair of the Profes-
sional Practices Committee to proceed with printing.

Please also note that the 2004 edition of the Guide to the Software Engineering Body of Knowledge
was submitted by the IEEE Computer Society to ISO/IEC without any change and was recognized as
Technical Report ISO/IEC TR 19759:2005.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

INTRODUCTION TO THE GUIDE

Publication of the 2004 version of this Guide to the
Sofiware Engineering Body of Knowledge (SWE-
BOK 2004) was a major milestone in establishing
software engineering as a recognized engineering
discipline. The goal in developing this update to
SWEBOK is to improve the currency, readability,
consistency, and usability of the Guide.

All knowledge areas (KAs) have been updated
to reflect changes in software engineering since
publication of SWEBOK 2004. Four new foun-
dation KAs and a Software Engineering Profes-
sional Practices KA have been added. The Soft-
ware Engineering Tools and Methods KA has
been revised as Software Engineering Models
and Methods. Software engineering tools is now
a topic in each of the KAs. Three appendices pro-
vide the specifications for the KA description, an
annotated set of relevant standards for-gach KA,
and a listing of the references cited inthe Guide.

This Guide, written under the-auspices of the
Professional Activities Board, of'the IEEE Com-
puter Society, represents afiext step in the evolu-
tion of the software engingering profession.

WHAT IS SOETWARE ENGINEERING?

ISO/IEC/IEEE Systems and Software Engineering
Vocabulary. (SEVOCAB) defines software engi-
neerifig)as “the application of a systematic, disci-
plined, quantifiable approach to the development,
operation, and maintenance of software; that is, the
application of engineering to software).””!

KA Knowledge Area
. . literature. The purpose of the Guide is to describe
SWEBQK Software Englneerlng BOdy Of the nartion oftho Rody of K oosulodao that 10 gon_
the-portion-ofthe Body-ofKnowledge-thatis-gen
Knowledge

erally accepted, to organize that portion,,dnd|to
provide topical access to it.

The Guide to the Software Engineering Bddy
of Knowledge (SWEBOK Guide) yas’established
with the following five objectives:

1.To promote a consistent view of softwgre
engineering worldwide
2.To specify the'seope of, and clarify the pldce
of software engineering with respect to otler
disciplinés_such as computer science, prpj-
ect management, computer engineering, and
mathematics
3.%Po characterize the contents of the softwgre
engineering discipline
4.To provide a topical access to the Software
Engineering Body of Knowledge
5.To provide a foundation for curriculym
development and for individual certification
and licensing material

The first of these objectives, a consistent world-
wide view of software engineering, was supporfed
by a development process which engaged approfi-
mately 150 reviewers from 33 countries. M¢re
information regarding the development process dan
be found on the website (www.swebok.org). Pro-
fessional and learned societies and public agencfes
involved in software engineering were contacted,
made aware of this project to update SWEBOK, gnd
invited to participate in the review process. KA efi-
tors were recruited from North America, the Pacific
Rim, and Europe. Presentations on the project were
made at various international venues.

WHAT ARE THE OBJECTIVES OF THE
SWEBOK GUIDE?

The Guide should not be confused with the Body
of Knowledge itself, which exists in the published

1 See www.computer.org/sevocab.

XXXi

The second of the objectives, the desire to
specify the scope of software engineering, moti-
vates the fundamental organization of the Guide.
The material that is recognized as being within
this discipline is organized into the fifteen KAs
listed in Table I.1. Each of these KAs is treated in
a chapter in this Guide.

© ISO/IEC 2016 — All rights reserved

http://www.computer.org/sevocab
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
xxxii SWEBOK® Guide V3.0

Table 1.1. The 15 SWEBOK KAs
Software Requirements

Software Design

Software Construction

Software Testing

HIERARCHICAL ORGANIZATION

The organization of the KA chapters supports the
third of the project’s objectives—a characteriza-
tion of the contents of software engineering. The
detailed specifications provided by the project’s

Lo L\ SR
Itwdal T IVIallllTCIIaicT

oftware Configuration Management

oftware Engineering Management

oftware Engineering Process

oftware Engineering Models and Methods

oftware Quality

oftware Engineering Professional Practice

oftware Engineering Economics

omputing Foundations

lathematical Foundations

M2 1O 1IN

ngineering Foundations

[n specifying scope, it is also important to iden-
tify the disciplines that intersect with software
engineering. To this end, SWEBOK V3 also rec-
ogizes seven related disciplines, listed in Table
1.2. Software engineers should, of course, have
knowledge of material from these disciplisies
(and the KA descriptions in this Guide maynake
reference to them). It is not, however, an objec-
tife of the SWEBOK Guide to characterize the
knjowledge of the related disciplings:

Table 1.2. Related Disciplines

omputer Engineering

omputer Science

q
C
(eneral Management
Mathematics
P
q

roject-Management

uality Management

editorial-tean—to—the—associate—editors—regarding
the contents of the KA descriptions can be found
in Appendix A.

The Guide uses a hierarchical organizationito
decompose each KA into a set of topics wath'rec-
ognizable labels. A two (sometime ¢three) level
breakdown provides a reasonable"way to find
topics of interest. The Guide tfeats the selected
topics in a manner compatible with major schools
of thought and with breakdewns generally found
in industry and in software engineering literature
and standards. The-breakdowns of topics do not
presume particuldrapplication domains, business
uses, management philosophies, development
methods, ahd so forth. The extent of each topic’s
description/is only that needed to understand the
generally accepted nature of the topics and for
thexreader to successfully find reference material;
the Body of Knowledge is found in the reference
materials themselves, not in the Guide.

REFERENCE MATERIAL AND MATRIX

To provide topical access to the knowledge—the
fourth of the project’s objectives—the Guide
identifies authoritative reference material for
each KA. Appendix C provides a Consolidated
Reference List for the Guide. Each KA includes
relevant references from the Consolidated Refer-
ence List and also includes a matrix relating the
reference material to the included topics.

It should be noted that the Guide does not
attempt to be comprehensive in its citations.
Much material that is both suitable and excellent
is not referenced. Material included in the Con-

ystems Engineering

The relevant elements of computer science
and mathematics are presented in the Computing
Foundations and Mathematical Foundations KAs
of the Guide (Chapters 13 and 14).

© ISO/IEC 2016 — All rights reserved

solidated Reference List provides coverage of the
topics described.

DEPTH OF TREATMENT

To achieve the SWEBOK fifth objective—pro-
viding a foundation for curriculum development,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

certification, and licensing, the criterion of gen-
erally accepted knowledge has been applied, to
be distinguished from advanced and research
knowledge (on the grounds of maturity) and from
specialized knowledge (on the grounds of gener-

comes from the Project Management Institute:
“Generally recognized means the knowledge
and practices described are applicable to most
projects most of the time, and there is consensus
about their value and usefulness.”

However, the terms “generally accepted” or
“generally recognized” do not imply that the des-
ignated knowledge should be uniformly applied
to all software engineering endeavors—each proj-
ect’s needs determine that—but it does imply that
competent, capable software engineers should
be equipped with this knowledge for potential
application. More precisely, generally accepted
knowledge should be included in the study mate-
rial for the software engineering licensing exami-
nation that graduates would take after gaining
four years of work experience. Although this ctix
terion is specific to the US style of education@nd
does not necessarily apply to other countrics, we
deem it useful.

STRUCTURE OF THE KA DESCRIPTIONS

The KA descriptions are structured as follows.

In the introduction, a(brief definition of the KA
and an overview of.its.scope and of its relation-
ship with other KAs‘are presented.

2 A Guide'te,the Project Management Body of
Knowledge,>5th ed., Project Management Institute,

2013;(Www.pmi.org.

ISO/IEC TR 19759:2016(E)

Introduction xxxiii

The breakdown of topics in each KA consti-
tutes the core the KA description, describing
the decomposition of the KA into subareas, top-
ics, and sub-topics. For each topic or subtopic, a
short description is given, along with one or more
references.
considered to constitute the best presentation|of
the knowledge relative to the topic. A matrix'lirfks
the topics to the reference material.

The last part of each KA description is the list
of recommended references and (optionally) fjir-
ther readings. Relevant standards for each KA are
presented in Appendix B fthe Guide.

APPENDIX A. KA'DESCRIPTION
SPECIFICATIONS

Appendix A describes the specifications provided
by the editorial team to the associate editors for
the_‘content, recommended references, format,
and,style of the KA descriptions.

APPENDIX B. ALLOCATION OF STAN-
DARDS TO KAS

Appendix B is an annotated list of the relevgnt
standards, mostly from the IEEE and the ISO, for
each of the KAs of the SWEBOK Guide.

APPENDIX C. CONSOLIDATED
REFERENCE LIST

Appendix C contains the consolidated list of r¢c-
ommended references cited in the KAs (thgse
references are marked with an asterisk (*) in the
text).

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 1

SOFTWARE REQUIREMENTS

ACRONYMS
CIA Confidentiality, Integrity, and
Availability
DAG Directed Acyclic Graph
FSM Functional Size Measurement
INCOSE Internatlgnal Council on Systems
Engineering
UML Unified Modeling Language
SysML | Systems Modeling Language
INTRODUCTION

The Software Requirements knowledge area (KA)
is concerned with the elicitation, analysisyspeci-
fication, and validation of software reqiitrements
as well as the management of requiréments dur-
ing the whole life cycle of the seftware product.
It is widely acknowledged amongst researchers
and industry practitioners.that software projects
are critically vulnerablé when the requirements-
related activities arg poorly performed.

Software requitements express the needs and
constraints placed on a software product that
contribute to.the solution of some real-world
problent;

The term “requirements engineering” is widely
ysed-in the field to denote the systematic handling
of requirements. For reasons of consistency, the
term “engineering” will not be used in this KA

does not imply, however, that a software.enginger
could not perform the function.

A risk inherent in the propesed breakdown| is
that a waterfall-like process ‘may be inferred. [To
guard against this, topic 25 Requirements Procegs,
is designed to provide.a high-level overview of the
requirements process-by setting out the resourges
and constraints undér which the process operafes
and which aet\to/configure it.

An alternate¢ decomposition could use a prad-
uct-based, structure (system requirements, sqft-
waré/requirements, prototypes, use cases, and
sg on). The process-based breakdown reflefts
the fact that the requirements process, if it is|to
be successful, must be considered as a proc¢ss
involving complex, tightly coupled activitjes
(both sequential and concurrent), rather than ap a
discrete, one-off activity performed at the outpet
of a software development project.

The Software Requirements KA is relafed
closely to the Software Design, Software Testing,
Software Maintenance, Software Configuration
Management, Software Engineering Manage-
ment, Software Engineering Process, Softwgre
Engineering Models and Methods, and Softwgre
Quality KAs.

BREAKDOWN OF TOPICS FOR
SOFTWARE REQUIREMENTS

The breakdown of topics for the Softwgre
Requirements KA is shown in Figure 1.1.

other than for software engineering per se.

For the same reason, “requirements engineer,”
a term which appears in some of the literature,
will not be used either. Instead, the term “software
engineer” or, in some specific cases, “require-
ments specialist” will be used, the latter where
the role in question is usually performed by an
individual other than a software engineer. This

© ISO/IEC 2016 — All rights reserved

1. Software Requirements Fundamentals
[1*, c4, c4sl, c10sl, c10s4] [2%, cl, c6, cl2]

1.1. Definition of a Software Requirement

At its most basic, a software requirement is a
property that must be exhibited by something in

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Software
Requirements

I

ftw: . . .
Software Requirements Requirements Requirements

Practical Software

Requi t Requi t i
Requirements equirements || Requirements

nd Software
Requirements

orfler to solve some problem in the real world. It
mgy aim to automate part of a task for someon¢
to [support the business processes of an organiza-
tign, to correct shortcomings of existing software,
orfto control a device—to name just a few of the
mgny problems for which software solutions are
possible. The ways in which usets,_business pro-
cepses, and devices function aré typically complex.
By extension, therefore, the requirements on par-
ticular software are typically a complex combina-
tign from various people’at different levels of an
organization, and who are in one way or another
inyolved or cofinected with this feature from the
enfvironmenf in Which the software will operate.

An essential property of all software require-
m¢nts is-that they be verifiable as an individual
feature” as a functional requirement or at the

r Requirements r I . . N
quiremen Process Elicitation Analysis v Considerations
Fundamentals Tools
efinition of a Reaui . System Requirements Il?r;live Nature
q i the
> Poftware (> Process Models o > . > Definition . | of the
2equircment Sources Classification Document Reviews Requirements
Process
N roduct and Lyp A Elicitation Conceptual s]S{ys‘e_m L s Prototypi Change
rocess rocess Actors Techniques Modeling equirements rototyping Management
Requirements Specification
. Architectural
Functional and . Software)
> Nonfunctional Process Support Design and L» Requirements MOqEI . Requirements
. and Management Requirements Specificati Validation Attributes,
Requirements - pecification
Allocation
Emergent Process Quality Requirements Accey R
™ Properties and Improvement Negotiation > Tests 7 Tracifig
Juantifiable Formal Measuring
Requirements Analysis Requirements
ystem
L. Requirements

Figure 1.1. Breakdown of Topics for the Seftware Requirements KA

tequirements can be verified within available
resource constraints.

Requirements have other attributes in addi-
tion to behavioral properties. Common examples
include a priority rating to enable tradeoffs in
the face of finite resources and a status value to
enable project progress to be monitored. Typi-
cally, software requirements are uniquely identi-
fied so that they can be subjected to software con-
figuration management over the entire life cycle
of the feature and of the software.

1.2. Product and Process Requirements
A product requirement is a need or constraint on

the software to be developed (for example, “The
software shall verify that a student meets all pre-

system level as a nonfunctional requirement. It
may be difficult or costly to verify certain soft-
ware requirements. For example, verification
of the throughput requirement on a call center
may necessitate the development of simulation
software. Software requirements, software test-
ing, and quality personnel must ensure that the

requisites before he or she registers for a course™).
A process requirement is essentially a con-
straint on the development of the software (for
example, “The software shall be developed using
a RUP process”).
Some software requirements generate implicit
process requirements. The choice of verification

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

technique is one example. Another might be the
use of particularly rigorous analysis techniques
(such as formal specification methods) to reduce
faults that can lead to inadequate reliability. Pro-
cess requirements may also be imposed directly
by the development organization, their customer,

Software Requirements 1-3

depend for their interpretation on subjective
judgment (“the software shall be reliable”; “the
software shall be user-friendly”). This is par-
ticularly important for nonfunctional require-
ments. Two examples of quantified requirements
are the following: a call center’s software must

orathird narty ool a0 o cafoty rognlator
of-a-trireparty-SHeasa-Satety-Fregurator:

1.3. Functional and Nonfunctional Requirements

Functional requirements describe the functions
that the software is to execute; for example, for-
matting some text or modulating a signal. They
are sometimes known as capabilities or features.
A functional requirement can also be described
as one for which a finite set of test steps can be
written to validate its behavior.

Nonfunctional requirements are the ones that
act to constrain the solution. Nonfunctional
requirements are sometimes known as constraints
or quality requirements. They can be further clas-
sified according to whether they are performance
requirements, maintainability = requirements,
safety requirements, reliability requirements;
security requirements, interoperability require-
ments or one of many other types of software
requirements (see Models and Quality Character-
istics in the Software Quality KA).

1.4. Emergent Properties

Some requirements represent emergent proper-
ties of software—that is, requirements that can-
not be addressed-by*a single component but that
depend on how-all the software components
interoperate, The throughput requirement for a
call centerswould, for example, depend on how
the t€léphone system, information system, and
thetoperators all interacted under actual operat-
ing conditions. Emergent properties are crucially
dependent on the system architecture.

Herease—the-centers—throushput-by—20%:—and a
system shall have a probability of generating a
fatal error during any hour of operatiofizof l¢ss
than 1 * 107%. The throughput requirement is at a
very high level and will need to béaised to derfve
a number of detailed requirements. The reliabil-
ity requirement will tightly Censtrain the syst¢gm
architecture.

1.6. System Requirements and Software
Requirements

In this topie,<*system” means

an interacting combination of elements
to accomplish a defined objective. Thesg
include hardware, software, firmware
people, information, techniques, facilities
services, and other support elements,

as defined by the International Council on Sd[ft-
ware and Systems Engineering (INCOSE) [3].

System requirements are the requirements for
the system as a whole. In a system containing
software components, sofiware requirements gre
derived from system requirements.

This KA defines “user requirements” in| a
restricted way, as the requirements of the sys-
tem’s customers or end users. System requife-
ments, by contrast, encompass user requiremer|ts,
requirements of other stakeholders (such as regu-
latory authorities), and requirements without |Jan
identifiable human source.

2. Requirements Process

1.5. Quantifiable Requirements

Software requirements should be stated as clearly
and as unambiguously as possible, and, where
appropriate, quantitatively. It is important to
avoid vague and unverifiable requirements that

© ISO/IEC 2016 — All rights reserved

[1%, c4s4] [2*, c1-4, c6, 22, c23]

This section introduces the software requirements
process, orienting the remaining five topics and
showing how the requirements process dovetails
with the overall software engineering process.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-4 SWEBOK® Guide V3.0

2.1. Process Models

The objective of this topic is to provide an under-
standing that the requirements process

* is not a discrete front-end activity of the soft-
at the beginning of a project that continues to
be refined throughout the life cycle;

b identifies software requirements as configu-
ration items and manages them using the
same software configuration management
practices as other products of the software
life cycle processes;

b needs to be adapted to the organization and
project context.

[n particular, the topic is concerned with how
th¢ activities of elicitation, analysis, specifica-
tign, and validation are configured for different
types of projects and constraints. The topic also
in¢ludes activities that provide input into the
reguirements process, such as marketing and fea-
sibility studies.

[
Q

2.3. Process Actors

THis topic introduces the roles of the people;who
pafticipate in the requirements process.Lhis pro-
ceps is fundamentally interdisciplinary, and the
requirements specialist needs to.mediate between
th¢ domain of the stakeholder and that of soft-
wire engineering. There ar¢ often many people
inyolved besides the reguirements specialist, each
offwhom has a stake-ip-the software. The stake-
hollders will vary across projects, but will always
in¢lude users/eperators and customers (who need
not be the sanie).

[ypicalexamples of software stakeholders
in¢lude\(but are not restricted to) the following:

ISO/IEC TR 19759:2016(E)

marketing people are often needed to estab-
lish what the market needs and to act as
proxy customers.

» Regulators: Many application domains, such
as banking and public transport, are regu-
lated. Software in these domains must com-

authorities.

 Software engineers: These individuals haye
a legitimate interest in profiting from devel-
oping the software by, for example{reusing
components in or from other products. If,
in this scenario, a customer '0f “a particu-
lar product has specific jequirements that
compromise the potentials for component
reuse, the software engineers must carefully
weigh their own_stake against those of the
customer. Specific requirements, particu-
larly constgaints; may have major impact on
project costor delivery because they either
fit wellcor poorly with the skill set of the
engiheers. Important tradeoffs among such
requirements should be identified.

It will not be possible to perfectly satisfy the
requirements of every stakeholder, and it is the
software engineer’s job to negotiate tradeoffs that
are both acceptable to the principal stakeholders
and within budgetary, technical, regulatory, and
other constraints. A prerequisite for this is that all
the stakeholders be identified, the nature of their
“stake” analyzed, and their requirements elicited.

2.3. Process Support and Management

This section introduces the project management
resources required and consumed by the require-
ments process. It establishes the context for the
first topic (Initiation and Scope Definition) of the
Software Engineering Management KA. Its prin-
cipal purpose is to make the link between the pro-

 Users: This group comprises those who will
operate the software. It is often a heteroge-
neous group involving people with different
roles and requirements.

* Customers: This group comprises those who
have commissioned the software or who rep-
resent the software’s target market.

* Market analysts: A mass-market product
will not have a commissioning customer, so

cess activities identified in 2.1 and the issues of
cost, human resources, training, and tools.

2.4. Process Quality and Improvement
This topic is concerned with the assessment of
the quality and improvement of the requirements

process. Its purpose is to emphasize the key role
the requirements process plays in terms of the

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

cost and timeliness of a software product and of
the customer’s satisfaction with it. It will help to
orient the requirements process with quality stan-
dards and process improvement models for soft-
ware and systems. Process quality and improve-

ment is closely related to both the Software
it WA ed X o

KA, comprising

e requirements process coverage by process
improvement standards and models;

e requirements process measures and
benchmarking;

 improvement planning and implementation;

* security/CIA improvement/planning and
implementation.

3. Requirements Elicitation
[1*, c4s5] [2*, ¢5, ¢6, c9]

Requirements elicitation is concerned with the
origins of software requirements and how the
software engineer can collect them. It is the first
stage in building an understanding of the problem
the software is required to solve. It is fundangen-
tally a human activity and is where the stakehold-
ers are identified and relationships established
between the development team and thé’customer.
It is variously termed “requirements capture,”
“requirements discovery,” . and “requirements
acquisition.”

One of the fundamental principles of a good
requirements elicitation process is that of effec-
tive communication* between the various stake-
holders. Thisscommunication continues through
the entire tSoftware Development Life Cycle
(SDLC) process with different stakeholders at
diffefent” points in time. Before development
begins, requirements specialists may form the
conduit for this communication. They must medi-
ate between the domain of the software users (and

Software Requirements 1-5

to ensure the customer’s most important business
needs are satisfied first. This minimizes the risk
of requirements specialists spending time elicit-
ing requirements that are of low importance, or
those that turn out to be no longer relevant when
the software is delivered. On the other hand, the
deseription—nustbe——sealable—and extensible to
accept further requirements not expressed imythe
first formal lists and compatible with the(previqus
ones as contemplated in recursive methods.

3.1. Requirements Sources

Requirements have manyiseurces in typical sqft-
ware, and it is essential that all potential sourges
be identified and evaluated. This topic is designed
to promote awareness of the various sources [of
software requitements and of the frameworks for
managing them. The main points covered are|as
follows;

» Goals. The term “goal” (sometimes called
“business concern” or “critical success fic-
tor”) refers to the overall, high-level obj¢c-
tives of the software. Goals provide the mqti-
vation for the software but are often vagug¢ly
formulated. Software engineers need to pay
particular attention to assessing the value
(relative to priority) and cost of goals. A f¢a-
sibility study is a relatively low-cost way|of
doing this.

* Domain knowledge. The software enginger
needs to acquire or have available knowl-
edge about the application domain. Domgin
knowledge provides the background agaipst
which all elicited requirements knowledge
must be set in order to understand it. It’s

a good practice to emulate an ontologi¢al

approach in the knowledge domain. Reja-

tions between relevant concepts within the
application domain should be identified.

other stakeholders) and the technical world of the
software engineer. A set of internally consistent
models at different levels of abstraction facilitate
communications between software users/stake-
holders and software engineers.

A critical element of requirements elicitation is
informing the project scope. This involves provid-
ing a description of the software being specified
and its purpose and prioritizing the deliverables

© ISO/IEC 2016 — All rights reserved

 Stakeholders (see section 2.2, Process
Actors). Much software has proved unsat-
isfactory because it has stressed the require-
ments of one group of stakeholders at the
expense of others. Hence, the delivered
software is difficult to use, or subverts the
cultural or political structures of the cus-
tomer organization. The software engineer
needs to identify, represent, and manage

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

SWEBOK® Guide V3.0

the “viewpoints” of many different types of
stakeholders.

» Business rules. These are statements that

O1
tif]
re
re
R4
frd
Th
hu
rel
thg
fa

define or constrain some aspect of the struc-
ture or the behavior of the business itself. “A
student cannot register in next semester’s

fees” would be an example of a business rule
that would be a requirement source for a uni-
versity’s course-registration software.

b The operational environment. Requirements
will be derived from the environment in
which the software will be executed. These
may be, for example, timing constraints
in real-time software or performance con-
straints in a business environment. These
must be sought out actively because they can
greatly affect software feasibility and cost as
well as restrict design choices.

b The organizational environment. Software
is often required to support a business pro-
cess, the selection of which may be condi-
tioned by the structure, culture, and internal
politics of the organization. The software
engineer needs to be sensitive to these since,
in general, new software should not force
unplanned change on the business processt

.}. Elicitation Techniques

ice the requirements sources have been iden-
ed, the software engineer(can start eliciting
juirements information (from them. Note that
juirements are seldent* elicited ready-made.
ther, the software-engineer elicits information
m which he ot she formulates requirements.
is topic concenfrates on techniques for getting
man stakehplders to articulate requirements-
evantiftformation. It is a very difficult task and
software engineer needs to be sensitized to the
t thdt (for example) users may have difficulty

ISO/IEC TR 19759:2016(E)

has yet to be obtained from end users. The impor-
tance of planning, verification, and validation in
requirements elicitation cannot be overstated. A
number of techniques exist for requirements elici-
tation; the principal ones are these:

ntoriio nteriio o ctal-abaolda

“traditional” means of eliciting requirements,

It is important to understand the advantages

and limitations of interviews and how -they

should be conducted.

* Scenarios. Scenarios provide (a \valuable
means for providing context to, the elicita-
tion of user requirements.<{Fhey allow the
software engineer to provide a framework
for questions about user-tasks by permitting
“what if” and “hownis this done” questions
to be asked. The.most common type of sce-
nario is the use“case description. There is a
link here tostopic 4.2 (Conceptual Modeling)
becauge’scenario notations such as use case
diagrams are common in modeling software.

* Prototypes. This technique is a valuable tool
for clarifying ambiguous requirements. They
can act in a similar way to scenarios by pro-
viding users with a context within which they
can better understand what information they
need to provide. There is a wide range of
prototyping techniques—from paper mock-
ups of screen designs to beta-test versions of
software products—and a strong overlap of
their separate uses for requirements elicita-
tion and for requirements validation (see
section 6.2, Prototyping). Low fidelity proto-
types are often preferred to avoid stakeholder
“anchoring” on minor, incidental character-
istics of a higher quality prototype that can
limit design flexibility in unintended ways.

* Facilitated meetings. The purpose of these
meetings is to try to achieve a summative

effect, whereby a group of people can bring

describing their tasks, may leave important infor-
mation unstated, or may be unwilling or unable to
cooperate. It is particularly important to understand
that elicitation is not a passive activity and that,
even if cooperative and articulate stakeholders are
available, the software engineer has to work hard

to

elicit the right information. Many business or

technical requirements are tacit or in feedback that

more insight into their software require-
ments than by working individually. They
can brainstorm and refine ideas that may be
difficult to bring to the surface using inter-
views. Another advantage is that conflicting
requirements surface early on in a way that
lets the stakeholders recognize where these
occur. When it works well, this technique

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

may result in a richer and more consistent
set of requirements than might otherwise
be achievable. However, meetings need to
be handled carefully (hence the need for a
facilitator) to prevent a situation in which
the critical abilities of the team are eroded

Software Requirements

4. Requirements Analysis

1-7

[1*, c4sl, c4s5, cl10s4, c12s5]
[2%, ¢7, cl1, c12, c17]

This topic is concerned with the process of ana-

lyzing requirements to

by—srouptoyalty—erin—which—requirements
reflecting the concerns of a few outspoken
(and perhaps senior) people that are favored
to the detriment of others.

Observation. The importance of software
context within the organizational environ-
ment has led to the adaptation of observa-
tional techniques such as ethnography for
requirements elicitation. Software engineers
learn about user tasks by immersing them-
selves in the environment and observing how
users perform their tasks by interacting with
each other and with software tools and other
resources. These techniques are relatively
expensive but also instructive because they
illustrate that many user tasks and business
processes are too subtle and complex for
their actors to describe easily.

e User stories. This technique is commgnly
used in adaptive methods (see Agile<Meth-
ods in the Software Engineering:*Models
and Methods KA) and refers texshort, high-
level descriptions of requived functionality
expressed in customer ternis. A typical user
story has the form: As'a <role>, I want
<goal/desire> so (that <benefit>." A user
story is intended to.contain just enough infor-
mation so thatithe developers can produce a
reasonable \estimate of the effort to imple-
ment ity The aim is to avoid some of the waste
thatoften happens in projects where detailed
requirements are gathered early but become
invalid before the work begins. Before a user
story is implemented, an appropriate accep-
tance procedure must be written by the cus-

e detect and resolve conflicts betwg
requirements;

« discover the bounds of the software.and h
it must interact with its orgdnizational 4
operational environment;

* eclaborate system requiretnents to derive sg

ware requirements.

The traditional yjew of requirements analy
has been that it be.réduced to conceptual mod}
ing using one\of a number of analysis metho
such as the structured analysis method. Wh

cn

51S
cl-
s,
ile

conceptual modeling is important, we include the

classification of requirements to help inform tr3
eoffs between requirements (requirements cl
sification) and the process of establishing thg
tradeoffs (requirements negotiation).

Care must be taken to describe requireme
precisely enough to enable the requirements
be validated, their implementation to be verifi
and their costs to be estimated.

4.1. Requirements Classification

Requirements can be classified on a number
dimensions. Examples include the following:

* Whether the requirement is functional

d-

of

or

nonfunctional (see section 1.3, Functiomhal

and Nonfunctional Requirements).
* Whether the requirement is derived from g
or more high-level requirements or an em
gent property (see section 1.4, Emerg

ne
Pr-
Ent

Properties), or is being imposed directly

on

tomer to determine whether the goals of the
user story have been fulfilled.

Other techniques. A range of other techniques
for supporting the elicitation of requirements
information exist and range from analyzing
competitors’ products to applying data min-
ing techniques to using sources of domain
knowledge or customer request databases.

© ISO/IEC 2016 — All rights reserved

the software by a stakeholder or some other

source.

* Whether the requirement is on the product
or the process (see section 1.2, Product and
Process Requirements). Requirements on the
process can constrain the choice of contrac-

tor, the software engineering process to

be

adopted, or the standards to be adhered to.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-8 SWEBOK® Guide V3.0

 The requirement priority. The higher the pri-
ority, the more essential the requirement is
for meeting the overall goals of the software.
Often classified on a fixed-point scale such
as mandatory, highly desirable, desirable,
or optional, the priority often has to be bal-

implementation.
b The scope of the requirement. Scope refers
to the extent to which a requirement affects
the software and software components.
Some requirements, particularly certain
nonfunctional ones, have a global scope in
that their satisfaction cannot be allocated to
a discrete component. Hence, a requirement
with global scope may strongly affect the
software architecture and the design of many
components, whereas one with a narrow
scope may offer a number of design choices
and have little impact on the satisfaction of
other requirements.

Volatility/stability. Some requirements will
change during the life cycle of the soft-
ware—and even during the development
process itself. It is useful if some estimate
of the likelihood that a requirement will
change can be made. For example, in a baiik-
ing application, requirements for funefions
to calculate and credit interest to_customers’
accounts are likely to be more stable than a
requirement to support a parficular kind of
tax-free account. The foriner reflects a fun-
damental feature of thg banking domain (that
accounts can earn-interest), while the latter
may be rendered rebsolete by a change to
government legislation. Flagging potentially
volatile requirements can help the software
enginegr establish a design that is more toler-
ant of-change.

Dther classifications may be appropriate,

ISO/IEC TR 19759:2016(E)

4.2. Conceptual Modeling

The development of models of a real-world
problem is key to software requirements analy-
sis. Their purpose is to aid in understanding the
situation in which the problem occurs, as well as

comprise models of entities from the problem
domain, configured to reflect their real-world
relationships and dependencies. This topiclAs
closely related to the Software Engineerigg Mod-
els and Methods KA.

Several kinds of models can be, developed.
These include use case diagram$/data flow mod-
els, state models, goal-based medels, user inter-
actions, object models, data’models, and many
others. Many of these modéling notations are part
of the Unified Modéling Language (UML). Use
case diagrams, for-€xample, are routinely used
to depict scenarios where the boundary separates
the actors_(users or systems in the external envi-
ronmept)\from the internal behavior where each
use case depicts a functionality of the system.

The factors that influence the choice of model-
ing notation include these:

* The nature of the problem. Some types of
software demand that certain aspects be ana-
lyzed particularly rigorously. For example,
state and parametric models, which are part
of SysML [4], are likely to be more impor-
tant for real-time software than for informa-
tion systems, while it would usually be the
opposite for object and activity models.

» The expertise of the software engineer. It is
often more productive to adopt a modeling
notation or method with which the software
engineer has experience.

» The process requirements of the customer
(see section 1.2, Product and Process
Requirements). Customers may impose their

depending upon the organization’s normal prac-
tice and the application itself.

There is a strong overlap between requirements
classification and requirements attributes (see
section 7.3, Requirements Attributes).

favored notation or method or prohibit any
with which they are unfamiliar. This factor
can conflict with the previous factor.

Note that, in almost all cases, it is useful to start
by building a model of the software context. The
software context provides a connection between
the intended software and its external environment.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

This is crucial to understanding the software’s con-
text in its operational environment and to identify-
ing its interfaces with the environment.

This subtopic does not seek to “teach” a particu-
lar modeling style or notation but rather provides
guidance on the purpose and intent of modeling.

4.3. Architectural Design and Requirements
Allocation

At some point, the solution architecture must
be derived. Architectural design is the point at
which the requirements process overlaps with
software or systems design and illustrates how
impossible it is to cleanly decouple the two tasks.
This topic is closely related to Software Structure
and Architecture in the Software Design KA. In
many cases, the software engineer acts as soft-
ware architect because the process of analyzing
and elaborating the requirements demands that
the architecture/design components that will be
responsible for satisfying the requirements be
identified. This is requirements allocation—the
assignment to architecture components respofi~
sible for satisfying the requirements.

Allocation is important to permit detailedsanal-
ysis of requirements. Hence, for example; once a
set of requirements has been allocated’to a com-
ponent, the individual requirements can be further
analyzed to discover further requirements on how
the component needs to inteéract with other com-
ponents in order to satisfy the allocated require-
ments. In large projects, allocation stimulates a
new round of apalysis for each subsystem. As an
example, requirements for a particular braking
performance for a car (braking distance, safety in
poor driving conditions, smoothness of applica-
tion, pédal pressure required, and so on) may be
allocated to the braking hardware (mechanical
and hydraulic assemblies) and an antilock braking
System (ABS). Only when a requirement for an

Software Requirements 1-9

4.4. Requirements Negotiation

Another term commonly used for this subtopic
is “conflict resolution.” This concerns resolv-
ing problems with requirements where conflicts
occur between two stakeholders requiring mutu-

— allvincompatiblefeatures, betweenrequirements

and resources, or between functional and‘ngn-
functional requirements, for example.(ln ‘most
cases, it is unwise for the software_engineer|to
make a unilateral decision, so it WeComes necgs-
sary to consult with the stakehelder(s) to reach a
consensus on an appropriate tradeoff. It is offen
important, for contractualreasons, that such degi-
sions be traceable back to the customer. We hqve
classified this as a’seftware requirements analy-
sis topic because‘problems emerge as the resplt
of analysis. However, a strong case can also |be
made for,considering it a requirements validation
topic (se® topic 6, Requirements Validation).

Reéquirements prioritization is necessary, ot
only/as a means to filter important requirements,
but also in order to resolve conflicts and plan for
staged deliveries, which means making complex
decisions that require detailed domain knowledge
and good estimation skills. However, it is offen
difficult to get real information that can act|as
a basis for such decisions. In addition, requife-
ments often depend on each other, and prigri-
ties are relative. In practice, software enginegrs
perform requirements prioritization frequently
without knowing about all the requiremerts.
Requirements prioritization may follow a copst-
value approach that involves an analysis fr¢m
the stakeholders defining in a scale the benefits
or the aggregated value that the implemenfa-
tion of the requirement brings them, versus the
penalties of not having implemented a particufar
requirement. It also involves an analysis fr¢m
the software engineers estimating in a scale the
cost of implementing each requirement, relatjve

antilock braking system has been identified, and
the requirements allocated to it, can the capabili-
ties of the ABS, the braking hardware, and emer-
gent properties (such as car weight) be used to
identify the detailed ABS software requirements.

Architectural design is closely identified with
conceptual modeling (see section 4.2, Conceptual
Modeling).

© ISO/IEC 2016 — Al rights reserved

to other requirements. Another requirements pri-
oritization approach called the analytic hierarchy
process involves comparing all unique pairs of
requirements to determine which of the two is of
higher priority, and to what extent.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-10 SWEBOK® Guide V3.0

4.5. Formal Analysis

Formal analysis concerns not only topic 4, but
also sections 5.3 and 6.3. This topic is also related
to Formal Methods in the Software Engineering
Models and Methods Knowledge Area.

application domains, particularly those of high-
infegrity systems. The formal expression of
requirements requires a language with formally
defined semantics. The use of a formal analysis
for requirements expression has two benefits.
Fifst, it enables requirements expressed in the
lafpguage to be specified precisely and unambigu-
ously, thus (in principle) avoiding the potential
fof misinterpretation. Secondly, requirements can
be| reasoned over, permitting desired properties
of|the specified software to be proven. Formal
regsoning requires tool support to be practicable
for anything other than trivial systems, and tools
geperally fall into two types: theorem provers or
m¢del checkers. In neither case can proof be fully
aufomated, and the level of competence in formal
regsoning needed in order to use the tools restricts
th¢ wider application of formal analysis.

Most formal analysis is focused on relatively
lafe stages of requirements analysis. It is gener-
ally counterproductive to apply formalization
unttil the business goals and user requirements
hajve come into sharp focus through mieans such
as|those described elsewhere in séction 4. How-
evgr, once the requirements Have stabilized and
hajve been elaborated to specify concrete proper-
tigs of the software, it-may be beneficial to for-
mglize at least the cpitical requirements. This per-
mits static validation that the software specified
by the requirements does indeed have the proper-
tigs (for exdniple, absence of deadlock) that the
cuktomeryusers, and software engineer expect it
to [have:

[¢]

—_

=,

=,

ISO/IEC TR 19759:2016(E)

a document that can be systematically reviewed,
evaluated, and approved. For complex systems,
particularly those involving substantial nonsoft-
ware components, as many as three different
types of documents are produced: system defini-
tion, system requirements, and software require-

third of these is required. All three documents are
described here, with the understanding that they;
may be combined as appropriate. A description.of
systems engineering can be found in the/Related
Disciplines of Software Engineering~chapter of
this Guide.

5.1. System Definition Docyment

This document (sometimes known as the user
requirements document or concept of operations
document) records~the system requirements. It
defines the highylevel system requirements from
the domain¢perspective. Its readership includes
representatives of the system users/customers
(marketing may play these roles for market-
driven software), so its content must be couched
in terms of the domain. The document lists the
system requirements along with background
information about the overall objectives for the
system, its target environment, and a statement of
the constraints, assumptions, and nonfunctional
requirements. It may include conceptual models
designed to illustrate the system context, usage
scenarios, and the principal domain entities, as
well as workflows.

5.2. System Requirements Specification

Developers of systems with substantial software
and nonsoftware components—a modern air-
liner, for example—often separate the descrip-
tion of system requirements from the description
of software requirements. In this view, system

5. Requirements Specification
[1*, c4s2, c4s3, c12s2-5] [2%, c10]

For most engineering professions, the term “spec-
ification” refers to the assignment of numerical
values or limits to a product’s design goals. In
software engineering, “software requirements
specification” typically refers to the production of

requirements are specified, the software require-
ments are derived from the system requirements,
and then the requirements for the software com-
ponents are specified. Strictly speaking, system
requirements specification is a systems engineer-
ing activity and falls outside the scope of this
Guide.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

5.3. Software Requirements Specification

Software requirements specification establishes
the basis for agreement between customers and
contractors or suppliers (in market-driven proj-

to do.

Software requirements specification permits
a rigorous assessment of requirements before
design can begin and reduces later redesign. It
should also provide a realistic basis for estimat-
ing product costs, risks, and schedules.

Organizations can also use a software require-
ments specification document as the basis for
developing effective verification and validation
plans.

Software requirements specification provides
an informed basis for transferring a software prod-
uct to new users or software platforms. Finally, it
can provide a basis for software enhancement.

Software requirements are often written in
natural language, but, in software requiremerits
specification, this may be supplemented by (for-
mal or semiformal descriptions. Selection of
appropriate notations permits particulaf require-
ments and aspects of the software arehitecture to
be described more precisely andsconcisely than
natural language. The general tule is that nota-
tions should be used that allow the requirements
to be described as precisely as possible. This is
particularly crucial for safety-critical, regulatory,
and certain othertypes of dependable software.
However, the~choice of notation is often con-
strained bytthe training, skills, and preferences of
the document’s authors and readers.

A (mumber of quality indicators have been
developed that can be used to relate the quality
ofsoftware requirements specification to other
project variables such as cost, acceptance, per-

Software Requirements 1-11

6. Requirements Validation
[1% c4s6] [2%, c13, cl15]

The requirements documents may be subject to val-
idation and verification procedures. The require-
ments may be validated to ensure that the software

i ; i it is
also important to verify that a requirements ‘dog¢u-
ment conforms to company standards afid that it
is understandable, consistent, and cemplete. |In
cases where documented compaiy- standards |or
terminology are inconsistent with ‘widely accepfed
standards, a mapping between. the two should |be
agreed on and appended tothe document.

Formal notations offer'the important advantdge
of permitting the lasttwo properties to be proyen
(in a restricted _seuse, at least). Different stalte-
holders, including representatives of the custonjer
and developet, should review the document(s).
Requirements documents are subject to the same
configuration management practices as the otler
deliverables of the software life cycle processps.
When practical, the individual requirements gre
also subject to configuration management, genpr-
ally using a requirements management tool (§ee
topic 8, Software Requirements Tools).

It is normal to explicitly schedule one or mgre
points in the requirements process where the
requirements are validated. The aim is to pick jup
any problems before resources are committed|to
addressing the requirements. Requirements vli-
dation is concerned with the process of examjn-
ing the requirements document to ensure thaf it
defines the right software (that is, the software
that the users expect).

6.1. Requirements Reviews

Perhaps the most common means of validation
is by inspection or reviews of the requirements
document(s). A group of reviewers is assigrnjed

formance, schedule, and reproducibility. Quality
indicators for individual software requirements
specification statements include imperatives,
directives, weak phrases, options, and continu-
ances. Indicators for the entire software require-
ments specification document include size, read-
ability, specification, depth, and text structure.

© ISO/IEC 2016 — All rights reserved

a brief to look for errors, mistaken assumptions,
lack of clarity, and deviation from standard prac-
tice. The composition of the group that conducts
the review is important (at least one represen-
tative of the customer should be included for a
customer-driven project, for example), and it may
help to provide guidance on what to look for in
the form of checklists.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-12 SWEBOK® Guide V3.0

Reviews may be constituted on completion of
the system definition document, the system spec-
ification document, the software requirements
specification document, the baseline specifica-
tion for a new release, or at any other step in the
process.

ISO/IEC TR 19759:2016(E)

domain, exchange data. If formal analysis nota-
tions are used, it is possible to use formal reason-
ing to prove specification properties. This topic is
closely related to the Software Engineering Mod-
els and Methods KA.

6.4 Aecoptanco Toctc
T CEePHaice—1ests

6.. Prototyping

Prptotyping is commonly a means for validating
th¢ software engineer’s interpretation of the soft-
wqre requirements, as well as for eliciting new
requirements. As with elicitation, there is a range
of|prototyping techniques and a number of points
in[the process where prototype validation may
be| appropriate. The advantage of prototypes is
thgt they can make it easier to interpret the soft-
wdre engineer’s assumptions and, where needed,
giye useful feedback on why they are wrong. For
expmple, the dynamic behavior of a user inter-
fage can be better understood through an ani-
mgted prototype than through textual description
or|graphical models. The volatility of a require-
m¢nt that is defined after prototyping has been
dojne is extremely low because there is agreement
befween the stakeholder and the software engi*
nepr—therefore, for safety-critical and crucial
fegtures prototyping would really help. Theré-are
aldo disadvantages, however. These inelude the
dapger of users’ attention being distracted from
th¢ core underlying functionality by cosmetic
isques or quality problems with the prototype. For
this reason, some advocate prototypes that avoid
software, such as flip-chart-based mockups. Pro-
tofypes may be costly~to develop. However, if
th¢y avoid the wastage of resources caused by
tryfing to satigfy\erroneous requirements, their
copt can be more easily justified. Early proto-
types mady-eontain aspects of the final solution.
Prptotypes may be evolutionary as opposed to
thjowaway.

[¢]

T

An essential property of a software requirement
is that it should be possible to validate that the
finished product satisfies it. Requirements’ that
cannot be validated are really just “wishes.” An
important task is therefore planning\hiow to ver-
ify each requirement. In most<cases, designing
acceptance tests does this for how end-users typi-
cally conduct business using-the system.

Identifying and deSighing acceptance tests
may be difficult for‘nonfunctional requirements
(see section 1.3,“Fuanctional and Nonfunctional
Requirements)~Fo be validated, they must first
be analyzedsand decomposed to the point where
they canybe’expressed quantitatively.

Additional information can be found in Accep-
tance/Qualification/Conformance Testing in the
Software Testing KA.

7. Practical Considerations
[1*, c4sl, c4s4, c4s6, c4sT]
[2%*, c3, c12, cl4, cl6, c18-21]

The first level of topic decomposition pre-
sented in this KA may seem to describe a linear
sequence of activities. This is a simplified view
of the process.

The requirements process spans the whole
software life cycle. Change management and the
maintenance of the requirements in a state that
accurately mirrors the software to be built, or that
has been built, are key to the success of the soft-
ware engineering process.

Not every organization has a culture of docu-

6.3. Model Validation

It is typically necessary to validate the quality of
the models developed during analysis. For exam-
ple, in object models, it is useful to perform a
static analysis to verify that communication paths
exist between objects that, in the stakeholders’

menting and managing requirements. It is com-
mon in dynamic start-up companies, driven by a
strong “product vision” and limited resources, to
view requirements documentation as unnecessary
overhead. Most often, however, as these compa-
nies expand, as their customer base grows, and
as their product starts to evolve, they discover
that they need to recover the requirements that

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

motivated product features in order to assess the
impact of proposed changes. Hence, requirements
documentation and change management are key
to the success of any requirements process.

7.1. Iterative Nature of the Requirements

Software Requirements 1-13

proceeds. This often leads to the revision of
requirements late in the life cycle. Perhaps the
most crucial point in understanding software
requirements is that a significant proportion of
the requirements will change. This is sometimes

There is general pressure in the software indus-
try for ever shorter development cycles, and this
is particularly pronounced in highly competitive,
market-driven sectors. Moreover, most projects
are constrained in some way by their environment,
and many are upgrades to, or revisions of, exist-
ing software where the architecture is a given. In
practice, therefore, it is almost always impractical
to implement the requirements process as a linear,
deterministic process in which software require-
ments are elicited from the stakeholders, base-
lined, allocated, and handed over to the software
development team. It is certainly a myth that the
requirements for large software projects are ever
perfectly understood or perfectly specified.

Instead, requirements typically iterate towards
a level of quality and detail that is sufficient;to
permit design and procurement decisions. to be
made. In some projects, this may resilt in the
requirements being baselined before’ all their
properties are fully understood. Fhis risks expen-
sive rework if problems emerge-late in the soft-
ware engineering process{_However, software
engineers are necessarily j)constrained by project
management plans and. must therefore take steps
to ensure that the-*quality” of the requirements is
as high as pogsible given the available resources.
They should,. for example, make explicit any
assumptions that underpin the requirements as
well as'any known problems.

For software products that are developed iter-
atively, a project team may baseline only those
fequirements needed for the current iteration. The

imposed by the authorities, or the market inpto
which software must sell. Whatevei-the cause, if is
important to recognize the ineyitability of change
and take steps to mitigate its"effects. Change has
to be managed by ensuring/that proposed changes
go through a defined review and approval pro-
cess and by applying-careful requirements trgc-
ing, impact analysis, and software configuration
management- (s¢e the Software Configuratijon
Management-KA). Hence, the requirements pfo-
cess is mot merely a front-end task in softwgre
deyélopment, but spans the whole software life
eyele. In a typical project, the software requife-
ments activities evolve over time from elicitation
to change management. A combination of tgp-
down analysis and design methods and bottom-
up implementation and refactoring methods that
meet in the middle could provide the best of bgth
worlds. However, this is difficult to achieve|in
practice, as it depends heavily upon the maturjty
and expertise of the software engineers.

7.2. Change Management

Change management is central to the manageme¢nt
of requirements. This topic describes the role|of
change management, the procedures that need|to
be in place, and the analysis that should be applied
to proposed changes. It has strong links to the Sqft-
ware Configuration Management KA.

7.3. Requirements Attributes

requirements specialist can continue to develop
requirements for future iterations, while develop-
ers proceed with design and construction of the
current iteration. This approach provides custom-
ers with business value quickly, while minimiz-
ing the cost of rework.

In almost all cases, requirements understanding
continues to evolve as design and development

© ISO/IEC 2016 — All rights reserved

Requirements should consist not only of a speci-
fication of what is required, but also of ancillary
information, which helps manage and interpret
the requirements. Requirements attributes must
be defined, recorded, and updated as the soft-
ware under development or maintenance evolves.
This should include the various classification

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-14 SWEBOK® Guide V3.0

dimensions of the requirement (see section 4.1,
Requirements Classification) and the verification
method or relevant acceptance test plan section.
It may also include additional information, such
as a summary rationale for each requirement, the
source of each requirement, and a change history.

ISO/IEC TR 19759:2016(E)

7.5. Measuring Requirements

As a practical matter, it is typically useful to have
some concept of the “volume” of the require-
ments for a particular software product. This
number is useful in evaluating the “size” of a

Thesnoestimportantreaut ente atteibhato oy
e-HRestHRpertaitFeqtirernents—attiottes—How

evgr, is an identifier that allows the requirements
to [be uniquely and unambiguously identified.

7.4. Requirements Tracing

Rdquirements tracing is concerned with recover-
ing the source of requirements and predicting the
effects of requirements. Tracing is fundamental
to performing impact analysis when requirements
chpnge. A requirement should be traceable back-
ward to the requirements and stakeholders that
m¢tivated it (from a software requirement back
to the system requirement(s) that it helps satisfy,
fof example). Conversely, a requirement should
be]| traceable forward into the requirements and
depign entities that satisfy it (for example, from
a $ystem requirement into the software require-
mg¢nts that have been elaborated from it, and on
info the code modules that implement it, or the
tedt cases related to that code and even a given
segtion on the user manual which describes-the
acfual functionality) and into the testease that
verifies it.

The requirements tracing for.a typical proj-
ecf will form a complex directed acyclic graph
(DAG) (see Graphs in the Computing Founda-
tigns KA) of requirements;*Maintaining an up-to-
dafe graph or traceability’matrix is an activity that
myst be considered .during the whole life cycle
offa product. If the traceability information is not
updated as ¢hanges in the requirements continue
to [happef;-the traceability information becomes
unjreliable for impact analysis.

chance in requirenents—inestimatine the costof
change-inrequirementsestimatin athe-cost-of
a development or maintenance task, or simply for,
use as the denominator in other measurements:
Functional size measurement (FSM) is a_tech-
nique for evaluating the size of a body®f func-
tional requirements.

Additional information on size ‘measurement
and standards will be found in the’Software Engi-
neering Process KA.

8. Software Requirements Tools

Tools for dealing'with software requirements fall
broadly into twe" categories: tools for modeling
and tools formanaging requirements.

Requiremients management tools typically sup-
port.a range of activities—including documenta-
tion, tracing, and change management—and have
had a significant impact on practice. Indeed, trac-
ing and change management are really only prac-
ticable if supported by a tool. Since requirements
management is fundamental to good require-
ments practice, many organizations have invested
in requirements management tools, although
many more manage their requirements in more
ad hoc and generally less satisfactory ways (e.g.,
using spreadsheets).

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Software Requirements

-
g z
2 8 -
3 g e
1. Software Requirements Fundamentals q>)
1.1. Definition of a Software Requirement c4 ‘Q\(bc'lv
1.2. Product and Process Requirements c4sl O,\\ Jcl, co
1.3. Functional and Nonfunctional Requirements cd4sl - N cl2
1.4. Emergent Properties cl0sl &
1.5. Quantifiable Requirements //() cl
1.6. System Requirements and Software Requirements ,.&ﬂ% cl
2. Requirements Process R ~
2.1. Process Models Ii\\v c4s4 c3
2.2. Process Actors AQ T cl, c2,c4, c6
2.3. Process Support and Management N\ c3
2.4. Process Quality and Improvement i \\\\ c22,c23
3. Requirements Elicitation D\V
3.1. Requirements Sources \“Qv c4s5 c5, ¢6,c9
3.2. Elicitation Techniques n$ c4s5 c6
4. Requirements Analysis A\U
4.1. Requirements Classiﬁcgﬁ@ cdsl cl2
4.2. Conceptual Model\'ulg\)b c4s5 cll
4.3. Architectural De@g}i\and Requirements Allocation cl0s4 cl7
44, RequiremggQ\NEgotiation c4s5 c7
4.5. Forma,l_@\lg/‘sis cl2s5
5. Requirg(nvts Specification
5.1. @5,%1;1 Definition Document c4s2 cl0
X c4s2, c12s2,
C)ﬁ System Requirements Specification cl2s3, cl2s4, clo
cl2s5
5-3-Software Requirerments-Specification THs3 Tio
6. Requirements Validation
6.1. Requirements Reviews c4s6 cl5
6.2. Prototyping c4s6 cl3
6.3. Model Validation c4s6 cl5
6.4. Acceptance Tests c4s6 cl5s

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1-16 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Sommerville 2011
(%]
Wiegers 2003
[2%]

71 Practical Considerations

7.1. Iterative Nature of the Requirements Process cds4 c3, cl6 nQ
7.2. Change Management c4s7 cl8, c}D) v
7.3. Requirements Attributes c4sl cl A’QQ
7.4. Requirements Tracing R '\I:JZ)O
7.5. Measuring Requirements c4s6 ,(<<‘ cl8

8| Software Requirements Tools Ne K c21

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

FURTHER READINGS
I. Alexander and L. Beus-Dukic, Discovering

Requirements [5].

An easily digestible and practically oriented
book on software requrrements this is perhaps

elements of software requrrements fit together It
is full of practical advice on (for example) how
to identify the various system stakeholders and
how to evaluate alternative solutions. Its cover-
age is exemplary and serves as a useful reference
for key techniques such as use case modeling and
requirements prioritization.

C. Potts, K. Takahashi, and A. Antén, “Inquiry-
Based Requirements Analysis” [6].

This paper is an easily digested account of work
that has proven to be very influential in the devel-
opment of requirements handling. It describes
how and why the elaboration of requirements
cannot be a linear process by which the analyst
simply transcribes and reformulates requiremerits
elicited from the customer. The role of scenatios
is described in a way that helps to define their use
in discovering and describing requireménts.

Software Requirements 1-17

A. van Lamsweerde, Requirements
Engineering: From System Goals to UML
Models to Software Specifications [7].

Serves as a good 1ntroduct10n to requirements

book for the KAOS goal orrented requirghents
modelling language. Explains why godl™modgl-
ling is useful and shows how it can integrate wjth
mainstream modelling techniquessing UML.

O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem” [8].

This paper is a classie’ reference work on a Key
element of requirements management. Based jon
empirical studies, it sets out the reasons for and
the barriers, t0 the effective tracing of requife-
ments. It1s essential reading for an understanding
of why requirements tracing is an essential efe-
ment of an effective software process.

N. Maiden and C. Ncube, “Acquiring COTS
Software Selection Requirements™ [9].

This paper is significant because it recogniges
explicitly that software products often integrate
third-party components. It offers insights into the
problems of selecting off-the-shelf software|to
satisfy requirements: there is usually a mismatg¢h.
This challenges some of the assumptions undpr-
pinning much of traditional requirements hgn-
dling, which tends to assume custom software

=

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
1-18 SWEBOK® Guide V3.0

REFERENCES
[1*] I. Sommerville, Software Engineering, 9th [6] C. Potts, K. Takahashi, and A.I. Anton,
ed., Addison-Wesley, 2011. “Inquiry-Based Requirements Analysis,”
IEEE Software, vol. 11, no. 2, Mar. 1994,
[2*] K.E. Wiegers, Software Requirements, 2nd pp. 21-32.
ed., Microsoft Press, 2003.
HA—vanlameweesrdeRequiraenents
[3] INCOSE, Systems Engineering Handbook: Engineering: From System Goals to UML
A Guide for System Life Cycle Processes Models to Software Specifications, Wiley;
and Activities, version 3.2.2, International 20009.

Council on Systems Engineering, 2012.
[8] O. Gotel and C.W. Finkelstein, “An Analysis

[4] S. Friedenthal, A. Moore, and R. Steiner, 4 of the Requirements Traceability Problem,”
Practical Guide to SysML: The Systems Proc. Ist Int’l Conf. Requirements Eng.,
Modeling Language, 2nd ed., Morgan IEEE, 1994.

Kaufmann, 2012.
[9] N.A. Maiden and C\ Ncube, “Acquiring

[5]1. Alexander and L. Beus-Deukic, COTS Software\Selection Requirements,”
Discovering Requirements: How to Specify IEEE Softwaresvol. 15, no. 2, Mar.—Apr.
Products and Services, Wiley, 20009. 1998, pp. 46-56.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 2

SOFTWARE DESIGN

ACRONYMS
ADL Architecture Description
Language
CBD Component-Based Design
CRC Class Responsibility Collaborator
DFD Data Flow Diagram
ERD Entity Relationship Diagram
IDL Interface Description Language
MVC Model View Controller
00 Object-Oriented
PDL Program Design Language
INTRODUCTION

Design is defined as both “the process of defin-
ing the architecture, componentssinterfaces, and
other characteristics of a systeny or component™
and “the result of [that] proé¢ess™ [1]. Viewed as a
process, software desigf is the software engineer-
ing life cycle activity ‘in which software require-
ments are analyzed:in order to produce a descrip-
tion of the softwate’s internal structure that will
serve as the.basis for its construction. A software
design (the result) describes the software archi-
tectufey—that is, how software is decomposed

We can also examine and evaluate- alternat{ve
solutions and tradeoffs. Finally, y€-can use the
resulting models to plan subsequent developm¢nt
activities, such as system verification and valida-
tion, in addition to usingthém as inputs and as
starting point of construction and testing.

In a standard list\of software life cycle pf
cesses, such as_that\in ISO/IEC/IEEE Std. 122
Sofitware Life-Cy¢le Processes [2], software dest
consists of two activities that fit between softw:
requirements analysis and software construction:

» Software architectural design (sometin
called high-level design): develops top-ley
structure and organization of the softw
and identifies the various components.

» Software detailed design: specifies eg
component in sufficient detail to facilitate
construction.

es
el
\re

ch
S

=

This Software Design knowledge area (K]
does not discuss every topic that includes the
word “design.” In Tom DeMarco’s terminoligy
[3], the topics discussed in this KA deal mainly
with D-design (decomposition design), the gpal
of which is to map software into compongnt
pieces. However, because of its importance |in
the field of software architecture, we will also
address FP-design (family pattern design), the

A)

and-organized into components—and the inter- goal of which is to establish exploitable com-
faces between those components. It should also monalities in a family of software products. This
describe the components at a level of detail that KA does not address I-design (invention desigh),

enables their construction.

Software design plays an important role in
developing software: during software design,
software engineers produce various models
that form a kind of blueprint of the solution to
be implemented. We can analyze and evaluate
these models to determine whether or not they
will allow us to fulfill the various requirements.

© ISO/IEC 2016 — All rights reserved

2-1

which is usually performed during the software
requirements process with the goal of conceptu-
alizing and specifying software to satisfy discov-
ered needs and requirements, since this topic is
considered to be part of the requirements process
(see the Software Requirements KA).

This Software Design KA is related specifi-
cally to the Software Requirements, Software

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

2-2 SWEBOK® Guide V3.0

Software Design

[

Software Design
Fundamentals

Key Issues in
Software Design

Software
| Structure and

User Interface
Design

Software Design
r Quality Analysis

Software Design

Software Design
| Strategies and

Software Design
Tools

Tocess

Boftware Design
Principles

Distribution of
Components

Error and
Exception
Handling and
Fault Tolerance

Interaction and

Architecture
—» Design
Decisions

Families of

— Programs and
Frameworks

Modalities

The Design of
[Information
Presentation

User Interface
Design Process

Localization and

Architecture and Evaluation ” Notations Methods
eneral Design Architectural General User. Quality f)'ma_“m_] General
™ Foncept [Concurrency [Stuctures and [Interface Design § escriptions S .
|-oncepts N . o Attributes Static Vi trategies
Viewpoints Principles (Static View)
4) Quality Behavioral O
ontext of Control and Architectural User Interface Analysis and Descriptions Function-Oriented
™ $oftware Design [Handling of Styles Design Issues > Evaluati prions [(Structured)
Events valuation (Dynamic View) Design
Techniques
si The Design of : .
oftware Design -
> g > Data Persistence ~ —» Design Patterns » User Interaction L Measures Object-Oriented

Design

Data Structure-
Centéred Design

Component-Based
Design (CBD)

Presentation Internationalization

Metaphors and

> Security Conceptual Models

Cqnstruction, Software Engineering Manage*
m¢nt, Software Engineering Models and Meth-
ods, Software Quality, and Computing Feounda-
tigns KAs.

BREAKDOWN OF TOPICS FOR
SOFTWARE DESIGN

THe breakdown of topics for the Software Design
KA is shown in Figure:2/1.

1. Software Design Fundamentals
THe consepts, notions, and terminology intro-

duced here form an underlying basis for under-
stqndirfe the role and scope of software design.

=

—» Other Methods

Figure 2.1. Breakdown of Topics for'the Software Design KA

understanding the limits of design. A number of
other notions and concepts are also of interest in
understanding design in its general sense: goals,
constraints, alternatives, representations, and
solutions (see Problem Solving Techniques in the
Computing Foundations KA).

1.2. Context of Software Design
[4%, c3]

Software design is an important part of the soft-
ware development process. To understand the
role of software design, we must see how it fits
in the software development life cycle. Thus, it
is important to understand the major characteris-
tics of software requirements analysis, software

1.1. General Design Concepts
[4%, cl]

In the general sense, design can be viewed as a
form of problem solving. For example, the con-
cept of a wicked problem—a problem with no
definitive solution—is interesting in terms of

design, software construction, software testing,
and software maintenance.

1.3. Software Design Process
[4%, 2]

Software design is generally considered a two-
step process:

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

* Architectural design (also referred to as high-
level design and top-level design) describes
how software is organized into components.

¢ Detailed design describes the desired behav-
ior of these components.

Software Design 2-3

software is divided into a number of smaller
named components having well-defined
interfaces that describe component interac-
tions. Usually the goal is to place different
functionalities and responsibilities in differ-
ent components.

The-output-ofthese—two—processes—s—a—setof
models and artifacts that record the major deci-
sions that have been taken, along with an explana-
tion of the rationale for each nontrivial decision.
By recording the rationale, long-term maintain-

ability of the software product is enhanced.

1.4. Software Design Principles
[4%] [5*, c6, c7, c21] [6%, cl, c8, 9]

A principle is “a comprehensive and fundamen-
tal law, doctrine, or assumption” [7]. Software
design principles are key notions that provide
the basis for many different software design
approaches and concepts. Software design princi-
ples include abstraction; coupling and cohesion;
decomposition and modularization; encapsula-
tion/information hiding; separation of interface
and implementation; sufficiency, completengss,
and primitiveness; and separation of concerns.

* Abstraction is “a view of an\ebject that
focuses on the informatiopy relevant to a
particular purpose and.ignores the remain-
der of the information® 1] (see Abstraction
in the Computing (Foundations KA). In the
context of software design, two key abstrac-
tion mechaniSms are parameterization and
specification” Abstraction by parameteriza-
tion abstracts from the details of data repre-
sentations by representing the data as named
parameters. Abstraction by specification
feads to three major kinds of abstraction:
procedural abstraction, data abstraction, and
control (iteration) abstraction.

s LEncapsilation-ard-infornationhidinereans
grouping and packaging the internal detdils
of an abstraction and making those\detdils
inaccessible to external entities,

» Separation of interface and ituplémentatifn.
Separating interface and, ‘implementation
involves defining a component by specify-
ing a public interfaceéAknown to the clienjts)
that is separate from the details of how the
component is re¢alized (see encapsulation and
information\hiding above).

o Sufficiency, tompleteness, and primitivenéss.
Achjewing sufficiency and completengss
mean$ ensuring that a software compong¢nt
captures all the important characteristics|of
an abstraction and nothing more. Primitiye-
ness means the design should be based jon
patterns that are easy to implement.

» Separation of concerns. A concern is [an
“area of interest with respect to a software
design” [8]. A design concern is an area|of
design that is relevant to one or more ofl|its
stakeholders. Each architecture view franjes
one or more concerns. Separating concefns
by views allows interested stakeholders [to
focus on a few things at a time and offer§ a
means of managing complexity [9].

2. Key Issues in Software Design

A number of key issues must be dealt with when
designing software. Some are quality concefns
that all software must address—for examplle,
performance, security, reliability, usability, dtc.
Another important issue is how to decompoke,

» Coupling and Cohesion. Coupling is defined
as “a measure of the interdependence among
modules in a computer program,” whereas
cohesion is defined as “a measure of the
strength of association of the elements within
a module” [1].

* Decomposition and modularization. Decom-
posing and modularizing means that large

© ISO/IEC 2016 — All rights reserved

organize, and package software components.
This is so fundamental that all design approaches
address it in one way or another (see section 1.4,
Software Design Principles, and topic 7, Soft-
ware Design Strategies and Methods). In contrast,
other issues “deal with some aspect of software’s
behavior that is not in the application domain,
but which addresses some of the supporting

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2-4 SWEBOK® Guide V3.0

domains” [10]. Such issues, which often crosscut
the system’s functionality, have been referred to
as aspects, which “tend not to be units of soft-
ware’s functional decomposition, but rather to be
properties that affect the performance or seman-
tics of the components in systemic ways” [11].

ISO/IEC TR 19759:2016(E)

2.6. Interaction and Presentation
[5%, c16]

This design issue is concerned with how to struc-
ture and organize interactions with users as well
as the presentation of information (for example,

A mumber—of-these—kev—erosseuttinaissues—are
1111111 o+t ese—Ke oSSR E—ISSHes—afF

digcussed in the following sections (presented in
alphabetical order).

—_—

2.]. Concurrency
[5%*, c18]

Dg¢sign for concurrency is concerned with decom-
posing software into processes, tasks, and threads
anfd dealing with related issues of efficiency,
at¢micity, synchronization, and scheduling.

2.2. Control and Handling of Events
[5%, c21]

THis design issue is concerned with how to
organize data and control flow as well as how
to[handle reactive and temporal events through
vafious mechanisms such as implicit invocation
anfd call-backs.

2.3. Data Persistence
[12%, 9]

THis design issue is concerned with how to han-
dl¢ long-lived data.

2.4. Distribution of Components
[5%*, c18]

THis design issue is concerned with how to dis-
tripute the software across the hardware (includ-
ing computer hardware and network hardware),
how the”components communicate, and how
middleware can be used to deal with heteroge-

separation—ofpresentation—and—business—logie
using the Model-View-Controller approach),
Note that this topic does not specify user interface
details, which is the task of user interface design

(see topic 4, User Interface Design).

2.7. Security
[5%*,6125c18] [13*, c4]

Design for security is concerned with how to pre-
vent unauthorized dis¢lestre, creation, change,
deletion, or denial-of access to information and
other resources, Itis‘also concerned with how to
tolerate securityyrelated attacks or violations by
limiting damage, continuing service, speeding
repair and tecovery, and failing and recovering
securely: Access control is a fundamental con-
céptoof security, and one should also ensure the
proper use of cryptology.

3. Software Structure and Architecture

In its strict sense, a software architecture is
“the set of structures needed to reason about
the system, which comprise software elements,
relations among them, and properties of both”
[14*]. During the mid-1990s, however, soft-
ware architecture started to emerge as a broader
discipline that involved the study of software
structures and architectures in a more generic
way. This gave rise to a number of interesting
concepts about software design at different lev-
els of abstraction. Some of these concepts can
be useful during the architectural design (for
example, architectural styles) as well as during

neous software.

2.5. Error and Exception Handling and Fault
Tolerance
[5%, c18]

This design issue is concerned with how to pre-
vent, tolerate, and process errors and deal with
exceptional conditions.

the detailed design (for example, design pat-
terns). These design concepts can also be used
to design families of programs (also known as
product lines). Interestingly, most of these con-
cepts can be seen as attempts to describe, and
thus reuse, design knowledge.

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

3.1. Architectural Structures and Viewpoints
[14* cl]

Different high-level facets of a software design
can be described and documented. These facets
are often called views: “A view represents a partial

acnant of 0 cnftgaro arobitontiieo that chosge oo
aspect-o+r—a-—Sottware—arenttectire—+that-51ews—5pe

Software Design 2-5

patterns describing the high-level organization
of software, other design patterns can be used
to describe details at a lower level. These lower
level design patterns include the following:

 Creational patterns (for example, builder,

foctary nrototuno cinglaton)
Fy—pFot H

cific properties of a software system” [14*]. Views
pertain to distinct issues associated with software
design—for example, the logical view (satisfying
the functional requirements) vs. the process view
(concurrency issues) vs. the physical view (distri-
bution issues) vs. the development view (how the
design is broken down into implementation units
with explicit representation of the dependencies
among the units). Various authors use different
terminologies—Ilike behavioral vs. functional vs.
structural vs. data modeling views. In summary, a
software design is a multifaceted artifact produced
by the design process and generally composed of
relatively independent and orthogonal views.

3.2. Architectural Styles
[14* cl, c2, c3, c4, o5

An architectural style is “a specialization*of ele-
ment and relation types, together witlita set of
constraints on how they can be used*[14*]. An
architectural style can thus be seen as providing
the software’s high-level organization. Various
authors have identified a.mimber of major archi-
tectural styles:

 General stryctures (for example, layers, pipes
and filters; blackboard)

* Distributed systems (for example, client-
sever; three-tiers, broker)

* Interactivesystems(forexample, Model-View-
€ontroller, Presentation-Abstraction-Control)

¢ Adaptable systems (for example, microker-
nel, reflection)

TTret T PSS oS TeT

 Structural patterns (for example, adapter,
bridge, composite, decorator, fagade, fly-
weight, proxy)
 Behavioral patterns (for example; command,
interpreter, iterator, mediator, memeno,
observer, state, strategy, template, visitor)

3.4. Architecture Design Decisions
[5%, ¢6]

Architectural \design is a creative process. Dfir-
ing the design process, software designers hqve
to make a‘number of fundamental decisions that
profoundly affect the software and the develqp-
ment process. It is useful to think of the archi-
tectural design process from a decision-making
perspective rather than from an activity persp¢c-
tive. Often, the impact on quality attributes and
tradeoffs among competing quality attributes gre
the basis for design decisions.

3.5. Families of Programs and Frameworks
[5%, ¢6, ¢7, cl6]

One approach to providing for reuse of softwjre
designs and components is to design families|of
programs, also known as software product lins.
This can be done by identifying the commonalitjes
among members of such families and by designing
reusable and customizable components to accoyint
for the variability among family members.

In object-oriented (OO) programming, a Key
related notion is that of a framework: a partiafly
completed software system that can be extended

* Others (for example, batch, interpreters, pro-
cess control, rule-based).

3.3. Design Patterns
[15% ¢3, c4, c5]

Succinctly described, a pattern is “a common
solution to a common problem in a given context”
[16]. While architectural styles can be viewed as

© ISO/IEC 2016 — All rights reserved

by appropriately instantiating specific extensions
(such as plug-ins).

4. User Interface Design

User interface design is an essential part of the
software design process. User interface design
should ensure that interaction between the human
and the machine provides for effective operation

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2-6 SWEBOK® Guide V3.0

and control of the machine. For software to
achieve its full potential, the user interface should
be designed to match the skills, experience, and
expectations of its anticipated users.

4.1. General User Interface Design Principles

ISO/IEC TR 19759:2016(E)

and presentation for the software, the background
and experience of the software users, and the
available devices.

4.3.

The Design of User Interaction Modalities
[5%, c29-web] [17%, 2]

[S% 020 el [17% o011
== W-eOT =1

b Learnability. The software should be easy to
learn so that the user can rapidly start work-
ing with the software.

b User familiarity. The interface should use
terms and concepts drawn from the experi-
ences of the people who will use the software.
b Consistency. The interface should be consis-
tent so that comparable operations are acti-
vated in the same way.

b Minimal surprise. The behavior of software
should not surprise users.

Recoverability. The interface should provide
mechanisms allowing users to recover from
errors.

b User guidance. The interface should give
meaningful feedback when errors occur and
provide context-related help to users.

b User diversity. The interface should pro*
vide appropriate interaction mechanisins
for diverse types of users and for users.with
different capabilities (blind, poorseyesight,
deaf, colorblind, etc.).

4.2. User Interface Design Issues
[5%, c29-web] [17%, c2]

Uder interface desigmsheuld solve two key issues:

b How should-"the user interact with the
software?

b Howsshould information from the software
be presented to the user?

User interaction involves issuing commands and
providing associated data to the software. User
interaction styles can be classified into the fol-
lowing primary styles:

4.4.

Question-answer. The interactien” is essen-
tially restricted to a single{question-answer
exchange between the user'and the software.
The user issues a question to the software,
and the software _retifns the answer to the
question.

Direct manipulation. Users interact with
objects ony‘the computer screen. Direct
maniptlation often includes a pointing
device/(such as a mouse, trackball, or a fin-
gerton touch screens) that manipulates an
object and invokes actions that specify what
is to be done with that object.

Menu selection. The user selects a command
from a menu list of commands.

Form fill-in. The user fills in the fields of a
form. Sometimes fields include menus, in
which case the form has action buttons for
the user to initiate action.

Command language. The user issues a com-
mand and provides related parameters to
direct the software what to do.

Natural language. The user issues a com-
mand in natural language. That is, the natural
language is a front end to a command lan-
guage and is parsed and translated into soft-
ware commands.

The Design of Information Presentation

User interface design must integrate user
interaction and information presentation. User
interface design should consider a compromise
between the most appropriate styles of interaction

1 Chapter 29 is a web-based chapter available
at http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/

WebChapters/.

[5%, c29-web] [17%, c2]

Information presentation may be textual or graphi-
cal in nature. A good design keeps the information
presentation separate from the information itself.
The MVC (Model-View-Controller) approach is
an effective way to keep information presentation
separating from the information being presented.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software engineers also consider software
response time and feedback in the design of infor-
mation presentation. Response time is generally
measured from the point at which a user executes
a certain control action until the software responds
with a response. An indication of progress is desir-

s

input while processing is being completed.
Abstract visualizations can be used when large
amounts of information are to be presented.
According to the style of information presenta-
tion, designers can also use color to enhance the
interface. There are several important guidelines:

* Limit the number of colors used.

 Use color change to show the change of soft-
ware status.

 Use color-coding to support the user’s task.

» Use color-coding in a thoughtful and consis-
tent way.

» Use colors to facilitate access for people
with color blindness or color deficiency
(e.g., use the change of color saturation and
color brightness, try to avoid blue and¢red
combinations).

e Don’t depend on color alone td;‘*convey
important information to users with different
capabilities (blindness, poor-eyesight, color-
blindness, etc.).

4.5. User Interface Design Process
[5%, c29-web] [17%, c2]

User interfage)désign is an iterative process;
interface prototypes are often used to determine
the features, organization, and look of the soft-
ware(user interface. This process includes three
cofe-activities:

o User analysis. In this phase, the designer ana-

Software Design 2-7

4.6. Localization and Internationalization
[17%, ¢8, ¢9]

User interface design often needs to consider inter-
nationalization and localization, which are means
of adapting software to the different languages,

eal d ere a¥a he = a c-

SrehReces—aha S = = Sis

ments of a target market. Internationalization'isythe
process of designing a software applicationh,so that
it can be adapted to various languages and regigns
without major engineering changgs. Localization
is the process of adapting internationalized sqft-
ware for a specific region or'language by adding
locale-specific compongfits~and translating the
text. Localization and internationalization shoyild
consider factors such-ds symbols, numbers, cpr-
rency, time, and measurement units.

4.7. Metagphors and Conceptual Models
[17*, ¢5]

UYser interface designers can use metaphors and
conceptual models to set up mappings between the
software and some reference system known to the
users in the real world, which can help the userg to
more readily learn and use the interface. For exam-
ple, the operation “delete file” can be made int a
metaphor using the icon of a trash can.

When designing a user interface, software enfgi-
neers should be careful to not use more than dne
metaphor for each concept. Metaphors also prgs-
ent potential problems with respect to internatign-
alization, since not all metaphors are meaningful
or are applied in the same way within all culturgs.

5. Software Design Quality Analysis and
Evaluation

This section includes a number of quality anpl-
ysis and evaluation topics that are specificafly
related to software design. (See also the Software

lyzes the users’ tasks, the working environ-
ment, other software, and how users interact
with other people.

* Software prototyping. Developing prototype
software help users to guide the evolution of
the interface.

* Interface evaluation. Designers can observe
users’ experiences with the evolving interface.

© ISO/IEC 2016 — All rights reserved

Quality KA.)

5.1. Quality Attributes
[4%, c4]

Various attributes contribute to the quality of
a software design, including various “-ilities”
(maintainability, portability, testability, usability)

http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/
http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2-8 SWEBOK® Guide V3.0

and “-nesses” (correctness, robustness). There is
an interesting distinction between quality attri-
butes discernible at runtime (for example, per-
formance, security, availability, functionality,
usability), those not discernible at runtime (for
example, modifiability, portability, reusability,

infrinsic qualities (for example, conceptual integ-
rity, correctness, completeness). (See also the
Sqftware Quality KA.)

5.2. Quality Analysis and Evaluation Techniques
[4%, c4] [5*, c24]

Vgrious tools and techniques can help in analyz-
ing and evaluating software design quality.

b Software design reviews: informal and for-
malized techniques to determine the quality
of design artifacts (for example, architecture
reviews, design reviews, and inspections;
scenario-based techniques; requirements
tracing). Software design reviews can also
evaluate security. Aids for installation, oper-
ation, and usage (for example, manuals and
help files) can be reviewed.

b Static analysis: formal or semiformal statie

(nonexecutable) analysis that can be\used

to evaluate a design (for example, fault-

tree analysis or automated cross-checking).

Design vulnerability analysis{(for example,

static analysis for security weaknesses) can

be performed if security is a concern. Formal
design analysis uses:mathematical models
that allow designetsto predicate the behavior
and validate the performance of the software
instead of‘having to rely entirely on testing.

Formal(design analysis can be used to detect

residual specification and design errors (per-

haps-caused by imprecision, ambiguity, and
sometimes other kinds of mistakes). (See

ISO/IEC TR 19759:2016(E)

5.3. Measures
[4%, c4] [5%*, c24]

Measures can be used to assess or to quanti-
tatively estimate various aspects of a software
design; for example, size, structure, or quality.

These measures are classified in two broad
categories:

* Function-based (structured) design mea-
sures: measures obtained by analyzing func-
tional decomposition; genctally represented
using a structure chart (sometimes called a
hierarchical diagramy onwhich various mea-
sures can be computed.

* Object-oriented 'design measures: the design
structure is typically represented as a class
diagram, gn'which various measures can be
compuitéd. Measures on the properties of the
internal content of each class can also be
computed.

6. Software Design Notations

Many notations exist to represent software design
artifacts. Some are used to describe the structural
organization of a design, others to represent soft-
ware behavior. Certain notations are used mostly
during architectural design and others mainly
during detailed design, although some nota-
tions can be used for both purposes. In addition,
some notations are used mostly in the context of
specific design methods (see topic 7, Software
Design Strategies and Methods). Please note that
software design is often accomplished using mul-
tiple notations. Here, they are categorized into
notations for describing the structural (static)
view vs. the behavioral (dynamic) view.

also the Software Engineering Models and
Methods KA.)

 Simulation and prototyping: dynamic tech-
niques to evaluate a design (for example,
performance simulation or feasibility
prototypes).

6.1. Structural Descriptions (Static View)
[4%, c7] [5%, c6, c7] [6*, c4, c5, c6, cT7]
[12%, ¢7] [14%, cT7]

The following notations, mostly but not always

graphical, describe and represent the structural
aspects of a software design—that is, they are

© ISO/IEC 2016 — All rights reserved

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Locale
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

used to describe the major components and how
they are interconnected (static view):

 Architecture description languages (ADLs):
textual, often formal, languages used to
describe software architecture in terms of

sent a set of classes (and objects) and their
interrelationships.

* Component diagrams: used to represent a
set of components (“physical and replace-
able part[s] of a system that [conform] to
and [provide] the realization of a set of inter-
faces” [18]) and their interrelationships.

* Class responsibility collaborator cards
(CRCs): used to denote the names of compo-
nents (class), their responsibilities, and their
collaborating components’ names.

* Deployment diagrams: used to represent a
set of (physical) nodes and their interrela-
tionships, and, thus, to model the physical
aspects of software.

* Entity-relationship diagrams (ERDs): used
to represent conceptual models of data stored
in information repositories.

o Interface description languagesS¥(IDLs):
programming-like languages used to define
the interfaces (names and types of exported
operations) of software components.

* Structure charts: used.todescribe the calling
structure of progrdms"(which modules call,
and are called by, which other modules).

6.2. Behavional Pescriptions (Dynamic View)
[4*,€7,C13] [5*, c6, c7] [6%, c4, 5, c6, 7]
[14%*, c8]

The—following notations and languages, some
graphical and some textual, are used to describe
the dynamic behavior of software systems and

Software Design 2-9

 Activity diagrams: used to show control flow

from activity to activity. Can be used to rep-
resent concurrent activities.

¢ Communication diagrams: used to show

the interactions that occur among a group
of objects; emphasis is on the objects, their
inks—and—themessacses—they—exchangeon

those links.

* Data flow diagrams (DFDs): used(to show

data flow among elements. A data/flow dja-
gram provides “a description based on modl-
ing the flow of informatiop-around a netwqrk
of operational elements)\with each elem¢nt
making use of or modifying the information
flowing into that element” [4*]. Data flops
(and therefore data flow diagrams) can |be
used for security analysis, as they offer id¢n-
tification efpossible paths for attack and djis-
closure.ef confidential information.
Decision tables and diagrams: used to r¢p-
tésent complex combinations of conditigns
and actions.
Flowcharts: used to represent the flow [of
control and the associated actions to |be
performed.
Sequence diagrams: used to show the intpr-
actions among a group of objects, wjth
emphasis on the time ordering of messages
passed between objects.
State transition and state chart diagrams:
used to show the control flow from state|to
state and how the behavior of a compon¢nt
changes based on its current state in a state
machine.
Formal specification languages: textual lgn-
guages that use basic notions from mafh-
ematics (for example, logic, set, sequen¢e)
to rigorously and abstractly define software
component interfaces and behavior, often|in
terms of pre- and postconditions. (See also
the Software Engineering Models and Meth-

components. Many of these notations are use-
ful mostly, but not exclusively, during detailed
design. Moreover, behavioral descriptions can
include a rationale for design decision such as
how a design will meet security requirements.

© ISO/IEC 2016 — All rights reserved

ods KA.)

* Pseudo code and program design languages

(PDLs): structured programming-like lan-
guages used to describe, generally at the
detailed design stage, the behavior of a pro-
cedure or method.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2-10 SWEBOK® Guide V3.0

7. Software Design Strategies and Methods

There exist various general strategies to help
guide the design process. In contrast with general
strategies, methods are more specific in that they
generally provide a set of notations to be used

ith-the method—a deserintion—-of the srocess—to
w e-method—a—deseription process—

ISO/IEC TR 19759:2016(E)

design of the mid-1980s (noun = object; verb
= method; adjective = attribute), where inheri-
tance and polymorphism play a key role, to the
field of component-based design, where metain-
formation can be defined and accessed (through
reflection, for example). Although OO design’s

roote ctony frora tho ~nnoont L dato abhotea ot oo
Foot5—Stein—+ < Heept-o+adta—asstractohs

belused when following the method, and a set of
gulidelines for using the method. Such methods
ar¢ useful as a common framework for teams of
software engineers. (See also the Software Engi-
nepring Models and Methods KA).

7.1. General Strategies
[4%, c8, c9, c10] [12*, c7]

Sqme often-cited examples of general strategies
uspful in the design process include the divide-
anfd-conquer and stepwise refinement strategies,
top-down vs. bottom-up strategies, and strategies
making use of heuristics, use of patterns and pat-
tefn languages, and use of an iterative and incre-
mé¢ntal approach.

7.». Function-Oriented (Structured) Design
[4%*, c13]

THis is one of the classical methods of software
depign, where decomposition centers on-identify-
ing the major software functions and ‘then elab-
orfiting and refining them in a hierarchical top-
down manner. Structured design is generally used
affer structured analysis, thus.producing (among
other things) data flow~diagrams and associated
process descriptions.Researchers have proposed
vafious strategies\(for example, transformation
anplysis, transagtion analysis) and heuristics (for
expmple, fafi-in/fan-out, scope of effect vs. scope
of|control)-to transform a DFD into a software
ar¢hitecture generally represented as a structure
chirt.

—

responsibility-driven design has been proposed
as an alternative approach to OO design.

7.4. Data Structure-Centered Design
[4%)cl4, cl15]

Data structure-centered design starts from the data
structures a program manipulates rather than from
the function it performs,/ The software engineer
first describes the input\and output data structures
and then develops the_program’s control structure
based on these data’structure diagrams. Various
heuristics haverbeen proposed to deal with special
cases—for‘example, when there is a mismatch
betweemthe input and output structures.

7\ Eomponent-Based Design (CBD)
[4%, c17]

A software component is an independent unit,
having well-defined interfaces and dependen-
cies that can be composed and deployed inde-
pendently. Component-based design addresses
issues related to providing, developing, and
integrating such components in order to improve
reuse. Reused and off-the-shelf software com-
ponents should meet the same security require-
ments as new software. Trust management is
a design concern; components treated as hav-
ing a certain degree of trustworthiness should
not depend on less trustworthy components or
services.

7.6. Other Methods

7.3. Object-Oriented Design
[4%, cl6]

Numerous software design methods based
on objects have been proposed. The field has
evolved from the early object-oriented (OO)

[5%, cl9, c21]

Other interesting approaches also exist (see the
Software Engineering Models and Methods
KA). Iterative and adaptive methods imple-
ment software increments and reduce emphasis
on rigorous software requirement and design.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Aspect-oriented design is a method by which
software is constructed using aspects to imple-
ment the crosscutting concerns and extensions
that are identified during the software require-
ments process. Service-oriented architecture is
a way to build distributed software using web

vices from different providers because standard
protocols (such as HTTP, HTTPS, SOAP) have
been designed to support service communication
and service information exchange.

Software Design 2-11

8. Software Design Tools
[14%*, c10, Appendix A]

Software design tools can be used to support the
creation of the software design artifacts during
the software development process. They can sup-

* to translate the requirements modeh intd a
design representation;
* to provide support for représenting fuc-
tional components and theit interface(s);
* to implement heuristiCs, “refinement and
partitioning;
* to provide guidelines for quality assessmeft.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2-12 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

ISO/IEC TR 19759:2016(E)

[14%]

17

Bugdigen 2003
[4%]

Sommnjerville 2011
[5%]
PagetJones 1999
[6%]

Brookshear 2008
[12%]

Allen 2008
[13%]

Clements et al. 2010

Gamnla et al. 1994
[15%]

Nidlsen 1993

Q

I

P,

[,

Hundamentals

Software Design

%

O

9

1.1. General Design
Concepts

cl

1.2. The Context of
Software Design

c3

/]
2
70\

1.3. The Software
Design Process

c2

1.4. Software Design
Principles

cl

c6,c7, | cl,c8,
c21 c9

N N

Key Issues in
pftware Design

2.1. Concurrency

cl8

2.2. Control and
Handling of Events

c21 N

2.3. Data Persistence

c9

2.4. Distribution of
Components

2.5. Error and
Exception Handling
and Fault Tolerance

2.6. Interaction andc
Presentation

clo

\ .
2.7. Securt %
O

cl2,
cl8

c4

[

Soft \§tructure
ndA itecture

3\L‘/Architectural

Structures and
Viewpoints

cl

3.2. Architectural
Styles

cl, c2,
c3, c4,
c5

3.3. Design Patterns

c3, c4,

c5

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Design 2-13
S <
- a ® = =)
= |8 |8 |[& |. |§& |2 |
> P — N =Y = _ -y
T | Er | ¢ | - | S | 28 | S5 | °F
Sx | zh | E& | 29 | g2 | 2T | ° | §&
> 52|82 gl folg= o) 22
= = @ S 5 = 2
& g S g < £ £
S £ & 2 g
Q
(q Vi
3.4. Architecture O
Design Decisions ¢ <C)
3.5. Families of N2
c6, 7,
Programs and 16 &
Frameworks
4. User Interface QU
Design r\\\
4.1. General User 29- %\J
Interface Design 5\\ c2
.. web (@)
Principle o
4.2. User Interface c29- Q\
Design Issues web ‘\<~
4.3. The Design of 9. s\Q\
User Interaction web %)
Modalities) Qs\
4.4. The Design . Qﬁ\
of Information A}V
. eb
Presentation Me)
4.5. User Interface . C\)&V c29-
Design Process AN web
4.6. Localization anq\J 8. b
Internationali’z‘ ’
47. Metap@&slnd o5
Conceptual Models
5. Softivare Design
Q @'Analysis and
(L‘%uation
\ :
5.1. Qualit
\<</ Am;butwy cd
5.2. Quality
Ana1y51§ and o4 4
Evaluation
Techniques
5.3. Measures c4 c24

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

2-14 SWEBOK® Guide V3.0

g |8 |8 |8 |2 |[S |2 |z
8 2 w»n St 8 'E '; a
= 5 =5 - S x Q o - = %
ST | o | se | 22| 52| g2 | J2| 2=
g E é e = 5 £ =
-2 £ 3 o = £ z
e == 5
6| Software Design Q\
Notations A
6.1. Structural o 5 ,\95‘)
Descriptions (Static c7 c6, ¢7 T c7 c7 Q
. c6, c7 N
View) A
i KX~
6.2. B?he'moral ¢, cl3, o4, cs, ‘&
Descriptions c6, c7 c Q
e cl8 c6, c7
(Dynamic View) R\
7| Software Design O\‘
Strategies and \GJ
Miethods s\
7.1. Gegeral c8, ¢9, o7 <>Q
Strategies clo O
7.2. Function- \\\
Oriented cl3 ‘\Q
(Structured) Design 9@
7.3. Object-Oriented >
) cl6 N\
Design (%2
7.4. Data Structure- cl4, OQ
Centered Design cl5 |, b\
7.5. Component- ol \\C}‘
Based Design (CBD) b
7.6. Other Methods @) 01291’
al :
8| Software Desi cl0,
Tools A&’ App. A
o¢
N

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

FURTHER READINGS

Roger Pressman, Software Engineering: A
Practitioner’s Approach (Seventh Edition)
[19].

Software Design 2-15

REFERENCES

[1]1 ISO/IEC/IEEE 24765:2010 Systems and
Software Engineering—Vocabulary, 1SO/
IEC/IEEE, 2010.

Eorrouahlby throo docados Dogor Droccinan’c
+-OF—Fougary—ee Sr—rcOger—FresSiah—+

Software Engineering: A Practitioner’s Approach
has been one of the world’s leading textbooks in
software engineering. Notably, this complemen-
tary textbook to [5*] comprehensively presents
software design—including design concepts,
architectural design, component-level design,
user interface design, pattern-based design, and
web application design.

“The 4+1 View Model of Architecture” [20].

The seminal paper “The 4+1 View Model” orga-
nizes a description of a software architecture
using five concurrent views. The four views of
the model are the logical view, the development
view, the process view, and the physical view.
In addition, selected use cases or scenarios age
utilized to illustrate the architecture. Hencethe
model contains 4+1 views. The views are‘used to
describe the software as envisioned by\different
stakeholders—such as end-users, dey<lopers, and
project managers.

Len Bass, Paul Clements, and Rick Kazman,
Software Architecture'in Practice [21].

This book introduges the concepts and best prac-
tices of softwar¢-architecture, meaning how soft-
ware is strugtured and how the software’s compo-
nents interact. Drawing on their own experience,
the authors cover the essential technical topics
fordesigning, specifying, and validating software
architectures. They also emphasize the impor-
tance of the business context in which large soft-

[’)] 1400 0 nd Ctd 177/]7 2008 \/a_‘lha_ ZC/) ‘TEF
12207:2008) Standard for Systems and

Software Engineering—Software Ife Cyg¢le
Processes, IEEE, 2008.

[3] T. DeMarco, “The Paradox-ofiSoftware
Architecture and Designy? Stevens Prize
Lecture, 1999.

[4*] D. Budgen, Software Design, 2nd ed.,
Addison-Wesley, 2003.

[5*] I. Sonimerville, Software Engineering, 9th
ed.cAddison-Wesley, 2011.

[6¥] M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed., Addisop-
Wesley, 1999.

[7] Merriam-Webster’s Collegiate Dictionary,
11th ed., 2003.

[8] IEEE Std. 1069-2009 Standard for
Information Technology—Systems
Design—=Software Design Descriptions,
IEEE, 20009.

[9] ISO/IEC 42010:2011 Systems and Softward
Engineering—Recommended Practice fo
Architectural Description of Software-
Intensive Systems, ISO/IEC, 2011.

[10] J. Bosch, Design and Use of Software
Architectures: Adopting and Evolving a
Product-Line Approach, ACM Press, 2000.

ware is designed. Their aim is to present software
architecture in a real-world setting, reflecting
both the opportunities and constraints that orga-
nizations encounter. This is one of the best books
currently available on software architecture.

© ISO/IEC 2016 — All rights reserved

[11] G. Kiczales et al., “Aspect-Oriented
Programming,” Proc. 1ith European Conf.
Object-Oriented Programming (ECOOP
97), Springer, 1997.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2-16 SWEBOK® Guide V3.0

[12*] J.G. Brookshear, Computer Science: An

Overview, 10th ed., Addison-Wesley, 2008.

[13*¥] J.H. Allen et al., Software Security
Engineering: A Guide for Project
Managers, Addison-Wesley, 2008.

ISO/IEC TR 19759:2016(E)

[17*] J. Nielsen, Usability Engineering, Morgan
Kaufmann, 1993.

[18] G. Booch, J. Rumbaugh, and I. Jacobson,
The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

—_

[

4*] P. Clements et al., Documenting Software
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[13*] E. Gamma et al., Design Patterns:
Elements of Reusable Object-Oriented
Software, 1st ed., Addison-Wesley
Professional, 1994.

—_

[16] 1. Jacobson, G. Booch, and J. Rumbaugh,

The Unified Software Development
Process, Addison-Wesley Professional,
1999.

[19] R.S. Pressman, Software Engineering: A
Practitioner’s Approach, 7th ed., McGraw-
Hill, 2010.

[20] P.B. Kruchten, “The 4+1 View Model of
Architecture,” IEEE Software,"vol. 12, no.
6, 1995, pp. 42-55.

[21] L. Bass, P. Clementss and R. Kazman,
Software Architecture’in Practice, 3rd ed.,
Addison-Wesley.Professional, 2013.

© ISO/IEC 2016 — All rights reserved

http://en.wikipedia.org/wiki/Use_case
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 3

SOFTWARE CONSTRUCTION

ACRONYMS
AP Application Programming
Interface
COTS Commercial Off-the-Shelf
GUI Graphical User Interface
IDE Integrated Development
Environment
OMG Object Management Group
POSIX Portable Operating System
Interface
TDD Test-Driven Development
UML Unified Modeling Language
INTRODUCTION

The term software construction refers to the
detailed creation of working software through a
combination of coding, verification, unit testing,
integration testing, and debfigging.

The Software Construction knowledge area
(KA) is linked to all the other KAs, but it is most
strongly linked to_Seftware Design and Software
Testing because the software construction process
involves significant software design and testing.
The process uses the design output and provides an
input(toytesting (“design” and “testing” in this case
referting to the activities, not the KAs). Boundar-
les’ between design, construction, and testing (if
any) will vary depending on the software life cycle

Thus, the Software Construction KA is clos¢ly
linked to the Software Testing K A(as-well.

Software construction typieally produces the
highest number of configuration items that nded
to be managed in a software-project (source filps,
documentation, test cases, and so on). Thus';ljhe
Software Construgtion’ KA is also closely lined
to the Software Configuration Management KA.

While software quality is important in all the
KAs, codenis“the ultimate deliverable of a sqft-
ware project, and thus the Software Quality KA is
closely linked to the Software Construction KA.

Since software construction requires knowledge
of algorithms and of coding practices, it is clos¢ly
related to the Computing Foundations KA, which
is concerned with the computer science foundla-
tions that support the design and construction|of
software products. It is also related to project mgn-
agement, insofar as the management of constriic-
tion can present considerable challenges.

BREAKDOWN OF TOPICS FOR
SOFTWARE CONSTRUCTION

Figure 3.1 gives a graphical representation of the
top-level decomposition of the breakdown for the
Software Construction KA.

1. Software Construction Fundamentals

Software construction fundamentals include

processes that are used in a project.

Although some detailed design may be per-
formed prior to construction, much design work
is performed during the construction activity.
Thus, the Software Construction KA is closely
linked to the Software Design KA.

Throughout construction, software engineers
both unit test and integration test their work.

3-1

© ISO/IEC 2016 — All rights reserved

* minimizing complexity

* anticipating change

* constructing for verification
* reuse

« standards in construction.

The first four concepts apply to design as well
as to construction. The following sections define

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

| » Anticipating
Change

Constructing for
Verification

> Reuse

Standards in
Construction

Ly Const.ruction
Planning

Construction
Measurement

Construction
Languages

—» Coding

> C0n§truclion
Testing

Construction for
Reuse

Construction with
Reuse

> Ccns}ruction
Quality

“— Integration

| » Object-Oriented
Runtime Issues

» Parameterization
and Generics

Assertions, Design
by Contract, and
Defensive
Programming

Error Handling,
Exception
Handling, and Fault
Tolerancg

=

— Exdcutable Models

State-Based and
Table-Driven
Construction
Techniques

>

Runtime
> Configuration and
Internationalization

Grammar-Based
Input Processing

Concurrency
Primitives

> Middleware

Construction
> M}elh.ods for
Distributed
Software

Constructing
[Heterogeneous
Systems

Software
Construction
Softwar? Managing Practical Construction Softwar.e
— Construction — N — . N — N — Construction
Construction Considerations Technologies

Fundamentals Tools

Minimizi}lg anstmction in | » Construction Ly API Design |y Development
Complexity Life Cycle Models Design and Use Environments

> GUI Builders

> Unit Testing Tools

Profiling,
Performance
Analysis, and
Slicing Tools

Performance
> Analysis and
Tuning

> Platform Standards

Test-First
Programming

Figure 3.1. Breakdown of Topics for the Software Construction KA

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

these concepts and describe how they apply to
construction.

1.1. Minimizing Complexity
[1%]

Software Construction 3-3

independent testing and operational activities.
Specific techniques that support constructing for
verification include following coding standards to
support code reviews and unit testing, organizing
code to support automated testing, and restrict-
ing the use of complex or hard-to-understand lan-

Meost-people-aretimited—in—ther—abiity—te-hold
complex structures and information in their
working memories, especially over long peri-
ods of time. This proves to be a major factor
influencing how people convey intent to com-
puters and leads to one of the strongest drives
in software construction: minimizing complex-
ity. The need to reduce complexity applies to
essentially every aspect of software construction
and is particularly critical to testing of software
constructions.

In software construction, reduced complexity
is achieved through emphasizing code creation
that is simple and readable rather than clever. It
is accomplished through making use of standards
(see section 1.5, Standards in Construction),
modular design (see section 3.1, Construction
Design), and numerous other specific techniques
(see section 3.3, Coding). It is also supported’by
construction-focused quality techniques (s€g sec-
tion 3.7, Construction Quality).

1.2. Anticipating Change
[1%]

Most software will change over time, and the
anticipation of change drives many aspects of
software construction; changes in the environ-
ments in which seftware operates also affect soft-
ware in diverse ways.

Antigipating change helps software engineers
build(extensible software, which means they can
enhance a software product without disrupting
the'underlying structure.

Anticipating change is supported by many spe-

auaae ctruotiroc arann g ~thoro
Shage-StruetiresaHoRE-otaers:

1.4. Reuse
(2*]

Reuse refers to using existing-assets in solving
different problems. In software Construction, typ-
ical assets that are reused.unelude libraries, mqd-
ules, components, source code, and commerdial
off-the-shelf (COPS)-assets. Reuse is best pric-
ticed systematically; according to a well-defingd,
repeatable process. Systematic reuse can enable
significant\seftware productivity, quality, and
cost improvements.

Réuse has two closely related facets: “constryic-
tignfor reuse” and “construction with reuse.” The
former means to create reusable software assdts,
while the latter means to reuse software assets{in
the construction of a new solution. Reuse offen
transcends the boundary of projects, which medns
reused assets can be constructed in other projefts
or organizations.

1.5. Standards in Construction

Applying external or internal development stgn-
dards during construction helps achieve a prpj-
ect’s objectives for efficiency, quality, and cdst.
Specifically, the choices of allowable program-
ming language subsets and usage standards gre
important aids in achieving higher security.

Standards that directly affect construction
issues include

cific techniques (see section 3.3, Coding).

1.3. Constructing for Verification
[1%]

Constructing for verification means building
software in such a way that faults can be read-
ily found by the software engineers writing the
software as well as by the testers and users during

© ISO/IEC 2016 — All rights reserved

« communication methods (for example, stan-
dards for document formats and contents)

» programming languages (for example, lan-
guage standards for languages like Java and
C++)

* coding standards (for example, standards for
naming conventions, layout, and indentation)

* platforms (for example, interface standards
for operating system calls)

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-4 SWEBOK® Guide V3.0

* tools (for example, diagrammatic standards
for notations like UML (Unified Modeling
Language)).

Use of external standards. Construction
depends on the use of external standards for con-

ISO/IEC TR 19759:2016(E)

the Software Management and Software Process
KAs).

Consequently, what is considered to be “con-
struction” depends to some degree on the life
cycle model used. In general, software con-
struction is mostly coding and debugging, but

stiuetiontanguages-construction-toolstechnical
inferfaces, and interactions between the Software
Cqnstruction KA and other KAs. Standards come
frgm numerous sources, including hardware and
software interface specifications (such as the
Object Management Group (OMQG)) and interna-
tignal organizations (such as the IEEE or ISO).
[Use of internal standards. Standards may also
be| created on an organizational basis at the cor-
porate level or for use on specific projects. These
stagndards support coordination of group activi-
tigs, minimizing complexity, anticipating change,
anfd constructing for verification.

=
Q

2.[Managing Construction

2.1. Construction in Life Cycle Models
[1%]

Nuymerous models have been created to develop
software; some emphasize construction mare
thgn others.

ome models are more linear from~the con-
strjuction point of view—such as the waterfall and
staged-delivery life cycle models(These models
trdat construction as an activity that occurs only
affer significant prerequisite work has been com-
pl¢ted—including detailed requirements work,
extensive design works”and detailed planning.
THe more linear approaches tend to emphasize
th¢ activities that-precede construction (require-
m¢nts and désign) and to create more distinct sep-
arjtions.between activities. In these models, the
maincmphasis of construction may be coding.
Dthet _models _are more _iterative—such as

it-also—involves—construction—planning —detailed
Halso—ivolves—econstraction a—detatled
design, unit testing, integration testing, and other,
activities.

2.2. Construction Planning

(1]

The choice of construction method-is a key aspect
of the construction-planning activity. The choice
of construction method~ affects the extent to
which construction prérequisites are performed,
the order in which-they are performed, and the
degree to which they'should be completed before
construction work begins.

The appfeach to construction affects the proj-
ect teamys.ability to reduce complexity, anticipate
change,“and construct for verification. Each of
thigse-objectives may also be addressed at the pro-
cess, requirements, and design levels—but they
will be influenced by the choice of construction
method.

Construction planning also defines the order
in which components are created and integrated,
the integration strategy (for example, phased or
incremental integration), the software quality
management processes, the allocation of task
assignments to specific software engineers, and
other tasks, according to the chosen method.

2.3. Construction Measurement

(1]

Numerous construction activities and artifacts can
be measured—including code developed, code
modified, code reused, code destroyed, code com-

evolutionary prototyping and agile develop-
ment. These approaches tend to treat construc-
tion as an activity that occurs concurrently with
other software development activities (including
requirements, design, and planning) or that over-
laps them. These approaches tend to mix design,
coding, and testing activities, and they often treat
the combination of activities as construction (see

plexity, code inspection statistics, fault-fix and
fault-find rates, effort, and scheduling. These mea-
surements can be useful for purposes of managing
construction, ensuring quality during construction,
and improving the construction process, among
other uses (see the Software Engineering Process
KA for more on measurement).

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

3. Practical Considerations

Construction is an activity in which the software
engineer has to deal with sometimes chaotic and
changing real-world constraints, and he or she
must do so precisely. Due to the influence of real-

practical considerations than some other KAs,
and software engineering is perhaps most craft-
like in the construction activities.

cOHS S-CORSHHEHS S o+e-a el

3.1. Construction Design

[1%]

Some projects allocate considerable design activ-
ity to construction, while others allocate design
to a phase explicitly focused on design. Regard-
less of the exact allocation, some detailed design
work will occur at the construction level, and that
design work tends to be dictated by constraints
imposed by the real-world problem that is being
addressed by the software.

Just as construction workers building a physi-
cal structure must make small-scale modificax
tions to account for unanticipated gaps in¢the
builder’s plans, software construction workers
must make modifications on a smaller’or larger
scale to flesh out details of the software design
during construction.

The details of the design activity at the construc-
tion level are essentially thé same as described in
the Software Design KA, but they are applied on
a smaller scale of algorithms, data structures, and
interfaces.

3.2. Construction Languages
[1%]
Construction languages include all forms of
communication by which a human can specify an
executable problem solution to a problem. Con-
Struction languages and their implementations

Software Construction 3-5

installations. The text-based configuration files
used in both the Windows and Unix operating
systems are examples of this, and the menu-style
selection lists of some program generators consti-
tute another example of a configuration language.

Toolkit languages are used to build applica-

more complex than configuration languagps.
Toolkit languages may be explicitly- defined |as
application programming languagés,er the appli-
cations may simply be implied\by a toolkit’s pet
of interfaces.

Scripting languages are/coemmonly used kirjds
of application programniing languages. In soie
scripting languages, ‘seripts are called batch files
Or macros.

Programming)languages are the most flexible
type of construction languages. They also contjin
the leastyamount of information about specific
applieation areas and development processeg—
therefore, they require the most training and skill
to use effectively. The choice of programming lan-
guage can have a large effect on the likelihood|of
vulnerabilities being introduced during coding—
for example, uncritical usage of C and C++ gre
questionable choices from a security viewpoint,

There are three general kinds of notation uged
for programming languages, namely

¢ linguistic (e.g., C/C++, Java)
* formal (e.g., Event-B)
* visual (e.g., MatLab).

Linguistic notations are distinguished in ppr-
ticular by the use of textual strings to repres¢nt
complex software constructions. The combina-
tion of textual strings into patterns may hav¢ a
sentence-like syntax. Properly used, each sych
string should have a strong semantic connotation
providing an immediate intuitive understanding

(for example, compilers) can affect software
quality attributes of performance, reliability, por-
tability, and so forth. They can be serious con-
tributors to security vulnerabilities.

The simplest type of construction language
is a configuration language, in which software
engineers choose from a limited set of pre-
defined options to create new or custom software

© ISO/IEC 2016 — All rights reserved

of what will happen when the software construc-
tion is executed.

Formal notations rely less on intuitive, every-
day meanings of words and text strings and more
on definitions backed up by precise, unambigu-
ous, and formal (or mathematical) definitions.
Formal construction notations and formal meth-
ods are at the semantic base of most forms of

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-6 SWEBOK® Guide V3.0

system programming notations, where accuracy,
time behavior, and testability are more important
than ease of mapping into natural language. For-
mal constructions also use precisely defined ways
of combining symbols that avoid the ambiguity
of many natural language constructions.

ISO/IEC TR 19759:2016(E)

3.4. Construction Testing

(1]

Construction involves two forms of testing,
which are often performed by the software engi-
neer who wrote the code:

Uiswat-notations—rely—rachtess—on—the-textaal
notations of linguistic and formal construction
anf instead rely on direct visual interpretation
anfd placement of visual entities that represent the
uniderlying software. Visual construction tends to
be| somewhat limited by the difficulty of making
cpmplex” statements using only the arrange-
m¢nt of icons on a display. However, these icons
cah be powerful tools in cases where the primary
prpgramming task is simply to build and “adjust”
a [visual interface to a program, the detailed
behavior of which has an underlying definition.

3.3. Coding
[1%]

THe following considerations apply to the soft-
wdre construction coding activity:

b Techniques for creating understandable
source code, including naming conventions
and source code layout;

b Use of classes, enumerated types, fariables,
named constants, and other similar-entities;

b Use of control structures;

b Handling of error condifions—both antici-
pated and exceptional,(input of bad data, for
example);

b Prevention of gode<level security breaches
(buffer overflows or array index bounds, for
example);

b Resourceusage via use of exclusion mecha-

nispas—and discipline in accessing serially

reusable resources (including threads and
database locks);

* Unit testing
* Integration testing.

The purpose of construction testing is to-feduce
the gap between the time when faultsare inserted
into the code and the time when those faults are
detected, thereby reducing the<gest incurred to
fix them. In some instances, test cases are writ-
ten after code has been written. In other instances,
test cases may be created\before code is written.

Construction testing typically involves a
subset of the ydmieus types of testing, which
are described n“the Software Testing KA. For
instance, construction testing does not typically
includersystem testing, alpha testing, beta testing,
stress.testing, configuration testing, usability test-
ing, o1 other more specialized kinds of testing.

Two standards have been published on the topic
of construction testing: IEEE Standard 829-1998,
IEEFE Standard for Software Test Documentation,
and IEEE Standard 1008-1987, IEEE Standard
for Software Unit Testing.

(See sections 2.1.1., Unit Testing, and 2.1.2.,
Integration Testing, in the Software Testing KA
for more specialized reference material.)

3.5. Construction for Reuse
[2%]

Construction for reuse creates software that has
the potential to be reused in the future for the
present project or other projects taking a broad-
based, multisystem perspective. Construction for
reuse is usually based on variability analysis and

* Source code organization (into state-
ments, routines, classes, packages, or other
structures);

* Code documentation;

* Code tuning,

design. To avoid the problem of code clones, it
is desired to encapsulate reusable code fragments
into well-structured libraries or components.

The tasks related to software construction for
reuse during coding and testing are as follows:

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

e Variability implementation with mecha-
nisms such as parameterization, conditional
compilation, design patterns, and so forth.

* Variability encapsulation to make the soft-
ware assets easy to configure and customize.

* Testing the variability provided by the reus-

Software Construction 3-7

* unit testing and integration testing (see sec-
tion 3.4, Construction Testing)

* test-first development (see section 2.2 in the
Software Testing KA)

* use of assertions and defensive programming

* debugging

able-sofbware-assets:
* Description and publication of reusable soft-
ware assets.

3.6. Construction with Reuse
[2%]

Construction with reuse means to create new
software with the reuse of existing software
assets. The most popular method of reuse is to
reuse code from the libraries provided by the lan-
guage, platform, tools being used, or an organiza-
tional repository. Asides from these, the applica-
tions developed today widely make use of many
open-source libraries. Reused and off-the-shelf
software often have the same—or better—quality
requirements as newly developed software (for
example, security level).

The tasks related to software construction with
reuse during coding and testing are as follows:

e The selection of the reusableunits, data-
bases, test procedures, or testdata.

* The evaluation of code or test reusability.

* The integration of reuSable software assets
into the current software.

* The reporting of reuse information on new
code, test pregedures, or test data.

3.7. Construction Quality

[1%]

In“addition to faults resulting from requirements
and design, faults introduced during construction
Can result in serious quality problems—for exam-

2 1ncnactionc
Hspeetions
* technical reviews, including security=gri-
ented reviews (see section 2.3.2 in(the ‘Sqft-
ware Quality KA)
* static analysis (see section 2.37ef the Sd[ft-
ware Quality KA)

The specific techniqué.or techniques selecfed
depend on the nature.of the software being cqn-
structed as well ag’on-the skillset of the software
engineers performing the construction actiyi-
ties. Programmers should know good practiges
and common-vulnerabilities—for example, fr¢m
widely qgcognized lists about common vulnpr-
abilities. Automated static analysis of code for
security weaknesses is available for several com-
mon programming languages and can be used|in
security-critical projects.

Construction quality activities are differerti-
ated from other quality activities by their focps.
Construction quality activities focus on code and
artifacts that are closely related to code—suych
as detailed design—as opposed to other artifafts
that are less directly connected to the code, sych
as requirements, high-level designs, and plans

3.8. Integration
[}*]

A key activity during construction is the integfa-
tion of individually constructed routines, classgs,
components, and subsystems into a single sys-
tem. In addition, a particular software syst¢m
may need to be integrated with other software|or
hardware systems.

ple, security vulnerabilities. This includes not
only faults in security functionality but also faults
elsewhere that allow bypassing of this functional-
ity and other security weaknesses or violations.
Numerous techniques exist to ensure the qual-
ity of code as it is constructed. The primary tech-
niques used for construction quality include

© ISO/IEC 2016 — All rights reserved

Concerns related to construction integration
include planning the sequence in which compo-
nents will be integrated, identifying what hard-
ware is needed, creating scaffolding to support
interim versions of the software, determining
the degree of testing and quality work performed
on components before they are integrated, and

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-8 SWEBOK® Guide V3.0

determining points in the project at which interim
versions of the software are tested.

Programs can be integrated by means of either
the phased or the incremental approach. Phased
integration, also called “big bang” integration,
entails delaying the integration of component
sofbware-parts—unti-al-partsintendedforrelease
inf version are complete. Incremental integration
is thought to offer many advantages over the tra-
difional phased integration—for example, easier
erfor location, improved progress monitoring,
eaflier product delivery, and improved customer
refations. In incremental integration, the develop-
ery write and test a program in small pieces and
th¢n combine the pieces one at a time. Additional
teqt infrastructure, such as stubs, drivers, and
mgck objects, are usually needed to enable incre-
m¢ntal integration. By building and integrating
onfe unit at a time (for example, a class or compo-
nept), the construction process can provide early
fe¢dback to developers and customers. Other
adjvantages of incremental integration include
eapier error location, improved progress monitor-
ing, more fully tested units, and so forth.

4.|Construction Technologies

4.1. API Design and Use
[3*]

A1 application programming interface (API) is the
sef of signatures that are exported and available to
th¢ users of a library or a framework to write their
applications. Besides signatures, an API should
alyays include statements about the program’s
effects and/or behayiors (i.e., its semantics).

API designeshould try to make the API easy
to|learn and ' memorize, lead to readable code, be
hafd to misuse, be easy to extend, be complete,
anfd gnaintain backward compatibility. As the
APIs\dsually outlast their implementations for

ISO/IEC TR 19759:2016(E)

4.2. Object-Oriented Runtime Issues
[1%]

Object-oriented languages support a series of
runtime mechanisms including polymorphism
and reflection. These runtime mechanisms

oriented programs. Polymorphism is the ability,
of a language to support general operations withs
out knowing until runtime what kind of concrete
objects the software will include. Becduse the
program does not know the exact types of the
objects in advance, the exact behaviour is deter-
mined at runtime (called dynamie-binding).

Reflection is the ability ofa pregram to observe
and modify its own structure-and behavior at run-
time. Reflection allows\ thspection of classes,
interfaces, fields, and_methods at runtime with-
out knowing theit\names at compile time. It also
allows instantiation at runtime of new objects and
invocation‘ef methods using parameterized class
and methed names.

43 Parameterization and Generics
[4%]

Parameterized types, also known as generics
(Ada, Eiffel) and templates (C++), enable the
definition of a type or class without specifying all
the other types it uses. The unspecified types are
supplied as parameters at the point of use. Param-
eterized types provide a third way (in addition to
class inheritance and object composition) to com-
pose behaviors in object-oriented software.

4.4. Assertions, Design by Contract, and Defensive
Programming

[1%]

An assertion is an executable predicate that’s
placed in a program—usually a routine or macro—

a widely used library or framework, it is desired
that the API be straightforward and kept stable to
facilitate the development and maintenance of the
client applications.

API use involves the processes of select-
ing, learning, testing, integrating, and possibly
extending APIs provided by a library or frame-
work (see section 3.6, Construction with Reuse).

that allows runtime checks of the program. Asser-
tions are especially useful in high-reliability pro-
grams. They enable programmers to more quickly
flush out mismatched interface assumptions, errors
that creep in when code is modified, and so on.
Assertions are normally compiled into the code at
development time and are later compiled out of the
code so that they don’t degrade the performance.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Design by contract is a development approach
in which preconditions and postconditions are
included for each routine. When preconditions
and postconditions are used, each routine or
class is said to form a contract with the rest of
the program. Furthermore, a contract provides a

Brecicesnecifecationofthe comantioc of 0 »otino
preectse-sp HOH-0+ 5S4 +S5-0+a+FoHt:

Software Construction 3-9

or containing their effects if recovery is not pos-
sible. The most common fault tolerance strategies
include backing up and retrying, using auxiliary
code, using voting algorithms, and replacing an
erroneous value with a phony value that will have
a benign effect.

oTrroTr TS Tortre TS

and thus helps the understanding of its behavior.
Design by contract is thought to improve the
quality of software construction.

Defensive programming means to protect a
routine from being broken by invalid inputs.
Common ways to handle invalid inputs include
checking the values of all the input parameters
and deciding how to handle bad inputs. Asser-
tions are often used in defensive programming to
check input values.

4.5. Error Handling, Exception Handling, and
Fault Tolerance

[1%]

The way that errors are handled affects software’s
ability to meet requirements related to corrects
ness, robustness, and other nonfunctional aftri-
butes. Assertions are sometimes used to<check
for errors. Other error handling technigugs—such
as returning a neutral value, substituting the next
piece of valid data, logging a warning message,
returning an error code, or shutting down the soft-
ware—are also used.

Exceptions are used to detect and process
errors or exceptional events. The basic structure
of an exception-is;that a routine uses throw to
throw a detected-exception and an exception han-
dling blockwwill catch the exception in a try-catch
block. Phetry-catch block may process the erro-
neou§ condition in the routine or it may return
control to the calling routine. Exception handling
policies should be carefully designed follow-
ing common principles such as including in the

4.6. Executable Models
[3*]

Executable models abstract away/the details [of
specific programming languages, and decisigns
about the organization of the'software. Differ¢nt
from traditional softwarelmedels, a specification
built in an executable modeling language like
xUML (executable,' UML) can be deployed |in
various softwarg ‘environments without change.
An executable=model compiler (transformer) dan
turn an exéeutable model into an implementation
using a setof decisions about the target hardwgre
and Ssoftware environment. Thus, constructing
executable models can be regarded as a way|of
constructing executable software.

Executable models are one foundation suppdrt-
ing the Model-Driven Architecture (MDA) initja-
tive of the Object Management Group (OMG). An
executable model is a way to completely specjfy
a Platform Independent Model (PIM); a PIM| is
a model of a solution to a problem that does fot
rely on any implementation technologies. THen
a Platform Specific Model (PSM), which i a
model that contains the details of the implem¢n-
tation, can be produced by weaving together the
PIM and the platform on which it relies.

4.7. State-Based and Table-Driven Constructidn
Techniques

(11

State-based programming, or automata-baged
programming, is a programming technology

exception message all information that led to the
exception, avoiding empty catch blocks, knowing
the exceptions the library code throws, perhaps
building a centralized exception reporter, and
standardizing the program’s use of exceptions.
Fault tolerance is a collection of techniques
that increase software reliability by detecting
errors and then recovering from them if possible

© ISO/IEC 2016 — All rights reserved

using finite state machines to describe program
behaviours. The transition graphs of a state
machine are used in all stages of software devel-
opment (specification, implementation, debug-
ging, and documentation). The main idea is to
construct computer programs the same way the
automation of technological processes is done.
State-based programming is usually combined

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-10 SWEBOK® Guide V3.0

with object-oriented programming, forming a
new composite approach called state-based,
object-oriented programming.

A table-driven method is a schema that uses
tables to look up information rather than using
logic statements (such as if and case). Used in

ISO/IEC TR 19759:2016(E)

programmer-defined variables that populate the
tree. After building the parse tree, the program
uses it as input to the computational processes.

4.10. Concurrency Primitives
[7%]

appropriate—eireuinstances;—table-driven—ecode
is [simpler than complicated logic and easier to
m¢dify. When using table-driven methods, the
prpgrammer addresses two issues: what informa-
tign to store in the table or tables, and how to effi-

cigntly access information in the table.

4.§. Runtime Configuration and
Infernationalization

[1%]

Td achieve more flexibility, a program is often
cohstructed to support late binding time of its vari-
ables. Runtime configuration is a technique that
bipds variable values and program settings when
th¢ program is running, usually by updating and
regding configuration files in a just-in-time mode.

[nternationalization is the technical activ-
ity| of preparing a program, usually interactive
software, to support multiple locales. The corre*
sppnding activity, localization, is the activity'of
m¢difying a program to support a specifi¢\local
lajguage. Interactive software may coptain doz-
enp or hundreds of prompts, status.displays, help
m¢ssages, error messages, and so on: The design
an{d construction processes should accommodate
stifing and character-set issues including which
chpracter set is to be usc¢d;*what kinds of strings
ar¢ used, how to pmajntain the strings without
chpnging the codeyand translating the strings into
different languages with minimal impact on the
processing ¢ode and the user interface.

4.9. Grammar-Based Input Processing

[1%] [6*]

A synchronization primitive is a programming
abstraction provided by a programming language
or the operating system that facilitates concur-
rency and synchronization. Well-known{eoncur-
rency primitives include semaphores;, monitors,
and mutexes.

A semaphore is a protected vduiable or abstract
data type that provides a simple but useful abstrac-
tion for controlling access to-a common resource
by multiple processes onthreads in a concurrent
programming environnient.

A monitor is aiabstract data type that presents
a set of programimer-defined operations that are
executed with mutual exclusion. A monitor con-
tains the,declaration of shared variables and pro-
cedures or functions that operate on those vari-
ables:” The monitor construct ensures that only
one process at a time is active within the monitor.

A mutex (mutual exclusion) is a synchroniza-
tion primitive that grants exclusive access to a
shared resource by only one process or thread at
a time.

4.11. Middleware
[3*] [6%]

Middleware is a broad classification for soft-
ware that provides services above the operating
system layer yet below the application program
layer. Middleware can provide runtime contain-
ers for software components to provide message
passing, persistence, and a transparent location
across a network. Middleware can be viewed as
a connector between the components that use the

Grammar-based input processing involves syntax
analysis, or parsing, of the input token stream. It
involves the creation of a data structure (called a
parse tree or syntax tree) representing the input
data. The inorder traversal of the parse tree usu-
ally gives the expression just parsed. The parser
checks the symbol table for the presence of

middleware. Modern message-oriented middle-
ware usually provides an Enterprise Service Bus
(ESB), which supports service-oriented interac-
tion and communication between multiple soft-
ware applications.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

4.12. Construction Methods for Distributed
Software
[7%]

A distributed system is a collection of physically
separate, possibly heterogeneous computer sys-

access to the various resources that the system
maintains. Construction of distributed software is
distinguished from traditional software construc-
tion by issues such as parallelism, communica-
tion, and fault tolerance.

Distributed programming typically falls into one
of several basic architectural categories: client-
server, 3-tier architecture, n-tier architecture, dis-
tributed objects, loose coupling, or tight coupling
(see section 14.3 of the Computing Foundations
KA and section 3.2 of the Software Design KA).

4.13. Constructing Heterogeneous Systems
(6]

Heterogeneous systems consist of a variety of
specialized computational units of different typés;
such as Digital Signal Processors (DSPs), micro-
controllers, and peripheral processors.*Fhese
computational units are independently -Controlled
and communicate with one another»“*Embedded
systems are typically heterogenceus systems.

The design of heterogengous systems may
require the combination of several specification
languages in order to (design different parts of
the system—in other” words, hardware/software
codesign. The keyiissues include multilanguage
validation, cosimulation, and interfacing.

During the .Hardware/software codesign, soft-
ware deyelopment and virtual hardware devel-
opmeént) proceed concurrently through stepwise
decomposition. The hardware part is usually
simulated in field programmable gate arrays
(FPGAs) or application-specific integrated cir-

Software Construction 3-11

algorithm selection—influences an execution
speed and size. Performance analysis is the inves-
tigation of a program’s behavior using informa-
tion gathered as the program executes, with the
goal of identifying possible hot spots in the pro-

= apee at
the code level, is the practice of modifying corrgct
code in ways that make it run more efficiently.
Code tuning usually involves only small-scale
changes that affect a single class, & single routife,
or, more commonly, a few lines‘\of code. A rich
set of code tuning techniques'is available, inclyd-
ing those for tuning logic‘expressions, loops, djta
transformations, expressions, and routines. Using
a low-level language-is another common te¢h-
nique for improving’some hot spots in a program.

4.15. Platform Standards
[6*] [1*]

Platform standards enable programmers |to
develop portable applications that can be eXe-
cuted in compatible environments withgut
changes. Platform standards usually involvq a
set of standard services and APIs that comppt-
ible platform implementations must implemepnt.
Typical examples of platform standards are Jqva
2 Platform Enterprise Edition (J2EE) and the
POSIX standard for operating systems (Portable
Operating System Interface), which represents
a set of standards implemented primarily for
UNIX-based operating systems.

4.16. Test-First Programming
(1

Test-first programming (also known as Test-
Driven Development—TDD) is a popular devgl-
opment style in which test cases are written prjor
to writing any code. Test-first programming dan

cuits (ASICs). The software part is translated into
a low-level programming language.

4.14. Performance Analysis and Tuning
[1%]

Code efficiency—determined by architecture,
detailed design decisions, and data-structure and

© ISO/IEC 2016 — All rights reserved

usually detect defects earlier and correct them
more easily than traditional programming styles.
Furthermore, writing test cases first forces pro-
grammers to think about requirements and design
before coding, thus exposing requirements and
design problems sooner.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-1

5.

2 SWEBOK® Guide V3.0

Software Construction Tools

5.1. Development Environments

hg
co
to
cal
co

m
pi
to
t
vi
an

[¢]

A
SO
of
W
G
fo
an
gil
by
co

lo
th
ha
co
m
T}
oy

[1%]

nsive facilities to programmers for software
nstruction by integrating a set of development
bls. The choices of development environments
h affect the efficiency and quality of software
nstruction.

[n additional to basic code editing functions,
bdern IDEs often offer other features like com-
ation and error detection from within the edi-
[, integration with source code control, build/
t/debugging tools, compressed or outline
bws of programs, automated code transforms,
d support for refactoring.

P. GUI Builders
[1%]

GUI (Graphical User Interface) builder is a
ftware development tool that enables the devel-
er to create and maintain GUIs in a WYSI*
YG (what you see is what you get) modeSA
JI builder usually includes a visual \editor
I the developer to design forms and-windows
d manage the layout of the widgets by drag-
hg, dropping, and parameter setting. Some GUI
ilders can automatically generate the source
de corresponding to thewisual GUI design.

Because current GUlapplications usually fol-
v the event-drivenrstyle (in which the flow of
b program is determined by events and event
ndling), GU] ‘builder tools usually provide
de gencration assistants, which automate the
hst repetitive tasks required for event handling.
e supporting code connects widgets with the
toeifig and incoming events that trigeer the

ISO/IEC TR 19759:2016(E)

5.3. Unit Testing Tools

[1%] [2*]

Unit testing verifies the functioning of software
modules in isolation from other software elements
that are separately testable (for example, classes,

testing environment. With unit testing tools afid
frameworks, the developer can code criteria into
the test to verify the unit’s correctness undetvari-
ous data sets. Each individual test is implemented
as an object, and a test runner runs all,of the tests.
During the test execution, thosé failed test cases
will be automatically flagged and reported.

5.4. Profiling, Performancé Analysis, and
Slicing Tools

(1]

Performange analysis tools are usually used to
supportyeode tuning. The most common per-
formance analysis tools are profiling tools. An
execution profiling tool monitors the code while
it, runs and records how many times each state-
ment is executed or how much time the program
spends on each statement or execution path. Pro-
filing the code while it is running gives insight
into how the program works, where the hot spots
are, and where the developers should focus the
code tuning efforts.

Program slicing involves computation of the
set of program statements (i.e., the program slice)
that may affect the values of specified variables
at some point of interest, which is referred to as
a slicing criterion. Program slicing can be used
for locating the source of errors, program under-
standing, and optimization analysis. Program
slicing tools compute program slices for various
programming languages using static or dynamic
analysis methods.

functions providing the application logic.

Some modern IDEs provide integrated GUI

builders or GUI builder plug-ins. There are also
many standalone GUI builders.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Construction

MATRIX OF TOPICS VS. REFERENCE MATERIAL

[o
= = o >
— - < > (=3 =)
< — = N [o\} (=3 (o\]
[—] [—] IS =) — (g\] .
(= IS . Al) ~ =
(g\] P [*] <
D < o — = -
=5 — = — - — S — S 2 o —
* o ox L % - * * *
S ~ Z & 2 :ﬂ' =0 — o S =
N)
S g £ g g T <
O) < 5 E\
] £ £ g = =
- 3 2 3 c ER -
= “ o]V

1. Software q/\“)

Construction N
Fundamentals PR e
c2, c3, d
1.1. Minimizing c7-¢5, \Q/
Complexit €24, c27,
prexity c28, 31, (-OQ
¢32, ¢34 o \
C c3—c5, o
éﬁ Ifl\ntlclpatmg 24, 31, Q<<
anee €32, ¢34 Q
c8, 0\\
1.3. Constructing for | c20— % s\
Verification c23, c31, \\'Q /
c34 R\
1.4. Reuse ‘\\Q)c‘l6
1.5. Stand'flrds in . 4\9
Construction N
2. Managing .\\U‘
Construction (.)

2.1. Constructi@n 12, ¢3,

Life Cycle s c27,¢c29
)

2.2. Conldtruction ¢3, ¢4,

c2l,
1?1 c27—c29
%. Construction €25, ¢28
Q ~“Measurement
N ,’1. Practical
Considerations
3.1. Construction c3, c5,
Design c24
3.2. Construction 4
Languages
. c5-cl9,
3.3. Coding 25026

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-14 SWEBOK® Guide V3.0 ISO/IEC TR 19759:2016(E)

< < § S g
: | £ |§ |8 |§ |& |°§
~ [\ . - [— =
(g\] e]
e | 2r | s | Zx | x| 22 | Bx
s =) b S3 = o =% = S
5 e = s = .= =
@) g) £ «< =)
E E = S < 7]
g = 2 < = i |5}
T A - B R B
~
: NI
34. Constructlon 22, 23 q .
Testing A<Q
. d \
3.5. Construction for 16 ,\b
Reuse
3.6. Construction 16 - /\\
with Reuse I\
3.7. Construction c8, \QQ,
Quality c20—c25 AO
3.8. Integration c29 g\\J
4{ Construction Q o)
Technologies Ke)
4.1. API Design and AR Q N
Use §\§\\
: ; N
4.2. Object-Oriented QO
Runtime Issues c6, ¢7) \\,Q
43.) Q;k\
Parameterization Q\ cl
and Generics "9
4.4. Assertions,) c\{~
Design by Contract, N g
. c8.(c
and Defensive .
Programming N\
—
4.5. Error Handli ,C)
Exception Handling, | c3, c8
and Fault T ce
4.6. Exe ‘SE cl
Models™
47, State-Based
and Table-Driven I3
Construction ¢
Techniques
4.8. Runtime
Configuration and c3,cl0
Internationalization
4.9. Grammar-Based
. ¢S5 c8
Input Processing

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Construction

- o c ®
< = s x & S S
[—) =) P (=) — (o\] .
4 N — » 3 = =
= < = = = 2 2
5 = = — - — &= S = 22— o —
S =) - & 3 <o =% NS
) 2 = g = = £

£ £ = =
< £ g = s 2
= S k2 2 = = 2
& &

4.10. Concurrency % v 6

Primitives A<C)

4.11. Middleware cl N@S\

4.12. Construction Q~)

Methods for & c2

Distributed Software /’C)

4.13. Constructing W

Heterogeneous C’ c9

Systems . %

\Y
4.14. Performance o)
Analysis and Tuning €25, c26 <<

4.15. Platform Q
Standards \\\ cl0 cl

. NI
4.16. Test—Elrst 0 @
Programming N
5. Construction Tools A@
R
5.1. Development 30 \

Environments xQ

5.2. GUI Builders

5.3. Unit Testing ('\\V

Tools .) c22 c8
5.4. Proﬁlingo$\
Performa

. c25, c26
Analysis, a
Slic@. ols

% \\
&S

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

3-16 SWEBOK® Guide V3.0

FURTHER READINGS

IEEFE Std. 1517-2010 Standard for Information
Technology—System and Software Life
Cycle Processes—Reuse Processes, IEEE,
2010 [8].

ISO/IEC TR 19759:2016(E)

REFERENCES

[1*¥] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[2*] I. Sommerville, Software Engineering, 9th

THis standard specifies the processes, activities,
anf tasks to be applied during each phase of the
software life cycle to enable a software product
to[be constructed from reusable assets. It covers
th¢ concept of reuse-based development and the
processes of construction for reuse and construc-
tign with reuse.

IEEE Std. 12207-2008 (a.k.a. ISO/IEC
12207:2008) Standard for Systems and
Software Engineering—Software Life Cycle
Processes, IEEE, 2008 [9].

THis standard defines a series of software devel-
opjment processes, including software construc-
tign process, software integration process, and
software reuse process.

=,

ed Addicon \Xlna]ny 2011
eSO R—-e51re s s

[3*] P. Clements et al., Documenting Software
Architectures: Views and Beyond, 2nd edl
Pearson Education, 2010.

[4*] E. Gamma et al., Design Patterns? Elements
of Reusable Object-Orientéd-Software, 1st
ed., Addison-Wesley Professional, 1994.

[5*] S.J. Mellor and M .\I\Balcer, Executable
UML.: A Foundation for Model-Driven
Architecture)st ed., Addison-Wesley,
2002.

[6*] L_Null and J. Lobur, The Essentials of
Computer Organization and Architecture,
2nd ed., Jones and Bartlett Publishers,
2006.

[7*] A. Silberschatz, P.B. Galvin, and G. Gagne,
Operating System Concepts, 8th ed., Wiley,
2008.

[8] IEEE Std. 1517-2010 Standard for
Information Technology—System and
Software Life Cycle Processes—Reuse
Processes, IEEE, 2010.

[9] IEEE Std. 12207-2008 (a.k.a. ISO/IEC
12207:2008) Standard for Systems and
Software Engineering—Software Life Cycle
Processes, IEEE, 2008.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 4

SOFTWARE TESTING

ACRONYMS
API Application Program Interface
TDD Test-Driven Development
TTCN3 Testlpg and Test Control Notation
Version 3
XP Extreme Programming
INTRODUCTION

Software testing consists of the dynamic verifica-
tion that a program provides expected behaviors
on a finite set of test cases, suitably selected from
the usually infinite execution domain.

In the above definition, italicized words Cor-
respond to key issues in describing the Software
Testing knowledge area (KA):

e Dynamic: This term means that testing
always implies executing ‘the program on
selected inputs. To.beprecise, the input
value alone is not always sufficient to spec-
ify a test, since,a' complex, nondeterministic
system mighfireact to the same input with
differentbehaviors, depending on the system
state. Im this KA, however, the term “input”
will’be'maintained, with the implied conven-
tion “that its meaning also includes a speci-
fied input state in those cases for which it
is important. Static techniques are different
from and complementary to dynamic testing.

execute. This is why, in practice,-aleompl
set of tests can generally be ¢ptisidered i1
nite, and testing is condueted on a subset
all possible tests, which 1s\determined by r
and prioritization ctiteria. Testing alwg
implies a tradeoff between limited resourd
and scheduleson-the one hand and inheren|
unlimited testréquirements on the other.

» Selected:\The many proposed test teq
niques\differ essentially in how the test f
is selected, and software engineers must
aware that different selection criteria m
yield vastly different degrees of effectiy
ness. How to identify the most suital
selection criterion under given conditions
a complex problem; in practice, risk analy)|
techniques and software engineering exp
tise are applied.

» Expected: It must be possible, although 1
always easy, to decide whether the obsery
outcomes of program testing are acceptable
or not; otherwise, the testing effort is uge-
less. The observed behavior may be checked
against user needs (commonly referred |to
as testing for validation), against a spefi-
fication (testing for verification), or, ppr-
haps, against the anticipated behavior fr¢m
implicit requirements or expectations (gee
Acceptance Tests in the Software Requife-
ments KA).

cr-

ot
ed

In recent years, the view of software testing

Static techniques are covered in the Software
Quality KA. It is worth noting that terminol-
ogy is not uniform among different commu-
nities and some use the term “testing” also in
reference to static techniques.

* Finite: Even in simple programs, so many test
cases are theoretically possible that exhaus-
tive testing could require months or years to

© ISO/IEC 2016 — All rights reserved

has matured into a constructive one. Testing is
no longer seen as an activity that starts only after
the coding phase is complete with the limited
purpose of detecting failures. Software testing
is, or should be, pervasive throughout the entire
development and maintenance life cycle. Indeed,
planning for software testing should start with the
early stages of the software requirements process,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Software Testing

_| Software Testing

Test-Related _| Software Testing

Usage-Based
Techniques

Model-Based,
Techniques

3 on the Nature of
the Application

Selecting and
L5 Combining
Techniques

and test plafisiand procedures should be system-
atically and*continuously developed—and possi-
bly refined—as software development proceeds.
THeseest planning and test designing activities

Techniques Based

- N - Test Levels] Test Techniques g 1 Test Process =
Fumdamrentats TS Foots
Based on the Evaluati
o valuation
Testing The Target of Soft.ware’ of the Practical Testing Topl
| Related the Test > Engineer’s P Considerations Suppdit
Terminology Intuition and Urodgrar;.l R
Experience nder Test
. Input Domain- Evaluation of .
> Key Issues ?bjfcnves of —> Based > the Tests Ly Test gz;eéorles o
esting Techniques Performed Activities
Rela?lonshlp of Code-Based
L Testing to Other .
oo Techniques
Activities
Fault-Based
Techniques

Figure 4.1. Breakdown of Topics for the Software Testing KA

and quality attributes of the software and also
for identifying faults in those cases where error
prevention has not been effective. It is perhaps
obvious but worth recognizing that software can

provide useful input for software designers and
help to highlight potential weaknesses, such as
design oversights/contradictions, or omissions/
ambiguities in the documentation.

For many organizations, the approach to soft-
ware quality is one of prevention: it is obviously
much better to prevent problems than to correct
them. Testing can be seen, then, as a means for
providing information about the functionality

still contain faults, even after completion of an
extensive testing activity. Software failures expe-
rienced after delivery are addressed by corrective
maintenance. Software maintenance topics are
covered in the Software Maintenance KA.

In the Software Quality KA (see Software Qual-
ity Management Techniques), software quality
management techniques are notably categorized
into static techniques (no code execution) and

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

dynamic techniques (code execution). Both cat-
egories are useful. This KA focuses on dynamic
techniques.

Software testing is also related to software
construction (see Construction Testing in the
Software Construction KA). In particular, unit

and 1ntograting tocting aro dotioatoly ralatod 0
teLFato £—afre—+ tery—Feratea—+t

Software Testing 4-3

1. Software Testing Fundamentals
1.1. Testing-Related Terminology

1.1.1. Definitions of Testing and Related

Terminology
[k ol o021 2% r\8]
Ls o K H]

oIt TH—tOU Tt THerrrrer

software construction, if not part of it.

BREAKDOWN OF TOPICS FOR
SOFTWARE TESTING

The breakdown of topics for the Software Test-
ing KA is shown in Figure 4.1. A more detailed
breakdown is provided in the Matrix of Topics
vs. Reference Material at the end of this KA.

The first topic describes Software Testing Fun-
damentals. It covers the basic definitions in the
field of software testing, the basic terminology
and key issues, and software testing’s relation-
ship with other activities.

The second topic, Test Levels, consists of two
(orthogonal) subtopics: the first subtopic lists the
levels in which the testing of large software ¢s
traditionally subdivided, and the second subtgpic
considers testing for specific conditions ot prop-
erties and is referred to as Objectives of Testing.
Not all types of testing apply to every software
product, nor has every possible type been listed.

The test target and test objective together
determine how the test seti§_identified, both with
regard to its consistenCy+—how much testing is
enough for achieving the stated objective—and
to its compositions—which test cases should
be selected for-achieving the stated objective
(although usually “for achieving the stated objec-
tive” remains implicit and only the first part of the
two_ifalicized questions above is posed). Criteria
foraddressing the first question are referred to as
test adequacy criteria, while those addressing the
Second question are the test selection criteria.

Definitions of testing and testing-relat¢d, terrpi-
nology are provided in the cited referénces and
summarized as follows.

1.1.2. Faults vs. Failures
[1%, c1s5] [2%, c|1]

Many terms are used-in the software engineering
literature to describe’a malfunction: notably faylt,
failure, and, error, among others. This terminpl-
ogy is precigely defined in [3, c2]. It is essentfial
to clearlyydistinguish between the cause of a mpl-
function (for which the term fault will be uded
here) and an undesired effect observed in the sys-
tem’s delivered service (which will be called a
failure). Indeed there may well be faults in the
software that never manifest themselves as fgil-
ures (see Theoretical and Practical Limitatigns
of Testing in section 1.2, Key Issues). Thus test-
ing can reveal failures, but it is the faults that dan
and must be removed [3]. The more generic tefm
defect can be used to refer to either a fault of a
failure, when the distinction is not important [3].

However, it should be recognized that the cayse
of a failure cannot always be unequivocally id¢n-
tified. No theoretical criteria exist to definitivgly
determine, in general, the fault that caused [an
observed failure. It might be said that it was the
fault that had to be modified to remove the failufe,
but other modifications might have worked jhst
as well. To avoid ambiguity, one could refer|to
Jailure-causing inputs instead of faults—that [is,
those sets of inputs that cause a failure to appehr.

Several Test Techniques have been developed
in the past few decades, and new ones are still
being proposed. Generally accepted techniques
are covered in the third topic.

Test-Related Measures are dealt with in the
fourth topic, while the issues relative to Test Pro-
cess are covered in the fifth. Finally, Software
Testing Tools are presented in topic six.

© ISO/IEC 2016 — All rights reserved

1.2. Key Issues

1.2.1. Test Selection Criteria / Test Adequacy
Criteria (Stopping Rules)
[1*, clsl4, c6s6, c1257]

A test selection criterion is a means of selecting
test cases or determining that a set of test cases

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-4 SWEBOK® Guide V3.0

is sufficient for a specified purpose. Test ade-
quacy criteria can be used to decide when suf-
ficient testing will be, or has been accomplished
[4] (see Termination in section 5.1, Practical
Considerations).

lesting

[1%, cll1s4, c13s11]

Tdsting effectiveness is determined by analyzing
a det of program executions. Selection of tests to
belexecuted can be guided by different objectives:
it {s only in light of the objective pursued that the
effectiveness of the test set can be evaluated.

—

/.2.3. Testing for Defect Discovery
[1%, cls14]

In|testing for defect discovery, a successful test
is pne that causes the system to fail. This is quite
different from testing to demonstrate that the
software meets its specifications or other desired
prpperties, in which case testing is successful if
no failures are observed under realistic test cases
anf test environments.

/.2.4. The Oracle Problem
[1*, c1s9, c9s7]

A1 oracle is any human or mechanical agent that
depides whether a program (behaved correctly
infa given test and accordingly results in a ver-
di¢t of “pass” or “fail.~TFhere exist many differ-
enf kinds of oracles;~for’ example, unambiguous
requirements speeifications, behavioral models,
anfd code annatations. Automation of mechanized
orficles can bedifficult and expensive.

.23Theoretical and Practical Limitations of
esling

ISO/IEC TR 19759:2016(E)

in this regard is the Dijkstra aphorism that “pro-
gram testing can be used to show the presence of
bugs, but never to show their absence” [5]. The
obvious reason for this is that complete testing is
not feasible in realistic software. Because of this,
testing must be driven based on risk [6, part 1]

1.2.6. The Problem of Infeasible Paths
[1%,.¢487]

Infeasible paths are control flow paths-that cannot
be exercised by any input data. Theyare a signifi-
cant problem in path-based testing, particularly
in automated derivation of test inputs to exercise
control flow paths.

1.2.7. Testability,
[1%, c17s2]

The term _“software testability” has two related
but different meanings: on the one hand, it refers
to the ease with which a given test coverage
critepion can be satisfied; on the other hand, it
i5, defined as the likelihood, possibly measured
statistically, that a set of test cases will expose
a failure if the software is faulty. Both meanings
are important.

1.3. Relationship of Testing to Other Activities

Software testing is related to, but different from,
static software quality management techniques,
proofs of correctness, debugging, and program
construction. However, it is informative to con-
sider testing from the point of view of software
quality analysts and of certifiers.

» Testing vs. Static Software Quality Man-
agement Techniques (see Software Quality
Management Techniques in the Software

[1*, c257]

Testing theory warns against ascribing an unjusti-
fied level of confidence to a series of successful
tests. Unfortunately, most established results of
testing theory are negative ones, in that they state
what testing can never achieve as opposed to what
is actually achieved. The most famous quotation

Quality KA [1*, c12]).

» Testing vs. Correctness Proofs and Formal
Verification (see the Software Engineering
Models and Methods KA [1%*, c17s2]).

» Testing vs. Debugging (see Construction
Testing in the Software Construction KA
and Debugging Tools and Techniques in the
Computing Foundations KA [1*, ¢3s6]).

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

* Testing vs. Program Construction (see Con-
struction Testing in the Software Construc-
tion KA [1%*, ¢3s2]).

2. Test Levels

Softaare tocting 1o yonallyy pmarformoad ot £
>OHtWaFe—teSHREIS—HUSHaryY—Perr So—at—atrer

Software Testing 4-5

functional threads. Integration testing is often an
ongoing activity at each stage of development
during which software engineers abstract away
lower-level perspectives and concentrate on the
perspectives of the level at which they are inte-
grating. For other than small, simple software,

1ncerarmaontal tntogratiog tocting ofratonioc gro 1
H+ HesraHonteSHRE-SHatestesafre+H

ent [evels throughout the development and main-
tenance processes. Levels can be distinguished
based on the object of testing, which is called
the target, or on the purpose, which is called the
objective (of the test level).

2.1. The Target of the Test
[1%, c1s13] [2%, c8sl]

The target of the test can vary: a single module, a
group of such modules (related by purpose, use,
behavior, or structure), or an entire system. Three
test stages can be distinguished: unit, integra-
tion, and system. These three test stages do not
imply any process model, nor is any one of them
assumed to be more important than the other two.

2.1.1. Unit Testing
[1%, c3] 2%, c8]

Unit testing verifies the functioning\in isolation
of software elements that are separately testable.
Depending on the context, thése could be the
individual subprograms or{a"larger component
made of highly cohesive units. Typically, unit
testing occurs with access to the code being tested
and with the suppottof debugging tools. The pro-
grammers who wrote the code typically, but not
always, conduct unit testing.

2 12y Integration Testing
[1%, ¢7] [2%, c8]

Integration testing is the process of verifying the

-
nerermentalintes o strates u

ally preferred to putting all of the compodnents
together at once—which is often called" “big
bang” testing.

2.1.3. System Testing
[1%, 8] [2% ¢8]

System testing is concerned with testing the
behavior of an entire-system. Effective unit and
integration testing, will have identified many|of
the software. defects. System testing is usuafly
considered\appropriate for assessing the ngn-
functional*system requirements—such as se¢u-
rity,“speed, accuracy, and reliability (see Furpc-
tignal and Non-Functional Requirements in the
Software Requirements KA and Software Quhpl-
ity Requirements in the Software Quality KA).
External interfaces to other applications, utilitips,
hardware devices, or the operating environments
are also usually evaluated at this level.

2.2. Objectives of Testing
[1%, c1$7]

Testing is conducted in view of specific obj¢c-
tives, which are stated more or less explicitly
and with varying degrees of precision. Stating
the objectives of testing in precise, quantitat{ve
terms supports measurement and control of the
test process.

Testing can be aimed at verifying different prgp-
erties. Test cases can be designed to check that
the functional specifications are correctly impje-
mented, which is variously referred to in the Jit-

interactions among software components. Clas-
sical integration testing strategies, such as top-
down and bottom-up, are often used with hierar-
chically structured software.

Modern, systematic integration strategies are
typically architecture-driven, which involves
incrementally integrating the software com-
ponents or subsystems based on identified

© ISO/IEC 2016 — All rights reserved

erature as conformance testing, correctness test-
ing, or functional testing. However, several other
nonfunctional properties may be tested as well—
including performance, reliability, and usabil-
ity, among many others (see Models and Quality
Characteristics in the Software Quality KA).
Other important objectives for testing include
but are not limited to reliability measurement,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-6 SWEBOK® Guide V3.0

identification of security vulnerabilities, usability
evaluation, and software acceptance, for which
different approaches would be taken. Note that,
in general, the test objectives vary with the test
target; different purposes are addressed at differ-
ent levels of testing.

offen cited in the literature. Note that some kinds
of|testing are more appropriate for custom-made
software packages—installation testing, for
expmple—and others for consumer products, like
befa testing.

D.2.1. Acceptance / Qualification Testing
[1*, c1s7] [2%*, c8s4]

Agceptance / qualification testing determines
wliether a system satisfies its acceptance criteria,
uspally by checking desired system behaviors
agpinst the customer’s requirements. The cus-
tomer or a customer’s representative thus speci-
figs or directly undertakes activities to check
thgt their requirements have been met, or in the
cape of a consumer product, that the organization
hap satisfied the stated requirements for the tar-
get market. This testing activity may or may not
inyolve the developers of the system.

D.2.2. Installation Testing
[1*, ¢12s2]

Often, after completion of systemand acceptance
tedting, the software is vetified upon installation
in [the target environmenti Installation testing can
be| viewed as system jtesting conducted in the
operational envirenment of hardware configura-
tigns and other)operational constraints. Installa-
tign proceddrés'may also be verified.

[
lolle)

D. 2:35Alpha and Beta Testing
[1*, ¢c13s7, c16s6] [2*, c8s4]

ISO/IEC TR 19759:2016(E)

2.2.4. Reliability Achievement and Evaluation
[1%, c15] [2%, c15s2]

Testing improves reliability by identifying and
correcting faults. In addition, statistical measures
of reliability can be derived by randomly generat-

Usage-Based Techniques). The latter approach(is
called operational testing. Using reliability growth
models, both objectives can be pursued¢tegether
[3] (see Life Test, Reliability Evaluatien in section
4.1, Evaluation of the Program undet~I€st).

2.2.5. Regression Testing
[1%, c8sl1, c13s3]

According to [7], regression testing is the “selec-
tive retesting of a\system or component to verify
that modifications have not caused unintended
effects andvthat the system or component still
complies\with its specified requirements.” In
practice; the approach is to show that software
still_passes previously passed tests in a test suite
(in fact, it is also sometimes referred to as nonre-
gression testing). For incremental development,
the purpose of regression testing is to show that
software behavior is unchanged by incremen-
tal changes to the software, except insofar as it
should. In some cases, a tradeoff must be made
between the assurance given by regression testing
every time a change is made and the resources
required to perform the regression tests, which
can be quite time consuming due to the large
number of tests that may be executed. Regression
testing involves selecting, minimizing, and/or
prioritizing a subset of the test cases in an exist-
ing test suite [8]. Regression testing can be con-
ducted at each of the test levels described in sec-
tion 2.1, The Target of the Test, and may apply to
functional and nonfunctional testing.

Before software is released, it is sometimes given
to a small, selected group of potential users for
trial use (alpha testing) and/or to a larger set of
representative users (beta testing). These users
report problems with the product. Alpha and beta
testing are often uncontrolled and are not always
referred to in a test plan.

2.2.6. Performance Testing
[1*, c8s6]

Performance testing verifies that the software
meets the specified performance requirements
and assesses performance characteristics—for
instance, capacity and response time.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

2.2.7. Security Testing
[1*, c8s3] [2*, cl1s4]

Security testing is focused on the verification that
the software is protected from external attacks. In
particular, security testing verifies the confiden-

frality dotogeity and agailobality of tho oyctopmac
Yt + etV ara Oy +—te-5yst

Software Testing 4-7

2.2.12. Configuration Testing
[1*, c8s5]

In cases where software is built to serve different
users, configuration testing verifies the software
under different specified configurations.

llllll TCO STt y 5ottt Ty

and its data. Usually, security testing includes
verification against misuse and abuse of the soft-
ware or system (negative testing).

2.2.8. Stress Testing
[1*, c8s8]

Stress testing exercises software at the maximum
design load, as well as beyond it, with the goal
of determining the behavioral limits, and to test
defense mechanisms in critical systems.

2.2.9. Back-to-Back Testing
(7]

IEEE/ISO/IEC Standard 24765 defines back-to-
back testing as “testing in which two or mote
variants of a program are executed with the same
inputs, the outputs are compared, and ertors are
analyzed in case of discrepancies.”

2.2.10. Recovery Testing
[1*, c14s2]

Recovery testing is airhed at verifying software
restart capabilities after a system crash or other
“disaster.”

2.2.11. Interface Testing
[2%, ¢851.3] [9%, c4s4.5]

Interface defects are common in complex sys-
fems. Interface testing aims at verifying whether
the components interface correctly to provide the

2.2.13. Usability and Human Computer Intel-
action Testing
[10%*, ¢6]

The main task of usability andshuman compufer
interaction testing is to evaluate how easy it| is
for end users to learn andte-use the software.|In
general, it may involye testing the software func-
tions that supportsuser tasks, documentation that
aids users, and thewability of the system to recoyer
from user egrorsAsee User Interface Design in the
Software Design KA).

3. Test Techniques

One of the aims of testing is to detect as many
failures as possible. Many techniques have bden
developed to do this [6, part 4]. These techniqyes
attempt to “break” a program by being as sys-
tematic as possible in identifying inputs that will
produce representative program behaviors; for
instance, by considering subclasses of the input
domain, scenarios, states, and data flows.
The classification of testing techniques pre-
sented here is based on how tests are generatgd:
from the software engineer’s intuition and exppe-
rience, the specifications, the code structure, the
real or imagined faults to be discovered, predicl
usage, models, or the nature of the applicatign.
One category deals with the combined use of tyvo
or more techniques.
Sometimes these techniques are classified [as
white-box (also called glass-box), if the tests are
based on information about how the software has

correct exchange of data and control informa-
tion. Usually the test cases are generated from
the interface specification. A specific objective of
interface testing is to simulate the use of APIs by
end-user applications. This involves the genera-
tion of parameters of the API calls, the setting of
external environment conditions, and the defini-
tion of internal data that affect the API.

© ISO/IEC 2016 — Al rights reserved

been designed or coded, or as black-box if the test
cases rely only on the input/output behavior of
the software. The following list includes those
testing techniques that are commonly used, but
some practitioners rely on some of the techniques
more than others.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-8 SWEBOK® Guide V3.0

3.1. Based on the Sofiware Engineer s Intuition
and Experience

3.1.1. Ad Hoc

Perhaps the most widely practiced technique is

ad hoetectina- tacte ara daorivod roliing on tho
++ teSHRE—teSt—are—aervea—tery e

ISO/IEC TR 19759:2016(E)

instead of considering all possible combinations.
Pairwise testing belongs to combinatorial testing,
which in general also includes higher-level com-
binations than pairs: these techniques are referred
to as t-wise, whereby every possible combination
of ¢ input variables is considered.

software engineer’s skill, intuition, and experi-
enge with similar programs. Ad hoc testing can
be|useful for identifying tests cases that not easily
gepherated by more formalized techniques.

5.1.2. Exploratory Testing

Exploratory testing is defined as simultaneous
legrning, test design, and test execution [6, part
1]{ that is, the tests are not defined in advance
infan established test plan, but are dynamically
depigned, executed, and modified. The effective-
neps of exploratory testing relies on the software
engineer’s knowledge, which can be derived
frgm various sources: observed product behavior
during testing, familiarity with the application,
th¢ platform, the failure process, the type of pos-
sijle faults and failures, the risk associated with a
pafticular product, and so on.

—

3.2. Input Domain-Based Techniques

5.2. 1. Equivalence Partitioning
[1*, c9s4]

Eduivalence partitioning involves partitioning the
input domain into a collection of subsets (or equiv-
algnt classes) based on a-specified criterion or rela-
tign. This criterion, Or relation may be different
computationalresults, a relation based on control
flgw or datd flow, or a distinction made between
valid inputs-that are accepted and processed by the
syptem and invalid inputs, such as out of range val-
uep, that are not accepted and should generate an

jamdy

3.2.3. Boundary-Value Analysis
[1*, c955

Test cases are chosen on or near the boundaries of
the input domain of variables, with the\underly-
ing rationale that many faults tend to.concentrate
near the extreme values of inputs./An extension of
this technique is robustness.testing, wherein test
cases are also chosen outside-the input domain of
variables to test programtobustness in processing
unexpected or erroneous inputs.

3.2.4. Randagm™Testing
[1*, c9s7]

Tests\are generated purely at random (not to be
confused with statistical testing from the opera-
tional profile, as described in Operational Profile
in section 3.5). This form of testing falls under the
heading of input domain testing since the input
domain must be known in order to be able to pick
random points within it. Random testing provides
a relatively simple approach for test automation;
recently, enhanced forms of random testing have
been proposed in which the random input sam-
pling is directed by other input selection criteria
[11]. Fuzz testing or fuzzing is a special form of
random testing aimed at breaking the software; it
is most often used for security testing.

3.3. Code-Based Techniques

3.3.1. Control Flow-Based Criteria
[1*, c4]

error message or initiate error processing. A repre-
sentative set of tests (sometimes only one) is usu-
ally taken from each equivalency class.

3.2.2. Pairwise Testing
[1*, c9s3]

Test cases are derived by combining interesting
values for every pair of a set of input variables

Control flow-based coverage criteria are aimed
at covering all the statements, blocks of state-
ments, or specified combinations of statements
in a program. The strongest of the control flow-
based criteria is path testing, which aims to
execute all entry-to-exit control flow paths in a
program’s control flow graph. Since exhaustive
path testing is generally not feasible because of

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

loops, other less stringent criteria focus on cov-
erage of paths that limit loop iterations such as
statement coverage, branch coverage, and con-
dition/decision testing. The adequacy of such
tests is measured in percentages; for example,
when all branches have been executed at least

been achieved.

3.3.2. Data Flow-Based Criteria
[1%, ¢5]

In data flow-based testing, the control flow graph
is annotated with information about how the
program variables are defined, used, and killed
(undefined). The strongest criterion, all defini-
tion-use paths, requires that, for each variable,
every control flow path segment from a defini-
tion of that variable to a use of that definition is
executed. In order to reduce the number of paths
required, weaker strategies such as all-definitions
and all-uses are employed.

3.3.3. Reference Models for Code-Based
Testing
fL%, c4]

Although not a technique in itself)the control
structure of a program can be graphically rep-
resented using a flow graph,to-visualize code-
based testing techniques.(A™ flow graph is a
directed graph, the nodesjyand arcs of which cor-
respond to program elements (see Graphs and
Trees in the Mathematical Foundations KA).
For instance,mqgdes may represent statements or
uninterrupted.sequences of statements, and arcs
may represent the transfer of control between
nodes.

34, Fault-Based Techniques

[1%, cls14]

Software Testing 4-9

3.4.1. Error Guessing
[1*, c9s8]

In error guessing, test cases are specifically
designed by software engineers who try to antici-
pate the most plausible faults in a given program.

A—psood-source—of—information he—historyof
software engineer’s expertise.

3.4.2. Mutation Testing

either tests are randomly generated until eno
mutants have been killed, or tests are specifica
designed to kill surviving mutants. In the latter
case, mutation testing can also be categorized|as
a code-based technique. The underlying assunjp-
tion of mutation testing, the coupling effdct,
is that by looking for simple syntactic faults,
more complex but real faults will be found. Hor
the technique to be effective, a large number|of
mutants must be automatically generated and
executed in a systematic way [12].

3.5. Usage-Based Techniques

3.5.1. Operational Profile
[1*, c15§5]

In testing for reliability evaluation (also called

With different degrees of formalization, fault-
based testing techniques devise test cases spe-
cifically aimed at revealing categories of likely
or predefined faults. To better focus the test case
generation or selection, a fault model can be
introduced that classifies the different types of
faults.

© ISO/IEC 2016 — Al rights reserved

operational testing), the test environment repro-
duces the operational environment of the soft-
ware, or the operational profile, as closely as
possible. The goal is to infer from the observed
test results the future reliability of the software
when in actual use. To do this, inputs are assigned
probabilities, or profiles, according to their fre-
quency of occurrence in actual operation. Opera-
tional profiles can be used during system testing

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-10 SWEBOK® Guide V3.0

to guide derivation of test cases that will assess
the achievement of reliability objectives and
exercise relative usage and criticality of different
functions similar to what will be encountered in
the operational environment [3].

ISO/IEC TR 19759:2016(E)

(roughly, outputs). Test cases are systematically
derived by considering every possible combina-
tion of conditions and their corresponding resul-
tant actions. A related technique is cause-effect
graphing [1%*, c13s6].

362 Einite-State Machines

Oy T aTTO—TTCtT oty

[10%*, c5, ¢7]

Ufdability principles can provide guidelines for dis-
coering problems in the design of the user inter-
fage [10*, c1s4] (see User Interface Design in the
Sqftware Design KA). Specialized heuristics, also
cafled usability inspection methods, are applied
fof the systematic observation of system usage
under controlled conditions in order to deter-
mine how well people can use the system and its
inferfaces. Usability heuristics include cognitive
wilkthroughs, claims analysis, field observations,
thinking aloud, and even indirect approaches such
as[user questionnaires and interviews.

o

3.6. Model-Based Testing Techniques

A model in this context is an abstract (formal)
representation of the software under test or of
its| software requirements (see Modeling in-the
Sqftware Engineering Models and Methods\KA).
Mpdel-based testing is used to validate\require-
m¢nts, check their consistency, and generate test
capes focused on the behavioral @spects of the
software. The key componerits jof model-based
qting are [13]: the notatien used to represent the
mgdel of the software oriits requirements; work-
flgw models or simitar-models; the test strategy
or|algorithm used\ fof test case generation; the
supporting infrastructure for the test execution;
and the evdluation of test results compared to
expectedresults. Due to the complexity of the
te¢hniques, model-based testing approaches
ar¢ oftén used in conjunction with test automa-

=
[¢]

Ty

[1%, ¢10]

By modeling a program as a finite state machine,
tests can be selected in order to cover the states
and transitions.

3.6.3. Formal Specifications
[1%yc10s11] [2%, c15]

Stating the specificationsvin a formal language
(see Formal Methods_ih the Software Engineer-
ing Models and Methods KA) permits automatic
derivation of functional test cases, and, at the
same time\provides an oracle for checking test
results,

TTFCN3 (Testing and Test Control Notation
vérsion 3) is a language developed for writing test
cases. The notation was conceived for the specific
needs of testing telecommunication systems, so it
is particularly suitable for testing complex com-
munication protocols.

3.6.4. Workflow Models
[2%*, ¢8s3.2, c19s3.1]

Workflow models specify a sequence of activi-
ties performed by humans and/or software appli-
cations, usually represented through graphical
notations. Each sequence of actions constitutes
one workflow (also called a scenario). Both typi-
cal and alternate workflows should be tested [6,
part 4]. A special focus on the roles in a work-
flow specification is targeted in business process
testing.

tion harnesses. Model-based testing techniques
include the following.

3.6.1. Decision Tables
[1*, c9s6]

Decision tables represent logical relationships
between conditions (roughly, inputs) and actions

3.7. Techniques Based on the Nature of the
Application

The above techniques apply to all kinds of soft-
ware. Additional techniques for test derivation
and execution are based on the nature of the soft-
ware being tested; for example,

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

* object-oriented software

» component-based software
* web-based software

¢ concurrent programs

* protocol-based software

* real-time systems

Software Testing 4-11

at every decision point. To avoid such misun-
derstandings, a clear distinction should be made
between test-related measures that provide an
evaluation of the program under test, based on
the observed test outputs, and the measures that
evaluate the thoroughness of the test set. (See

————satety-eritical-systems

 service-oriented software
 open-source software
¢ embedded software

3.8. Selecting and Combining Techniques

3.8.1. Combining Functional and Structural
[1%, c9]

Model-based and code-based test techniques
are often contrasted as functional vs. structural
testing. These two approaches to test selection
are not to be seen as alternatives but rather as
complements; in fact, they use different sources
of information and have been shown to high-
light different kinds of problems. They could be
used in combination, depending on budgetaty:
considerations.

3.8.2. Deterministic vs. Random
[1*, ¢9s6]

Test cases can be selected in a deterministic way,
according to one of many._ techniques, or ran-
domly drawn from sore)distribution of inputs,
such as is usually done.in reliability testing. Sev-
eral analytical and;empirical comparisons have
been conducted-to analyze the conditions that
make one approach more effective than the other.

4. TeSt-Related Measures

Sometimes testing techniques are confused with
festing objectives. Testing techniques can be

Seftware-EngineerinsMeastrement—-the-Sqft-
ware Engineering Management KA for infornpa-
tion on measurement programs. See Seftwgre
Process and Product Measurement_in (the Sd[ft-
ware Engineering Process KA fordnfermation jon
measures.)

Measurement is usually considered fundamgn-
tal to quality analysis. Méasurement may also [be
used to optimize the planning and execution |of
the tests. Test management can use several diffpr-
ent process medsur€s to monitor progress. (See
section 5.1,-Practical Considerations, for a djs-
cussion of measures of the testing process useful
for management purposes.)

4k Evaluation of the Program Under Test

4.1.1. Program Measurements That Aid in
Planning and Designing Tests
[9%, c]1]

Measures based on software size (for example,
source lines of code or functional size; see M¢a-
suring Requirements in the Software Requife-
ments KA) or on program structure can be uged
to guide testing. Structural measures also inclyde
measurements that determine the frequency wjth
which modules call one another.

4.1.2. Fault Types, Classification, and
Statistics
[9%, ¢4]

The testing literature is rich in classifications and
taxonomies of faults. To make testing more eff¢c-

viewed as aids that help to ensure the achieve-
ment of test objectives [6, part 4]. For instance,
branch coverage is a popular testing technique.
Achieving a specified branch coverage measure
(e.g., 95% branch coverage) should not be the
objective of testing per se: it is a way of improv-
ing the chances of finding failures by attempting
to systematically exercise every program branch

© ISO/IEC 2016 — All rights reserved

tive, it is important to know which types of faults
may be found in the software under test and the
relative frequency with which these faults have
occurred in the past. This information can be use-
ful in making quality predictions as well as in
process improvement (see Defect Characteriza-
tion in the Software Quality KA).

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-12 SWEBOK® Guide V3.0

4.1.3. Fault Density
[1%, c13s4] [9%, c4]

A program under test can be evaluated by counting
discovered faults as the ratio between the number
of faults found and the size of the program.

ISO/IEC TR 19759:2016(E)

4.2.2. Fault Seeding
[1*, ¢2s5] [9%, c6]

In fault seeding, some faults are artificially intro-
duced into a program before testing. When the
tests are executed, some of these seeded faults will

d.1.4. Life Test, Reliability Evaluation
[1%, c15] [9%, c3]

A | statistical estimate of software reliability,
wliich can be obtained by observing reliabil-
ity] achieved, can be used to evaluate a software
propduct and decide whether or not testing can be
stgpped (see section 2.2, Reliability Achievement
an(d Evaluation).

4.1.5. Reliability Growth Models
[1%, c15] [9%, c8]

Rdliability growth models provide a prediction of
reliability based on failures. They assume, in gen-
ergl, that when the faults that caused the observed
faflures have been fixed (although some models
aldo accept imperfect fixes), the estimated prod-
ucl’s reliability exhibits, on average, an increasing
trgnd. There are many published reliability growith
m¢dels. Notably, these models are divided‘into
Jfallure-count and time-between-failure mpedels.

4.2. Evaluation of the Tests Perforined

4.2.1. Coverage / Thoroughness Measures
[9%, cl1]

Several test adequacy criteria require that the test
capes systematically exercise a set of elements
id¢ntified in(the program or in the specifications
(sge topics3dy Test Techniques). To evaluate the
thoroughness of the executed tests, software engi-
neprsv€an_monitor the elements covered so that

uuuuuu

were already there. In theory, depending on which
and how many of the artificial faults are discavy
ered, testing effectiveness can be evaluated and the
remaining number of genuine faults can{bg/esti-
mated. In practice, statisticians question, the dis-
tribution and representativeness of'seeded faults
relative to genuine faults and the§mall sample size
on which any extrapolations.are‘based. Some also
argue that this technique should be used with great
care since inserting faults¥into software involves
the obvious risk of leaving them there.

4.2.3. Mutation Score
[1*, c3s5]

In mutation testing (see Mutation Testing in sec-
tion 3.4, Fault-Based Techniques), the ratio of
killed mutants to the total number of generated
mutants can be a measure of the effectiveness of
the executed test set.

4.2.4. Comparison and Relative Effectiveness
of Different Techniques

Several studies have been conducted to com-
pare the relative effectiveness of different testing
techniques. It is important to be precise as to the
property against which the techniques are being
assessed; what, for instance, is the exact meaning
given to the term “effectiveness”? Possible inter-
pretations include the number of tests needed to
find the first failure, the ratio of the number of
faults found through testing to all the faults found
during and after testing, and how much reliabil-

they can dynamically measure the ratio between
covered elements and the total number. For exam-
ple, it is possible to measure the percentage of
branches covered in the program flow graph or the
percentage of functional requirements exercised
among those listed in the specifications document.
Code-based adequacy criteria require appropriate
instrumentation of the program under test.

ity was improved. Analytical and empirical com-
parisons between different techniques have been
conducted according to each of the notions of
effectiveness specified above.

5. Test Process

Testing concepts, strategies, techniques, and mea-
sures need to be integrated into a defined and

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

controlled process. The test process supports test-
ing activities and provides guidance to testers and
testing teams, from test planning to test output
evaluation, in such a way as to provide assurance
that the test objectives will be met in a cost-effec-
tive way.

Software Testing 4-13

the test item. Test documentation should be pro-
duced and continually updated to the same level
of quality as other types of documentation in
software engineering. Test documentation should
also be under the control of software configura-
tion management (see the Software Configuration

ManagementkArMoreovertest-doctmentation

5.1. Practical Considerations

5.1.1. Attitudes / Egoless Programming
[1*c16] [9%, c15]

An important element of successful testing is a
collaborative attitude towards testing and quality
assurance activities. Managers have a key role in
fostering a generally favorable reception towards
failure discovery and correction during software
development and maintenance; for instance, by
overcoming the mindset of individual code own-
ership among programmers and by promoting a
collaborative environment with team responsibil-
ity for anomalies in the code.

5.1.2. Test Guides
[1%, c12s1] [9%, cISsl]

The testing phases can be guided byiivarious
aims—for example, risk-based testitfg uses the
product risks to prioritize and foeus the test strat-
egy, and scenario-based testing defines test cases
based on specified software(scenarios.

5.1.3. Test Process Management
[1%, c12] [9%, cl15]

Test activitics Conducted at different levels (see
topic 2,Aiest Levels) must be organized—together
with people, tools, policies, and measures—into a
well=defined process that is an integral part of the
life cycle.

includes work products that can provide materjial
for user manuals and user training.

5.1.5. Test-Driven Development
[1*, cls]6]

Test-driven development{IPD) originated as dne
of the core XP (extreme ‘programming) practi¢es
and consists of writing unit tests prior to writing
the code to be tested (see Agile Methods in the
Software Engineering Models and Method K4\).
In this wayy, FDD develops the test cases as a spir-
rogate for*a software requirements specification
doctment rather than as an independent chgck
that the software has correctly implemented the
requirements. Rather than a testing strategy, TIDD
is a practice that requires software developers|to
define and maintain unit tests; it thus can ajso
have a positive impact on elaborating user negds
and software requirements specifications.

5.1.6. Internal vs. Independent Test Team
[1%, cl6]

Formalizing the testing process may also involve
formalizing the organization of the testing team.
The testing team can be composed of interpal
members (that is, on the project team, involved|or
not in software construction), of external membgrs
(in the hope of bringing an unbiased, independ¢nt
perspective), or of both internal and external mem-
bers. Considerations of cost, schedule, maturjity
levels of the involved organizations, and criticaljity
of the application can guide the decision. T

5.1.4. Test Documentation and Work Products
[1*, ¢8s12] [9%, c4s5]

Documentation is an integral part of the formaliza-
tion of the test process [6, part 3]. Test documents
may include, among others, the test plan, test
design specification, test procedure specification,
test case specification, test log, and test incident
report. The software under test is documented as

© ISO/IEC 2016 — Al rights reserved

5.1.7. Cost/Effort Estimation and Test Process
Measures
[1*, c18s3] [9%*, c557]

Several measures related to the resources spent
on testing, as well as to the relative fault-finding
effectiveness of the various test phases, are used
by managers to control and improve the testing

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-14 SWEBOK® Guide V3.0

process. These test measures may cover such
aspects as number of test cases specified, num-
ber of test cases executed, number of test cases
passed, and number of test cases failed, among
others.

ISO/IEC TR 19759:2016(E)

5.2. Test Activities

As shown in the following description, successful
management of test activities strongly depends
on the software configuration management pro-
cess (see the Software Configuration Manage-

yi¢ld different levels of confidence in product
reliability.

5. 1.8. Termination
[9%*, c10s4]

A |decision must be made as to how much test-
ing is enough and when a test stage can be termi-
nafed. Thoroughness measures, such as achieved
cofde coverage or functional coverage, as well as
esfimates of fault density or of operational reli-
abjlity, provide useful support but are not suffi-
cignt in themselves. The decision also involve$
copsiderations about the costs and risks incurfed
by| possible remaining failures, as opposed’ to
th¢ costs incurred by continuing to testAsec Test
Seflection Criteria / Test Adequacy Criteria in
seftion 1.2, Key Issues).

5.1.9. Test Reuse and Test Patterns
[9%*, c2s5]

Td carry out testing.or maintenance in an orga-
nized and costegffective way, the means used to
tedt each pdrt)of the software should be reused
syptematically. A repository of test materials
shpuld*bé under the control of software con-
figuration management so that changes to soft-

5.2.1. Planning
[1*, c12s1, c1288]

Like all other aspects of project management,
testing activities must be planned. K€y aspects
of test planning include coordifiation of person-
nel, availability of test facilities and equipment,
creation and maintenance’of.all test-related docu-
mentation, and planning“for possible undesir-
able outcomes. If more than one baseline of the
software is being'mdintained, then a major plan-
ning consideration is the time and effort needed
to ensure_thdt the test environment is set to the
proper,epnfiguration.

5.2.2. Test-Case Generation
[1*, c12s1, ¢12s3]

Generation of test cases is based on the level of
testing to be performed and the particular testing
techniques. Test cases should be under the con-
trol of software configuration management and
include the expected results for each test.

5.2.3. Test Environment Development
[1*, c1256]

The environment used for testing should be com-
patible with the other adopted software engi-
neering tools. It should facilitate development
and control of test cases, as well as logging and
recovery of expected results, scripts, and other
testing materials.

ware requirements or design can be reflected in
changes to the tests conducted.

The test solutions adopted for testing some
application types under certain circumstances,
with the motivations behind the decisions taken,
form a test pattern that can itself be documented
for later reuse in similar projects.

5.2.4. Execution
[1*, c12s7]

Execution of tests should embody a basic prin-
ciple of scientific experimentation: everything
done during testing should be performed and
documented clearly enough that another person

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

could replicate the results. Hence, testing should
be performed in accordance with documented
procedures using a clearly defined version of the
software under test.

5.2.5. Test Results Evaluation
[0 _15]

Software Testing 4-15

the software. Defect tracking information is used
to determine what aspects of software testing
and other processes need improvement and how
effective previous approaches have been.

6. Software Testing Tools

5

The results of testing should be evaluated to
determine whether or not the testing has been
successful. In most cases, “successful” means
that the software performed as expected and did
not have any major unexpected outcomes. Not
all unexpected outcomes are necessarily faults
but are sometime determined to be simply noise.
Before a fault can be removed, an analysis and
debugging effort is needed to isolate, identify,
and describe it. When test results are particularly
important, a formal review board may be con-
vened to evaluate them.

5.2.6. Problem Reporting / Test Log
[1*, c13s9]

Testing activities can be entered into a testing
log to identify when a test was conducted; who
performed the test, what software configuration
was used, and other relevant identification infor-
mation. Unexpected or incorrect-test results can
be recorded in a problem reporting system, the
data for which forms the basis for later debug-
ging and fixing the problems that were observed
as failures during ¢esting. Also, anomalies not
classified as fauyltsieould be documented in case
they later tunm out to be more serious than first
thought. Test reports are also inputs to the change
management request process (see Software Con-
figuratioph Control in the Software Configuration
Management KA).

5.2.7. Defect Tracking

6.1. Testing Tool Support
[1*, c12s11]Y9%, ¢5]

Testing requires many labor-inten$iye tasks, ryn-
ning numerous program executions, and handling
a great amount of information. Appropriate topls
can alleviate the burden ofclerical, tedious opeta-
tions and make them. less error-prone. Sophigti-
cated tools can suppert test design and test cgse
generation, making'it more effective.

6.1.1. Seteeting Tools
[1% cl2s]1]

Ghidance to managers and testers on how to selgct
testing tools that will be most useful to their orga-
nization and processes is a very important topic,
as tool selection greatly affects testing efficienjcy
and effectiveness. Tool selection depends fon
diverse evidence, such as development choicps,
evaluation objectives, execution facilities, and|so
on. In general, there may not be a unique tool that
will satisfy particular needs, so a suite of topls
could be an appropriate choice.

6.2. Categories of Tools

We categorize the available tools according|to
their functionality:

o Test harnesses (drivers, stubs) [1*, c3§9]
provide a controlled environment in which
tests can be launched and the test outputs dan
be logged. In order to execute parts of a pfo-

[9%, c9]

Defects can be tracked and analyzed to determine
when they were introduced into the software,
why they were created (for example, poorly
defined requirements, incorrect variable declara-
tion, memory leak, programming syntax error),
and when they could have been first observed in

© ISO/IEC 2016 — All rights reserved

gram, drivers and stubs are provided to simu-
late calling and called modules, respectively.

 Test generators [1*, c12s11] provide assis-
tance in the generation test cases. The gen-
eration can be random, path-based, model-
based, or a mix thereof.

» Capture/replay tools [1*, c12sl1] auto-
matically reexecute, or replay, previously

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-16 SWEBOK® Guide V3.0

executed tests which have recorded inputs
and outputs (e.g., screens).

* Oracle/file comparators/assertion checking
tools [1*, c9s7] assist in deciding whether a
test outcome is successful or not.

» Coverage analyzers and instrumenters [1%*,

ISO/IEC TR 19759:2016(E)

* Tracers [1*, cls7] record the history of a
program’s execution paths.

* Regression testing tools [1*, c12s16] support
the reexecution of a test suite after a section
of software has been modified. They can also
help to select a test subset according to the

—edworktogether-Coverage-analyzers-as5ess
which and how many entities of the program
flow graph have been exercised amongst all
those required by the selected test coverage
criterion. The analysis can be done thanks to
program instrumenters that insert recording
probes into the code.

chanoe mado
erahEe-Hhae T

* Reliability evaluation tools [9*, c8] support
test results analysis and graphical visualizay
tion in order to assess reliability-related mea-
sures according to selected models,

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Software Testing 4-17

®
S
S =
£ S . 5
< = = a
== L g—& S
2 g ¥ 2,0
< E %\
= ..
z)
1. Software Testing Fundamentals O\ -
1.1. Testing-Related Terminology {)_'\
1.1.1. Definitions of Testing and &‘
. cl,c2 c8
Related Terminology , C)
1.1.2. Faults vs. Failures clsS cll N

1.2. Key Issues

1.2.1. Test Selection Criteria /

clsl4, c6s6,

Or

Test Adequacy Criteria
. cl2s7
(Stopping Rules) Q)
1%22. Testlr;g]iﬂffec;tweness / c13sl1, cl QQQ
Objectives for Testing AR
1.2.3. Testing for Defect 4\
Identification QA
S cls9
% ’
1.2.4. The Oracle Problem A\C D og7
1.2.5. Theoretical and Prae@l 257
Limitations of Testing ,.\17
<
1.2.6. The Problencf;aneamble
Paths . cas7
1.2.7. Testability" c1752
1.3. Relati ip of Testing to
Other Attivities
é@?\l"esting vs. Static
tware Quality Management cl2
C ,s Techniques
\Q/ 1.3.2. Testing vs. Correctness 1750
Proots and Formal verification
1.3.3. Testing vs. Debugging c3s6
1.3.4. Testing vs. Programming c3s2
2. Test Levels
2.1. The Target of the Test clsl3 c8sl
2.1.1. Unit Testing c3 c8
2.1.2. Integration Testing c7 c8
2.1.3. System Testing c8 c8

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-18 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Criteria

: -
N —
£ p z g
£E TR Sg = E
== 5= = o=
z GQ
2.2. Objectives of Testing cls7 , q Y
2.2.1. Acceptance / Qualification cls7 c8s4 ~ NG
2.2.2. Installation Testing cl2s2 '\V J
2.2.3. Alpha and Beta Testing c13s7, c8s4 ’é“k
cl6s6 C
i e |y | s | (©
2.2.5. Regression Testing 2?21513, rg\%
2.2.6. Performance Testing c8s6 /\Q -
2.2.7. Security Testing c8s3 @\13)4
2.2.8. Stress Testing c8s8 ‘\\\)
2.2.9. Back-to-Back Testing O, N
2.2.10. Recovery Testing 0145‘2\\9
2.2.11. Interface Testing . O.Q\ c8sl.3 c4s4.5
2.2.12. Configuration Testing e8ss
2.2.13. Usability and Human I\
Computer Interaction Testing ¢6
3| Test Techniques C)\\
3.1. Based on the Softv%e’ .
Engin?er’s Intuition@
Experience C)
3.11. Ad Hee)*
3.1.2. rzltory Testing
3.2. ¢ Domain-Based
Techniques
2 1 Fqguivalence Partitioning c9s4
3.2.2. Pairwise Testing c9s3
3.2.3. Boundary-Value Analysis c9s5
3.2.4. Random Testing c9s7
3.3. Code-Based Techniques
3.3.1. Control Flow-Based o4

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Testing 4-19

K
>
S =
z & - R
= ® = S\
B = S T E
= = % o = g =
g =
= 3 R
4 GQ
3.3.2. Data Flow-Based Criteria c5 Oy v
3.3.3. Reference Models for o4 /\v 2
Code-Based Testing y\q
3.4. Fault-Based Techniques clsl4 /(Q‘
3.4.1. Error Guessing c9s8 C., -
3.4.2. Mutation Testing c3s5 \\<</\/
3.5. Usage-Based Techniques . O)
3.5.1. Operational Profile cl5s5 ¢ \‘O
3.5.2. User Observation o
.. c5,c7
Heuristics
3.6. Model-Based Testing <
Techniques .. \\}\
3.6.1. Decision Table c&z‘
3.6.2. Finite-State Machines) \,\QTO
3.6.3. Testing from Formal S\
Specifications A\CJ clOsIl cl5
3.7. Techniques Based on the\'o
Nature of the Apphcatlor}.\lt
3.8. Selecting and C@}}ung
Techniques .
3.8.1. Funcp@ and Structural c9
3.8.2. D@%IHISUC vs. Random c9s6
4. Test;@téd Measures
4, aluation of the Program
er Test
QU 4.1.1. Program Measurements
Y That Aid in Planning and cll
Designing Testing
4.1.2. Fault Types, Classification,
. c4
and Statistics
4.1.3. Fault Density cl3s4 c4
4.14. L1.fe Test, Reliability c15 3
Evaluation
4.1.5. Reliability Growth Models cls c8

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

420 SWEBOK® Guide V3.0 ISO/IEC TR 19759:2016(E)

-]
=
Q -
£ 5 . 3
= L = =)
S Ch ST TE
== E xS £ E =
i (=
: z N\
r4 GQ
4.2. Evaluation of the Tests Q v
Performed /\Q‘)
4.2.1. Coverage / Thoroughness y\% i
cll
Measures p —
4.2.2. Fault Seeding c2s5 6,
4.2.3. Mutation Score c3s5 \Qy
4.2.4. Comparison and Relative O\\v
Effectiveness of Different J %
Techniques ~ N
5| Test Process -
5.1. Practical Considerations OQ‘
. N\
5.1.1. Attitudes / Egoless o 0\\ cl5
Programming N
5.1.2. Test Guides c12s1 0 cl5sl
5.1.3. Test Process Management cly N cl5
. &
5.1.4. Test Documentation and %\851) ods5
Work Products e
5.1.5. Test-Driven Development || clsl6
D
5.1.6. Internal vs. Indepeqeé)ﬁs
Test Team . cl6
5.1.7. Cost/Effort E@atlon and T o557
Other Process res
5.1.8. Termin&tb‘r{ cl0s4
5.1.9. Tg@se and Patterns c2s5
5.2. T@Q.Qti‘vities
» cl2sl
:2-1. Planning
A cl2s8
5.2.2. Test-Case Generation cl2sl
cl2s3
5.2.3. Test Environment
cl2s6
Development
5.2.4. Execution cl2s7
5.2.5. Test Results Evaluation cl5

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Testing 4-21

c=]
>
S =
(=3
g g = g
g — - — g —_ A o
o= % =% %
== % o = g =
D
E : = z
g (=]
= 3 R
4 GQ
; vV
5.2.6. Problem Reporting / Test Oy
Log cl3s9 A(Q
5.2.7. Defect Tracking c9 y\%
6. Software Testing Tools /(Q‘
6.1. Testing Tool Support cl2sl11 C cs
6.1.1. Selecting Tools cl2sll \\<</\J
cls7, ¢3s9, %O)
6.2. Categories of Tools c4, c9sT7, N\ c8
cl2sll, O‘\
cl2s16 &
N
%
3\\\
R\
xO
&

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

4-22 SWEBOK® Guide V3.0

REFERENCES

[1*] S. Naik and P. Tripathy, Software Testing
and Quality Assurance: Theory and
Practice, Wiley-Spektrum, 2008.

[2*] I. Sommerville, Software Engineering, 9th
aed Addicon ‘X/nn]ny 2011
dAddisonWesley—20H-

ISO/IEC TR 19759:2016(E)

[8] S. Yoo and M. Harman, “Regression Testing
Minimization, Selection and Prioritization:
A Survey,” Software Testing Verification
and Reliability, vol. 22, no. 2, Mar. 2012,
pp. 67-120.

TR

[3] M.R. Lyu, ed., Handbook of Software
Reliability Engineering, McGraw-Hill and
IEEE Computer Society Press, 1996.

[4]1H. Zhu, P.AV. Hall, and J.H.R. May,
“Software Unit Test Coverage and
Adequacy,” ACM Computing Surveys, vol.
29, no. 4, Dec. 1997, pp. 366—-427.

[5] E.W. Dijkstra, “Notes on Structured
Programming,” T.H.-Report 70-WSE-03,

http:/www.cs.utexas.edu/users/ EWD/
ewd02xx/EWD249.PDF.

[6] ISO/IEC/IEEE P29119-1/DIS Draft Standard

for Software and Systems Engineering—
Software Testing—Part 1: Concepts and
Definitions, ISO/IEC/IEEE, 2012.

~J

[7) ISO/IEC/IEEE 24765:2010 Systems aund

Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

Technological University, Eindhoven, 1970;

[9%] S.H. Kan, Metrics and Models in Software
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[10*] J. Nielsen, Usability Engineeripg, Morgan
Kaufmann, 1993.

[11] T.Y. Chen et al., “Adaptive Random Testing:
The ART of Test Case'Diversity,” Journal
of Systems and Softwdre, vol. 83, no. 1, Jan.
2010, pp. 60—66:

[12] Y. Jia anddM: Harman, “An Analysis
and Survey of the Development of
Mutation Testing,” IEEE Trans. Software
Engineering, vol. 37, no. 5, Sep.—Oct. 2011,
pp. 649—-678.

[13] M. Utting and B. Legeard, Practical
Model-Based Testing: A Tools Approach,
Morgan Kaufmann, 2007.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 5

SOFTWARE MAINTENANCE

ACRONYMS
MR Modification Request
PR Problem Report
SCM Software Configuration
Management
SLA Service-Level Agreement
SQA Software Quality Assurance
V&V Verification and Validation
INTRODUCTION

Software development efforts result in the deliy~
ery of a software product that satisfies wuser
requirements. Accordingly, the software preduct
must change or evolve. Once in operatieiy; defects
are uncovered, operating environmefts change,
and new user requirements surfaee. The mainte-
nance phase of the life cycle bégins following a
warranty period or postimplémentation support
delivery, but maintenance ‘activities occur much
earlier.

Software mainfenance is an integral part of a
software life cyele. However, it has not received
the same degree of attention that the other phases
have. Historically, software development has had
a muChjhigher profile than software maintenance
in'most organizations. This is now changing, as
organizations strive to squeeze the most out of
their software development investment by keep-

during the postdelivery stage. Predelivery actiyi-
ties include planning for postdelivery’operatiops,
maintainability, and logistics determination for
transition activities [1*, ¢6s9]. Postdelivgry
activities include software/modification, training,
and operating or interfacing to a help desk.

The Software Maintenance knowledge afea
(KA) is related ‘to,'dll other aspects of software
engineering,~ Therefore, this KA description| is
linked to, all-other software engineering KAs|of
the Guide.

BREAKDOWN OF TOPICS FOR
SOFTWARE MAINTENANCE

The breakdown of topics for the Software Majn-
tenance KA is shown in Figure 5.1.

1. Software Maintenance Fundamentals

This first section introduces the concepts and
terminology that form an underlying basis [to
understanding the role and scope of softwgre
maintenance. The topics provide definitions and
emphasize why there is a need for maintenange.
Categories of software maintenance are criticalf to
understanding its underlying meaning.

1.1. Definitions and Terminology
[1%, 3] [2%, c1s2, c232]

The purpose of software maintenance is defined

ing software operating as long as possible. The
open source paradigm has brought further atten-
tion to the issue of maintaining software artifacts
developed by others.

In this Guide, software maintenance is defined
as the totality of activities required to provide
cost-effective support to software. Activities are
performed during the predelivery stage as well as

5-1

© ISO/IEC 2016 — All rights reserved

in the international standard for software mainte-
nance: ISO/IEC/IEEE 14764 [1*].! In the context
of software engineering, software maintenance is
essentially one of the many technical processes.

1 For the purpose of conciseness and ease of read-
ing, this standard is referred to simply as IEEE 14764
in the subsequent text of this KA.

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Software
Maintenance
Software Key Issues in . : Software
O aintenanc echniques for S —
[N] Suftyre = Process : TMaintenance he N
Fundamentals Maintenance Tools

Definitions and

» Technical Issues

Maintenance

Program

Terminology Processes Comprehension
Nature of Y ‘1 Maintenance N .
P Maintenance anagement Issues Activities eengineering

Need for Maintenance Cost
X Maintenance Estimation
Lo Software
Majority of .
X Maintenance Costs > Miainienance
am Measurement

Evolution of
Software

Categories of
Maintenance

The objective of software.maintenance is to
medify existing softwareswhile preserving its
infegrity. The interpatijenal standard also states
th¢ importance of .Having some maintenance
acfivities prior;to-the final delivery of software
(predelivery activities). Notably, IEEE 14764
enpphasizes>the importance of the predelivery
aspeots‘of maintenance—planning, for example.

Reverse
Engineeting

=» Migration

L3 Retirement

Figure 5.1, Bfeakdown of Topics for the Software Maintenance KA

modified, testing is conducted, and a new version
of the software product is released. Also, train-
ing and daily support are provided to users. The
term maintainer is defined as an organization that
performs maintenance activities. In this KA, the
term will sometimes refer to individuals who per-
form those activities, contrasting them with the
developers.

IEEE 14764 identifies the primary activities of

1.2. Nature of Maintenance
[2%*, c1s3]

Software maintenance sustains the software prod-
uct throughout its life cycle (from development
to operations). Modification requests are logged
and tracked, the impact of proposed changes is
determined, code and other software artifacts are

software maintenance as process implementation,
problem and modification analysis, modification
implementation, maintenance review/acceptance,
migration, and retirement. These activities are
discussed in section 3.2, Maintenance Activities.

Maintainers can learn from the develop-
ers’ knowledge of the software. Contact with
the developers and early involvement by the

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

maintainer helps reduce the overall maintenance
effort. In some instances, the initial developer
cannot be reached or has moved on to other tasks,
which creates an additional challenge for main-
tainers. Maintenance must take software artifacts
from development (for example, code or docu-

progressively evolve/maintain them over a soft-
ware life cycle.

1.3. Need for Maintenance
[2%*, cls5]

Maintenance is needed to ensure that the software
continues to satisfy user requirements. Mainte-
nance is applicable to software that is developed
using any software life cycle model (for example,
spiral or linear). Software products change due
to corrective and noncorrective software actions.
Maintenance must be performed in order to

* correct faults;

 improve the design;

 implement enhancements;

« interface with other software;

* adapt programs so that different hardware,
software, system features, and telecommuni-
cations facilities can be used;

* migrate legacy software; and

* retire software.

Five key characteristics)comprise the maintain-
er’s activities:

* maintainjng-eontrol over the software’s day-
to-dayfunctions;

* maintaining control
modification;

< perfecting existing functions;

¢ identifying security threats and fixing secu-
rity vulnerabilities; and

over software

Software Maintenance 5-3

perception of software maintenance is that it
merely fixes faults. However, studies and sur-
veys over the years have indicated that the major-
ity, over 80 percent, of software maintenance is
used for noncorrective actions [2*, figure 4.1].
Grouping enhancements and corrections together

conceptions regarding the high cost of corn¢c-
tions. Understanding the categories of (Seftwgre
maintenance helps to understand the structure{of
software maintenance costs. Also{anderstanding
the factors that influence the maintainability |of
software can help to contain cests. Some envirgn-
mental factors and theip felationship to software
maintenance costs include the following:

* Operating_énvitonment refers to hardwgre
and software.
* Organizational environment refers to pqli-
cies;) ‘competition, process, product, and
personnel.

I'5. Evolution of Sofiware
[2%, ¢3$5]

Software maintenance in terms of evolution was
first addressed in the late 1960s. Over a period|of
twenty years, research led to the formulation|of
eight “Laws of Evolution.” Key findings includg a
proposal that maintenance is evolutionary devgl-
opment and that maintenance decisions are aided
by understanding what happens to software oyer
time. Some state that maintenance is continyed
development, except that there is an extra input
(or constraint)—in other words, existing large sqft-
ware is never complete and continues to evolye;
as it evolves, it grows more complex unless soime
action is taken to reduce this complexity.

1.6. Categories of Maintenance
[1*, c3, c6s2] [2*, c3s3.

—_

]

e preventing software performance from
p

degrading to unacceptable levels.

1.4. Majority of Maintenance Costs
[2%*, c4s3, ¢555.2]

Maintenance consumes a major share of the finan-
cial resources in a software life cycle. A common

© ISO/IEC 2016 — All rights reserved

Three categories (types) of maintenance have
been defined: corrective, adaptive, and perfec-
tive [2*, c4s3]. IEEE 14764 includes a fourth
category—preventative.

e Corrective maintenance: reactive modifi-
cation (or repairs) of a software product

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-4 SWEBOK® Guide V3.0

performed after delivery to correct discov-
ered problems. Included in this category
is emergency maintenance, which is an
unscheduled modification performed to tem-
porarily keep a software product operational
pending corrective maintenance.

ISO/IEC TR 19759:2016(E)

next release while sending out emergency patches
for the current release, also creates a challenge.
The following section presents some of the tech-
nical and management issues related to software
maintenance. They have been grouped under the
following topic headings:

—Adaptive—maintenance—modification—ef—a
software product performed after delivery to
keep a software product usable in a changed
or changing environment. For example,
the operating system might be upgraded
and some changes to the software may be
necessary.

b Perfective maintenance: modification of a
software product after delivery to provide
enhancements for users, improvement of
program documentation, and recoding to
improve software performance, maintain-
ability, or other software attributes.

b Preventive maintenance: modification of a
software product after delivery to detect and
correct latent faults in the software product
before they become operational faults.

[EEE 14764 classifies adaptive and perfective
mgintenance as maintenance enhancements. [t
aldo groups together the corrective and prevén-
tiye maintenance categories into a correctign-cat-
egpry, as shown in Table 5.1.

Table 5.1. Software Maintenancé Categories
Correction Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

2.|Key Issués’in Software Maintenance

A |Inumber of key issues must be dealt with to
enpure” the effective maintenance of software.

* technical issues,

* management issues,
* cost estimation, and
* measurement.

2.1. Technical Issues

2.1.1. Limited Understanding
[2%, c6]

Limited understanding/refers to how quickly a
software engineercan understand where to make
a change or carsection in software that he or she
did not develop. Research indicates that about half
of the tetal maintenance effort is devoted to under-
standing' the software to be modified. Thus, the
topicrof software comprehension is of great inter-
est to software engineers. Comprehension is more
difficult in text-oriented representation—in source
code, for example—where it is often difficult to
trace the evolution of software through its releases/
versions if changes are not documented and if the
developers are not available to explain it, which is
often the case. Thus, software engineers may ini-
tially have a limited understanding of the software;
much has to be done to remedy this.

2.1.2. Testing
[1%*, c6s2.2.2] [2%, 9]

The cost of repeating full testing on a major
piece of software is significant in terms of time
and money. In order to ensure that the requested
problem reports are valid, the maintainer should

Software maintenance provides unique techni-
cal and management challenges for software
engineers—for example, trying to find a fault in
software containing a large number of lines of
code that another software engineer developed.
Similarly, competing with software developers
for resources is a constant battle. Planning for a
future release, which often includes coding the

replicate or verify problems by running the
appropriate tests. Regression testing (the selec-
tive retesting of software or a component to ver-
ify that the modifications have not caused unin-
tended effects) is an important testing concept in
maintenance. Additionally, finding time to test is
often difficult. Coordinating tests when different
members of the maintenance team are working

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

on different problems at the same time remains a
challenge. When software performs critical func-
tions, it may be difficult to bring it offline to test.
Tests cannot be executed in the most meaning-
ful place-the production system. The Software

sion testing.

2.1.3. Impact Analysis
[1%, ¢552.5] [2%, c13s3]

Impact analysis describes how to conduct, cost-
effectively, a complete analysis of the impact of
a change in existing software. Maintainers must
possess an intimate knowledge of the software’s
structure and content. They use that knowledge
to perform impact analysis, which identifies all
systems and software products affected by a soft-
ware change request and develops an estimate of
the resources needed to accomplish the change.
Additionally, the risk of making the change is
determined. The change request, sometimes called
a modification request (MR) and often called¢a
problem report (PR), must first be analyzed @and
translated into software terms. Impact analysis is
performed after a change request enterstthe soft-
ware configuration management preccss. IEEE
14764 states the impact analysis tasks:

* analyze MRs/PRs;

* replicate or verify thejproblem;

* develop options . for implementing the
modification;

e document~the MR/PR, the results, and the
execution options;

* obtainapproval for the selected modification
dption.

The severity of a problem is often used to
decide how and when it will be fixed. The soft-

Software Maintenance 5-5

2.1.4. Maintainability
[1*, c6s8] [2*, c12s5.5]

IEEE 14764 [1*, c3s4] defines maintainability
as the capability of the software product to be
modified. Modifications may include corrections,
} adaptation—ofthe—software to
changes in environment as well as changes|in
requirements and functional specificatiofis,

As a primary software quality characterisfic,
maintainability should be specified;xeviewed, and
controlled during software development actipi-
ties in order to reduce maintenance costs. When
done successfully, the software’s maintainability
will improve. Maintainability is often difficult|to
achieve because the‘subcharacteristics are offen
not an important\fecus during the process of sqft-
ware develgpment. The developers are, typically,
more preoceupied with many other activities and
frequently® prone to disregard the maintaingr’s
requivements. This in turn can, and often dogs,
result in a lack of software documentation and tpst
environments, which is a leading cause of difficpl-
ties in program comprehension and subsequ¢nt
impact analysis. The presence of systematic and
mature processes, techniques, and tools helps|to
enhance the maintainability of software.

2.2. Management Issues

2.2.1. Alignment with Organizational
Objectives
(2%, ¢4]

Organizational objectives describe how to demgn-
strate the return on investment of software majn-
tenance activities. Initial software development] is
usually project-based, with a defined time scale and
budget. The main emphasis is to deliver a prodfict
that meets user needs on time and within budget.
In contrast, software maintenance often has the

ware engineer then identifies the affected com-
ponents. Several potential solutions are provided,
followed by a recommendation as to the best
course of action.

Software designed with maintainability in mind
greatly facilitates impact analysis. More informa-
tion can be found in the Software Configuration
Management KA.

© ISO/IEC 2016 — All rights reserved

objective of extending the life of software for as
long as possible. In addition, it may be driven by
the need to meet user demand for software updates
and enhancements. In both cases, the return on
investment is much less clear, so that the view at
the senior management level is often that of a major
activity consuming significant resources with no
clear quantifiable benefit for the organization.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-6 SWEBOK® Guide V3.0

2.2.2. Staffing
[2%*, c4s5, c10s4]

Staffing refers to how to attract and keep soft-
ware maintenance staff. Maintenance is not often
viewed as glamorous work. As a result, software

ISO/IEC TR 19759:2016(E)

assignment of the maintenance responsibility to a
single group or person, regardless of the organi-
zation’s structure.

2.2.5. Outsourcing
[3*]

maitenance—personnel—are—freguenthr—aewed
gHIeRaH ce—personier—at Hequehtry—vieweea

as|“second-class citizens,” and morale therefore
suffers.

D.2.3. Process
[1%, ¢5] [2%, ¢5]

THe software life cycle process is a set of activities,
m¢thods, practices, and transformations that peo-
pl¢ use to develop and maintain software and its
asgociated products. At the process level, software
mgintenance activities share much in common
wilth software development (for example, software
copfiguration management is a crucial activity in
botth). Maintenance also requires several activities
that are not found in software development (see
segtion 3.2 on unique activities for details). These
acfivities present challenges to management.

D.2.4. Organizational Aspects of Maintenance
[1%, c752.3] [2*, el0]

Oilganizational aspects describe howto iden-
tify which organization and/or function will be
regponsible for the maintenance of software. The
tegm that develops the softwdre)is not necessar-
assigned to maintain the software once it is
operational.

[n deciding wherte the software maintenance
fupction will be tlocated, software engineering
organizations smay, for example, stay with the
orfginal develpper or go to a permanent main-
teflance=speeific team (or maintainer). Having a
pefmanent maintenance team has many benefits:

-
—_
<

Outsourcing and offshoring software mainte;
nance has become a major industry. Organizas
tions are outsourcing entire portfolios of soft-
ware, including software maintenancé~ More
often, the outsourcing option is seleeted for less
mission-critical software, as orgahizations are
unwilling to lose control of the‘software used in
their core business. One of the 'major challenges
for outsourcers is to determine the scope of the
maintenance services required, the terms of a ser-
vice-level agreement,.ahd the contractual details.
Outsourcers will heed to invest in a maintenance
infrastructure, @gd the help desk at the remote site
should be staffed with native-language speakers.
Outsoureing requires a significant initial invest-
mentand the setup of a maintenance process that
will réquire automation.

2.3. Maintenance Cost Estimation

Software engineers must understand the different
categories of software maintenance, discussed
above, in order to address the question of estimat-
ing the cost of software maintenance. For plan-
ning purposes, cost estimation is an important
aspect of planning for software maintenance.

2.3.1. Cost Estimation
[2%, ¢7s2.4]

Section 2.1.3 describes how impact analysis iden-
tifies all systems and software products affected
by a software change request and develops an
estimate of the resources needed to accomplish

+ allows for specialization;

* creates communication channels;

» promotes an egoless, collegiate atmosphere;
* reduces dependency on individuals;

* allows for periodic audit checks.

Since there are many pros and cons to each
option, the decision should be made on a case-by-
case basis. What is important is the delegation or

that change.

Maintenance cost estimates are affected
by many technical and nontechnical factors.
IEEE 14764 states that “the two most popular
approaches to estimating resources for software
maintenance are the use of parametric models
and the use of experience” [1*, c¢7s4.1]. A combi-
nation of these two can also be used.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

2.3.2. Parametric Models
[2%*, ¢1255.6]

Parametric cost modeling (mathematical models)
has been applied to software maintenance. Of sig-
nificance is that historical data from past main-

the mathematical models. Cost driver attributes
affect the estimates.

2.3.3. Experience
[2*, c12s5.5]

Experience, in the form of expert judgment,
is often used to estimate maintenance effort.
Clearly, the best approach to maintenance esti-
mation is to combine historical data and experi-
ence. The cost to conduct a modification (in terms
of number of people and amount of time) is then
derived. Maintenance estimation historical data
should be provided as a result of a measurement
program.

2.4. Software Maintenance Measurement
[1*, c6s5] [2*, cL2]

Entities related to software maintenance} whose
attributes can be subjected to measurement,
include process, resource, andy product [2%,
c12s3.1].

There are several softwate measures that can
be derived from the aftributes of the software,
the maintenance process, and personnel, includ-
ing size, compleXity, quality, understandability,
maintainability, and effort. Complexity measures
of softwareycan also be obtained using available
commercial” tools. These measures constitute a
good(starting point for the maintainer’s measure-
meént*program. Discussion of software process
and product measurement is also presented in the
Software Engineering Process KA. The topic of

Software Maintenance 5-7

quality model suggests measures that are specific
for software maintenance. Measures for subchar-
acteristics of maintainability include the follow-
ing [4*, p. 60]:

 Analyzability: measures of the maintainer’s

or to identify parts to be modified.
* Changeability: measures of the maintainef’s
effort associated with implendeniting a spefi-
fied modification.
« Stability: measures of thewunexpected behgv-
ior of software, ingluding that encountefed
during testing.
* Testability: measures of the maintainer’s and
users’ effort\n’ trying to test the modified
software.
+ Other ‘measures that maintainers use inclugle
* sizeof the software,
« ‘complexity of the software ,
s understandability, and
* maintainability.

Providing software maintenance effort, by
categories, for different applications provides
business information to users and their organiga-
tions. It can also enable the comparison of sdft-
ware maintenance profiles internally within [an
organization.

3. Maintenance Process

In addition to standard software engineering pfo-
cesses and activities described in IEEE 147¢4,
there are a number of activities that are unique|to
maintainers.

=

3.1. Maintenance Processes
[1*, c5] [2%, c5] [5, s515]

a software measurement program is described in
the Software Engineering Management KA.

2.4.1. Specific Measures
[2%, cl12]

The maintainer must determine which measures
are appropriate for a specific organization based
on that organization’s own context. The software

© ISO/IEC 2016 — All rights reserved

Maintenance processes provide needed activities
and detailed inputs/outputs to those activities as
described in IEEE 14764. The maintenance pro-
cess activities of IEEE 14764 are shown in Figure
5.2. Software maintenance activities include

* process implementation,
* problem and modification analysis,
* modification implementation,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-8 SWEBOK® Guide V3.0

* maintenance review/acceptance,
* migration, and
* software retirement.

Process
Implementation

ISO/IEC TR 19759:2016(E)

activities and tasks are the responsibility of the
maintainer. As already noted, many maintenance
activities are similar to those of software develop-
ment. Maintainers perform analysis, design, cod-
ing, testing, and documentation. They must track
requirements in their activities—just as is done

m—develonment
H—aev-e1oPpt

RN

Problem and
Modification
Analysis

Maintenance
Review /
Acceptance

Modification
Implementation

Retirement

Migration

Figure 5.2. Software Maintenance Process
Dther maintenance process models include:

b quick fix,

b spiral,

b Osborne’s,

b iterative enhancement, and
b reuse-oriented.

Recently, agile methedologies, which promote
light processes, have-been also adapted to main-
telance. This requirement emerges from the ever-
ingreasing demtand for fast turnaround of main-
telance sery16¢s. Improvement to the software
maintenafce process is supported by specialized
software-maintenance capability maturity models
(s¢e }61 and [7], which are briefly annotated in the

=

O

baselines change. IEEE 14764 recommends that
when a maintainer uses a development process;
it must be tailored to meet specific needs.[L*,
¢5s3.2.2]. However, for software mainfenance,
some activities involve processes unique to soft-
ware maintenance.

3.2.1. Unique Activities
[1*, ¢3s10, c6s9y ¢7s2, c7s3] [2%*, c6, 7]

There are a number ‘of/ processes, activities, and
practices that are tnique to software maintenance:

* Prografr’ understanding: activities needed to
obtain,a general knowledge of what a software
product does and how the parts work together.
Transition: a controlled and coordinated
sequence of activities during which software
is transferred progressively from the devel-
oper to the maintainer.

* Modification request acceptance/rejection:
modifications requesting work beyond a cer-
tain size/effort/complexity may be rejected
by maintainers and rerouted to a developer.

* Maintenance help desk: an end-user and

maintenance coordinated support function

that triggers the assessment, prioritization,
and costing of modification requests.

Impact analysis: a technique to identify areas

impacted by a potential change;

* Maintenance Service-Level Agreements
(SLAs) and maintenance licenses and con-
tracts: contractual agreements that describe
the services and quality objectives.

Further Readings section).

3.2. Maintenance Activities
[1*, 5, ¢6s8.2, ¢7s3.3]

The maintenance process contains the activities
and tasks necessary to modify an existing soft-
ware product while preserving its integrity. These

3.2.2. Supporting Activities
[1*, c4sl, 5, c6s7] [2*, c9]

Maintainers may also perform support activities,
such as documentation, software configuration
management, verification and validation, problem
resolution, software quality assurance, reviews,

© ISO/IEC 2016 — All rights reserved

and—update—documentation—as
SRa—HPer ot

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

and audits. Another important support activity
consists of training the maintainers and users.

3.2.3. Maintenance Planning Activities
[1*, c7s3]

planning, and maintainers must address the issues
associated with a number of planning perspec-
tives, including

* business planning (organizational level),

* maintenance planning (transition level),

* release/version planning (software level), and

* individual software change request planning
(request level).

At the individual request level, planning is
carried out during the impact analysis (see sec-
tion 2.1.3, Impact Analysis). The release/version
planning activity requires that the maintainer:

« collect the dates of availability of individual
requests,

* agree with users on the content of subsequent
releases/versions,

* identify potential conflicts andSdevelop
alternatives,

« assess the risk of a given release and develop
a back-out plan in case problems should
arise, and

* inform all the stakéholders.

Whereas software "development projects can
typically lastfrom some months to a few years,
the maintepance phase usually lasts for many
years. Making estimates of resources is a key ele-
ment{ of ‘maintenance planning. Software main-
tefianee planning should begin with the decision
te~develop a new software product and should
consider quality objectives. A concept document

Software Maintenance 5-9

« identification of the software maintenance
organization, and
« estimate of software maintenance costs.

The next step is to develop a corresponding
software maintenance plan. This plan should be

= e e-developmentandshoyld
specify how users will request software modifi¢a-
tions or report problems. Software maifitenarjce
planning is addressed in IEEE 14764 . T{provides
guidelines for a maintenance plai- Finally,|at
the highest level, the maintepance organization
will have to conduct business\planning activitjes
(budgetary, financial, and/human resources) jjist
like all the other divisions of the organizatign.
Management is discussed in the chapter Relafed
Disciplines of Saftware Engineering.

3.2.4. Software Configuration Management
[1%, ¢5s1.2.3] [2%, c| 1]

WEE 14764 describes software configuration
management as a critical element of the maine-
nance process. Software configuration manage-
ment procedures should provide for the verifiga-
tion, validation, and audit of each step requifed
to identify, authorize, implement, and release]jhe
software product.

It is not sufficient to simply track modifi¢a-
tion requests or problem reports. The softwgre
product and any changes made to it must be cqn-
trolled. This control is established by implemet-
ing and enforcing an approved software configu-
ration management (SCM) process. The Software
Configuration Management KA provides detdils
of SCM and discusses the process by which sd[ft-
ware change requests are submitted, evaluatgd,
and approved. SCM for software maintenancd is
different from SCM for software development|in
the number of small changes that must be cgn-
trolled on operational software. The SCM pfo-

should be developed, followed by a maintenance
plan. The maintenance concept for each software
product needs to be documented in the plan [1%,
¢7s2] and should address the

* scope of the software maintenance,

 adaptation of the software maintenance
process,

© ISO/IEC 2016 — All rights reserved

cess is implemented by developing and following
a software configuration management plan and
operating procedures. Maintainers participate in
Configuration Control Boards to determine the
content of the next release/version.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-10 SWEBOK® Guide V3.0

3.2.5. Software Quality
[1%*, c6s5, c6s7, c6s8] [2*, c1255.3]

It is not sufficient to simply hope that increased
quality will result from the maintenance of soft-
ware. Maintainers should have a software qual-

ISO/IEC TR 19759:2016(E)

4.3. Reverse Engineering
[1*, c6s2] [2%*, 7, c14s5]

Reverse engineering is the process of analyzing
software to identify the software’s components
and their inter-relationships and to create repre-

1tVi—preasram—H—m
N Proer

wet-be nlanpad and rooaccoac
St St—Be—Pr a—processes

myist be implemented to support the maintenance
prpcess. The activities and techniques for Soft-
wiare Quality Assurance (SQA), V&V, reviews,
anfd audits must be selected in concert with all
th¢ other processes to achieve the desired level
of]quality. It is also recommended that the main-
tainer adapt the software development processes,
te¢hniques and deliverables (for instance, testing
documentation), and test results. More details can
be|found in the Software Quality KA.

4.[Techniques for Maintenance

THis topic introduces some of the generally
acpepted techniques used in software maintenance.

(]

4.1. Program Comprehension
[2%*, c6, c14s5]

Prpgrammers spend considerable time reading and
understanding programs in order to implement
chpnges. Code browsers are key tools forprogram
comprehension and are used to organize-and pres-
enf source code. Clear and concise documentation
cap also aid in program compréehension.

4.2. Reengineering
(2%, ¢7]

Rdengineeringis defined as the examination and
alteration of software to reconstitute it in a new
form, and;includes the subsequent implementa-
tign of the new form. It is often not undertaken to
impreve maintainability but to replace aging leg-

sentations—oi—the-sefiware—n—another—form—orat
higher levels of abstraction. Reverse engineer-
ing is passive; it does not change the softwdre
or result in new software. Reverse enginepr-
ing efforts produce call graphs and contrel-flow
graphs from source code. One type~of reverse
engineering is redocumentation. Anether type is
design recovery. Finally, data,feverse engineer-
ing, where logical schemas. aré recovered from
physical databases, has grows in importance over
the last few years. Toolsar¢ key for reverse engi-
neering and related ‘tasks such as redocumenta-
tion and design réeovery.

4.4. Migrafion
[1*, c5s5]

During software’s life, it may have to be modi-
fied to run in different environments. In order to
migrate it to a new environment, the maintainer
needs to determine the actions needed to accom-
plish the migration, and then develop and docu-
ment the steps required to effect the migration in
a migration plan that covers migration require-
ments, migration tools, conversion of product
and data, execution, verification, and support.
Migrating software can also entail a number of
additional activities such as

* notification of intent: a statement of why
the old environment is no longer to be sup-
ported, followed by a description of the new
environment and its date of availability;

* parallel operations: make available the
old and new environments so that the user

acy software. Refactoring is a reengineering tech-
nique that aims at reorganizing a program without
changing its behavior. It seeks to improve a pro-
gram structure and its maintainability. Refactor-
ing techniques can be used during minor changes.

experiences a smooth transition to the new
environment;

* notification of completion: when the sched-
uled migration is completed, a notification is
sent to all concerned;

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

* postoperation review: an assessment of par-
allel operation and the impact of changing to
the new environment;

« data archival: storing the old software data.

4.5. Retirement

Software Maintenance 5-11

* program slicers, which select only parts of a
program affected by a change;

* static analyzers, which allow general view-
ing and summaries of a program content;

* dynamic analyzers, which allow the main-
tainer to trace the execution path of a

[k o8¢l
I |

Once software has reached the end of its use-
ful life, it must be retired. An analysis should
be performed to assist in making the retirement
decision. This analysis should be included in the
retirement plan, which covers retirement require-
ments, impact, replacement, schedule, and effort.
Accessibility of archive copies of data may also
be included. Retiring software entails a number
of activities similar to migration.

5. Software Maintenance Tools
[1*, c6s4] [2%*, c14]

This topic encompasses tools that are particularly
important in software maintenance where exist-
ing software is being modified. Examples regard-
ing program comprehension include

ProsTes
* data flow analyzers, which allow the hmajn-
tainer to track all possible data flows' of a
program;
« cross-referencers, which genératé indices|of
program components; and
¢ dependency analyzers, which help maintajn-
ers analyze and undéstand the interrelatign-
ships between components of a program.

Reverse engingering tools assist the process by
working backwards from an existing product|to
create arfifacts such as specification and design
descriptions, which can then be transformed|to
gendrate a new product from an old one. Majn-
tainers also use software test, software configufa-
tion management, software documentation, and
software measurement tools.

=

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-12 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

ISO/IEC TR 19759:2016(E)

&
> o
> >
[o\} [—J
-+ [o\}
2 = ®
5 z :
o= S ; —
M= . fac)
= Z 2 N2
) < v:') N
z : N
= = q .
= 3 \2)
: \
1} Software Maintenance NS
Fundamentals &Q~
1.1. Definitions and Terminology c3 cls2, c2s2 (/C)
N
1.2. Nature of Maintenance cls3(\\\
1.3. Need for Maintenance &S@
1.4. Majority of Maintenance Costs Oc&, c5s5.2
N\
1.5. Evolution of Software QQ c3s5
1.6. Categories of Maintenance c3, cbs \\ c3s3.1, c4s3
2| Key Issues in Software (%) K
Mlaintenance . \\.Q
2.1. Technical Issues . Q)®
\\\
2.1.1. Limited Understanding "S) c6
2.1.2. Testing N 6s2.2.2 c9
LN \\
2.1.3. Impact Analysis C)\ c5s2.5 cl3s3
2.14. Maintainability\ c6s8, ¢354 ¢1255.5
O
2.2. Management{Issues
[N
2.2.1. Aligdiment with w
Organi nal objectives
Nt
223 Staffing c4s5, cl0s4
&4.3. Process c5 c5
2.2..4. Organizational Aspects of 7523 c10
Maintenance
2.2.5. Outsourcing/Offshoring all
2.3. Maintenance Cost Estimation
2.3.1. Cost Estimation c7s4.1 c7s2.4

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759-2016(E) Software Maintenance 5-13

&
> e
> =3
[o\} (=3
<t (o\]
=l =1]
g : z
— = S
- S S
==) 22
S = E N
Z 2 Q
=) = q‘]’
= L]
= &) /\<C)
2.3.2. Parametric Models cl2s5.6 yoX
A
2.3.3. Experience c12s5(§’\
2.4. Software Maintenance 655 C%ZS\\S{S 31
Measurement
2.4.1. Specific Measures &\(o cl2
N
3. Maintenance Process &)
N
3.1. Maintenance Processes cS Q c5
3.2. Maintenance Activities §§ c7s 3 3
3.2.1. Unique Activities > €69, €752, c6,c7
W\ c7s3
3.2.2. Supporting Activities A‘\@ c4sl, c5, c6s7 c9
3.2..3. ’Mamtenance Planm&@ 752, ¢7s.3
Activities Ne
3.2.4. Software Co@uratlon 55123 el
Management
N
3.2.5. SofttvﬁQuality c6s5, c6s7, c6s8 cl2s5.3
4. Techni(ﬂsrfor Maintenance
4 },@Ugram Comprehension c6,cl4s5
@ Reengineering c7
\J .
\Q/ 4.3. Reverse Engineering c6s2 c7, cl4s5
4.4. Migration c5s5
4.5. Retirement c5s6
5. Software Maintenance Tools c6s4 cl4

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

5-14 SWEBOK® Guide V3.0

FURTHER READINGS

A. April and A. Abran, Software Maintenance
Management: Evaluation and Continuous
Improvement [6].

This-beok-exploresthe-domain-ofsmall-software
5 S—e 5 —5OtWae

ISO/IEC TR 19759:2016(E)

REFERENCES

[1*] IEEE Std. 14764-2006 (a.k.a. ISO/IEC
14764:2006) Standard for Software
Engineering—Software Life Cycle
Processes—Maintenance, IEEE, 2006.

e PToToytrt T

maintenance processes (S3M). It provides road-
mgps for improving software maintenance pro-
cepses in organizations. It describes a software
maintenance specific maturity model organized
by| levels which allow for benchmarking and con-
tifuous improvement. Goals for each key prac-
c area are provided, and the process model pre-
septed is fully aligned with the architecture and
frgmework of international standards ISO12207,
ISP14764 and ISO15504 and popular maturity
m¢dels like ITIL, CoBIT, CMMI and CM3.

—+
—_
(@)

M| Kajko-Mattsson, “Towards a Business
Maintenance Model,” IEEE Int’l Conf.
Software Maintenance [7].

THis paper presents an overview of the Correc-
tije Maintenance Maturity Model (CM3). In
coptrast to other process models, CM3 is a spe*
ciglized model, entirely dedicated to corrective
maintenance of software. It views maintenange in
tegms of the activities to be performed-and their
orfler, in terms of the information used by these
aclivities, goals, rules and motivations for their
exgcution, and organizational levels and roles
inyolved at various stages,of a typical corrective
maintenance process.

[2*] P. Grubb and A.A. Takang, Software
Maintenance: Concepts and Practice, 2nd
ed., World Scientific Publishing, 2003.

[3*] H.M. Sneed, “Offering Software
Maintenance as an Offshore Seryice,” Proc.
IEEFE Int’l Conf. Software,Mtintenance
(ICSM 08), IEEE, 2008, pp: 1-5.

[4*] JW. Moore, The Roud Map to Software
Engineering: A Standards-Based Guide,
Wiley-IEEE ‘€emputer Society Press, 2006.

[51 ISO/IEC/IEEE 24765:2010 Systems and
Software Engineering—Vocabulary, ISO/
IEC/IEEE, 2010.

[6] A. April and A. Abran, Software
Maintenance Management: Evaluation
and Continuous Improvement, Wiley-IEEE
Computer Society Press, 2008.

[7] M. Kajko-Mattsson, “Towards a Business
Maintenance Model,” Proc. Int’l Conf-
Software Maintenance, IEEE, 2001, pp.
500-509.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 6

SOFTWARE CONFIGURATION MANAGEMENT

ACRONYMS
CCB Configuration Control Board
CM Configuration Management
FCA Functional Configuration Audit
PCA Physical Configuration Audit
SCCB Software Configuration Control
Board
SCI Software Configuration Item
SCM Software Configuration
Management
Software Configuration
SCMP Management Plan
SCR Software Change Request
SCSA Softwar§ Configuration Status
Accounting
SDD Software Design Document
SEI/ Software Engineeritig Institute’s
Capability Maturity Model
CMMI .
Integration
SQA Softwate Quality Assurance
SRS Softvyare Requlrement
Specification
INTRODUCTION

A system can be defined as the combination of

to serve a particular purpose. Configuration mgn-
agement (CM), then, is the discipling-of identify-
ing the configuration of a system at distinct points
in time for the purpose of systetmatically contrpl-
ling changes to the configuration and maintaining
the integrity and traceability of the configuration
throughout the system' life cycle. It is formally
defined as

A discipline applying technical and admin;
istrative direction and surveillance to: iden;
tify and document the functional and physis
cal characteristics of a configuration item
control changes to those characteristics
record and report change processing and
implementation status, and verify compli;
ance with specified requirements. [1]

Software configuration management (SCM)
is a supporting-software life cycle process that
benefits project management, development and
maintenance activities, quality assurance actiyi-
ties, as well as the customers and users of the gnd
product.

The concepts of configuration managem¢nt
apply to all items to be controlled, although th¢re
are some differences in implementation betwden
hardware CM and software CM.

SCM is closely related to the software qupl-
ity assurance (SQA) activity. As defined in the
Software Quality knowledge area (KA), SQA
processes provide assurance that the software

interacting elements organized to achieve one or
more stated purposes [1]. The configuration of a
system is the functional and physical characteris-
tics of hardware or software as set forth in techni-
cal documentation or achieved in a product [1]; it
can also be thought of as a collection of specific
versions of hardware, firmware, or software items
combined according to specific build procedures

6-1
© ISO/IEC 2016 — All rights reserved

products and processes in the project life cycle
conform to their specified requirements by plan-
ning, enacting, and performing a set of activities
to provide adequate confidence that quality is
being built into the software. SCM activities help
in accomplishing these SQA goals. In some proj-
ect contexts, specific SQA requirements prescribe
certain SCM activities.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-2 SWEBOK® Guide V3.0

Software
Configuration
Management

ISO/IEC TR 19759:2016(E)

I

Management of

Software
r Configuration

Software
— Configuration

Software
Configuration

Software
r Configuration

Software Release
| Management

Software
Configuration

Ly [Burveillance of
SCM

The SCM activities are management and plan-
nipg of the SCM process, software configuration
id¢ntification, software configuration controly
software configuration status accounting, sdft-
wire configuration auditing, and software release
mgnagement and delivery.

The Software Configuration Management KA
is [related to all the other KAs, since the object
of|configuration management(is)the artifact pro-
duced and used throughout the software engi-
nepring process.

BREAKDOWN QETOPICS FOR
SOFTWAREGCONFIGURATION
MANAGEMENT

THe bteakdown of topics for the Software Config-
urgtion’ Management KA is shown in Figure 6.1.

the SCM Process Identification Control Status. Auditing and Delivery Management
Accounting Tools
Oroanizational Identifyi Requesting, Software Software
rganizational entitying . Confi G Functional Soft
Evaluating, and ontiguration . oftware
> [Context for > Items to be > Approving > Status Configuration Building
SCM Controlled Software Changes Information Audit
(Constraints and Soft Implementing Software Software
> lGuidance for oftware > Software Ly Configuration | » Physical L. Software Release
SCM Process Library Changes Status Configuration Management
Reporting Audit
In-Process
| » [Planning for Ly DeYiations and L, Audits of a
SCM Waivers Software
Baseline
»SCM Plan

Figure 6.1. Breakdown of Topics for the Software Configuration Management KA

development and change implementation activi-
ties. A successful SCM implementation requires
careful planning and management. This, in turn,
requires an understanding of the organizational
context for, and the constraints placed on, the
design and implementation of the SCM process.

1.1. Organizational Context for SCM
[2%*, c6, ann. D] [3*, introduction] [4*, c29]

To plan an SCM process for a project, it is neces-
sary to understand the organizational context and
the relationships among organizational elements.
SCM interacts with several other activities or
organizational elements.

The organizational elements responsible for the
software engineering supporting processes may be
structured in various ways. Although the responsi-

1. Management of the SCM Process

SCM controls the evolution and integrity of a
product by identifying its elements; managing and
controlling change; and verifying, recording, and
reporting on configuration information. From the
software engineer’s perspective, SCM facilitates

bility for performing certain SCM tasks might be
assigned to other parts of the organization (such as
the development organization), the overall respon-
sibility for SCM often rests with a distinct organi-
zational element or designated individual.
Software is frequently developed as part of a
larger system containing hardware and firmware
elements. In this case, SCM activities take place

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

in parallel with hardware and firmware CM activ-
ities and must be consistent with system-level
CM. Note that firmware contains hardware and
software; therefore, both hardware and software
CM concepts are applicable.

SCM might interface with an organization’s

aualit _agccnranoco aotiaty o dooyiac ool oo
Sey—assH Se—aSH VY H—55Hes—SHen—as

Software Configuration Management 6-3

engineering issued by the various standards orga-
nizations (see Appendix B on standards).

1.3. Planning for SCM
[2*, c6, ann. D, ann. E] [3%*, c23] [4%, ¢29]

The—snlanpnme—of-an—SCM-nrocess—for—a—aiven
P oo ProcesS—o—a—£HC

records management and nonconforming items.
Regarding the former, some items under SCM
control might also be project records subject to
provisions of the organization’s quality assurance
program. Managing nonconforming items is usu-
ally the responsibility of the quality assurance
activity; however, SCM might assist with track-
ing and reporting on software configuration items
falling into this category.

Perhaps the closest relationship is with the
software development and maintenance orga-
nizations. It is within this context that many of
the software configuration control tasks are con-
ducted. Frequently, the same tools support devel-
opment, maintenance, and SCM purposes.

1.2. Constraints and Guidance for the SCM
Process
[2%*, c6, ann. D, ann. E] [3*%2, ¢5]
[5%5¢€19s2.2]

Constraints affecting, and guidanee for, the SCM
process come from a number of sources. Poli-
cies and procedures set forth at corporate or other
organizational levels might influence or prescribe
the design and implementation of the SCM pro-
cess for a given project. In addition, the contract
between the acquiter and the supplier might con-
tain provisions” affecting the SCM process. For
example) eertain configuration audits might be
requifed, or it might be specified that certain items
beplaced under CM. When software products to
be/developed have the potential to affect public
Safety, external regulatory bodies may impose

e

project should be consistent with the ofgahi-
zational context, applicable constrainfs, com-
monly accepted guidance, and the nature of the
project (for example, size, safetydetiticality, and
security). The major activities~cavered are sqft-
ware configuration identification, software cgn-
figuration control, software-configuration status
accounting, software configuration auditing, and
software release jnandgement and delivery. |In
addition, issues Such as organization and respqn-
sibilities, resources and schedules, tool selectijon
and implementation, vendor and subcontracfor
control,cand interface control are typically cqn-
sidefed. The results of the planning activity gre
recorded in an SCM Plan (SCMP), which is typi-
cally subject to SQA review and audit.

Branching and merging strategies should [be
carefully planned and communicated, since they
impact many SCM activities. From an SCM stard-
point, a branch is defined as a set of evolving soufce
file versions [1]. Merging consists in combining
different changes to the same file [1]. This typi-
cally occurs when more than one person changep a
configuration item. There are many branching and
merging strategies in common use (see the Further
Readings section for additional discussion).

The software development life cycle modglel
(see Software Life Cycle Models in the Software
Engineering Process KA) also impacts S(M
activities, and SCM planning should take this
into account. For instance, continuous integration
is a common practice in many software devel@p-
ment approaches. It is typically characterized by
frequent build-test-deploy cycles. SCM activitjes

constraints. Finally, the particular software life
cycle process chosen for a software project and
the level of formalism selected to implement the
software affect the design and implementation of
the SCM process.

Guidance for designing and implementing an
SCM process can also be obtained from “best
practice,” as reflected in the standards on software

© ISO/IEC 2016 — All rights reserved

must be planned accordingly.

1.3.1. SCM Organization and Responsibilities
[2*, ann. Ds5, ann. Ds6] [3%, c10-11]
[4*, introduction, ¢29]

To prevent confusion about who will perform
given SCM activities or tasks, organizational

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-4 SWEBOK® Guide V3.0

roles to be involved in the SCM process need
to be clearly identified. Specific responsibilities
for given SCM activities or tasks also need to be
assigned to organizational entities, either by title
or by organizational element. The overall author-
ity and reporting channels for SCM should also be

1dentified—althouah—this—miaht-be-accomplshed
Er—artOBER—tHS SHt—9e—ac6

ISO/IEC TR 19759:2016(E)

 Future: what is the plan for the tools’ use in
the future?

* Change: how adaptable are the tools?

Branching and merging: are the tools’ capa-

bilities compatible with the planned branch-

ing and merging strategies?

e Intonratinn. do tho varmiane SCON too]le 1nto
rHtegratHo—ao—tae— VAot Drv—t0015—1iH

et THPTIOTTOer

at [the project management or quality assurance
planning stage.

/.3.2. SCM Resources and Schedules
[2*, ann. Ds8] [3*, ¢23]

Planning for SCM identifies the staff and tools
inyolved in carrying out SCM activities and tasks.
It pddresses scheduling questions by establishing
nepessary sequences of SCM tasks and identify-
ing their relationships to the project schedules
an{d milestones established at the project manage-
mént planning stage. Any training requirements
nepessary for implementing the plans and train-
ing new staff members are also specified.

/.3.3. Tool Selection and Implementation
[3%*, c26s2, c26s6] [4*, c29s5]

A4 for any area of software engineering, -the
selection and implementation of SCM\feols
shpuld be carefully planned. The following ques-
tigns should be considered:

=

b Organization: what motiyates tool acquisi-
tion from an organizational perspective?

b Tools: can we uséicommercial tools or
develop them oprselves?

b Environments, what are the constraints
imposed by the organization and its techni-
cal confext?

b Legacy® how will projects use (or not) the

grate among themselves? With other tools in
use in the organization?

* Migration: can the repository maintained by
the version control tool be ported tajanother
version control tool while maintaining com-
plete history of the configuration items it
contains?

SCM typically requires~a set of tools, as
opposed to a single tool,"Such tool sets are some-
times referred to as-workbenches. In such a con-
text, another important consideration in plan-
ning for tool seleetion is determining if the SCM
workbenchawvill be open (in other words, tools
from different suppliers will be used in differ-
ent activities of the SCM process) or integrated
(where elements of the workbench are designed
to work together).

The size of the organization and the type of
projects involved may also impact tool selection
(see topic 7, Software Configuration Manage-
ment Tools).

1.3.4. Vendor/Subcontractor Control
[2%*, c13] [3%, c13s9, c14s2]

A software project might acquire or make use of
purchased software products, such as compilers
or other tools. SCM planning considers if and
how these items will be taken under configura-
tion control (for example, integrated into the proj-
ect libraries) and how changes or updates will be

new-tools? evaluated and managed.

p Kinancing: who will pay for the tools’ Similar considerations apply to subcontracted
acquisition, maintenance, training, and software. When using subcontracted software,
customization? both the SCM requirements to be imposed on

* Scope: how will the new tools be deployed—
for instance, through the entire organization
or only on specific projects?

» Ownership: who is responsible for the intro-
duction of new tools?

the subcontractor’s SCM process as part of the
subcontract and the means for monitoring com-
pliance need to be established. The latter includes
consideration of what SCM information must be
available for effective compliance monitoring.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

1.3.5. Interface Control
[2%, c12] [3%*, c24s4]

When a software item will interface with
another software or hardware item, a change
to either item can affect the other. Planning for

the SCMN nrocece caonaidare hovy tha tntarfosing
tHHe—=>'ervrPE 55 HSiaers—moW—tHeHhteaciie

Software Configuration Management 6-5

SCM Schedules (coordination with other
project activities)

* SCM Resources (tools, physical resources,
and human resources)

items will be identified and how changes to the
items will be managed and communicated. The
SCM role may be part of a larger, system-level
process for interface specification and control;
it may involve interface specifications, interface
control plans, and interface control documents.
In this case, SCM planning for interface control
takes place within the context of the system-
level process.

1.4. SCM Plan
[2*, ann. D] [3%*, c23] [4*, ¢29s1]

The results of SCM planning for a given project
are recorded in a software configuration manage-
ment plan (SCMP), a “living document” which
serves as a reference for the SCM process. It¢s
maintained (that is, updated and approved)>as
necessary during the software life cycle. Iniimple-
menting the SCMP, it is typically necessary to
develop a number of more detailed,\subordinate
procedures defining how specific requirements
will be carried out during day-to=day activities—
for example, which branching strategies will be
used and how frequently jbuilds occur and auto-
mated tests of all kinds.are run.

Guidance on the ereation and maintenance of
an SCMP, baged-en the information produced by
the planning activity, is available from a number
of sourees;such as [2*]. This reference provides
requifeients for the information to be contained
inan’SCMP; it also defines and describes six cat-
egories of SCM information to be included in an
SCMP:

 SCMP Maintenance.
1 8 Sopvoilloncs ol Sofragre Confiaration
LS5—Swpeillance-of-Sofbware-Confisnration
Management

[3%, &11$3]

After the SCM process has been-implementgd,
some degree of surveillance mndy be necessgry
to ensure that the provision$\of the SCMP gre
properly carried out. Thére-are likely to be spe-
cific SQA requirements for ensuring compliarjce
with specified SCM-processes and procedurgs.
The person responsible for SCM ensures that
those with the_assigned responsibility perfofm
the defined\SCM tasks correctly. The softwgre
quality @ssurance authority, as part of a compli-
ancéauditing activity, might also perform this
suryeillance.

The use of integrated SCM tools with procgss
control capability can make the surveillarjce
task easier. Some tools facilitate process com-
pliance while providing flexibility for the sqft-
ware engineer to adapt procedures. Other topls
enforce process, leaving the software enginger
with less flexibility. Surveillance requirements
and the level of flexibility to be provided to the
software engineer are important consideratigns
in tool selection.

1.5.1. SCM Measures and Measurement
[3%*, ¢9s2, c2552—$3]

SCM measures can be designed to provide spe-
cific information on the evolving product orto
provide insight into the functioning of the SqM
process. A related goal of monitoring the SqM
process is to discover opportunities for procgss

* Introduction (purpose, scope, terms used)

« SCM Management (organization, respon-
sibilities, authorities, applicable policies,
directives, and procedures)

* SCM Activities (configuration identification,
configuration control, and so on)

© ISO/IEC 2016 — All rights reserved

improvement. Measurements of SCM processes
provide a good means for monitoring the effec-
tiveness of SCM activities on an ongoing basis.
These measurements are useful in characteriz-
ing the current state of the process as well as in
providing a basis for making comparisons over
time. Analysis of the measurements may produce

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-6 SWEBOK® Guide V3.0

insights leading to process changes and corre-
sponding updates to the SCMP.

Software libraries and the various SCM tool
capabilities provide sources for extracting infor-
mation about the characteristics of the SCM

dUpreRrt R oraHe o exmpleHHOHRaHOR
abput the time required to accomplish various
types of changes would be useful in an evalua-
tign of the criteria for determining what levels of
authority are optimal for authorizing certain types
of[changes and for estimating future changes.
Care must be taken to keep the focus of the
sufveillance on the insights that can be gained
frgm the measurements, not on the measurements
th¢mselves. Discussion of software process and
prpduct measurement is presented in the Soft-
wgre Engineering Process KA. Software mea-
sufement programs are described in the Software
Erfgineering Management KA.

/.5.2. In-Process Audits of SCM
[3%, clsl]

Audits can be carried out during the software
engineering process to investigate the current sta*
tug of specific elements of the configuration or'te
asfess the implementation of the SCM progess.
Injprocess auditing of SCM provides amore for-
m3l mechanism for monitoring selected aspects
of|the process and may be coordinated with the
SQA function (see topic 5, Software Configura-
tign Auditing).

2. [Software Configuration Identification
[2%, c8] [4*, c29s1.1]

Sqftware configuration identification identifies
itgms to.be“controlled, establishes identification
schemges-for the items and their versions, and
establishes the tools and techniques to be used in

ISO/IEC TR 19759:2016(E)

This involves understanding the software config-
uration within the context of the system configu-
ration, selecting software configuration items,
developing a strategy for labeling software items
and describing their relationships, and identifying
both the baselines to be used and the procedure

R

2.1.1. Software Configuration
[}, ¢3]

Software configuration is the functional and phys-
ical characteristics of hardware or software as set
forth in technical documentationer achieved in
a product. It can be viewed.as part of an overall
system configuration.

2.1.2. Software Configuration Item
[4*, c29s1.1]

A configuration item (CI) is an item or aggre-
gation of\hardware or software or both that is
designed to be managed as a single entity. A soft-
ware)configuration item (SCI) is a software entity
that has been established as a configuration item
[1]. The SCM typically controls a variety of items
in addition to the code itself. Software items with
potential to become SCIs include plans, specifi-
cations and design documentation, testing mate-
rials, software tools, source and executable code,
code libraries, data and data dictionaries, and
documentation for installation, maintenance,
operations, and software use.

Selecting SCIs is an important process in
which a balance must be achieved between pro-
viding adequate visibility for project control pur-
poses and providing a manageable number of
controlled items.

2.1.3. Software Configuration Item
Relationships

acquiring and managing controlled items. These
activities provide the basis for the other SCM
activities.

2.1. Identifying Items to Be Controlled
[2%, c8s2.2] [4%, c29s1.1]

One of the first steps in controlling change is
identifying the software items to be controlled.

[3%*, ¢7s4]

Structural relationships among the selected
SClIs, and their constituent parts, affect other
SCM activities or tasks, such as software
building or analyzing the impact of proposed
changes. Proper tracking of these relationships
is also important for supporting traceability.
The design of the identification scheme for SCIs

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Configuration Management 6-7

Test
~ Requirements | Design Readiness \
‘ Review Review Review ‘ Acceptance
SRS, » SRS SRSc > SRSp
“ 4 4
/ SDD, SDDg / SDD¢
SCR control
of SRS Code, Codeg
models SCR control
of SRS, SDD Test Test Plansg
models Plans A
3 User
SCR control Manual,
of SRS, SDD
Code, Test Regression
Plans Test DB,

Figure 6.2. Acquisition of Items

should consider the need to map identified items
to the software structure, as well as the need to
support the evolution of the software items and
their relationships.

2.1.4. Software Version
[1, c3] [4*c29s3]

Software items evolve as a software\project pro-
ceeds. A version of a software item is an identi-
fied instance of an item. It can be thought of as a
state of an evolving item. A variant is a version of
a program resulting froim the application of soft-
ware diversity.

2.1.5. Baseline
(1, e3]

A software baseline is a formally approved ver-
sion-of a configuration item (regardless of media)
that is formally designated and fixed at a specific
fime during the configuration item’s life cycle.

baselingsy*The functional baseline correspords
to the' reviewed system requirements. The alfo-
eated baseline corresponds to the reviewled
software requirements specification and soft-
ware interface requirements specification. The
developmental baseline represents the evolving
software configuration at selected times dur]iEg
the software life cycle. Change authority for
this baseline typically rests primarily with]he
development organization but may be shaied
with other organizations (for example, SCM |or
Test). The product baseline corresponds to the
completed software product delivered for sys-
tem integration. The baselines to be used fof a
given project, along with the associated levels|of
authority needed for change approval, are typi-
cally identified in the SCMP.

2.1.6. Acquiring Software Configuration Iteis
[3%, cf8]

Software configuration items are placed undler

The term is also used to refer to a particular ver-
sion of a software configuration item that has
been agreed on. In either case, the baseline can
only be changed through formal change con-
trol procedures. A baseline, together with all
approved changes to the baseline, represents the
current approved configuration.

Commonly used baselines include func-
tional, allocated, developmental, and product

© ISO/IEC 2016 — All rights reserved

SCM control at different times; that is, they are
incorporated into a particular baseline at a particu-
lar point in the software life cycle. The triggering
event is the completion of some form of formal
acceptance task, such as a formal review. Figure
6.2 characterizes the growth of baselined items as
the life cycle proceeds. This figure is based on the
waterfall model for purposes of illustration only;
the subscripts used in the figure indicate versions

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-8 SWEBOK® Guide V3.0

of the evolving items. The software change request
(SCR) is described in section 3.1.

In acquiring an SCI, its origin and initial integ-
rity must be established. Following the acquisi-
tion of an SCI, changes to the item must be for-
mally approved as appropriate for the SCI and

ISO/IEC TR 19759:2016(E)

what changes to make, the authority for approv-
ing certain changes, support for the implementa-
tion of those changes, and the concept of formal
deviations from project requirements as well as
waivers of them. Information derived from these
activities is useful in measuring change traffic

the—baseline—involved—as—defined—in—the-SCMP

baseline—nvolved—as—defined—in—the—SCME-
Fdllowing approval, the item is incorporated into
th¢ software baseline according to the appropriate
prpcedure.

2.p. Software Library
[3%*, cl1s3] [4%*, ¢29s1.2]

A |software library is a controlled collection of
software and related documentation designed to
aidl in software development, use, or maintenance
[1]. Itis also instrumental in software release man-
agpment and delivery activities. Several types of
ligraries might be used, each corresponding to the
software item’s particular level of maturity. For
expmple, a working library could support coding
and a project support library could support test-
ing, while a master library could be used for fin-
isljed products. An appropriate level of SCM con-
trdl (associated baseline and level of authority for
chpnge) is associated with each library. Security,
infterms of access control and the backupfaeili-
tigs, is a key aspect of library management.

The tool(s) used for each library, must support
th¢ SCM control needs for that library—both in
tefms of controlling SCIs and(controlling access
to [the library. At the working library level, this is
a ¢ode management capability serving develop-
er§, maintainers, and"SEM. It is focused on man-
aging the versions,of software items while sup-
porting the activities of multiple developers. At
higher level§ of control, access is more restricted
anfd SCMsis‘the primary user.

These-libraries are also an important source
of[information for measurements of work and

and-breakace aswell asasnectsofreworl
s se-as—weH-as-aspeets-oirework:
3.1. Requesting, Evaluating, and Approving
Software Changes

[2*, c9s2.4] [4#,52952]

The first step in managing changes'tocontrolled
items is determining what changes-to make. The
software change request process (see a typical
flow of a change request’ process in Figure 6.3)
provides formal procedurés for submitting and
recording change requests, evaluating the poten-
tial cost and impact’of a proposed change, and
accepting, medifying, deferring, or rejecting
the proposéd change. A change request (CR) is
a request™te expand or reduce the project scope;
modify policies, processes, plans, or procedures;
modify costs or budgets; or revise schedules
P1]. Requests for changes to software configura-
tion items may be originated by anyone at any
point in the software life cycle and may include
a suggested solution and requested priority. One
source of a CR is the initiation of corrective
action in response to problem reports. Regardless
of the source, the type of change (for example,
defect or enhancement) is usually recorded on the
Software CR (SCR).

This provides an opportunity for tracking
defects and collecting change activity measure-
ments by change type. Once an SCR is received,
a technical evaluation (also known as an impact
analysis) is performed to determine the extent of
the modifications that would be necessary should
the change request be accepted. A good under-
standing of the relationships among software

progress.

3. Software Configuration Control
[2%, ¢9] [4*, c29s2]

Software configuration control is concerned
with managing changes during the software
life cycle. It covers the process for determining

(and, possibly, hardware) items is important for
this task. Finally, an established authority—com-
mensurate with the affected baseline, the SCI
involved, and the nature of the change—will
evaluate the technical and managerial aspects
of the change request and either accept, modify,
reject, or defer the proposed change.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Configuration Management 6-9

Need for Preliminary
Change Investigation
Change)
identified for Rejected Inform
controll]ed item CCB Review > Re nester
SCR generated \{pproved
or updated i
P gz:.:gvr;;g “Emergency Path”
Engineer usually also exists.
Incomplete
Changes can be
SCR Schedule implemented with
Evaluated design tes’t change process
comple te’chal;ge performed afterward.

Complete

Figure 6.3. Flow of a Change Control Process

3.1.1. Software Configuration Control Board
[2%, ¢9s2.2] [3%, cl1s1] [4%, c2952]

The authority for accepting or rejecting proposed
changes rests with an entity typically known as a
Configuration Control Board (CCB). In smaller
projects, this authority may actually reside with
the leader or an assigned individual rathet<than a
multiperson board. There can be multifile levels
of change authority depending on a vagiety of cri-
teria—such as the criticality of the item involved,
the nature of the change (for example, impact on
budget and schedule), or. the project’s current
point in the life cycle{ The composition of the
CCBs used for a given system varies depending
on these criteria-(an SCM representative would
always be present). All stakeholders, appropriate
to the levehofthe CCB, are represented. When
the scope_of authority of a CCB is strictly soft-
ware{ 1t 'is known as a Software Configuration
Control Board (SCCB). The activities of the CCB
are’ typically subject to software quality audit or
feview.

CCB decisions, and reporting change procgss
information. A link between this tool capabiljty
and the problem-reporting system can facilitite
thewtracking of solutions for reported problems,.

3.2. Implementing Software Changes
[4%, c29]

Approved SCRs are implemented using the
defined software procedures in accordance wjth
the applicable schedule requirements. Sincd a
number of approved SCRs might be implemen{ed
simultaneously, it is necessary to provide a megns
for tracking which SCRs are incorporated imto
particular software versions and baselines. As
part of the closure of the change process, com-
pleted changes may undergo configuration audits
and software quality verification—this includes
ensuring that only approved changes have bgen
made. The software change request procgss
described above will typically document the
SCM (and other) approval information for the
change.

3.1.2. Software Change Request Process
[3*, cls4, c8s4]

An effective software change request (SCR) pro-
cess requires the use of supporting tools and pro-
cedures for originating change requests, enforc-
ing the flow of the change process, capturing

© ISO/IEC 2016 — All rights reserved

Changes may be supported by source code ver-
sion control tools. These tools allow a team of
software engineers, or a single software engineer,
to track and document changes to the source code.
These tools provide a single repository for storing
the source code, can prevent more than one soft-
ware engineer from editing the same module at
the same time, and record all changes made to the

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-10 SWEBOK® Guide V3.0

source code. Software engineers check modules
out of the repository, make changes, document
the changes, and then save the edited modules
in the repository. If needed, changes can also be
discarded, restoring a previous baseline. More
powerful tools can support parallel development
ang—eeosraphies distributed—envronnents:
THese tools may be manifested as separate,
spgcialized applications under the control of an
inflependent SCM group. They may also appear
as|an integrated part of the software engineering
ironment. Finally, they may be as elementary
asfa rudimentary change control system provided
with an operating system.

3.§. Deviations and Waivers

[1, c3]

THe constraints imposed on a software engineer-
ing effort or the specifications produced during the
dejelopment activities might contain provisions
thgt cannot be satisfied at the designated point
inthe life cycle. A deviation is a written autho-
rifation, granted prior to the manufacture of an

tign or after having been submitted for inspection,
to|depart from specified requireménts but is nev-
erfheless considered suitable for use as-is or after
reyvork by an approved method. In these cases, a
formal process is used-for gaining approval for
dejviations from, or waivers of, the provisions.

4.Software Configuration Status Accounting
[2*, c10]

Sqftware-configuration status accounting (SCSA)
is pmvelement of configuration management con-

ISO/IEC TR 19759:2016(E)

information system, the configuration status infor-
mation to be managed for the evolving configura-
tions must be identified, collected, and maintained.
Various information and measurements are needed
to support the SCM process and to meet the con-

The types of information available include the
approved configuration identification as well @s
the identification and current implementation sta-
tus of changes, deviations, and waivers.

Some form of automated tool suppett\is neces-
sary to accomplish the SCSA data collection and
reporting tasks; this could be a database capabil-
ity, a stand-alone tool, or a capability of a larger,
integrated tool environment:

4.2. Software Configuration Status Reporting
[2%10s2.4] [3%*, cls5, ¢9s1, c17]

Reported _information can be used by various
organizational and project elements—including
the development team, the maintenance team,
ptoject management, and software quality activi-
ties. Reporting can take the form of ad hoc que-
ries to answer specific questions or the periodic
production of predesigned reports. Some infor-
mation produced by the status accounting activity
during the course of the life cycle might become
quality assurance records.

In addition to reporting the current status of the
configuration, the information obtained by the
SCSA can serve as a basis of various measure-
ments. Examples include the number of change
requests per SCI and the average time needed to
implement a change request.

5. Software Configuration Auditing
[2%, cl1]

A software audit is an independent examina-

sisting of the recording and reporting of informa-
tion needed to manage a configuration effectively.

4.1. Software Configuration Status Information
[2%, c10s2.1]

The SCSA activity designs and operates a sys-
tem for the capture and reporting of necessary
information as the life cycle proceeds. As in any

tion of a work product or set of work products to
assess compliance with specifications, standards,
contractual agreements, or other criteria [1].
Audits are conducted according to a well-defined
process consisting of various auditor roles and
responsibilities. Consequently, each audit must
be carefully planned. An audit can require a num-
ber of individuals to perform a variety of tasks
over a fairly short period of time. Tools to support

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

the planning and conduct of an audit can greatly
facilitate the process.

Software configuration auditing determines
the extent to which an item satisfies the required
functional and physical characteristics. Informal

be required by the governing contract (for exam-
ple, in contracts covering critical software): the
Functional Configuration Audit (FCA) and the
Physical Configuration Audit (PCA). Successful
completion of these audits can be a prerequisite
for the establishment of the product baseline.

5.1. Software Functional Configuration Audit
[2%, cl1s2.1]

The purpose of the software FCA is to ensure that
the audited software item is consistent with its
governing specifications. The output of the soft-
ware verification and validation activities (see
Verification and Validation in the Software Qual-
ity KA) is a key input to this audit.

5.2. Software Physical Configuration Audit
[2%, ¢11s2.2]

The purpose of the software physical~configura-
tion audit (PCA) is to ensure that\the design and
reference documentation is, consistent with the
as-built software product.

5.3. In-Process Audits of a Sofiware Baseline
[2%, c11s2.3]

As mentionedabove, audits can be carried out
during (hevdevelopment process to investigate
the ctirfent status of specific elements of the con-
figuration. In this case, an audit could be applied
fesampled baseline items to ensure that per-
formance is consistent with specifications or to

Software Configuration Management 6-11

the development activity; this includes internal
releases as well as distribution to customers. When
different versions of a software item are available
for delivery (such as versions for different plat-
forms or versions with varying capabilities), it is
frequently necessary to recreate specific versions
and-packace-the-correctmaterials—for-delvery of
the version. The software library is a key elem¢nt
in accomplishing release and delivery tasks.

6.1. Software Building
[4%, c29$4]

Software building is the dctivity of combining

reproduce previous releases for recovery, testi
maintenance, or additional release purposes.
Software is built using particular versions [of
supporting tools, such as compilers (see Com-
piler Basics in the Computing Foundations K4\).
It might be necessary to rebuild an exact copy|of
a previously built software configuration item.|In
this case, supporting tools and associated bufld
instructions need to be under SCM control |to
ensure availability of the correct versions of the
tools.
A tool capability is useful for selecting the cpr-
rect versions of software items for a given target
environment and for automating the process|of
building the software from the selected versigns
and appropriate configuration data. For projefts
with parallel or distributed development enyi-

ensure that evolving documentation continues to
be consistent with the developing baseline item.

6. Software Release Management and
Delivery
[2%, c14] [3%, c8s2]

In this context, release refers to the distribu-
tion of a software configuration item outside

© ISO/IEC 2016 — All rights reserved

ronments, this tool capability is necessary. Most
software engineering environments provide this
capability. These tools vary in complexity from
requiring the software engineer to learn a spe-
cialized scripting language to graphics-oriented
approaches that hide much of the complexity of
an “intelligent” build facility.

The build process and products are often sub-
ject to software quality verification. Outputs of

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-12 SWEBOK® Guide V3.0

the build process might be needed for future refer-
ence and may become quality assurance records.

6.2. Software Release Management
[4%, c29s3.2]

delivery of the

clease. The severity of the problems addressed
by|the release and measurements of the fault den-
sities of prior releases affect this decision. The
parkaging task must identify which product items
ar¢ to be delivered and then select the correct
vafiants of those items, given the intended appli-
cafion of the product. The information document-
ing the physical contents of a release is known
as|a version description document. The release
notes typically describe new capabilities, known
prpblems, and platform requirements necessary
for proper product operation. The package to be
rejeased also contains installation or upgrading
in§tructions. The latter can be complicated by-the
fa¢t that some current users might have versions
that are several releases old. In some casgs, release
mgnagement might be required in.order to track
digtribution of the product to various customers
or|target systems—for example,)in a case where
th¢ supplier was required to notify a customer of
newly reported problems:Finally, a mechanism
to fensure the integrity ofthe released item can be
infplemented—foexdmple by releasing a digital
signature withit,

A tool_Capability is needed for supporting
thg¢se release management functions. It is use-
fu] torhave a connection with the tool capability
supperting the change request process in order to

ISO/IEC TR 19759:2016(E)

7. Software Configuration Management Tools
[3%*, c26s1] [4%, c8s2]

When discussing software configuration manage-
ment tools, it is helpful to classify them. SCM
tools can be divided into three classes in terms

panywide-process support.

Individual support tools are appropriate. and
typically sufficient for small organizafions or
development groups without varianfs\of their
software products or other complex SCM require-
ments. They include:

* Version control tools;track, document, and
store individual configuration items such as
source code and'external documentation.

* Build handling-tools: in their simplest form,
such tools~¢ompile and link an executable
versiofi/ of the software. More advanced
building tools extract the latest version from
the*wversion control software, perform qual-
ity checks, run regression tests, and produce
various forms of reports, among other tasks.

* Change control tools: mainly support the
control of change requests and events noti-
fication (for example, change request status
changes, milestones reached).

Project-related support tools mainly support
workspace management for development teams
and integrators; they are typically able to sup-
port distributed development environments. Such
tools are appropriate for medium to large organi-
zations with variants of their software products
and parallel development but no certification
requirements.

Companywide-process support tools can typi-
cally automate portions of a companywide pro-
cess, providing support for workflow manage-

map release contents to the SCRs that have been
received. This tool capability might also maintain
information on various target platforms and on
various customer environments.

ments, roles, and responsibilities. They are able
to handle many items, data, and life cycles. Such
tools add to project-related support by supporting
a more formal development process, including
certification requirements.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Configuration Management 6-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

=
o
v) =
S 2 = P
Q5 S i =
8o PR gin 23
= E S g
= =
= 5 r\%
aD
1. Management of the SCM %% i
Process Y \
;él\? rganizational Context for c6, ann.D introduction N7 c29
.1\ ~
1.2. Constraints and Guidance c6, ann.D, .
for the SCM Process ann.E c2 ‘Ofl 522 €29 intro
. c6, ann.D, >
1.3. Planning for SCM ann.E c23 X C) c29
1.3.1. SCM Organization and (é‘l - .
Responsibilities ann.Ds5-6 ?/1 ¢29 intro
A\
é.3}.12.dSlCM Resources and ann.Ds8 'QQ 23
chedules Q
1.3.3. Tool Selection and KQ 2652 $6 2955
Implementation %) ’
N
1.3.4. \iendor/Subcontractor $ o3 13s9—cl4s2
Contro 2
1.3.5. Interface Control A\\\ cl2 c24s4
1.4. SCM Plan | amnD 23 2951

ad
1.5. Surveillance of S ate
Configuration Manage)nent

1.5.1. SCM Measures and 9s2;
Measureme c25s2—s3
1.5.2. Ilﬁ’)‘c;cess Audits of

Sgb@. clsl

2. Software Configuration
 Identification

Q 2.1. Identifying Items to Be
M Controlled

clls3

¢29sl1.1

c8s2.2 ¢29sl1.1

2.1.1. Software Configuration

2.1.2. Software Configuration

Ttem ¢29sl.1

2.1.3. Software Configuration

Item Relationships c7s

2.1.4. Software Version c29s3

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

6-14 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

IEEE 828-2012
[2%]

Hass 2003
[3%]

Moore 2006
[5%]

Sommerville 2011
[47]

2.1.5. Baseline

2.1.6. Acquiring Software
Configuration Items

cl8

S
%

2.2. Software Library

cls3

,.62051.2

(99

. Software Configuration
(ontrol

c9

-
2‘ c29s2

3.1. Requesting, Evaluating, and
Approving Software Changes

c9s2.4

T
S

c29s2

Control Board

3.1.1. Software Configuration

c9s2.2

(O

c29s2

3.1.2. Software Change
Request Process

4

3.2. Implementing Software
Changes

c29

3.3. Deviations and Waivers

PN

4. Software Configuration
Jtatus Accounting

N

>
10
"
\V

4.1. Software Configuration
Status Information

\dl s2.1

4.2. Software Configuration
Status Reporting

.\C‘,
)

3e

cl0s2.4

cls5, ¢9sl,
cl7

N

\uditing A

§. Software Conﬁgurag‘ ,v

cll

5.1. Software Funct
Configuration Audit

al

clls2.1

5.2. Soft
Conﬁ&

Ilysical
on Audit

clls2.2

5. .@rocess Audits of a
are Baseline

clls2.3

6. Software Release
Management and Delivery

cl4

c8s2

c29s3

6.1. Software Building

c29s4

6.2. Software Release
Management

¢c29s3.2

7. Software Configuration
Management Tools

c26sl

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016 (E) Software Configuration Management 6-15

FURTHER READINGS REFERENCES

Stephen P. Berczuk and Brad Appleton, [1]1 ISO/IEC/IEEE 24765:2010 Systems and
Software Configuration Management Software Engineering—Vocabulary, ISO/
Patterns: Effective Teamwork, Practical IEC/IEEE, 2010.

Integration [6].
[’)*] JLEL Sied 929 2019 (’fnm,l/-n/]f'nu
St L2 -Standardfor

This book expresses useful SCM practices and Configuration Management in System3svand
strategies as patterns. The patterns can be imple- Software Engineering, IEEE, 20121
mented using various tools, but they are expressed
in a tool-agnostic fashion. [3*] A.M.J. Hass, Configuration NMlanagement
Principles and Practices,Ast.ed., Addison-
“CMMI for Development,” Version 1.3, pp. Wesley, 2003.
137-147 [7].

[4*] I. Sommerville, Software Engineering, 9th
This model presents a collection of best prac- ed., Addison-Wesley, 2011.
tices to help software development organizations
improve their processes. At maturity level 2, it [5*] J.W. Moete,/ The Road Map to Software
suggests configuration management activities. Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 20

o

[6 NS P. Berczuk and B. Appleton, Software
Configuration Management Patterns:
Effective Teamwork, Practical Integration,
Addison-Wesley Professional, 2003.

[7] CMMI Product Team, “CMMI for
Development, Version 1.3, Software
Engineering Institute, 2010; http:/
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=9661.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 7

SOFTWARE ENGINEERING MANAGEMENT

ACRONYMS
PMBOK® | Guide to the Project Management
Guide Body of Knowledge
SDLC Software Development Life Cycle
SEM Software Engineering Management
SQA Software Quality Assurance
SWY Sofz“ware Extension to the PMBOK®
Guide
WBS Work Breakdown Structure
INTRODUCTION

Software engineering management can be defined
as the application of management activities**plan-
ning, coordinating, measuring, monitoring, con-
trolling, and reporting'—to ensure that software
products and software engineering services are
delivered efficiently, effectively, and to the benefit
of stakeholders. The related(discipline of manage-
ment is an important elément of all the knowledge
areas (KAs), but it s of course more relevant to
this KA than to otherKAs. Measurement is also an
important aspect-ef all KAs; the topic of measure-
ment programs’is presented in this KA.

In on¢€)sense, it should be possible to manage
a soffware engineering project in the same way
other*complex endeavors are managed. However,
thete are aspects specific to software projects
and software life cycle processes that complicate

* Clients often don’t know what is needed|or
what is feasible.
¢ Clients often lack appreciation for the com-
plexities inherent in software engineering,
particularly regarding‘the impact of charjg-
ing requirements.
« It is likely that,inereased understanding and
changing conditions will generate new |or
changed-software requirements.
* As a regult of changing requirements, sqft-
wareis often built using an iterative proc¢ss
tdther than as a sequence of closed tasks.
* Software engineering necessarily incorpo-
rates creativity and discipline. Maintaining
an appropriate balance between the two| is
sometimes difficult.
* The degree of novelty and complexity| is
often high.
 There is often a rapid rate of change in the
underlying technology.

Software engineering management activitjes
occur at three levels: organizational and inffa-
structure management, project managemept,
and management of the measurement program.
The last two are covered in detail in this KA
description. However, this is not to diminish ‘}he

importance of organizational and infrastructyre
management issues. It is generally agreed that
software organizational engineering managgrs
should be conversant with the project manage-
ment and software measurement knowledge

effective management, including these:

1 The terms Initiating, Planning, Executing,
Monitoring and Controlling, and Closing are used to
describe process groups in the PMBOK® Guide and
SWX.

described in this KA. They should also possess
some target domain knowledge. Likewise, it is
also helpful if managers of complex projects and
programs in which software is a component of
the system architecture are aware of the differ-
ences that software processes introduce into proj-
ect management and project measurement.

© ISO/IEC 2016 — All rights reserved

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
72 SWEBOK® Guide V3.0

- Risk Management

Quality

» Control Process

5 Reporting

Software
Engineering
Management
Software Software
Initiation and Software Project Software Project Review and . . Engineering
" r . r . Closure Engineering
Scope Definition Planning Enactment Evaluation Management
Measurement
Tools
- .. Establish and
PDetermination . Determining e .
> hnd Negotiation |9 Process Planning | LTE}:::ntatmn > Satisfaction of gletermmmg Sustain
f Requirements Requirements osure Measurvement
Commitment
Software -
o . A~ Reviewing and Plan the
|y [Feasibility Determine Acquisition and L > Evaluating Closure | » Measurement
|Analysis Deliverables Supplier Contract Activities
Performance Process
Management
Procless for the Effort, Schedule, Implementation Perform the,
Ly Rev¥e_w and I and Cost % of Measurement » Measurement'
Revision of Estimation Process Process§
Requirements
Resource . Evaluate
Allocation F» Monitor Process Measurement

Management

L Plan Management

Dther aspects of organizational management
exprt an impact on software engineering (for
expmple, organizational policies.dnd procedures
thgt provide the framework in)which software
enfgineering projects are undertaken). These poli-
ci¢s and procedures may-need to be adjusted by
th¢ requirements fop-effective software develop-
m¢nt and maintenanc€. In addition, a number of
policies specific\to software engineering may
nepd to be (inyplace or established for effective
mgnagenient of software engineering at the orga-
nizational level. For example, policies are usually
nefessary to establish specific organization-wide

Figure 7.1. Breakdown of Topics for'the Software Engineering Management KA

Another important aspect of organizational
management is personnel management policies
and procedures for hiring, training, and mentor-
ing personnel for career development, not only at
the project level, but also to the longer-term suc-
cess of an organization. Software engineering per-
sonnel may present unique training or personnel
management challenges (for example, maintaining
currency in a context where the underlying tech-
nology undergoes rapid and continuous change).

Communication management is also often
mentioned as an overlooked but important aspect
of the performance of individuals in a field where

processes or procedures for software engineering
tasks such as software design, software construc-
tion, estimating, monitoring, and reporting. Such
policies are important for effective long-term
management of software engineering projects
across an organization (for example, establishing
a consistent basis by which to analyze past proj-
ect performance and implement improvements).

© ISO/IEC 2016 — All rights reserved

precise understanding of user needs, software
requirements, and software designs is necessary.
Furthermore, portfolio management, which pro-
vides an overall view, not only of software cur-
rently under development in various projects and
programs (integrated projects), but also of soft-
ware planned and currently in use in an organiza-
tion, is desirable. Also, software reuse is a key

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

factor in maintaining and improving productivity
and competitiveness. Effective reuse requires a
strategic vision that reflects the advantages and
disadvantages of reuse.

In addition to understanding the aspects of
management that are umquely influenced by soft-

some knowledge of the more general aspects of
management that are discussed in this KA (even
in the first few years after graduation).

Attributes of organizational culture and behav-
ior, plus management of other functional arecas
of the enterprise, have an influence, albeit indi-
rectly, on an organization’s software engineering
processes.

Extensive information concerning software
project management can be found in the Guide
to the Project Management Body of Knowledge
(PMBOK?® Guide) and the Software Extension to
the PMBOK® Guide (SWX) [1] [2]. Each of these
guides includes ten project management KAs:
project integration management, project scope
management, project time management, project
cost management, project quality management;
project human resource management, praject
communications management, project risk man-
agement, project procurement management, and
project stakeholder management. Each KA has
direct relevance to this Software Engineering
Management KA.

Additional information:i§ also provided in the
other references and furthet readings for this KA.

This Software Engineering Management KA
consists of the software project management pro-
cesses in the firstfive topics in Figure 7.1 (Initia-
tion and Scop¢ Definition, Software Project Plan-
ning, Software Project Enactment, Review and
Evalygation, Closure), plus Software Engineering
Measurement in the sixth topic and Software
Engineering Management Tools in the seventh
topic. While project management and measure-

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-3

management—a basic principle of any true engi-
neering discipline (see Measurement in the Engi-
neering Foundations KA)—can help improve
the perception and the reality. In essence, man-
agement without measurement (qualitative and
quantltatlve) suggests a lack of d1sc1p11ne and

lack of purpose or context. Effectlve managéme¢nt
requires a combination of both measurefnent and
experience.

The following working definitigns-are adopfed
here:

* Management is a system of processes and
controls required to achieve the strategic
objectives setby-the organization.

* Measuremenprefers to the assignment of vpl-
ues and-labels to software engineering wark
productsy’ processes, and resources plus the
models that are derived from them, whetler
these models are developed using statisti¢al
or other techniques [3* , c7, c8].

The software engineering project managem¢nt
sections in this KA make extensive use of the
software engineering measurement section.

This KA is closely related to others in the
SWEBOK Guide, and reading the following KA
descriptions in conjunction with this one will [be
particularly helpful:

* The Engineering Foundations KA describes
some general concepts of measurement that
are directly applicable to the Software Engi-
neering Measurement section of this KIA.
In addition, the concepts and techniques
presented in the Statistical Analysis section
of the Engineering Foundations KA apply
directly to many topics in this KA.

* The Software Requirements KA describes
some of the activities that should be pgr-

ment management are often regarded as being
separate, and indeed each does possess many
unique attributes, the close relationship has led to
combined treatment in this KA.

Unfortunately, acommon perception of the soft-
ware industry is that software products are deliv-
ered late, over budget, of poor quality, and with
incomplete functionality. Measurement-informed

formed during the Initiation and Scope defi-
nition phase of the project.

* The Software Configuration Management
KA deals with identification, control, status
accounting, and auditing of software con-
figurations along with software release man-
agement and delivery and software configu-
ration management tools.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

7-4 SWEBOK® Guide V3.0

» The Software Engineering Process KA
describes software life cycle models and the
relationships between processes and work
products.

* The Software Quality KA emphasizes qual-
ity as a goal of management and as an aim of

ng Economics KA
discusses how to make software-related
decisions in a business context.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
MANAGEMENT

Bdcause most software development life cycle
medels require similar activities that may be exe-
cufed in different ways, the breakdown of topics
is |activity-based. That breakdown is shown in
Figure 7.1. The elements of the top-level break-
down shown in that figure are the activities that
ar¢ usually performed when a software develop-
m¢nt project is being managed, independent of
th¢ software development life cycle model (see
Sqftware Life Cycle Models in the Software
Erfgineering Process KA) that has been chosen for
a dpecific project. There is no intent in this bredk-
down to recommend a specific life cycle model.
THe breakdown implies only what happens and
does not imply when, how, or how, niany times
eafh activity occurs. The seven topics are:

b Initiation and Scope Definition, which deal
with the decision totembark on a software
engineering project;

b Software ProjectPlanning, which addresses
the activitigsundertaken to prepare for a suc-
cessful(software engineering project from
the management perspective;

b Software Project Enactment, which deals
with generally accepted software engineering

implementation of measurement programs in
software engineering organizations;

» Software Engineering Management Tools,
which describes the selection and use of tools
for managing a software engineering project.

The focus of these activities is on effective detéry
mination of software requirements using_vari-
ous elicitation methods and the assessingnt of
project feasibility from a variety of standpoints.
Once project feasibility has been established, the
remaining tasks within this section-are the speci-
fication of requirements and.selection of the pro-
cesses for revision and review of requirements.

1.1. Determination-and Negotiation of
Requirements

[3%, ¢3]

Determipting and negotiating requirements set
the visible boundaries for the set of tasks being
undertaken (see the Software Requirements KA).
Activities include requirements elicitation, analy-
sis, specification, and validation. Methods and
techniques should be selected and applied, taking
into account the various stakeholder perspectives.
This leads to the determination of project scope in
order to meet objectives and satisfy constraints.

1.2. Feasibility Analysis
[4%, c4]

The purpose of feasibility analysis is to develop a
clear description of project objectives and evalu-
ate alternative approaches in order to determine
whether the proposed project is the best alterna-
tive given the constraints of technology, resources,
finances, and social/political considerations. An
initial project and product scope statement, project

management activities that occur during the
execution of a software engineering project;

* Review and Evaluation, which deal with
ensuring that technical, schedule, cost, and
quality engineering activities are satisfactory;

e Closure, which addresses the activities
accomplished to complete a project;

» Software Engineering Measurement, which
deals with the effective development and

© ISO/IEC 2016 — All rights reserved

deliverables, project duration constraints, and an
estimate of resources needed should be prepared.

Resources include a sufficient number of
people who have the needed skills, facilities,
infrastructure, and support (either internally or
externally). Feasibility analysis often requires
approximate estimations of effort and cost based
on appropriate methods (see section 2.3, Effort,
Schedule, and Cost Estimation).

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1.3. Process for the Review and Revision of
Requirements

[3%, ¢3]

Given the inevitability of change, stakeholders
should agree on the means by which requirements

example, change management procedures, itera-
tive cycle retrospectives). This clearly implies
that scope and requirements will not be “set in
stone” but can and should be revisited at predeter-
mined points as the project unfolds (for example,
at the time when backlog priorities are created or
at milestone reviews). If changes are accepted,
then some form of traceability analysis and risk
analysis should be used to ascertain the impact
of those changes (see section 2.5, Risk Manage-
ment, and Software Configuration Control in the
Software Configuration Management KA).

A managed-change approach can also form the
basis for evaluation of success during closure of
an incremental cycle or an entire project, based
on changes that have occurred along the way (see
topic 5, Closure).

2. Software Project Planning

The first step in software project planfing should
be selection of an appropriate seftware develop-
ment life cycle model and. perhaps tailoring it
based on project scope, .sdftware requirements,
and a risk assessment. Qther factors to be consid-
ered include the nature of the application domain,
functional and teghnical complexity, and soft-
ware quality requirements (see Software Quality
Requirements.in the Software Quality KA).

In all’'SDLCs, risk assessment should be an
elemént of initial project planning, and the “risk
profile” of the project should be discussed and
aceepted by all relevant stakeholders. Software
Quality management processes (see Software

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-5

2.1. Process Planning
[3%*, ¢3, ¢4, ¢5] [5*, cl]

Software development life cycle (SDLC) mod-
els span a continuum from predictive to adaptive
(see Software Life Cycle Models in the Software

...... o ja A Do o D

characterized by development of detailed‘sgft-
ware requirements, detailed project planfiing, and
minimal planning for iteration among|develgp-
ment phases. Adaptive SDLCs ate designed|to
accommodate emergent software requirements
and iterative adjustment of plans. A highly pte-
dictive SDLC executes the- first five procesges
listed in Figure 7.1 in.a linear sequence with reyi-
sions to earlier phases’only as necessary. Adgp-
tive SDLCs are ‘chafacterized by iterative devgl-
opment cycles._SDLCs in the mid-range of the
SDLC centintum produce increments of ful}c-
tionality on either a preplanned schedule (on the
predictive side of the continuum) or as the prad-
ucts/of frequently updated development cycles
(on the adaptive side of the continuum).

Well-known SDLCs include the waterfall,
incremental, and spiral models plus various forms
of agile software development [2] [3%*, c2].

Relevant methods (see the Software Enginepr-
ing Models and Methods KA) and tools should|be
selected as part of planning. Automated tools that
will be used throughout the project should also
be planned for and acquired. Tools may inclyde
tools for project scheduling, software requife-
ments, software design, software constructin,
software maintenance, software configuration
management, software engineering process, sdft-
ware quality, and others. While many of thg¢se
tools should be selected based primarily on the
technical considerations discussed in other KAs,
some of them are closely related to the manage-
ment considerations discussed in this chapter.

Quality Management Processes in the Software
Quality KA) should be determined as part of the
planning process and result in procedures and
responsibilities for software quality assurance,
verification and validation, reviews, and audits
(see the Software Quality KA). Processes and
responsibilities for ongoing review and revision
of the project plan and related plans should also
be clearly stated and agreed upon.

2.2. Determine Deliverables
[3%*, c4, c5, c6]

The work product(s) of each project activity (for
example, software architecture design docu-
ments, inspection reports, tested software) should
be identified and characterized. Opportunities to
reuse software components from previous proj-
ects or to utilize off-the-shelf software products

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
7-6 SWEBOK® Guide V3.0

should be evaluated. Procurement of software
and use of third parties to develop deliverables
should be planned and suppliers selected (see
section 3.2, Software Acquisition and Supplier
Contract Management).

2 Jo aund Coct Loting oationg
%Eﬁéiat—Seh-ed@ > HE— RGOS S HHRAGHOR

well as by issues relating to personnel (for exam-
ple, productivity of individuals and teams, team
dynamics, and team structures).

2.5. Risk Management
[3%, ¢9] [5%, c5]

THe estimated range of effort required for a proj-
ecf, or parts of a project, can be determined using
a ¢alibrated estimation model based on historical
sige and effort data (when available) and other
relevant methods such as expert judgment and
anplogy. Task dependencies can be established
and potential opportunities for completing tasks
copcurrently and sequentially can be identified
anfd documented using a Gantt chart, for exam-
pl¢. For predictive SDLC projects, the expected
schedule of tasks with projected start times, dura-
tigns, and end times is typically produced during
planning. For adaptive SDLC projects, an over-
all| estimate of effort and schedule is typically
dejveloped from the initial understanding of the
requirements, or, alternatively, constraints on
oveerall effort and schedule may be specified and
uspd to determine an initial estimate of the nuin-
bef of iterative cycles and estimates of effort-and
other resources allocated to each cycle.

Resource requirements (for example, people
and tools) can be translated into, Cost estimates.
Inftial estimation of effort, schedule, and cost is
anfiterative activity that should be negotiated and
reyised among affected stakeholders until con-
sepisus is reached onyreseurces and time available
for project completioft.

2.4. Resouréedllocation
[3%*, ¢5, ¢10, cl1]

Eduipment, facilities, and people should be allo-

Risk and uncertainty are related but distinct cons
cepts. Uncertainty results from lack of infornias
tion. Risk is characterized by the probability oflan
event that will result in a negative impact.plus a
characterization of the negative impaet on a proj-
ect. Risk is often the result of uncertainty. The
converse of risk is opportunity,‘which is charac-
terized by the probability that an event having a
positive outcome might occur.

Risk management entail§ identification of risk
factors and analysis. of the probability and poten-
tial impact of each-risk factor, prioritization of
risk factors, agd‘development of risk mitigation
strategies to/reduce the probability and minimize
the negatiye impact if a risk factor becomes a
problen. Risk assessment methods (for example,
expert judgment, historical data, decision trees,
and process simulations) can sometimes be used
in order to identify and evaluate risk factors.

Project abandonment conditions can also be
determined at this point in discussion with all
relevant stakeholders. Software-unique aspects
of risk, such as software engineers’ tendency to
add unneeded features, or the risks related to soft-
ware’s intangible nature, can influence risk man-
agement of a software project. Particular atten-
tion should be paid to the management of risks
related to software quality requirements such as
safety or security (see the Software Quality KA).
Risk management should be done not only at the
beginning of a project, but also at periodic inter-
vals throughout the project life cycle.

2.6. Quality Management

cated to the identified tasks, including the allo-
cation of responsibilities for completion of vari-
ous elements of a project and the overall project.
A matrix that shows who is responsible for,
accountable for, consulted about, and informed
about each of the tasks can be used. Resource
allocation is based on, and constrained by, the
availability of resources and their optimal use, as

© ISO/IEC 2016 — All rights reserved

[3%, c4] [4*, c24]

Software quality requirements should be identi-
fied, perhaps in both quantitative and qualitative
terms, for a software project and the associated
work products. Thresholds for acceptable qual-
ity measurements should be set for each software
quality requirement based on stakeholder needs

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

and expectations. Procedures concerned with
ongoing Software Quality Assurance (SQA) and
quality improvement throughout the development
process, and for verification and validation of
the deliverable software product, should also be
specified during quality planning (for example,

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-7

example, software design, software code, and
software test cases) are generated.

3.2. Software Acquisition and Supplier Contract
Management
[3*, 3, c4]

onstra
Ot

tions of completed functionality; see the Software
Quality KA).

2.7. Plan Management
[3%, c4]

For software projects, where change is an expec-
tation, plans should be managed. Managing the
project plan should thus be planned. Plans and
processes selected for software development
should be systematically monitored, reviewed,
reported, and, when appropriate, revised. Plans
associated with supporting processes (for exam-
ple, documentation, software configuration man-
agement, and problem resolution) also should be
managed. Reporting, monitoring, and controlling
a project should fit within the selected SDLC and
the realities of the project; plans should account
for the various artifacts that will be used te;man-
age the project.

3. Software Project Enactment

During software project edactment (also known
as project execution) plans are implemented and
the processes embodied in the plans are enacted.
Throughout, theréishould be a focus on adher-
ence to the seleeted SDLC processes, with an
overriding expectation that adherence will lead to
the suceessful satisfaction of stakeholder require-
ment§ and achievement of the project’s objec-
tives=*Fundamental to enactment are the ongoing
mahagement activities of monitoring, control-
ling, and reporting.

Software acquisition and supplier contract‘mgn-
agement is concerned with issues involved [in
contracting with customers of the software devgl-
opment organization who acquiredhe’/deliverable
work products and with suppliers who supply
products or services to the software engineering
organization.

This may involve selection of appropriate kijds
of contracts, such as'fixed price, time and matdri-
als, cost plus fixed.fee, or cost plus incentive fpe.
Agreements,-with customers and suppliers typi-
cally specify~the scope of work and the delivpr-
ables andyinclude clauses such as penalties for late
delivety or nondelivery and intellectual propefty
agreements that specify what the supplier or syp-
pliers are providing and what the acquirer is pgy-
ing for, plus what will be delivered to and owrled
by the acquirer. For software being developed by
suppliers (both internal to or external to the sdft-
ware development organization), agreements copn-
monly indicate software quality requirements for
acceptance of the delivered software.

After the agreement has been put in place, exe-
cution of the project in compliance with the terms
of the agreement should be managed (see chapfer
12 of SWX, Software Procurement Managemet,
for more information on this topic [2]).

3.3. Implementation of Measurement Process
[3*, ¢7]

The measurement process should be enacted dfir-
ing the software project to ensure that relevant
and useful data are collected (see sections 6.2,

3.1. Implementation of Plans
(4%, c2]

Project activities should be undertaken in accor-
dance with the project plan and supporting plans.
Resources (for example, personnel, technology,
and funding) are utilized and work products (for

Plan the Measurement Process, and 6.3, Perform
the Measurement Process).

3.4. Monitor Process
[3%, c8]

Adherence to the project plan and related
plans should be assessed continually and at

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
7-8 SWEBOK® Guide V3.0

predetermined intervals. Also, outputs and com-
pletion criteria for each task should be assessed.
Deliverables should be evaluated in terms of their
required characteristics (for example, via inspec-
tions or by demonstrating working functionality).
Effort expenditure, schedule adherence, and costs

software configuration control and software con-
figuration management procedures should be
adhered to (see the Software Configuration Man-
agement KA), decisions should be documented
and communicated to all relevant parties, plans
should be revisited and revised when necessary,

to rdate—should—be-analyzed;—and—resouree—usase
expmined. The project risk profile (see section
2.3, Risk Management) should be revisited, and
adherence to software quality requirements eval-
uafed (see Software Quality Requirements in the
Sqftware Quality KA).

Measurement data should be analyzed (see Sta-
tisical Analysis in the Engineering Foundations
KA). Variance analysis based on the deviation of
acfual from expected outcomes and values should
be| determined. This may include cost overruns,
schedule slippage, or other similar measures.
Ottlier identification and analysis of quality and
other measurement data should be performed (for
expmple, defect analysis; see Software Quality
Mgasurement in the Software Quality KA). Risk
exposures should be recalculated (see section 2.5,
Rikk Management). These activities can enable
prpblem detection and exception identification
baged on thresholds that have been exceeded:
Outcomes should be reported when thresholds
hajve been exceeded, or as necessary.

=
w

3.). Control Process
[3*, ¢7, c8]

THe outcomes of project, monitoring activities
prpvide the basis on which:decisions can be made.
Where appropriate, and=when the probability and
inpact of risk factors @re understood, changes can
be|made to theproject. This may take the form of
cofrective action (for example, retesting certain
software ‘components); it may involve incorpo-
rafing’ additional actions (for example, deciding
toluse prototyping to assist in software require-

and relevant data rooardod (coo contion 62 Doy
aha—FerevYahtadtatecorasa{(5ee5ecHoR—0=—=-=¢ef

form the Measurement Process).

3.6. Reporting
[3%) cll]

At specified and agreed-upon timesy, progress to
date should be reported—both<within the orga-
nization (for example, to a project steering com-
mittee) and to external stakeholders (for exam-
ple, clients or users), ‘Reports should focus on
the information negeds of the target audience as
opposed to the detarled status reporting within the
project team.

4. Review.and Evaluation

Atprespecified times and as needed, overall prog-
tess towards achievement of the stated objectives
and satisfaction of stakeholder (user and customer)
requirements should be evaluated. Similarly,
assessments of the effectiveness of the software
process, the personnel involved, and the tools and
methods employed should also be undertaken reg-
ularly and as determined by circumstances.

4.1. Determining Satisfaction of Requirements
[4%, c8]

Because achieving stakeholder satisfaction is
a principal goal of the software engineering
manager, progress towards this goal should
be assessed periodically. Progress should be
assessed on achievement of major project mile-
stones (for example, completion of software

ments validation; see Prototyping in the Software
Requirements KA); and/or it may entail revision
of the project plan and other project documents
(for example, the software requirements specifi-
cation) to accommodate unanticipated events and
their implications.

In some instances, the control process may
lead to abandonment of the project. In all cases,

© ISO/IEC 2016 — All rights reserved

design architecture or completion of a soft-
ware technical review), or upon completion of
an iterative development cycle that results in
a product increment. Variances from software
requirements should be identified and appropri-
ate actions should be taken.

As in the control process activity above (see sec-
tion 3.5, Control Process), software configuration

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

control and software configuration management
procedures should be followed (see the Software
Configuration Management KA), decisions docu-
mented and communicated to all relevant parties,
plans revisited and revised where necessary, and
relevant data recorded (see section 6.3, Perform

4.2. Reviewing and Evaluating Performance
[3*, c8, cl0]

Periodic performance reviews for project per-
sonnel can provide insights as to the likelihood
of adherence to plans and processes as well as
possible areas of difficulty (for example, team
member conflicts). The various methods, tools,
and techniques employed should be evaluated for
their effectiveness and appropriateness, and the
process being used by the project should also be
systematically and periodically assessed for rel-
evance, utility, and efficacy in the project context.
Where appropriate, changes should be made and
managed.

5. Closure

An entire project, a major phase of -4 project,
or an iterative development cycle xéaches clo-
sure when all the plans and progesses have been
enacted and completed. The criteria for project,
phase, or iteration success (should be evaluated.
Once closure is established, archival, retrospec-
tive, and process improvement activities can be
performed.

5.1. Determining Closure
[1, s3.7, s4.6]

Clesure occurs when the specified tasks for a
preject, a phase, or an iteration have been com-
pleted and satisfactory achievement of the com-

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-9

5.2. Closure Activities
[2, 83.7, s4.8]

After closure has been confirmed, archiving of
project materials should be accomplished in
accordance with stakeholder agreed-upon meth-
ods—location—and—duration—possibly—nehading
destruction of sensitive information, softwalre,
and the medium on which copies are(tesident.
The organization’s measurement database shoyld
be updated with relevant project data’ A projdct,
phase, or iteration retrospective ‘analysis shoyld
be undertaken so that issues,“problems, risks,
and opportunities encoufitered can be analyZ4ed
(see topic 4, Review and Evaluation). Lessdans
learned should be drawn from the project and fed
into organizatiogal” learning and improvemg¢nt
endeavors.

6. Software Engineering Measurement

‘Flie /importance of measurement and its role|in
better management and engineering practices| is
widely acknowledged (see Measurement in the
Engineering Foundations KA). Effective mg¢a-
surement has become one of the cornerstores
of organizational maturity. Measurement can |be
applied to organizations, projects, processes, and
work products. In this section the focus is on the
application of measurement at the levels of prpj-
ects, processes, and work products.

This section follows the IEEE 15939:2008
standard [6], which describes a process to define
the activities and tasks necessary to implemenft a
software measurement process. The standard also
includes a measurement information model.

6.1. Establish and Sustain Measurement
Commitment
[7*, cl, cP]?

pletion criteria has been confirmed. Software
requirements can be confirmed as satisfied or not,
and the degree of achieving the objectives can
be determined. Closure processes should involve
relevant stakeholders and result in documentation
of relevant stakeholders’ acceptance; any known
problems should be documented.

* Requirements for measurement. Each mea-
surement endeavor should be guided by
organizational objectives and driven by a set
of measurement requirements established by

2 Please note that these two chapters can be
downloaded free of charge from www.psmsc.com/
PSMBook.asp.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

7-10 SWEBOK® Guide V3.0

the organization and the project (for exam-
ple, an organizational objective might be
“first-to-market with new products”).

* Scope of measurement. The organizational
unit to which each measurement requirement
is to be applied should be established. This

prioritized. Then a subset of objectives to be
addressed can be selected, documented, com-
municated, and reviewed by stakeholders.
 Select measures. Candidate measures should
be selected, with clear links to the informa-
tion needs. Measures should be selected

Hay—consisti—oi-a—functional-area—a—sigle
project, a single site, or an entire enterprise.
The temporal scope of the measurement
effort should also be considered because
time series of some measurements may be
required; for example, to calibrate estima-
tion models (see section 2.3, Effort, Sched-
ule, and Cost Estimation).

b Team commitment to measurement. The
commitment should be formally established,
communicated, and supported by resources
(see next item).

b Resources for measurement. An organiza-
tion’s commitment to measurement is an
essential factor for success, as evidenced by
the assignment of resources for implement-
ing the measurement process. Assigning
resources includes allocation of responsibil-
ity for the various tasks of the measurement
process (such as analyst and librarian). Ade*
quate funding, training, tools, and supporite
conduct the process should also be alloeated.

2. Plan the Measurement Proces(s
[7*, cl, c2]

b Characterize the jorganizational unit. The
organizational ynit-provides the context for
measurementy\so the organizational context
should bermade explicit, including the con-
straints(that the organization imposes on
the measurement process. The characteriza-
tioh-can be stated in terms of organizational
processes, application domains, technology,

needs and other criteria such as cost of col;
lection, degree of process disruption durifig
collection, ease of obtaining accurate, .con-
sistent data, and ease of analysis and-feport-
ing. Because internal quality characteristics
(see Models and Quality Characteristics in
the Software Quality KA), dre-often not con-
tained in the contractually ‘binding software
requirements, it is important to consider mea-
suring the internal‘\qudlity of the software to
provide an eagly\indicator of potential issues
that may impact’external stakeholders.

* Define datayeollection, analysis, and report-
ing proeedures. This encompasses collection
precedures and schedules, storage, verifica-
tion, analysis, reporting, and configuration
management of data.

* Select criteria for evaluating the information
products. Criteria for evaluation are influ-
enced by the technical and business objec-
tives of the organizational unit. Information
products include those associated with the
product being produced, as well as those
associated with the processes being used to
manage and measure the project.

* Provide resources for measurement tasks. The
measurement plan should be reviewed and
approved by the appropriate stakeholders to
include all data collection procedures; storage,
analysis, and reporting procedures; evaluation
criteria; schedules; and responsibilities. Crite-
ria for reviewing these artifacts should have
been established at the organizational-unit
level or higher and should be used as the basis

organizational interfaces, and organizational
structure.

o Identify information needs. Information
needs are based on the goals, constraints,
risks, and problems of the organizational
unit. They may be derived from business,
organizational, regulatory, and/or product
objectives. They should be identified and

© ISO/IEC 2016 — All rights reserved

for these reviews. Such criteria should take
into consideration previous experience, avail-
ability of resources, and potential disruptions
to projects when changes from current prac-
tices are proposed. Approval demonstrates
commitment to the measurement process.

* Identify resources to be made available for
implementing the planned and approved

http://www.psmsc.com/PSMBook.asp
http://www.psmsc.com/PSMBook.asp
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

measurement tasks. Resource availability
may be staged in cases where changes are
to be piloted before widespread deployment.
Consideration should be paid to the resources
necessary for successful deployment of new
procedures or measures.

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-11

Engineering Foundations KA). The results
and conclusions are usually reviewed, using
a process defined by the organization (which
may be formal or informal). Data providers
and measurement users should participate
in reviewing the data to ensure that they are

6.3.

A cauire—and—denlavsunnortina technaolooiec

Aecquire—and—deploy—suppertina—technologies-
This includes evaluation of available supporting
technologies, selection of the most appropriate
technologies, acquisition of those technologies,

and deployment of those technologies.

Perform the Measurement Process
[7%, cl, c2]

Integrate measurement procedures with rel-
evant software processes. The measurement
procedures, such as data collection, should
be integrated into the software processes
they are measuring. This may involve chang-
ing current software processes to accommo-
date data collection or generation activities.
It may also involve analysis of current soft-
ware processes to minimize additional effort
and evaluation of the effect on employees;to
ensure that the measurement procedures will
be accepted. Morale issues and other human
factors should be considered. In'addition, the
measurement procedures sheuld be commu-
nicated to those providing the data. Training
and support may also meed to be provided.
Data analysis and (reporting procedures are
typically integgated into organizational and/
or project progesses in a similar manner.

Collect data=Data should be collected, veri-
fied, and.stored. Collection can sometimes
beautomated by using software engineer-
ing) ‘management tools (see topic 7, Soft-
ware Engineering Management Tools) to
analyze data and develop reports. Data may
be aggregated, transformed, or recoded as

meaninafl-and-aceurate—and—thatthey ¢
result in reasonable actions.

¢ Communicate results. Information (produ
should be documented and communicated

users and stakeholders.

6.4. Evaluate Measurement
[7%, cl,

 Evaluate information products and the m¢

surement process against specified eva
ation criteria and determine strengths a
weakmnesses of the information products
process, respectively. Evaluation may
performed by an internal process or an ext
nal audit; it should include feedback fr
measurement users. Lessons learned shot
be recorded in an appropriate database.

 Identify potential improvements. Su

an

Cts
to

improvements may be changes in the format

of indicators, changes in units measured,
reclassification of measurement categori
The costs and benefits of potential improy
ments should be determined and appropri
improvement actions should be reported.

or
eS.
Ie_
hte

» Communicate proposed improvements to the

measurement process owner and stakeho
ers for review and approval. Also, lack
potential improvements should be comnn
nicated if the analysis fails to identify a
improvements.

7. Software Engineering Management Tools|

[3*, 5, c6,

d-
of
u-
ny

7]

part of the analysis process, using a degree
of rigor appropriate to the nature of the data
and the information needs. The results of
this analysis are typically indicators such as
graphs, numbers, or other indications that
will be interpreted, resulting in conclusions
and recommendations to be presented to
stakeholders (see Statistical Analysis in the

Software engineering management tools are often
used to provide visibility and control of software
engineering management processes. Some tools

are automated while others are manually imp

le-

mented. There has been a recent trend towards
the use of integrated suites of software engineer-

ing tools that are used throughout a project

to

plan, collect and record, monitor and control, and

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
7-12 SWEBOK® Guide V3.0

report project and product information. Tools can
be divided into the following categories:

Project Planning and Tracking Tools. Project
planning and tracking tools can be used to esti-
mate project effort and cost and to prepare project
schedules. Some projects use automated estima-

tiop-tee L en n ho o ated e

and produce estimates of the required total effort,
schedule, and cost. Planning tools also include
aufomated scheduling tools that analyze the tasks
within a work breakdown structure, their esti-
mgted durations, their precedence relationships,
and the resources assigned to each task to pro-
duce a schedule in the form of a Gantt chart.
racking tools can be used to track project
milestones, regularly scheduled project status
m¢etings, scheduled iteration cycles, product
demonstrations, and/or action items.

Risk Management Tools. Risk management
topls (see section 2.5, Risk Management) can
be| used to track risk identification, estimation,
anfd monitoring. These tools include the use of
approaches such as simulation or decision trees
to| analyze the effect of costs versus payoffs

and subjective estimates of the probabilities of
risk events. Monte Carlo simulation tools can
be used to produce probability distributions of
effort, schedule, and risk by combining multiple
input probability distributions in an algorithmic
manner.

information to relevant stakeholders involved ina
project. These tools can include things like email
notifications and broadcasts to team members
and stakeholders. They also include ggmmunica-
tion of minutes from regularly scheduted project
meetings, daily stand-up meetings, plus charts
showing progress, backlogs, and maintenance
request resolutions.

Measurement Tools.\M¢éasurement tools sup-
port activities related_to the software measure-
ment program (see-topic 6, Software Engineer-
ing Measurengent). There are few completely
automated ‘tools in this category. Measurement
tools used to gather, analyze, and report project
measurement data may be based on spreadsheets
developed by project team members or organiza-
tional employees.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

e
= & 2
2 S S
I~ 2 = <
o — — = — = —
=5 . =5 Sk
—— e = —
: : ;r\@
=~ £ £
A =
7] > qo
S
S \>
1. Initiation and Scope '\\D
Definition)
1.1. Determination and 3 d N
Negotiation of Requirements K
1.2. Feasibility Analysis c4 (\\v
. ~
1.3. Process for the Review and %
.. . c3 \
Revision of Requirements r‘\\
2. Software Project Planning AQ -
2.1. Process Planning c2,c3,c4,c5 40\) cl
2.2. Determine Deliverables c4, c5, c6 \\\ N
2.3. Effort, Schedule, and Cost c h\d
Estimation Q@
2.4. Resource Allocation c&\cTO, cll
2.5. Risk Management \'\\() c9 c5
2.6. Quality Management O c4 c24
2.7. Plan Management | - c4
3. Software Project E@ment
3.1. Implementation of Plans c2
3.2. Softwarg Acquisition and Gl
Supplier C@yract Management ’
33.1 nentation of
c7
ement Process
’_@f’ﬂ/{onitor Process c8
S)3.5. Control Process c7,c8
r 2 4 Renorting cll
e r i=]
4. Review and Evaluation
4.1. Determining Satisfaction of
Requirements
4.2. Reviewing and Evaluating ¢8. cl0
Performance

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
7-14 SWEBOK® Guide V3.0

3
= S S
2 S S
= 2 = <
N =5 g5 in
S L = S
2 : : 3
@ 5 < :\(0
2 O
=2 (]/
—
5{ Closure A J
5.1. Determining Closure ,\Q‘
5.2. Closure Activities K
6| Software Engineering
Measurement Ve /C)
6.1. Establish and Sustain \\V
) O cl, c2
Measurement Commitment Ch
6.2. Plan the Measurement N7
N cl,c2
Process Z
\Y
6.3. Perform the Measurement QQ ol 2
Process -
6.4. Evaluate Measurement &Q\ cl,c2
7| Software Engineering &
Mlanagement Tools ¢3, 6, CZ\.\Q
N
A\Q)
xO

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

FURTHER READINGS

A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) [1].

The PMBOK® Guide provides guidelines for

1
THoryrerererr STt

ISO/IEC TR 19759:2016(E)

Software Engineering Management 7-15

REFERENCES

[1] Project Management Institute, 4 Guide to the
Project Management Body of Knowledge
(PMBOK(R) Guide), 5th ed., Project
Management Institute, 2013.

managing-individual projects-and-defines-project
management-related concepts. It also describes
the project management life cycle and its related
processes, as well as the project life cycle. It is
a globally recognized guide for the project man-
agement profession.

Software Extension to the Guide to the
Project Management Body of Knowledge
(PMBOK® Guide) [2].

SWX provides adaptations and extensions to
the generic practices of project management
documented in the PMBOK® Guide for manag-
ing software projects. The primary contribution
of this extension to the PMBOK® Guide is a
description of processes that are applicable for
managing adaptive life cycle software projects:

IEEE Standard Adoption of ISO/IEC 15939\6].

This international standard identifies“a process
that supports defining a suitable-set of measures
to address specific information*needs. It identi-
fies the activities and tasks(that are necessary to
successfully identify, define, select, apply, and
improve measurement.within an overall project
or organizational-measurement structure.

J. McDonald, Managing the Development of
Software Intensive Systems, Wiley, 2010 [8].

This-textbook provides an introduction to project
mahagement for beginning software and hard-
ware developers plus unique advanced material

[2] Project Management Institute and IEEE
Computer Society, Software Extension'to
the PMBOK® Guide Fifth Edition,Projeg
Management Institute, 2013,

—F

[3*] R.E. Fairley, Managing and Leading
Software Projects, Wiley-IEEE Computer
Society Press, 20009.

[4*] I. Sommervilie] Software Engineering, 9th
ed., Addison-Wesley, 2011.

[5*] B. Beehm and R. Turner, Balancing Agilify
and Discipline: A Guide for the Perplexe(
Addison-Wesley, 2003.

]

[6] IEEE Std. 15939-2008 Standard Adoption of
ISO/IEC 15939:2007 Systems and Softwate
Engineering—Measurement Process,
IEEE, 2008.

[7*] J. McGarry et al., Practical Software
Measurement: Objective Information
Jfor Decision Makers, Addison-Wesley
Professional, 2001.

[8] J. McDonald, Managing the Development pf
Software Intensive Systems, John Wiley apd
Sons, Inc., 2010.

for experienced project managers. Case studies
are included for planning and managing verifica-
tion and validation for large software projects,
complex software, and hardware systems, as well
as inspection results and testing metrics to moni-
tor project status.

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 8

SOFTWARE ENGINEERING PROCESS

ACRONYMS
BPMN Busmgss Process Modeling
Notation
CASE Con?putef-Asmsted Software
Engineering
CM Configuration Management
CMMI Capabll{ty Maturity Model
Integration
GQM Goal-Question-Metric
IDEFO | Integration Definition
LOE Level of Effort
ODC Orthogonal Defect Classification
SDLC Software Development Life Cycle
SPLC Software Product Life Cycle
UML Unified Modeling Language
INTRODUCTION

An engineering process consists of a set of inter-
related activities that transform one or more inputs
into outputs while €onsuming resources to accom-
plish the transformation. Many of the processes of
traditional engineering disciplines (e.g., electrical,
mechanicaly” civil, chemical) are concerned with
transforming energy and physical entities from
one-form into another, as in a hydroelectric dam
that transforms potential energy into electrical
€nergy or a petroleum refinery that uses chemical

process” will be referred to as “software proce
in this KA. In addition, please noté-thdt “software
process” denotes work activities—not the exequ-
tion process for implemented’software.

Software processes aré.specified for a number
of reasons: to facilitate® human understanding,
communication, and.coordination; to aid mgn-
agement of softwafe projects; to measure and
improve the-quality of software products in |an
efficient ,manfier; to support process improye-
ment; ardto provide a basis for automated syp-
port‘ef process execution.

SWEBOK KAs closely related to this Sqft-
ware Engineering Process KA include Softwgre
Engineering Management, Software Enginepr-
ing Models and Methods, and Software Quality;
the Measurement and Root Cause Analysis topic
found in the Engineering Foundations KA is also
closely related. Software Engineering Manage-
ment is concerned with tailoring, adapting, and
implementing software processes for a specilfic
software project (see Process Planning in the
Software Engineering Management KA). Mqd-
els and methods support a systematic approach{to
software development and modification.

The Software Quality KA is concerned wjth
the planning, assurance, and control procesges
for project and product quality. Measurement ajnd
measurement results in the Engineering Foundla-
tions KA are essential for evaluating and contrpl-
ling software processes.

w

—

processes to transform crude oil into gasoline.

In this knowledge area (KA), software engineer-
ing processes are concerned with work activities
accomplished by software engineers to develop,
maintain, and operate software, such as require-
ments, design, construction, testing, configura-
tion management, and other software engineering
processes. For readability, “software engineering

8-1

© ISO/IEC 2016 — All rights reserved

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING PROCESS

As illustrated in Figure 8.1, this KA is concerned
with software process definition, software life
cycles, software process assessment and improve-
ment, software measurement, and software engi-
neering process tools.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Software

Engineering Process

Software Process
Definition

Software Life
Cycles

Soltware Process
— Assessment and
Improvement

Software
Measurement

Software
Engineering
Process Tools

Software Process
Management

>Software Process
Infrastructure

Categories of
—» Software
Processes

Software Life
Cycle Models

Software Process
Adaptation

Practical
Considerations

Software Process

Continuous and
—» Staged Software
Process*Ratings

Software Process

> Assessment —» and Product
Models Measurement
Software Process Quality of

—» Assessment —» Measurement
Methods Results
Software Process Software

—» Improvement —» Information
Models Models

Software Process

» Measurement
Techniques

1.[Software Process Definition
[1%, p177] [2*, p295] [3*, p28-29, p36, c5]

THis topic is concerned with 4 definition of soft-
wdre process, software process management, and
software process infrasteticture.

As stated above, asoftware process is a set of
inferrelated activities”and tasks that transform
input work products into output work products.
Af minimuih, the description of a software pro-
ceps inclades required inputs, transforming work
acfivitiess and outputs generated. As illustrated in
Figure”8.2, a software process may also include

Figure 8.1. Breakdown of Topies:for the Software Engineering Process KA

concluded, including the acceptance criteria for
the output work product or work products.

A software process may include subprocesses.
For example, software requirements validation is
a process used to determine whether the require-
ments will provide an adequate basis for software
development; it is a subprocess of the software
requirements process. Inputs for requirements val-
idation are typically a software requirements spec-
ification and the resources needed to perform vali-
dation (personnel, validation tools, sufficient time).
The tasks of the requirements validation activity
might include requirements reviews, prototyping,

its entry and exit criteria and decomposition
of the work activities into tasks, which are the
smallest units of work subject to management
accountability. A process input may be a trigger-
ing event or the output of another process. Entry
criteria should be satisfied before a process can
commence. All specified conditions should be
satisfied before a process can be successfully

and model validation. These tasks involve work
assignments for individuals and teams. The output
of requirements validation is typically a validated
software requirements specification that provides
inputs to the software design and software test-
ing processes. Requirements validation and other
subprocesses of the software requirements process
are often interleaved and iterated in various ways;

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Engineering Process 8-3

Transform
Entry criteria

Input met?

Activity Task

Exit criteria

met? Output

Task

Task

Task

—]
Activity '— Task

Task

Task

Task

Figure 8.2. Elements of a Software Process

the software requirements process and its subpro-
cesses may be entered and exited multiple times
during software development or modification.

Complete definition of a software process may
also include the roles and competencies, IT sup-
port, software engineering techniques and tools,
and work environment needed to perform the
process, as well as the approaches and measures
(Key Performance Indicators) used to determine
the efficiency and effectiveness of performing the
process.

In addition, a software process may ielude
interleaved technical, collaborative, andtadminis-
trative activities.

Notations for defining software processes
include textual lists of constituent activities and
tasks described in natural(language; data-flow
diagrams; state charts; BPMN; IDEFO; Petri nets;
and UML activity (diagrams. The transforming
tasks within a pro¢ess may be defined as proce-
dures; a procedure may be specified as an ordered
set of stepsior, alternatively, as a checklist of the
work torbeaccomplished in performing a task.

It iust be emphasized that there is no best soft-
wate*process or set of software processes. Soft-
ware processes must be selected, adapted, and
applied as appropriate for each project and each

result from a systematic approach to accompligh-
ing software processes’and producing work prgd-
ucts—be it at the individual, project, or organita-
tional level—and to introduce new or improved
processes.

Processes are changed with the expectation that
a new or modified process will improve the effi-
eiency and/or effectiveness of the process and the
quality of the resulting work products. Changing
to a new process, improving an existing procegs,
organizational change, and infrastructure change
(technology insertion or changes in tools) gre
closely related, as all are usually initiated with the
goal of improving the cost, development sch¢d-
ule, or quality of the software products. Proc¢ss
change has impacts not only for the software
product; they often lead to organizational change.
Changing a process or introducing a new procg¢ss
can have ripple effects throughout an organita-
tion. For example, changes in IT infrastrjc-
ture tools and technology often require proc¢ss
changes.

Existing processes may be modified when
other new processes are deployed for the first
time (for example, introducing an inspection
activity within a software development projgct
will likely impact the software testing process—

organizational context. No ideal process, or set of
processes, exists.

1.1. Software Process Management
[3*, 526.1] [4*, p453—454]

Two objectives of software process management
are to realize the efficiency and effectiveness that

© ISO/IEC 2016 — All rights reserved

see Reviews and Audits in the Software Quality
KA and in the Software Testing KA). These situ-
ations can also be termed “process evolution.”
If the modifications are extensive, then changes
in the organizational culture and business model
will likely be necessary to accommodate the pro-
cess changes.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-4 SWEBOK® Guide V3.0

1.2. Software Process Infrastructure
[2*, p183, p186] [4*, p437—438]

Establishing, implementing, and managing soft-
ware processes and software life cycle models
often occurs at the level of individual software

el across an organization can provide benefits
to| all software work within the organization,
alfhough it requires commitment at the organi-
zafional level. A software process infrastructure
cah provide process definitions, policies for inter-
pre¢ting and applying the processes, and descrip-
tigns of the procedures to be used to implement
th¢ processes. Additionally, a software process
infrastructure may provide funding, tools, train-
ing, and staff members who have been assigned
regponsibilities for establishing and maintaining
th¢ software process infrastructure.

Software process infrastructure varies, depend-
ing on the size and complexity of the organization
and the projects undertaken within the organiza-
tign. Small, simple organizations and projects
hae small, simple infrastructure needs. Large,
complex organizations and projects, by neces*
sitly, have larger and more complex software
process infrastructures. In the latter case, vatious
organizational units may be established~(such as
a joftware engineering process group or a steer-
ing committee) to oversee implementation and
infprovement of the software processes.

A common misperception is that establishing a
software process infrastrticture and implementing
repeatable software proeesses will add time and
copt to software development and maintenance.
THere is a cosp_associated with introducing or
infproving 4 spftware process; however, experi-
ence hassshown that implementing systematic
infpreyement of software processes tends to result
in [lower cost through improved efficiency, avoid-

ISO/IEC TR 19759:2016(E)

process adaptation, and practical considerations.
A software development life cycle (SDLC)
includes the software processes used to specify
and transform software requirements into a deliv-
erable software product. A software product life
cycle (SPLC) includes a software development

evolution, retirement, and all other inceptioiiy
to-retirement processes for a software produet,
including the software configuration management
and software quality assurance processes that are
applied throughout a software product-life cycle.
A software product life cycle pfay-include multi-
ple software development life cycles for evolving
and enhancing the software:

Individual software processes have no tempo-
ral ordering among-them. The temporal relation-
ships among software processes are provided by
a software lifegycle model: either an SDLC or
SPLC. Lifescycle models typically emphasize
the keyysoftware processes within the model
and.their temporal and logical interdependen-
ciesand relationships. Detailed definitions of
the software processes in a life cycle model may
be provided directly or by reference to other
documents.

In addition to conveying the temporal and
logical relationships among software processes,
the software development life cycle model (or
models used within an organization) includes the
control mechanisms for applying entry and exit
criteria (e.g., project reviews, customer approv-
als, software testing, quality thresholds, dem-
onstrations, team consensus). The output of one
software process often provides the input for oth-
ers (e.g., software requirements provide input for
a software architectural design process and the
software construction and software testing pro-
cesses). Concurrent execution of several software
process activities may produce a shared output

ance of rework, and more reliable and affordable
software. Process performance thus influences
software product quality.

2. Software Life Cycles
[1%, c2] [2*%, p190]

This topic addresses categories of software pro-
cesses, software life cycle models, software

(e.g., the interface specifications for interfaces
among multiple software components developed
by different teams). Some software processes
may be regarded as less effective unless other
software processes are being performed at the
same time (e.g., software test planning during
software requirements analysis can improve the
software requirements).

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

2.1. Categories of Sofiware Processes
[1*, Preface] [2* , p294-295] [3%*, c22—c24]

Many distinct software processes have been
defined for use in the various parts of the soft-
ware development and software maintenance life

follows:

1. Primary processes include software pro-
cesses for development, operation, and
maintenance of software.

2. Supporting processes are applied intermit-
tently or continuously throughout a software
product life cycle to support primary pro-
cesses; they include software processes such
as configuration management, quality assur-
ance, and verification and validation.

3. Organizational processes provide sup-
port for software engineering; they include
training, process measurement analysis,
infrastructure management, portfolio and
reuse management, organizational process
improvement, and management of softwage
life cycle models.

4. Cross-project processes, such as reuse,soft-
ware product line, and domain engineering;
they involve more than a single’ software
project in an organization.

Software processes in.addition to those listed
above include the following.

Project management processes include pro-
cesses for plapning and estimating, resource
management,measuring and controlling, leading,
managing risk; managing stakeholders, and coor-
dinating’the' primary, supporting, organizational,
and _cross-project processes of software develop-
mént'and maintenance projects.

Software processes are also developed for
particular needs, such as process activities that

Software Engineering Process 8-5

2.2. Software Life Cycle Models
[1%, c2] [2*%, s3.2] [3*, s2.1] [5]

The intangible and malleable nature of software
permits a wide variety of software development

iteration as needed followed by integration, test-
ing, and delivery of a single product;-toterative
models in which software is develeped in incfe-
ments of increasing functiopality on iterat{ve
cycles; to agile models that, typically involve
frequent demonstrations Qf-working software|to
a customer or user representative who direfts
development of thewsoftware in short iteratfve
cycles that produce*small increments of working,
deliverable software. Incremental, iterative, and
agile models-ean deliver early subsets of working
software-into the user environment, if desired.
Linear SDLC models are sometimes referfed
to'as predictive software development life cy¢le
models, while iterative and agile SDLCs gre
referred to as adaptive software developm¢nt
life cycle models. It should be noted that vgri-
ous maintenance activities during an SPLC dan
be conducted using different SDLC models, |as
appropriate to the maintenance activities.
A distinguishing feature of the various sqft-
ware development life cycle models is the way|in
which software requirements are managed. Ljn-
ear development models typically develop a com-
plete set of software requirements, to the ext¢nt
possible, during project initiation and plannifg.
The software requirements are then rigorously
controlled. Changes to the software requirements
are based on change requests that are procesded
by a change control board (see Requesting,
Evaluating and Approving Software Changes|in
the Change Control Board in the Software Cgn-
figuration Management KA). An incremenial

address software quality characteristics (see
the Software Quality KA). For example, secu-
rity concerns during software development may
necessitate one or more software processes to
protect the security of the development environ-
ment and reduce the risk of malicious acts. Soft-
ware processes may also be developed to provide
adequate grounds for establishing confidence in
the integrity of the software.

© ISO/IEC 2016 — All rights reserved

model produces successive increments of work-
ing, deliverable software based on partitioning
of the software requirements to be implemented
in each of the increments. The software require-
ments may be rigorously controlled, as in a linear
model, or there may be some flexibility in revising
the software requirements as the software product
evolves. Agile models may define product scope
and high-level features initially; however, agile

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-6 SWEBOK® Guide V3.0

models are designed to facilitate evolution of the
software requirements during the project.

It must be emphasized that the continuum of
SDLCs from linear to agile is not a thin, straight
line. Elements of different approaches may be
incorporated into a specific model; for exam-
ple—an—ineremental—seoftware—developmentlife
cyfle model may incorporate sequential soft-
wdre requirements and design phases but permit
copsiderable flexibility in revising the software
requirements and architecture during software
copstruction.

2.§. Software Process Adaptation
[1%, s2.7] [2*, p51]

Prpdefined SDLCs, SPLCs, and individual soft-
w4qre processes often need to be adapted (or
“tgilored”) to better serve local needs. Organiza-
tignal context, innovations in technology, project
sige, product criticality, regulatory requirements,
indlustry practices, and corporate culture may
defermine needed adaptations. Adaptation of
indlividual software processes and software life
cyple models (development and product) may
copsist of adding more details to software pro*
cepses, activities, tasks, and procedures to addréss
critical concerns. It may consist of using analter-
nafe set of activities that achieves the purpose and
outcomes of the software process; Adaptation
may also include omitting software processes
orfactivities from a developmient or product life
cyfle model that are clearly inapplicable to the
scppe of work to be accomplished.

=

2.4. Practical Considérations
[2*, p188—190]

In|practice; software processes and activities are
offenvinterleaved, overlapped, and applied concur-
reftly."Software life cycle models that specify dis-

ISO/IEC TR 19759:2016(E)

construction, and testing) can be adapted to facili-
tate operation, support, maintenance, migration,
and retirement of the software.

Additional factors to be considered when
defining and tailoring a software life cycle model

of the software product; and organizational matu-
rity and competencies. Other factors include the
nature of the work (e.g., modification of_exist-
ing software versus new development){and the
application domain (e.g., aerospace yersus hotel
management).

3. Software Process Assessment and
Improvement
[2%, p188, pl94|N3*, c26] [4*, p397, c15]

This topic addrésses software process assess-
ment models, software process assessment meth-
ods, software process improvement models, and
continuotis/and staged process ratings. Software
process assessments are used to evaluate the form
and._content of a software process, which may
be specified by a standardized set of criteria. In
some instances, the terms “process appraisal”
and “capability evaluation” are used instead of
process assessment. Capability evaluations are
typically performed by an acquirer (or potential
acquirer) or by an external agent on behalf of
an acquirer (or potential acquirer). The results
are used as an indicator of whether the software
processes used by a supplier (or potential sup-
plier) are acceptable to the acquirer. Performance
appraisals are typically performed within an orga-
nization to identify software processes in need of
improvement or to determine whether a process
(or processes) satisfies the criteria at a given level
of process capability or maturity.

Process assessments are performed at the lev-
els of entire organizations, organizational units

crete software processes, with rigorously specified
entry and exit criteria and prescribed boundaries
and interfaces, should be recognized as idealiza-
tions that must be adapted to reflect the realities of
software development and maintenance within the
organizational context and business environment.
Another practical consideration: software
processes (such as configuration management,

within organizations, and individual projects.
Assessment may involve issues such as assess-
ing whether software process entry and exit cri-
teria are being met, to review risk factors and
risk management, or to identify lessons learned.
Process assessment is carried out using both an
assessment model and an assessment method. The
model can provide a norm for a benchmarking

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

comparison among projects within an organiza-
tion and among organizations.

A process audit differs from a process assess-
ment. Assessments are performed to determine
levels of capability or maturity and to identify
software processes to be improved. Audits are

ment visibility into the actual operations being
performed in the organization so that accurate
and meaningful decisions can be made concern-
ing issues that are impacting a development proj-
ect, a maintenance activity, or a software-related
topic.

Success factors for software process assess-
ment and improvement within software engineer-
ing organizations include management sponsor-
ship, planning, training, experienced and capable
leaders, team commitment, expectation manage-
ment, the use of change agents, plus pilot projects
and experimentation with tools. Additional fac-
tors include independence of the assessor and the
timeliness of the assessment.

3.1. Software Process Assessment Models
[2%, s4.5, s4.6] [3*, $26.5] [4*, pd4—48]

Software process assessment models’ typically
include assessment criteria for software processes
that are regarded as constituting’ good practices.
These practices may address software develop-
ment processes only, &r they may also include
topics such as software maintenance, software
project managemient, systems engineering, or
human resources-management.

3.2. Software Process Assessment Methods
[1%*, p322-331] [3*, 526.3]
[4*, p44—48, s16.4] [6]

A software process assessment method can be

Software Engineering Process 8-7

examining the procedural steps followed and
results obtained plus data concerning defects
found and time required to find and fix the defects
as compared to software testing.

A typical method of software process assess-
ment includes planning, fact-finding (by collect-

e evidencethrouah auestionnaires—intervie
Gresto SS—HHeFHeWS,

reporting. Process assessments may_ rely on
subjective, qualitative judgment, gfthe assesspr,
or on the objective presence orabsence of defined
artifacts, records, and other ewidence.

The activities performeéd’during a software pfo-
cess assessment and the distribution of effort for
assessment activities-are different depending jon
the purpose of the Software process assessmept.
Software process assessments may be undertaken
to develop ‘eapability ratings used to make recom-
mendationis for process improvements or may |be
undértaken to obtain a process maturity rating{in
otdet to qualify for a contract or award.

The quality of assessment results depends jon
the software process assessment method, the
integrity and quality of the obtained data, the
assessment team’s capability and objectivity, and
the evidence examined during the assessmept.
The goal of a software process assessment is|to
gain insight that will establish the current stafus
of a process or processes and provide a basis for
process improvement; performing a softwgre
process assessment by following a checklist for
conformance without gaining insight adds liftle
value.

3.3. Software Process Improvement Models
[2%, p187-188] [3%*, s26.5] [4*, s2|7]

Software process improvement models empla-
size iterative cycles of continuous improvemet.
A software process improvement cycle typically

qualitative or quantitative. Qualitative assess-
ments rely on the judgment of experts; quanti-
tative assessments assign numerical scores to
software processes based on analysis of objective
evidence that indicates attainment of the goals
and outcomes of a defined software process. For
example, a quantitative assessment of the soft-
ware inspection process might be performed by

© ISO/IEC 2016 — All rights reserved

involves the subprocesses of measuring, ana-
lyzing, and changing. The Plan-Do-Check-Act
model is a well-known iterative approach to
software process improvement. Improvement
activities include identifying and prioritizing
desired improvements (planning); introducing
an improvement, including change management
and training (doing); evaluating the improvement

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-8 SWEBOK® Guide V3.0

as compared to previous or exemplary process
results and costs (checking); and making further
modifications (acting). The Plan-Do-Check-Act
process improvement model can be applied, for
example, to improve software processes that
enhance defect prevention.

ISO/IEC TR 19759:2016(E)

visibility into intermediate work products and
can exert some control over transitions between
processes. At level 3, a single software process or
the processes in a maturity level 3 group plus the
process or processes in maturity level 2 are well
defined (perhaps in organizational policies and

nrocedures)y—and-are batng ronoatad aorocc A1 f
PF S—aia—are—o £—Fep SFOSS—artt

3.4. Continuous and Staged Software Process
Rqtings
[1*, p28-34] [3*, 526.5] [4*, p39—45]

Sqftware process capability and software process
mgturity are typically rated using five or six levels
to [characterize the capability or maturity of the
software processes used within an organization.
A continuous rating system involves assign-
ing a rating to each software process of interest;
a ftaged rating system is established by assign-
ing the same maturity rating to all of the software
processes within a specified process level. A rep-
regentation of continuous and staged process lev-
el{ is provided in Table 8.1. Continuous models
typically use a level 0 rating; staged models typi-
ca]ly do not.

Tlable 8.1. Software Process Rating Levels
Continuous Staged
evel Representation | Representation
of Capability of Maturity
Levels Levels
0 Incomplete
1 Performed Initial
2 Managed Managed
3 Defined Defined
4 Quantitatively
Managed
5 Optimizing

[n\T4ble 8.1, level 0 indicates that a software

ferent projects. Level 3 of process capability or
maturity provides the basis for process improves
ment across an organization because the process
is (or processes are) conducted in a simidat“man-
ner. This allows collection of performance data
in a uniform manner across multiple\projects. At
maturity level 4, quantitative, faeasures can be
applied and used for process assessment; statis-
tical analysis may be used~At maturity level 5,
the mechanisms for contittious process improve-
ments are applied.

Continuous and\staged representations can be
used to deternmpte the order in which software
processes_ar¢ to be improved. In the continuous
representation, the different capability levels for
different software processes provide a guideline
fordetermining the order in which software pro-
cesses will be improved. In the staged representa-
tion, satisfying the goals of a set of software pro-
cesses within a maturity level is accomplished for
that maturity level, which provides a foundation
for improving all of the software processes at the
next higher level.

4. Software Measurement
[3%*, s26.2] [4%, s18.1.1]

This topic addresses software process and prod-
uct measurement, quality of measurement results,
software information models, and software pro-
cess measurement techniques (see Measurement
in the Engineering Foundations KA).

Before a new process is implemented or a cur-
rent process is modified, measurement results for

process is incompletely performed or may not be
performed. At level 1, a software process is being
performed (capability rating), or the software
processes in a maturity level 1 group are being
performed but on an ad hoc, informal basis. At
level 2, a software process (capability rating) or
the processes in maturity level 2 are being per-
formed in a manner that provides management

the current situation should be obtained to pro-
vide a baseline for comparison between the cur-
rent situation and the new situation. For exam-
ple, before introducing the software inspection
process, effort required to fix defects discovered
by testing should be measured. Following an ini-
tial start-up period after the inspection process
is introduced, the combined effort of inspection

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

plus testing can be compared to the previous
amount of effort required for testing alone. Simi-
lar considerations apply if a process is changed.

4.1. Software Process and Product Measurement
[1%,56.3, p273] [3%, s26.2, p638]

Software Engineering Process 8-9

design documentation, and other related work
products.

Also note that efficiency and effectiveness are
independent concepts. An effective software pro-
cess can be inefficient in achieving a desired soft-
ware process result; for example, the amount of

Software process and product measurement are
concerned with determining the efficiency and
effectiveness of a software process, activity, or
task. The efficiency of a software process, activity,
or task is the ratio of resources actually consumed
to resources expected or desired to be consumed
in accomplishing a software process, activity, or
task (see Efficiency in the Software Engineering
Economics KA). Effort (or equivalent cost) is the
primary measure of resources for most software
processes, activities, and tasks; it is measured in
units such as person-hours, person-days, staff-
weeks, or staff-months of effort or in equivalent
monetary units—such as euros or dollars.

Effectiveness is the ratio of actual output to
expected output produced by a software process,
activity, or task; for example, actual number of
defects detected and corrected during software
testing to expected number of defects<to be
detected and corrected—perhaps based on his-
torical data for similar projects (see Effcctiveness
in the Software Engineering Eeonomics KA).
Note that measurement of software process effec-
tiveness requires measureent of the relevant
product attributes; for éxample, measurement of
software defects discovered and corrected during
software testing,

One must take“/care when measuring product
attributes for flie purpose of determining process
effectiveness. For example, the number of defects
detected and corrected by testing may not achieve
thetexpected number of defects and thus provide
a.misleadingly low effectiveness measure, either
because the software being tested is of better-

etfort-expended—to—tfind-and-fix—software-defects
could be very high and result in low efficierieysfas
compared to expectations.

An efficient process can be ineffective in accom-
plishing the desired transformatiod-0¥ input wqrk
products into output work products; for example,
failure to find and correct a Sufficient number|of
software defects during thietesting process.

Causes of low efficieney and/or low effectiye-
ness in the way a’seftware process, activity,|or
task is executed might include one or more of the
following probléms: deficient input work prqd-
ucts, inexperienced personnel, lack of adequate
tools andyinfrastructure, learning a new procegs,
a complex product, or an unfamiliar prodyict
domain. The efficiency and effectiveness of sd[ft-
ware process execution are also affected (eitler
positively or negatively) by factors such as tufn-
over in software personnel, schedule changes| a
new customer representative, or a new organifa-
tional policy.

In software engineering, productivity in ppr-
forming a process, activity, or task is the ratio|of
output produced divided by resources consumgd;
for example, the number of software defects djis-
covered and corrected divided by person-hours{of
effort (see Productivity in the Software Enginepr-
ing Economics KA). Accurate measurement |of
productivity must include total effort used to spt-
isfy the exit criteria of a software process, actjv-
ity, or task; for example, the effort required|to
correct defects discovered during software tejst-
ing must be included in software developm¢nt
productivity.

Calculation of productivity must account for

than-usual quality or perhaps because introduc-
tion of a newly introduced upstream inspection
process has reduced the remaining number of
defects in the software.

Product measures that may be important in
determining the effectiveness of software pro-
cesses include product complexity, total defects,
defect density, and the quality of requirements,

© ISO/IEC 2016 — All rights reserved

the context in which the work is accomplished.
For example, the effort to correct discovered
defects will be included in the productivity cal-
culation of a software team if team members
correct the defects they find—as in unit testing
by software developers or in a cross-functional
agile team. Or the productivity calculation
may include either the effort of the software

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-10 SWEBOK® Guide V3.0

developers or the effort of an independent test-
ing team, depending on who fixes the defects
found by the independent testers. Note that this
example refers to the effort of teams of devel-
opers or teams of testers and not to individuals.
Software productivity calculated at the level of

ISO/IEC TR 19759:2016(E)

4.3. Software Information Models
[1%, p310-311] [3*, p712-713] [4*, s19.2]

Software information models allow modeling,
analysis, and prediction of software process and
software product attributes to provide answers to

inghviduals—ean—be—misleading—because—oi—the
mgny factors that can affect the individual pro-
ductivity of software engineers.

Standardized definitions and counting rules
fof measurement of software processes and work
products are necessary to provide standardized
m¢asurement results across projects within an
organization, to populate a repository of histori-
cal data that can be analyzed to identify software
processes that need to be improved, and to build
predictive models based on accumulated data. In
th¢ example above, definitions of software defects
anfd staff-hours of testing effort plus counting
rules for defects and effort would be necessary to
objtain satisfactory measurement results.

The extent to which the software process is
in§titutionalized is important; failure to institu-
tignalize a software process may explain why
“gbod” software processes do not always pro-
duce anticipated results. Software processes may:
be] institutionalized by adoption within the legal
organizational unit or across larger units,'of an
enferprise.

4.2. Quality of Measurement Results
[4%,s3.4-3.7]

THe quality of process,and*product measurement
regults is primarily determined by the reliability
and validity of the measured results. Measure-
m¢nts that do not satisfy these quality criteria
cap result ifl incorrect interpretations and faulty
software process improvement initiatives. Other
depirable/ properties of software measurements
in¢lude ease of collection, analysis, and presenta-

(9]

relevant-questions-and-achieveprocess-and-product
improvement goals. Needed data can be collected
and retained in a repository; the data can be aray
lyzed and models can be constructed. Validation
and refinement of software information/anedels
occur during software projects and affer projects
are completed to ensure that the level ot accuracy
is sufficient and that their limitattons are known
and understood. Software information models may
also be developed for contexts other than software
projects; for example)“a¥software information
model might be deyeloped for processes that apply
across an organizatien, such as software configu-
ration management or software quality assurance
processes atithe organizational level.

Analysis“driven software information model
building involves the development, calibration,
and _evaluation of a model. A software infor-
mation model is developed by establishing a
hypothesized transformation of input variables
into desired outputs; for example, product size
and complexity might be transformed into esti-
mated effort needed to develop a software prod-
uct using a regression equation developed from
observed data from past projects. A model is
calibrated by adjusting parameters in the model
to match observed results from past projects; for
example, the exponent in a nonlinear regression
model might be changed by applying the regres-
sion equation to a different set of past projects
other than the projects used to develop the model.

A model is evaluated by comparing computed
results to actual outcomes for a different set of
similar data. There are three possible evaluation
outcomes:

tion plus a strong correlation between cause and
effect.

The Software Engineering Measurement topic
in the Software Engineering Management KA
describes a process for implementing a software
measurement program.

1.results computed for a different data set vary
widely from actual outcomes for that data
set, in which case the derived model is not
applicable for the new data set and should
not be applied to analyze or make predictions
for future projects;

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

2.results computed for a new data set are
close to actual outcomes for that data set,
in which case minor adjustments are made
to the parameters of the model to improve
agreement,

3.results computed for the new data set and

adjustments to the model are needed.

Continuous evaluation of the model may indi-
cate a need for adjustments over time as the con-
text in which the model is applied changes.

The Goals/Questions/Metrics (GQM) method
was originally intended for establishing measure-
ment activities, but it can also be used to guide
analysis and improvement of software processes.

It can be used to guide analysis-driven software
information model building; results obtained
from the software information model can be used
to guide process improvement.

The following example illustrates application
of the GQM method:

* Goal: Reduce the average change requést
processing time by 10% within six months.

* Question 1-1: What is the baseline ‘thange
request processing time?

e Metric 1-1-1: Average of change request
processing times on starting.date

* Metric 1-1-2: Standard.devration of change
request processing timés)on starting date

* Question 1-2: What)is the current change
request processing.time?

e Metric 1-2-13;Average of change request
processing times currently

* Metrictl-2-2: Standard deviation of change
request processing times currently

4.4-Software Process Measurement Techniques
[1%, c8]

Software Engineering Process 8-11

Process measurement techniques also provide
the information needed to measure the effects of
process improvement initiatives. Process mea-
surement techniques can be used to collect both
quantitative and qualitative data.

Techniques
[4%, s5.1, §5:7,s98]

The purpose of quantitative process-theasurem¢nt
techniques is to collect, transform, and analyze
quantitative process and work product data that
can be used to indicate,Where process improye-
ments are needed and te assess the results [of
process improvement initiatives. Quantitatjve
process measurement techniques are used to cpl-
lect and analyze/data in numerical form to which
mathematical’and statistical techniques can |be
applied;
Quantitative process data can be collected |as
abyproduct of software processes. For examplle,
the number of defects discovered during software
testing and the staff-hours expended can be cpl-
lected by direct measurement, and the productjv-
ity of defect discovery can be derived by calculpt-
ing defects discovered per staff-hour.
Basic tools for quality control can be used|to
analyze quantitative process measurement data
(e.g., check sheets, Pareto diagrams, histograms,
scatter diagrams, run charts, control charts, and
cause-and-effect diagrams) (see Root Cayse
Analysis in the Engineering Foundations KA).|In
addition, various statistical techniques can be uded
that range from calculation of medians and megns
to multivariate analysis methods (see Statistial
Analysis in the Engineering Foundations KA).
Data collected using quantitative process m¢a-
surement techniques can also be used as inpfits
to simulation models (see Modeling, Prototyp-
ing, and Simulation in the Engineering Founda-

Software process measurement techniques are
used to collect process data and work product
data, transform the data into useful information,
and analyze the information to identify process
activities that are candidates for improvement.
In some cases, new software processes may be
needed.

© ISO/IEC 2016 — All rights reserved

tions KA); these models can be used to assess the
impact of various approaches to software process
improvement.

Orthogonal Defect Classification (ODC) can
be used to analyze quantitative process measure-
ment data. ODC can be used to group detected
defects into categories and link the defects in

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-12 SWEBOK® Guide V3.0

each category to the software process or soft-
ware processes where a group of defects origi-
nated (see Defect Characterization in the Soft-
ware Quality KA). Software interface defects,
for example, may have originated during an inad-
equate software design process; improving the

ISO/IEC TR 19759:2016(E)

addition, general purpose business tools, such as
a spreadsheet, may be useful.

Computer-Assisted ~ Software Engineering
(CASE) tools can reinforce the use of integrated
processes, support the execution of process defi-
nitions, and provide guidance to humans in per-

software-desian-process—wilreduce—the—number
of|software interface defects. ODC can provide
quiantitative data for applying root cause analysis.
Statistical Process Control can be used to track
process stability, or the lack of process stability,

us|ng control charts.

4.4.2. Qualitative Process Measurement
Techniques
[1% 56.4]

Qualitative process measurement techniques—
in¢luding interviews, questionnaires, and expert
judlgment—can be used to augment quantitative
prpcess measurement techniques. Group consen-
sup techniques, including the Delphi technique,
cah be used to obtain consensus among groups of
stgkeholders.

5.Software Engineering Process Tools
[1%, s&7]

Sqftware process tools support many of-the nota-
tigns used to define, implement, and manage
indlividual software processes and _software life
cygle models. They include editors for notations
suth as data-flow diagrams, ‘state charts, BPMN,
IDEFO diagrams, Petri-nets, and UML activity
diggrams. In some eases, software process tools
allow different types of analyses and simula-
tigns (for example, discrete event simulation). In

formina—wel-defined—processes—Simple—tools
such as word processors and spreadsheets can
be used to prepare textual descriptions of pro-
cesses, activities, and tasks; these tools also.sup-
port traceability among the inputs and outputs of
multiple software processes (such as stakeholder
needs analysis, software requirements”’specifica-
tion, software architecture, and Software detailed
design) as well as the results ‘of software pro-
cesses such as documentation, software compo-
nents, test cases, and problem reports.

Most of the knewledge areas in this Guide
describe specialized’ tools that can be used to
manage the processes within that KA. In particu-
lar, see the‘Software Configuration Management
KA forya.discussion of software configuration
management tools that can be used to manage the
construction, integration, and release processes
for software products. Other tools, such as those
for requirements management and testing, are
described in the appropriate KAs.

Software process tools can support projects
that involve geographically dispersed (virtual)
teams. Increasingly, software process tools are
available through cloud computing facilities as
well as through dedicated infrastructures.

A project control panel or dashboard can dis-
play selected process and product attributes for
software projects and indicate measurements that
are within control limits and those needing cor-
rective action.

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Software Engineering Process 8-13

-
=
2 = N IS0
~ S = =3
N [— —— =
g5 2 & x T
= =5 =) <
= = = »
e 2 g %
7] (_:\
p28-29, | ‘|
1. Software Process Definition pl77 p295 p36, Q)% ’
() 0\/\
1.1. Software Process Management §g6"1~" p453—454
1.2. Software Process Infrastructure pI83, pI86 N &Y‘ p437—-438
A (I
2. Software Life Cycles c2 pl9(\\<</
\
. c22,c23,
2.1. Categories of Software Processes preface }3@995 4
2.2. Software Life Cycle Models 2 |0 32 s2.1
2.3. Software Process Adaptation 52.7<\‘< p5l
v
2.4. Practical Considerations 188-190
3. Software Process Assessment and 2, pI88, plo4 6 p397, cl9
Improvement Qgs
3.1. Software Process Assessrnent,l\@X\els 543, $26.5 p44-48
W\ s4.6
~
3.2. Software Process Asses: npent p44-48,
Methods \Ij\' p322-331 5263 s16.4
3.3. Software ProcestS?Q&(‘)vement
Models ‘ p187-188 $26.5 s2.7
34. Continuou@d Staged Ratings p28-34 $26.5 p39-45
4. Software &{}a)l‘lrement $26.2 s18.1.1
4.1. Software Process and Product $6.3, $26.2,
Mea ent p273 p638
) s34,
C)4.2. Quality of Measurement Results s3.5,
\<< ’ $3.6,
537
4.3. Software Information Models p310-311 p- 712-713 s19.2
4.4. Software Process Measurement s6.4, 22;’
Techniques c8 98
5. Software Engineering Process Tools s8.7

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

8-14 SWEBOK® Guide V3.0

FURTHER READINGS

Software Extension to the Guide to the Project
Management Body of Knowledge® (SWX)

5.

S\ des-adapta and B
geheric practices of project management docu-
m¢nted in the PMBOK® Guide for managing
software projects. The primary contribution of
this extension to the PMBOK® Guide is descrip-
tign of processes that are applicable for managing
adpptive life cycle software projects.

D.|Gibson, D. Goldenson, and K. Kost,
“Performance Results of CMMI-Based
Process Improvement” [6].

THis technical report summarizes publicly avail-
abJe empirical evidence about the performance
regults that can occur as a consequence of CMMI-
baped process improvement. The report contains
a geries of brief case descriptions that were cre-
at¢d with collaboration from representatives
frgm 10 organizations that have achieved notable
quiantitative performance results through their
CMMI-based improvement efforts.

CMMI® for Development, Version 1.3 [/H.

CMMI® for Development, Version 0.3 provides an
infegrated set of process guideélines for develop-
ing and improving produgts and services. These
gulidelines include best-practices for developing
anfd improving products-and services to meet the
nepds of customers, aitd end users.

ISP/IEC 15604=1:2004 Information tech-
nology~Process assessment—Part 1:
Coneepts and vocabulary [8].

ISO/IEC TR 19759:2016(E)

REFERENCES

[1*] R.E. Fairley, Managing and Leading
Software Projects, Wiley-IEEE Computer
Society Press, 20009.

Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 2006

[3*] I. Sommerville, Software Engineering;9th
ed., Addison-Wesley, 2011.

[4*] S.H. Kan, Metrics and Models-in Software
Quality Engineering, 2nd ¢éd., Addison-
Wesley, 2002.

[5] Project Management Institute and IEEE
Computer Soetety, Software Extension
to the PMBOK® Guide Fifth Edition, ed:
ProjectManagement Institute, 2013.

[6] D..Gibson, D. Goldenson, and K. Kost,
$Performance Results of CMMI-Based
Process Improvement,” Software
Engineering Institute, 2006; http:/
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=8065.

[7] CMMI Product Team, “CMMI for
Development, Version 1.3, Software
Engineering Institute, 2010; http:/
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=9661.

[8] ISO/IEC 15504-1:2004, Information
Technology—Process Assessment—Part 1:
Concepts and Vocabulary, ISO/IEC, 2004.

This standard, commonly known as SPICE
(Software Process Improvement and Capability
Determination), includes multiple parts. Part 1
provides concepts and vocabulary for software
development processes and related business-
management functions. Other parts of 15504
define the requirements and procedures for per-
forming process assessments.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 9

SOFTWARE ENGINEERING MODELS

AND METHODS

ACRONYMS
3GL 3rd Generation Language
BNF Backus-Naur Form
FDD Feature-Driven Development
IDE Integrated Development
Environment
PBI Product Backlog Item
RAD Rapid Application Development
UML Unified Modeling Language
XP eXtreme Programming
INTRODUCTION

Software engineering models and” methods
impose structure on software_engineering with
the goal of making that .activity systematic,
repeatable, and ultimately‘niore success-oriented.
Using models provides an"approach to problem
solving, a notation, and procedures for model
construction and-analysis. Methods provide an
approach to the systematic specification, design,
construction, test, and verification of the end-item
software)and associated work products.

Software engineering models and methods
vary-widely in scope—from addressing a single
seftware life cycle phase to covering the com-
plete software life cycle. The emphasis in this

BREAKDOWN OF TOPICS-FOR
SOFTWARE ENGINEERING MODELS
AND METHODS

This chapter on softwate engineering models 4
methods is divided 1hto four main topic areas:

* Modeling: discusses the general pract
of modeling and presents topics in mod|
g principles; properties and expression
models; modeling syntax, semantics, a
pragmatics; and preconditions, postcon
tions, and invariants.

Types of Models: briefly discusses mod

and aggregation of submodels and provig

some general characteristics of model tyy
commonly found in the software engineerf
practice.

* Analysis of Models: presents some of the
common analysis techniques used in mod|
ing to verify completeness, consistency, ¢
rectness, traceability, and interaction.

o Software Engineering Methods: presents
brief summary of commonly used softw:
engineering methods. The discussion guid
the reader through a summary of heuris
methods, formal methods, prototyping, a
agile methods.

es
tic
nd

The breakdown of topics for the Softwire

knowledge area (KA) is on software engineer-
ing models and methods that encompass multiple
software life cycle phases, since methods specific
for single life cycle phases are covered by other
KAs.

© ISO/IEC 2016 — All rights reserved

Engineering Models and Methods KA is shown
in Figure 9.1.

1. Modeling

Modeling of software is becoming a pervasive
technique to help software engineers understand,

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8065
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8065
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=8065
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9661
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

92 SWEBOK® Guide V3.0 ISO/IEC TR 19759:2016(E)

Software
Engineering Models
and Methods
Analvsis of Software
———Ntoteing ——Typesot-Motts— mfjf n
Methods
Modeling Information Analyzing for Heuristic
Principles Modeling Completeness Methods
Propemfes and Behavioral Analyzing for Formal
> Expression of Modelin, Consistenc Methods
Models g Y
Symian, Structur Analyzing for Rrototypin,
» Semantics, and Tue . N alyzing 1o rolotyping
X Modeling Correctness Methods
Pragmatics
Preconditions, Agile
5 Postconditions, > Traceability g
. Methods
and Invariants
Interaction

Analysis
Figure 9.1. Breakdown of Topics for the'Software Engineering Models and Methods KA
significant decisions to others in the stakeholder

communities. There are three general principles
guiding such modeling activities:

engineer, and communicate aspects of-the soft-
wgre to appropriate stakeholders., Stakeholders
ar¢ those persons or parties who(have a stated
or|implied interest in the softtvare (for example,

usgr, buyer, supplier, architect, certifying author- * Model the Essentials: good models do not

ity
pe

no
an|
ce
fo

, evaluator, developer,"software engineer, and
rhaps others).

While there are many modeling languages,
tations, techniques, and tools in the literature
d in practice; there are unifying general con-
pts thattapply in some form to them all. The
lowing sections provide background on these

g€

heral concepts.

» Provide

usually represent every aspect or feature of
the software under every possible condition.
Modeling typically involves developing only
those aspects or features of the software that
need specific answers, abstracting away any
nonessential information. This approach
keeps the models manageable and useful.

Perspective: modeling provides

1.1. Modeling Principles

[1*, c2s2, c5s1, ¢5s2] [2%*, ¢2s2] [3%*, ¢5s0]

Modeling provides the software engineer with

an

organized and systematic approach for repre-

senting significant aspects of the software under
study, facilitating decision-making about the soft-
ware or elements of it, and communicating those

views of the software under study using
a defined set of rules for expression of the
model within each view. This perspective-
driven approach provides dimensionality to
the model (for example, a structural view,
behavioral view, temporal view, organiza-
tional view, and other views as relevant).
Organizing information into views focuses
the software modeling efforts on specific

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

concerns relevant to that view using the
appropriate notation, vocabulary, methods,
and tools.
 Enable Effective Communications: modeling
employs the application domain vocabulary
of the software, a modeling language, and

ing within context). When used rigorously
and systematically, this modeling results in
a reporting approach that facilitates effective
communication of software information to
project stakeholders.

A model is an abstraction or simplification of
a software component. A consequence of using
abstraction is that no single abstraction com-
pletely describes a software component. Rather,
the model of the software is represented as an
aggregation of abstractions, which—when taken
together—describe only selected aspects, per-
spectives, or views—only those that are needed
to make informed decisions and respond to the
reasons for creating the model in the first place.
This simplification leads to a set of assumptions
about the context within which the modep;is
placed that should also be captured in the*model.
Then, when reusing the model, these assumptions
can be validated first to establish thetélevancy of
the reused model within its new pse and context.

1.2. Properties and Expression of Models
[1%, ¢5s2, c§s3]'[3*, c4sl.1p7, c4s6p3,
c5s0p3]

Properties of models are those distinguishing fea-
tures of a particular model used to characterize
its completeness, consistency, and correctness
withif the chosen modeling notation and tooling
used*Properties of models include the following:

o Completeness: the degree to which all

Software Engineering Models and Methods 9-3

Models are constructed to represent real-world
objects and their behaviors to answer specific
questions about how the software is expected
to operate. Interrogating the models—either
through exploration, simulation, or review—may
expose areas of uncertainty within the model and

he—sofbware—to—which—the—modelrefers—These
uncertainties or unanswered questions regarding
the requirements, design, and/or implementati
can then be handled appropriately.

The primary expression element-0f a mode] is
an entity. An entity may represent concrete afti-
facts (for example, processorsy.sensors, or robots)
or abstract artifacts (for,éxample, software mqd-
ules or communication ‘protocols). Model erfti-
ties are connected te/other entities using refa-

tions (in other words, lines or textual operat
on target entitics). Expression of model entit
may be aceomplished using textual or graphi
modelingy*languages; both modeling langug
types«connect model entities through specific 1
guage constructs. The meaning of an entity m
be represented by its shape, textual attributes,
both. Generally, textual information adheres
language-specific syntactic structure. The p
cise meanings related to the modeling of conte
structure, or behavior using these entities 4
relations is dependent on the modeling langua
used, the design rigor applied to the modelj
effort, the specific view being constructed, 4
the entity to which the specific notation elem
may be attached. Multiple views of the mo
may be required to capture the needed semant
of the software.

When using models supported with auton
tion, models may be checked for completen
and consistency. The usefulness of these ched
depends greatly on the level of semantic and sy
tactic rigor applied to the modeling effort in ad|
tion to explicit tool support. Correctness is ty

s
es
bal

ge
ng
nd
tnt
el
cs

cally checked through simulation and/or reviey

requirements have been implemented and
verified within the model.

* Consistency: the degree to which the model
contains no conflicting requirements, asser-
tions, constraints, functions, or component
descriptions.

* Correctness: the degree to which the model
satisfies its requirements and design specifi-
cations and is free of defects.

© ISO/IEC 2016 — All rights reserved

1.3. Syntax, Semantics, and Pragmatics

[2* ¢252.2.2p6] [3*, ¢550]

Models can be surprisingly deceptive. The fact
that a model is an abstraction with missing infor-
mation can lead one into a false sense of com-
pletely understanding the software from a single
model. A complete model (“complete” being

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

9-4 SWEBOK® Guide V3.0

relative to the modeling effort) may be a union
of multiple submodels and any special function
models. Examination and decision-making rela-
tive to a single model within this collection of
submodels may be problematic.

strjucts can be composed to produce valid models.
Semantics for modeling languages specify the
me¢aning attached to the entities and relations
captured within the model. For example, a simple
diggram of two boxes connected by a line is open
tofa variety of interpretations. Knowing that the
diggram on which the boxes are placed and con-
nefted is an object diagram or an activity diagram
cah assist in the interpretation of this model.

As a practical matter, there is usually a good
uniderstanding of the semantics of a specific
software model due to the modeling langhage
selected, how that modeling language is, used to
express entities and relations within that model,
th¢ experience base of the modeler(s), and the
coptext within which the niodeling has been
unidertaken and so represented. Meaning is com-
myinicated through the model even in the presence
of| incomplete information through abstraction;
pragmatics explains.how meaning is embodied
in [the model and\its context and communicated
effectively to other software engineers.

There. aresstill instances, however, where cau-
tign is needed regarding modeling and semantics.
Far ‘example, any model parts imported from

ISO/IEC TR 19759:2016(E)

can be introduced, leading to errors. With many
software engineers working on a model part over
time coupled with tool updates and perhaps new
requirements, there are opportunities for portions
of the model to represent something different
from the original author’s intent and initial model

1.4. Preconditions, Postconditions, and
Invariants

[2% c4s4] [4*, cl10s4p2, cl@sSp2p4]

When modeling functions or methods; the soft-
ware engineer typically start$/with a set of
assumptions about the state of the software prior
to, during, and after the function or method exe-
cutes. These assumptions,are essential to the cor-
rect operation of the\function or method and are
grouped, for discuission, as a set of preconditions,
postconditions;and invariants.

* Preconditions: a set of conditions that must
be satisfied prior to execution of the function
ot method. If these preconditions do not hold
prior to execution of the function or method,
the function or method may produce errone-
ous results.

» Postconditions: a set of conditions that is
guaranteed to be true after the function or
method has executed successfully. Typically,
the postconditions represent how the state
of the software has changed, how param-
eters passed to the function or method have
changed, how data values have changed, or
how the return value has been affected.

* Invariants: a set of conditions within the
operational environment that persist (in
other words, do not change) before and after
execution of the function or method. These
invariants are relevant and necessary to the
software and the correct operation of the

another model or library must be examined for
semantic assumptions that conflict in the new
modeling environment; this may not be obvious.
The model should be checked for documented
assumptions. While modeling syntax may be
identical, the model may mean something quite
different in the new environment, which is a dif-
ferent context. Also, consider that as software
matures and changes are made, semantic discord

function or method.
2. Types of Models

A typical model consists of an aggregation of
submodels. Each submodel is a partial descrip-
tion and is created for a specific purpose; it may
be comprised of one or more diagrams. The
collection of submodels may employ multiple

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

modeling languages or a single modeling lan-
guage. The Unified Modeling Language (UML)
recognizes a rich collection of modeling dia-
grams. Use of these diagrams, along with the
modeling language constructs, brings about three
broad model types commonly used: information

moadelebehavigral snadale and ctepotiies paodale
HoaerSoenavorar-oaetsaia-Strdcttireoaers

Software Engineering Models and Methods 9-5

2.3. Structure Modeling
[1*, ¢7s2.5, ¢7s3.1, c7s3.2] [3*, c5s3] [4%, c4]

Structure models illustrate the physical or logical
composition of software from its various com-
ponent parts. Structure modeling establishes the

defined—boundar—between—the—software—bein
defined—boundary—between—the—software—being

(see section 1.1).

2.1. Information Modeling
[1%, c7s2.2] [3*, c851]

Information models provide a central focus on
data and information. An information model is an
abstract representation that identifies and defines
a set of concepts, properties, relations, and con-
straints on data entities. The semantic or concep-
tual information model is often used to provide
some formalism and context to the software being
modeled as viewed from the problem perspective,
without concern for how this model is actually
mapped to the implementation of the software.
The semantic or conceptual information model
is an abstraction and, as such, includes only the
concepts, properties, relations, and constraints
needed to conceptualize the real-world view of
the information. Subsequent transfornfations of
the semantic or conceptual infornrafion model
lead to the elaboration of logical-and then physi-
cal data models as implemented'in the software.

2.2. Behavioral Modeling
[1*, c782:1, ¢7s2.3, ¢7s2.4] [2¥, ¢9s2]
[3%*, c5s4]

Behavioraltmodels identify and define the func-
tions of)the software being modeled. Behav-
ioral (models generally take three basic forms:
state*machines, control-flow models, and data-
flow models. State machines provide a model
of the software as a collection of defined states,

implemented or modeled and the environm¢nt
in which it is to operate. Some commoOn Stric-
tural constructs used in structure modeling gre
composition, decomposition, genéralization, and
specialization of entities; identification of rl-
evant relations and cardinality ‘between entitips;
and the definition of pro€ess or functional intpr-
faces. Structure diagrams provided by the UNIL
for structure modeling’/include class, component,
object, deploymenty’and packaging diagrams.

3. Analysis.of Models

The‘development of models affords the software
engineer an opportunity to study, reason abojt,
and understand the structure, function, opeta-
tional usage, and assembly considerations asgo-
ciated with software. Analysis of construcfed
models is needed to ensure that these models gre
complete, consistent, and correct enough to seifve
their intended purpose for the stakeholders.

The sections that follow briefly describe the
analysis techniques generally used with sqft-
ware models to ensure that the software enginger
and other relevant stakeholders gain approprijite
value from the development and use of modely.

3.1. Analyzing for Completeness
[3%, c4sl.1p7, c4s6] [5*, p8—|1]

In order to have software that fully meets the negds
of the stakeholders, completeness is critical—ﬁé}m

the requirements elicitation process to code impje-
mentation. Completeness is the degree to which

events, and transitions. The software transitions
from one state to the next by way of a guarded
or unguarded triggering event that occurs in the
modeled environment. Control-flow models
depict how a sequence of events causes processes
to be activated or deactivated. Data-flow behav-
ior is typified as a sequence of steps where data
moves through processes toward data stores or
data sinks.

© ISO/IEC 2016 — All rights reserved

all of the specified requirements have been imple-
mented and verified. Models may be checked for
completeness by a modeling tool that uses tech-
niques such as structural analysis and state-space
reachability analysis (which ensure that all paths in
the state models are reached by some set of correct
inputs); models may also be checked for complete-
ness manually by using inspections or other review
techniques (see the Software Quality KA). Errors

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

9-6 SWEBOK® Guide V3.0

and warnings generated by these analysis tools and
found by inspection or review indicate probable
needed corrective actions to ensure completeness
of the models.

3.2. Analyzing for Consistency
* o4

Cqnsistency is the degree to which models con-
tain no conflicting requirements, assertions, con-
strpints, functions, or component descriptions.
Tyfpically, consistency checking is accomplished
wilth the modeling tool using an automated analysis
fupction; models may also be checked for consis-
tefjcy manually using inspections or other review
te¢hniques (see the Software Quality KA). As
with completeness, errors and warnings generated
by] these analysis tools and found by inspection or
reyiew indicate the need for corrective action.

3.8. Analyzing for Correctness
[5%, p8—11]

Cqrrectness is the degree to which a model sat-
isfjes its software requirements and software
depign specifications, is free of defects, and ulti*
mgtely meets the stakeholders’ needs. Analyzing
for correctness includes verifying syntactig‘eor-
re¢tness of the model (that is, correct pse of the
m¢deling language grammar and constructs) and
vefifying semantic correctness of. the model (that
is,| use of the modeling language constructs to
cofrectly represent the meaning of that which is
bejng modeled). To analyze a model for syntactic
anfd semantic correctness, one analyzes it—either
aufomatically (forexample, using the modeling
topl to check/for 'model syntactic correctness)
or[manually (psing inspections or other review
te¢hniques)>—searching for possible defects and
th¢n remeving or repairing the confirmed defects
befforethe software is released for use.

ISO/IEC TR 19759:2016(E)

and pseudo-code, handwritten and tool-generated
code, manual and automated test cases and reports,
and files and data. These work products may be
related through various dependency relationships
(for example, uses, implements, and tests). As soft-
ware is being developed, managed, maintained, or

traceability relationships to demonstrate soft-
ware requirements consistency with the softwate
model (see Requirements Tracing in the Software
Requirements KA) and the many work products.
Use of traceability typically improves theumanage-
ment of software work products and'software pro-
cess quality; it also provides assurances to stake-
holders that all requirements have been satisfied.
Traceability enables change‘analysis once the soft-
ware is developed and released, since relationships
to software work products can easily be traversed
to assess change impact. Modeling tools typically
provide some automated or manual means to spec-
ify and mafiage traceability links between require-
ments, design, code, and/or test entities as may be
represented in the models and other software work
pteducts. (For more information on traceability,
see the Software Configuration Management KA).

3.5. Interaction Analysis
[2%, c10, c11] [3*, c29s1.1, ¢29s5] [4%, c5]

Interaction analysis focuses on the communica-
tions or control flow relations between entities
used to accomplish a specific task or function
within the software model. This analysis exam-
ines the dynamic behavior of the interactions
between different portions of the software model,
including other software layers (such as the oper-
ating system, middleware, and applications). It
may also be important for some software applica-
tions to examine interactions between the com-
puter software application and the user interface
software. Some software modeling environments

3.4. Traceability
[3%*, c4s7.1, c4s7.2]

Developing software typically involves the use,
creation, and modification of many work products
such as planning documents, process specifica-
tions, software requirements, diagrams, designs

provide simulation facilities to study aspects of
the dynamic behavior of modeled software. Step-
ping through the simulation provides an analysis
option for the software engineer to review the
interaction design and verify that the different
parts of the software work together to provide the
intended functions.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

4. Software Engineering Methods

Software engineering methods provide an orga-
nized and systematic approach to developing soft-
ware for a target computer. There are numerous
methods from which to choose, and it is important

task at hand; this choice can have a dramatic effect
on the success of the software project. Use of these
software engineering methods coupled with people
of the right skill set and tools enable the software
engineers to visualize the details of the software
and ultimately transform the representation into a
working set of code and data.

Selected software engineering methods are dis-
cussed below. The topic areas are organized into
discussions of Heuristic Methods, Formal Meth-
ods, Prototyping Methods, and Agile Methods.

4.1. Heuristic Methods
[1*, c13, c15, cl16] [3%*, ¢2s2.2, c5s4.1, ¢7sl.]

Heuristic methods are those experience-based
software engineering methods that have been@nd
are fairly widely practiced in the softwareé«ndus-
try. This topic area contains three broad*discus-
sion categories: structured analysisnand design
methods, data modeling methods, and object-
oriented analysis and design.methods.

o Structured Analysis jand Design Methods:
The software model is developed primarily
from a funetional or behavioral viewpoint,
starting from’a high-level view of the soft-
ware (including data and control elements)
and‘then progressively decomposing or refin-
ing) the model components through increas-
ingly detailed designs. The detailed design
eventually converges to very specific details
or specifications of the software that must be

42 Formal Methods

Software Engineering Models and Methods 9-7

database designs or data repositories typi-
cally found in business software, where data
is actively managed as a business systems
resource or asset.
* Object-Oriented Analysis and Design Meth-
ods: The object-oriented model is represented
as—a—colecton—of obtects—thatcheapsuhqtc
data and relationships and interact with‘otler
objects through methods. ObjectsCmay [be
real-world items or virtual items. (Fhe sqft-
ware model is constructed using diagrams
to constitute selected views of the softwaje.
Progressive refinement of.the software mqd-
els leads to a detailed-design. The detailed
design is then ¢ither evolved through syc-
cessive iteratiomor transformed (using sofe
mechanism),‘info the implementation vigw
of the model, where the code and packdg-
ing appreach for eventual software prodyict
release and deployment is expressed.

[1%, c18] [3*, c27] [5*, p8—14]

Formal methods are software engineering me

h-

ods used to specify, develop, and verify the sqft-
ware through application of a rigorous mathempt-
ically based notation and language. Through yse

of a specification language, the software mo
can be checked for consistency (in other wor
lack of ambiguity), completeness, and correctn

el
s,
ESS

in a systematic and automated or semi-automafed

fashion. This topic is related to the Formal Ana
sis section in the Software Requirements KA.

This section addresses specification languag
program refinement and derivation, formal ver
cation, and logical inference.

y_

eS,
fi-

o Specification Languages: Specification
languages provide the mathematical bais
for a formal method; specification Ign-

coded (by hand, automatically generated, or
both), built, tested, and verified.

* Data Modeling Methods: The data model is
constructed from the viewpoint of the data or
information used. Data tables and relation-
ships define the data models. This data mod-
eling method is used primarily for defining
and analyzing data requirements supporting

© ISO/IEC 2016 — All rights reserved

guages are formal, higher level computer
languages (in other words, not a classic
3rd Generation Language (3GL) program-
ming language) used during the software
specification, requirements analysis, and/
or design stages to describe specific input/
output behavior. Specification languages are
not directly executable languages; they are

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

9-8 SWEBOK® Guide V3.0

typically comprised of a notation and syntax,
semantics for use of the notation, and a set of
allowed relations for objects.
» Program Refinement and Derivation: Pro-
gram refinement is the process of creating a
lower level (or more detailed) specification

successive transformations that the software
engineer derives an executable representation
of a program. Specifications may be refined,
adding details until the model can be formu-
lated in a 3GL programming language or in
an executable portion of the chosen specifica-
tion language. This specification refinement is
made possible by defining specifications with
precise semantic properties; the specifications
must set out not only the relationships between
entities but also the exact runtime meanings of
those relationships and operations.

Formal Verification: Model checking is
a formal verification method; it typically
involves performing a state-space explora-
tion or reachability analysis to demonstrate
that the represented software design has or
preserves certain model properties of inter-
est. An example of model checking is an
analysis that verifies correct program behav-
ior under all possible interleaving of event or
message arrivals. The use of formal verifi-
cation requires a rigorously specified model
of the software and its operational environ-
ment; this model often takes the form of a
finite state machine orother formally defined
automaton.

Logical Inference=Logical inference is a
method of designing software that involves
specifying”preconditions and postconditions
around(each significant block of the design,
and=<using mathematical logic—developing
thevproof that those preconditions and post-
conditions must hold under all inputs. This

ISO/IEC TR 19759:2016(E)

4.3. Prototyping Methods
[1%, ¢12s2] [3*, ¢2s3.1] [6*, c7s3p5]

Software prototyping is an activity that generally
creates incomplete or minimally functional ver-
sions of a software application, usually for try-
on software requirements or user interfaces, fur-
ther exploring software requirements, softwdie,
design, or implementation options, and/or gaining
some other useful insight into the softwére’ The
software engineer selects a prototyping method to
understand the least understood aspects or com-
ponents of the software first; this-approach is in
contrast with other software engineering methods
that usually begin developmient with the most
understood portions first,”Typically, the proto-
typed product does-notbecome the final software
product without ‘extensive development rework
or refactoring.

This section discusses prototyping styles, tar-
gets, and‘evaluation techniques in brief.

s Prototyping Style: This addresses the various
approaches to developing prototypes. Proto-
types can be developed as throwaway code
or paper products, as an evolution of a work-
ing design, or as an executable specification.
Different prototyping life cycle processes are
typically used for each style. The style cho-
sen is based on the type of results the project
needs, the quality of the results needed, and
the urgency of the results.

* Prototyping Target: The target of the pro-
totype activity is the specific product being
served by the prototyping effort. Examples
of prototyping targets include a requirements
specification, an architectural design element
or component, an algorithm, or a human-
machine user interface.

» Prototyping Evaluation Techniques: A pro-

provides a way for the software engineer to
predict software behavior without having
to execute the software. Some Integrated
Development Environments (IDEs) include
ways to represent these proofs along with the
design or code.

totype may be used or evaluated in a num-
ber of ways by the software engineer or
other project stakeholders, driven primarily
by the underlying reasons that led to pro-
totype development in the first place. Pro-
totypes may be evaluated or tested against
the actual implemented software or against

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

a target set of requirements (for example, a
requirements prototype); the prototype may
also serve as a model for a future software
development effort (for example, as in a user
interface specification).

e Ao v

[3%, c3] [6%, c7s3p7] [7*, c6, App. A]

Agile methods were born in the 1990s from the
need to reduce the apparent large overhead associ-
ated with heavyweight, plan-based methods used
in large-scale software-development projects.
Agile methods are considered lightweight meth-
ods in that they are characterized by short, itera-
tive development cycles, self-organizing teams,
simpler designs, code refactoring, test-driven
development, frequent customer involvement, and
an emphasis on creating a demonstrable working
product with each development cycle.

Many agile methods are available in the lit-
erature; some of the more popular approaches,
which are discussed here in brief, include Rapid
Application Development (RAD), eXtreme Pro~
gramming (XP), Scrum, and Feature-Driven
Development (FDD).

* RAD: Rapid software development methods
are used primarily in data-intensive, business-
systems application development. The RAD
method is enabled with(special-purpose data-
base development(tools used by software
engineers to quickly develop, test, and deploy
new or modified business applications.

* XP: Thisrapproach uses stories or scenarios
for requiréments, develops tests first, has
direot\Customer involvement on the team
(typically defining acceptance tests), uses
pair programming, and provides for continu-
ous code refactoring and integration. Stories
are decomposed into tasks, prioritized, esti-

Software Engineering Models and Methods 9-9

» Scrum: This agile approach is more project
management-friendly than the others. The
scrum master manages the activities within
the project increment; each increment is
called a sprint and lasts no more than 30
days. A Product Backlog Item (PBI) list is

ing version of the software is teSted
released in each increment. Daily scrgm
meetings ensure work is mandged to plan.

designs~for/ iteration-specific features,
(5) codestest, and then integrate the featurps.
FDDyis similar to an incremental software
development approach; it is also similar|to
XP, except that code ownership is assigrnied
to individuals rather than the team. FIDD
emphasizes an overall architectural approgch
to the software, which promotes building the
feature correctly the first time rather than
emphasizing continual refactoring.

There are many more variations of agile meth-
ods in the literature and in practice. Note that
there will always be a place for heavyweight,
plan-based software engineering methods as wiell
as places where agile methods shine. There gre
new methods arising from combinations of agfile
and plan-based methods where practitioners gre
defining new methods that balance the featufes
needed in both heavyweight and lightweight
methods based primarily on prevailing orgapi-
zational business needs. These business neefls,
as typically represented by some of the proj¢ct
stakeholders, should and do drive the choice|in

mated, developed, and tested. Each incre-
ment of software is tested with automated
and manual tests; an increment may be
released frequently, such as every couple of
weeks or so.

© ISO/IEC 2016 — All rights reserved

using one software engineering method over
another or in constructing a new method from the
best features of a combination of software engi-
neering methods.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

9-10 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

ISO/IEC TR 19759:2016(E)

o~ e
= >
S 1z | g | g
= B
s 2 |2 |2 |g |8 2
S = = s — S — s — 5
S X R X N S5 a0in, 2 & = ¥
S0 — = = s — - s = - = ==
< 5 £ & = < NG
] 5 g 3 2 £ N
s |4 | ¢ 2 | £
=~ .
Rt
1{ Modeling R \
1.1. Modelin €2s2, Q~\
T g c5sl, c2s2 ¢5s0 &
Principles .
c5s2 NY)
1.2. Properties cdsl.1p7, «’
. c5s2, \
and Expression of 0583 c4s6p3, O
Models ¢5s0p3) \%
N
13 Synftax, c2s2.2.2 .
Semantics, and 6 ¢5s0 Q
Pragmatics P OQ
1.4. Preconditions, \‘tc?Os4p2
Postconditions, and c4s4 ‘\0 cl0s5
Invariants N\\Q) p2p4
2| Types of Models A\
. N
2.1. Informatlon 722 A\Q) c8sl
Modeling ~
. 721, | N
2.2. Behavioral * N~
Modeling c7s2.1rQ() c9s2 c5s4
c7sR.
fsQ.S,
12\/'[3(')' dSetllirEcture C) 7s3.1, c5s3 c4
J ()1 7832
3{ Analysis of \ @éls
3.1. Ana ‘{‘for c4sl.1p7, 3 11
Comy ess c4s6 PP
g}\.ﬁalyzmg for c4sl.1p7, 11
sistency c4s6 PP
3.3. Analyzing for
Correctness pp8-1l
- c4s7.1,
3.4. Traceability 4572
3.5. Interaction c29sl.1,
Analysis cl0, cll c29s5 e

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Engineering Models and Methods 9-11

Q n
< S
S 18 |3 s |3
2 g 8 2 2 S g
S = 2 = y o £
sx | 2% | Ty | g¥ | ne | §% | EF
el ol 2 oo = A0 = = g
80— == s — - = s — — —
£ g g I = 2 =
M 5 £ = S £
=]) b
s | & | < 2 E
. 2
4. Software
Engineering Methods
4.1. Heuristic cl3, cl5, Ci;iiz’
Methods cl6 5541
4.2. Formal Methods cl8 c27 pp8—24
i;l?,e.tlfl’:()itsmypmg cl2s2 c2s3.1 c7s3p5
4.4. Agile Methods c3 C7s3p7 C6,Zpr :

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

9-12 SWEBOK® Guide V3.0

REFERENCES

[1*] D. Budgen, Software Design, 2nd ed.,
Addison-Wesley, 2003.

[2*] S.J. Mellor and M.J. Balcer, Executable
UML: A Foundation for Model-Driven

Auchitoctizo 1ot od Addicon Woclays
T HE—5HSa a5 R—Ve518Y5

ISO/IEC TR 19759:2016(E)

[5*] JM. Wing, “A Specifier’s Introduction to
Formal Methods,” Computer, vol. 23, no. 9,
1990, pp. 8, 10-23.

[6*] J.G. Brookshear, Computer Science: An

2002.

[31] . Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[41] M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed., Addison-
Wesley, 1999.

Ovorvioe 10th od Addicon ‘Xlnalny 2008
HEFPHEH ot SO a e SO Y-S 5185 T

[7*] B. Boehm and R. Turner, Balancing Agility
and Discipline: A Guide for the Perplexed;
Addison-Wesley, 2003.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 10

SOFTWARE QUALITY

ACRONYMS
CMMI ﬁla:[e);‘?il;}; Maturity Model
CoSQ Cost of Software Quality
COTS (Sj(());tnvzr:;zmal Off-the-Shelf
FMEA | Failure Mode and Effects Analysis
FTA Fault Tree Analysis
PDCA Plan-Do-Check-Act
PDSA Plan-Do-Study-Act
QFD Quality Function Deployment
SPI Software Process Improvement
SQA Software Quality Assurance
SQC Software Quality Control
SQM Software Quality Manageinent
TQM Total Quality Management
V&V Verification and Validation
INTRODUCTION

What is software-quality, and why is it so impor-
tant that it 4s iricluded in many knowledge areas
(KAs) ofithe SWEBOK Guide?

One 1eason is that the term software quality is
overteaded. Software quality may refer: to desir-
able characteristics of software products, to the
¢xtent to which a particular software product pos-

quality,” where the “customer is the final arbit¢r
[3*, p&].

More recently, software quality is defined as the
“capability of software product’to satisfy stafed
and implied needs under Speeified conditions” [4]
and as “the degree to which a software prodyict
meets established yequirements; however, qualjty
depends upon_the degree to which those estab-
lished requirements accurately represent stalce-
holder needs;wants, and expectations” [5]. Bgth
definitions* embrace the premise of conformarjce
to réquirements. Neither refers to types of requife-
ments (e.g., functional, reliability, performange,
dependability, or any other characteristic). Signifi-
cantly, however, these definitions emphasize that
quality is dependent upon requirements.

These definitions also illustrate another reason
for the prevalence of software quality through-
out this Guide: a frequent ambiguity of softwdre
quality versus software quality requiremefts
(“the -ilities” is a common shorthand). Software
quality requirements are actually attributes of {or
constraints on) functional requirements (w
the system does). Software requirements
also specify resource usage, a communication
protocol, or many other characteristics. This
attempts clarity by using software quality in the
broadest sense from the definitions above
by using software quality requirements as can-
straints on functional requirements. Softwgre
quality is achieved by conformance to all requife-
ments regardless of what characteristic is spefi-

sess those characteristics, and to processes, tools,
and techniques used to achieve those character-
istics. Over the years, authors and organizations
have defined the term quality differently. To Phil
Crosby, it was “conformance to requirements”
[1]. Watts Humphrey refers to it as “achieving
excellent levels of “fitness for use” [2]. Mean-
while, IBM coined the phrase “market-driven

fied or how requirements are grouped or named.
Software quality is also considered in many of
the SWEBOK KAs because it is a basic param-
eter of a software engineering effort. For all engi-
neered products, the primary goal is delivering
maximum stakeholder value, while balancing the
constraints of development cost and schedule;
this is sometimes characterized as “fitness for

10-1

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

10-2 SWEBOK® Guide V3.0

Software Quality

[|

Software Quality Software Quallty

Practical Software Quality

usp.” Stakeholder value is expressed in requite-
m¢nts. For software products, stakeholders could
vajue price (what they pay for the product), lead
tithe (how fast they get the product), and software
quiality.

This KA addresses definitionsjand provides an
overview of practices, toqls, and techniques for
defining software qualitytand for appraising the
stqte of software quality during development,
mgintenance, andvdeployment. Cited references
prpvide additignal details.

BREAKDOWN OF TOPICS FOR
SOETWARE QUALITY

[l Fundamentals r| Management Considerations Tools
Processes

Software
Engineering Software Quality Software Quality
Culture and Assurance Requirements
Ethics
Value and Verification Defect

> Costs of >and ™ Characterization
Quality Validation

N Mod§ls and Reviews and Software Quality
Quality o Audits > Management
Characteristics Techniques
Software Quality Software Quality
Improvement Measurement
Software
Safety

Figure 10.1. Breakdown of Topic§’for the Software Quality KA

the many aspects of quality be formally defined
and discussed.

A software engineer should understand qual-
ity concepts, characteristics, values, and their
application to the software under development or
maintenance. The important concept is that the
software requirements define the required quality
attributes of the software. Software requirements
influence the measurement methods and accep-
tance criteria for assessing the degree to which
the software and related documentation achieve
the desired quality levels.

1.1. Software Engineering Culture and Ethics
[3*, cls4] [6*, c2s3.5]

The breakdown of topics for the Software Quality
KA is presented in Figure 10.1.

1. Software Quality Fundamentals
Reaching agreement on what constitutes quality

for all stakeholders and clearly communicating
that agreement to software engineers require that

Software engineers are expected to share a com-
mitment to software quality as part of their culture.
A healthy software engineering culture includes
many characteristics, including the understanding
that tradeoffs among cost, schedule, and quality
are a basic tenant of the engineering of any prod-
uct. A strong software engineering ethic assumes

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

that engineers accurately report information, con-
ditions, and outcomes related to quality.

Ethics also play a significant role in software
quality, the culture, and the attitudes of software
engineers. The IEEE Computer Society and the
ACM have developed a code of ethics and pro-

fessional Conduct in the Software Engineering
Professional Practice KA).

1.2. Value and Costs of Quality
[7*, cl7, c22]

Defining and then achieving software quality is
not simple. Quality characteristics may or may
not be required, or they may be required to a
greater or lesser degree, and tradeoffs may be
made among them. To help determine the level
of software quality, i.e., achieving stakeholder
value, this section presents cost of software qual-
ity (CoSQ): a set of measurements derived from
the economic assessment of software quality
development and maintenance processes. The
CoSQ measurements are examples of process
measurements that may be used to infer charac-
teristics of a product.

The premise underlying the CoSQ i§ that the
level of quality in a software preduct can be
inferred from the cost of activities-related to deal-
ing with the consequences of poor quality. Poor
quality means that the software product does not
fully “satisfy stated and(implied needs” or “estab-
lished requirements,” There are four cost of qual-
ity categories: prevention, appraisal, internal fail-
ure, and extermal-failure.

Prevention costs include investments in software
process/improvement efforts, quality infrastruc-
ture, (quality tools, training, audits, and manage-
méntreviews. These costs are usually not specific
fe-a project; they span the organization. Appraisal
Costs arise from project activities that find defects.

ISO/IEC TR 19759:2016(E)

Software Quality 10-3

software product to the customer. External fail-
ure costs include activities to respond to software
problems discovered after delivery to the customer.

Software engineers should be able to use CoSQ
methods to ascertain levels of software quality

can be made.

1.3. Models and Quality Charactepistics
[3%, c24s1] F7%, c2s4] [8%, c]7]

Terminology for software/quality characteristjcs
differs from one taxgnomy (or model of software
quality) to another, ‘each model perhaps having
a different numbervof hierarchical levels and a
different total‘\number of characteristics. Variqus
authors have-produced models of software qupl-
ity characteristics or attributes that can be useful
for_discussing, planning, and rating the qualjty
of software products. ISO/IEC 25010: 2011 [4]
defines product quality and quality in use as tyo
related quality models. Appendix B in the SWE-
BOK Guide provides a list of applicable standafds
for each KA. Standards for this KA cover variqus
ways of characterizing software quality.

1.3.1. Software Process Quality

Software quality management and software enpi-
neering process quality have a direct bearing jon
the quality of the software product.

Models and criteria that evaluate the capablli-
ties of software organizations are primarily prpj-
ect organization and management consideratiqns
and, as such, are covered in the Software Enpi-
neering Management and Software Engineering
Process KAs.

It is not possible to completely distinguish pfo-
cess quality from product quality because proc¢ss

These appraisal activities can be categorized into
costs of reviews (design, peer) and costs of test-
ing (software unit testing, software integration,
system level testing, acceptance testing); appraisal
costs would be extended to subcontracted software
suppliers. Costs of internal failures are those that
are incurred to fix defects found during appraisal
activities and discovered prior to delivery of the

© ISO/IEC 2016 — All rights reserved

outcomes include products. Determining whether
a process has the capability to consistently pro-
duce products of desired quality is not simple.

The software engineering process, discussed
in the Software Engineering Process KA, influ-
ences the quality characteristics of software prod-
ucts, which in turn affect quality as perceived by
stakeholders.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
10-4 SWEBOK® Guide V3.0

1.3.2. Sofiware Product Quality

The software engineer, first of all, must determine
the real purpose of the software. In this regard,
stakeholder requirements are paramount, and they

in quality who have stated that the quality of a
product is directly linked to the quality of the
process used to create it. Approaches such as the
Deming improvement cycle of Plan-Do-Check-
Act (PDCA), evolutionary delivery, kaizen, and

wdre component of a system, a software design
depcription, source code, software test documen*
tafion, or reports. While some treatments of qual-
ity| are described in terms of final software~and
syptem performance, sound engineering-practice
requires that intermediate work-products relevant
to[quality be evaluated througheutsthe software
enfgineering process.

1.4. Software Quality [mprovement
[3*,cls4] [9%, c24] [10*, c11s2.4]

THe quality ofisoftware products can be improved
thfough préventative processes or an itera-
tije process of continual improvement, which
requirgs-management control, coordination, and
fe¢dback from many concurrent processes: (1)

Institute’s IDEAL is another method [7*]. Quals
ity management is now recognized by the SWE-
BOK Guide as an important discipline.

Management sponsorship supportspracess and
product evaluations and the resulting findings.
Then an improvement program—is developed
identifying detailed actions and improvement
projects to be addressed in '‘a-feasible time frame.
Management support iniplies that each improve-
ment project has enough resources to achieve the
goal defined for ‘it.-Management sponsorship is
solicited frequently by implementing proactive
communication activities.

1.5..Software Safety
[9%, c11s3]

Safety-critical systems are those in which a sys-
tem failure could harm human life, other living
things, physical structures, or the environment.
The software in these systems is safety-critical.
There are increasing numbers of applications
of safety-critical software in a growing number
of industries. Examples of systems with safety-
critical software include mass transit systems,
chemical manufacturing plants, and medical
devices. The failure of software in these systems
could have catastrophic effects. There are indus-
try standards, such as DO-178C [11], and emerg-
ing processes, tools, and techniques for develop-
ing safetycritical software. The intent of these
standards, tools, and techniques is to reduce the
risk of injecting faults into the software and thus

the software life cycle processes, (2) the process
of fault/defect detection, removal, and preven-
tion, and (3) the quality improvement process.
The theory and concepts behind qual-
ity improvement—such as building in quality
through the prevention and early detection of
defects, continual improvement, and stakeholder
focus—are pertinent to software engineering.
These concepts are based on the work of experts

improve software reliability.

Safety-critical software can be categorized as
direct or indirect. Direct is that software embed-
ded in a safety-critical system, such as the flight
control computer of an aircraft. Indirect includes
software applications used to develop safety-
critical software. Indirect software is included in
software engineering environments and software
test environments.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

Three complementary techniques for reduc-
ing the risk of failure are avoidance, detection
and removal, and damage limitation. These
techniques impact software functional require-
ments, software performance requirements, and
development processes. Increasing levels of risk

ance and control techniques such as inspections.
Higher risk levels may necessitate more thorough
inspections of requirements, design, and code
or the use of more formal analytical techniques.
Another technique for managing and control-
ling software risk is building assurance cases. An
assurance case is a reasoned, auditable artifact
created to support the contention that its claim
or claims are satisfied. It contains the following
and their relationships: one or more claims about
properties; arguments that logically link the evi-
dence and any assumptions to the claims; and a
body of evidence and assumptions supporting
these arguments [12].

2. Software Quality Management Processes

Software quality management is the collectiof,of
all processes that ensure that software products,
services, and life cycle process implenientations
meet organizational software quality~objectives
and achieve stakeholder satisfaction [13, 14].
SQM defines processes, process‘owners, require-
ments for the processes,.fmeasurements of the
processes and their outputs, and feedback chan-
nels throughout the;whole software life cycle.
SQM comprises four subcategories: software
quality planping; software quality assurance
(SQA), software quality control (SQC), and soft-
ware proeess improvement (SPI). Software qual-
ity planning includes determining which quality
standards are to be used, defining specific quality
goals, and estimating the effort and schedule of
Software quality activities. In some cases, soft-

ISO/IEC TR 19759:2016(E)

Software Quality 10-5

comply with standards established for the project
(including requirements, constraints, designs,
contracts, and plans). SQC evaluates intermedi-
ate products as well as the final products.

The fourth SQM category dealing with improve-
ment has various names within the software indus-

including S it omeyt,
and software corrective and preventive actionc Jjhe
activities in this category seek to improve procgss
effectiveness, efficiency, and other charactetis-
tics with the ultimate goal of improving software
quality. Although SPI could be-included in any|of
the first three categories, an\increasing number
of organizations organize‘SPI into a separate cpt-
egory that may span across many projects (see the
Software Engineering-Process KA).

Software quality” processes consist of tagks
and techniques_to indicate how software plgns
(e.g., software management, development, qupl-
ity management, or configuration managemg¢nt
plansy are being implemented and how well the

intepmediate and final products are meeting th
specified requirements. Results from these tas
are assembled in reports for management beft
corrective action is taken. The management

eir
ks
re
of

an SQM process is tasked with ensuring that {he

results of these reports are accurate.

Risk management can also play an import
role in delivering quality software. Incorporati
disciplined risk analysis and management teq
niques into the software life cycle processes d
help improve product quality (see the Softw:
Engineering Management KA for related ma
rial on risk management).

2.1. Software Quality Assurance
[7*, c4—c6, cl1, c12, c26-1

To quell a widespread misunderstanding, sq
ware quality assurance is not testing. softw

int
ng
h-
an
\re
fe-

7]

ft-
ire

quality assurance (SQA) is a set of activities that

ware quality planning also includes defining the
software quality processes to be used. SQA activ-
ities define and assess the adequacy of software
processes to provide evidence that establishes
confidence that the software processes are appro-
priate for and produce software products of suit-
able quality for their intended purposes [5]. SQC
activities examine specific project artifacts (docu-
ments and executables) to determine whether they

© ISO/IEC 2016 — All rights reserved

define and assess the adequacy of software pro-
cesses to provide evidence that establishes confi-
dence that the software processes are appropriate
and produce software products of suitable qual-
ity for their intended purposes. A key attribute of
SQA is the objectivity of the SQA function with
respect to the project. The SQA function may
also be organizationally independent of the proj-
ect; that is, free from technical, managerial, and

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
10-6 SWEBOK® Guide V3.0

financial pressures from the project [5]. SQA has
two aspects: product assurance and process assur-
ance, which are explained in section 2.3.

The software quality plan (in some industry

sectors it is termed the software quality assurance
plan) defines the activities and tasks employed
to rensy 3 : 3 }
product satisfies the project’s established require-
m¢nts and user needs within project cost and
schedule constraints and is commensurate with
project risks. The SQAP first ensures that quality
tafgets are clearly defined and understood.
The SQA plan’s quality activities and tasks are
spgcified with their costs, resource requirements,
objectives, and schedule in relation to related
objjectives in the software engineering manage-
m¢nt, software development, and software main-
teance plans. The SQA plan should be consis-
tefit with the software configuration management
plan (see the Software Configuration Manage-
m¢nt KA). The SQA plan identifies documents,
stqndards, practices, and conventions governing
th¢ project and how these items are checked and
m¢nitored to ensure adequacy and compliance.
THe SQA plan also identifies measures; statistical
te¢hniques; procedures for problem reporting and
coprective action; resources such as tools, teéh-
nigues, and methodologies; security for physical
me¢dia; training; and SQA reporting and docu-
m¢ntation. Moreover, the SQA plan“addresses
th¢ software quality assurance .adtivities of any
other type of activity described)in the software
plans—such as procurement of supplier software
for the project, commegeialoft-the-shelf software
(JOTS) installationgsand’service after delivery of
th¢ software. It can also contain acceptance crite-
rig as well aseporting and management activi-
tigs that are(critical to software quality.

2.p. Verification & Validation
[9%*, ¢2s2.3, ¢&, cl15sl1.1, c21s3.3]

life cycle. This assessment demonstrates
whether the requirements are correct, com-
plete, accurate, consistent, and testable.
The V&V processes determine whether
the development products of a given activ-
ity conform to the requirements of that

its intended use and user needs.

Verification is an attempt to ensure that the
product is built correctly, in the sense(that the
output products of an activity meet the specifi-
cations imposed on them in previous activities.
Validation is an attempt to enstire-that the right
product is built—that is, the product fulfills its
specific intended purpose, Both the verification
process and the validation process begin early
in the development er/maintenance phase. They
provide an examination of key product features
in relation to both the product’s immediate prede-
cessor and the specifications to be met.

The purpose of planning V&V is to ensure that
eachxresource, role, and responsibility is clearly
agsigned. The resulting V&V plan documents
describe the various resources and their roles and
activities, as well as the techniques and tools to be
used. An understanding of the different purposes of
each V&V activity helps in the careful planning of
the techniques and resources needed to fulfill their
purposes. The plan also addresses the manage-
ment, communication, policies, and procedures of
the V&V activities and their interaction, as well as
defect reporting and documentation requirements.

2.3. Reviews and Audits
[9%, c24s3] [16*]

Reviews and audit processes are broadly defined
as static—meaning that no software programs or
models are executed—examination of software
engineering artifacts with respect to standards that

As stated in [15],

The purpose of V&V is to help the devel-
opment organization build quality into the
system during the life cycle. V&V pro-
cesses provide an objective assessment
of products and processes throughout the

have been established by the organization or proj-
ect for those artifacts. Different types of reviews
and audits are distinguished by their purpose, lev-
els of independence, tools and techniques, roles,
and by the subject of the activity. Product assur-
ance and process assurance audits are typically
conducted by software quality assurance (SQA)
personnel who are independent of development

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

teams. Management reviews are conducted by
organizational or project management. The engi-
neering staff conducts technical reviews.

* Management reviews evaluate actual project
results with respect to plans.

ISO/IEC TR 19759:2016(E)

Software Quality 10-7

2.3.2. Technical Reviews
As stated in [16¥],

The purpose of a technical review is to
evaluate a software product by a team of

+Technical—+reviews—Hneliding—nspections;
walkthrough, and desk checking) examine
engineering work-products.

* Process assurance audits. SQA process
assurance activities make certain that the
processes used to develop, install, operate,
and maintain software conform to contracts,
comply with any imposed laws, rules, and
regulations and are adequate, efficient and
effective for their intended purpose [5].

e Product assurance audits. SQA product
assurance activities make certain to provide
evidence that software products and related
documentation are identified in and comply
with contracts; and ensure that nonconfor-
mances are identified and addressed [5].

2.3.1. Management Reviews
As stated in [16%],

The purpose of a management review is to
monitor progress, determineg~the status of
plans and schedules, and gvaluate the effec-
tiveness of management" processes, tools
and techniques. Management reviews com-
pare actual project. results against plans to
determine thestatus of projects or mainte-
nance efforts~The main parameters of man-
agement teviews are project cost, schedule,
scope,vand quality. Management reviews
¢valuate decisions about corrective actions,
¢hanges in the allocation of resources, or
changes to the scope of the project.

quatified—personnelto—determrie—Hs—stit
ability for its intended use and identify
discrepancies from specification§™ and
standards. It provides management with
evidence to confirm the technjeal status of

the project.

Although any work-product can be review¢d,
technical reviews are performed on the mgin
software engineering-work-products of software
requirements and ‘software design.

Purpose, roles] activities, and most importanfly
the level of formality distinguish different types
of technical reviews. Inspections are the most fpr-
malwalkthroughs less, and pair reviews or dgsk
ehecks are the least formal.

Examples of specific roles include a decision
maker (i.e., software lead), a review leader| a
recorder, and checkers (technical staff members
who examine the work-products). Reviews are
also distinguished by whether meetings (face|to
face or electronic) are included in the process.|In
some review methods checkers solitarily exam-
ine work-products and send their results back|to
a coordinator. In other methods checkers wqrk
cooperatively in meetings. A technical revigw
may require that mandatory inputs be in place{in
order to proceed:

 Statement of objectives

* Specific software product

* Specific project management plan

* Issues list associated with this product
* Technical review procedure.

Inputs to management reviews may include
audit reports, progress reports, V&V reports, and
plans of many types, including risk management,
project management, software configuration
management, software safety, and risk assess-
ment, among others. (Refer to the Software Engi-
neering Management and the Software Configu-
ration Management KAs for related material.)

© ISO/IEC 2016 — All rights reserved

The team follows the documented review pro-
cedure. The technical review is completed once
all the activities listed in the examination have
been completed.

Technical reviews of source code may include a
wide variety of concerns such as analysis of algo-
rithms, utilization of critical computer resources,
adherence to coding standards, structure and

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

10-8 SWEBOK® Guide V3.0

organization of code for testability, and safety-
critical considerations.

Note that technical reviews of source code or
design models such as UML are also termed static
analysis (see topic 3, Practical Considerations).

“Tlhe purpose of an inspection is to detect and
id¢ntify software product anomalies” [16*].
Sqme important differentiators of inspections as
compared to other types of technical reviews are
these:

. Rules. Inspections are based upon examining
a work-product with respect to a defined set
of criteria specified by the organization. Sets
of rules can be defined for different types of
workproducts (e.g., rules for requirements,
architecture descriptions, source code).

.Sampling. Rather that attempt to examine
every word and figure in a document, the
inspection process allows checkers to evalu-
ate defined subsets (samples) of the docu-
ments under review.

B. Peer. Individuals holding management posi*

tions over members of the inspection team

do not participate in the inspection. This is

a key distinction between peer review and

management review.

1. Led. An impartial moderator (who is trained
in inspection techniques_leads inspection
meetings.

.Meeting. The ingpéction process includes
meetings (face to~face or electronic) con-
ducted by a moderator according to a formal
procedure”invwhich inspection team mem-
bers report the anomalies they have found
and.other issues.

~J

4l

Boftware inspections always involve the author

small section of the product at a time (samples).
Each team member examines the software prod-
uct and other review inputs prior to the review
meeting, perhaps by applying an analytical tech-
nique (see section 3.3.3) to a small section of
the product or to the entire product with a focus

and verifies that everyone has prepared for_the
inspection and conducts the session. The inspec-
tion recorder documents anomalies found,°A set
of rules, with criteria and questionsgetmane to
the issues of interest, is a common“tool used in
inspections. The resulting list ofteén classifies the
anomalies (see section 3.2, Defect Characteriza-
tion) and is reviewed for,completeness and accu-
racy by the team. The ‘inSpection exit decision
corresponds to onc-of the following options:

1. Accept with'no or, at most, minor reworking
2. Acceptavith rework verification
3. Reigspect.

2.3:4. Walkthroughs
As stated in [16%],

The purpose of a systematic walk-through
is to evaluate a software product. A walk-
through may be conducted for the purpose
of educating an audience regarding a soft-
ware product.

Walkthroughs are distinguished from inspec-
tions. The main difference is that the author pres-
ents the work-product to the other participants in
a meeting (face to face or electronic). Unlike an
inspection, the meeting participants may not have
necessarily seen the material prior to the meet-
ing. The meetings may be conducted less for-
mally. The author takes the role of explaining and

of an intermediate or final product; other reviews
might not. Inspections also include an inspection
leader, a recorder, a reader, and a few (two to five)
checkers (inspectors). The members of an inspec-
tion team may possess different expertise, such as
domain expertise, software design method exper-
tise, or programming language expertise. Inspec-
tions are usually conducted on one relatively

showing the material to participants and solicits
feedback. Like inspections, walkthroughs may be
conducted on any type of work-product including
project plan, requirements, design, source code,
and test reports.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2.3.5. Process Assurance and Product Assur-
ance Audits

As stated in [16%],

The purpose of a software audit is to pro-
formance of software products and pro-
cesses to applicable regulations, standards,
guidelines, plans, and procedures.

Process assurance audits determine the adequacy
of plans, schedules, and requirements to achieve
project objectives [5]. The audit is a formally
organized activity with participants having spe-
cific roles—such as lead auditor, another auditor, a
recorder, or an initiator—and including a represen-
tative of the audited organization. Audits identify
instances of nonconformance and produce a report
requiring the team to take corrective action.

While there may be many formal names for
reviews and audits, such as those identified in the
standard [16*], the important point is that they
can occur on almost any product at any stage of.
the development or maintenance process.

3. Practical Considerations

3.1. Software Quality Requirements
[9%cl1s]] [18%, c12]
[17%, c15s3.2.2,¢15s3.3.1, ¢1659.10]

3.1.1. Influence Factors

Various factors jnfluence planning, management,
and selection .of SQM activities and techniques,
including

«the domain of the system in which the soft-
ware resides; the system functions could be
safety-critical, mission-critical, business-

ISO/IEC TR 19759:2016(E)

Software Quality 10-9

* the specific software engineering standards
applicable

* the methods and software tools to be used for
development and maintenance and for qual-
ity evaluation and improvement

* the budget, staff, project organization, plans,

* the intended users and use of the systeri
« the integrity level of the system.

Information on these factors, influences how
the SQM processes are organized and doqu-
mented, how specific SQM activities are select¢d,
what resources are needéd;~and which of thgse
resources impose boundston the efforts.

3.1.2. Dependability

In cases where system failure may have extremg¢ly
severe consequences, overall dependability (hafd-
waréysoftware, and human or operational) is the
main quality requirement over and above bafpic
functionality. This is the case for the following
reasons: system failures affect a large number{of
people; users often reject systems that are unte-
liable, unsafe, or insecure; system failure copts
may be enormous; and undependable systemns
may cause information loss. System and sdft-
ware dependability include such characteristjcs
as availability, reliability, safety, and security.
When developing dependable software, tools and
techniques can be applied to reduce the risk|of
injecting faults into the intermediate deliverables
or the final software product. Verification, valida-
tion, and testing processes, techniques, methogls,
and tools identify faults that impact dependabiljty
as early as possible in the life cycle. Additign-
ally, mechanisms may need to be in place in the
software to guard against external attacks and|to
tolerate faults.

critical, security-critical

« the physical environment in which the soft-
ware system resides

» system and software functional (what the
system does) and quality (how well the sys-
tem performs its functions) requirements

* the commercial (external) or standard (inter-
nal) components to be used in the system

© ISO/IEC 2016 — All rights reserved

3.1.3. Integrity Levels of Software

Defining integrity levels is a method of risk
management.

Software integrity levels are a range of
values that represent software complexity,
criticality, risk, safety level, security level,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
10-10 SWEBOK® Guide V3.0

desired performance, reliability, or other
project-unique characteristics that define
the importance of the software to the user
and acquirer. The characteristics used to
determine software integrity level vary
depending on the intended application and

the system, and its integrity level is to be
determined as a part of that system.

The assigned software integrity levels may
chpange as the software evolves. Design, coding,
procedural, and technology features implemented
in[the system or software can raise or lower the
aspigned software integrity levels. The software
infegrity levels established for a project result
frgm agreements among the acquirer, supplier,
depeloper, and independent assurance authorities.
A poftware integrity level scheme is a tool used in
defermining software integrity levels. [5]

As noted in [17*], “the integrity levels can be
applied during development to allocate additional
vefification and validation efforts to high-integ-
rity components.”

3.2. Defect Characterization
[3%*, ¢3s3, c8s8, c1082]

Sqftware quality evaluation (i.e., software quality
coptrol) techniques find defects, faults and fail-
urgs. Characterizing these techniques leads to an
uniderstanding of the product{ facilitates correc-
tigns to the process or the product, and informs
mgnagement and other-Stakeholders of the sta-
tug of the process or-preduct. Many taxonomies
exjst and, while attempts have been made to gain
copsensus, the“literature indicates that there are
quiite a few in‘use. Defect characterization is also
usgd in atidits and reviews, with the review leader
offenvpresenting a list of issues provided by team
m¢mbers for consideration at a review meeting.

Specific types of problems need to be grouped to
identify trends over time. The point is to establish
a defect taxonomy that is meaningful to the orga-
nization and to software engineers.

Software quality control activities discover infor-
mation at all stages of software development and

overloaded to refer to different types of anomalies,
However, different engineering cultures and stai
dards may use somewhat different meanings for
these terms. The variety of terms prompts¢this’ sec-
tion to provide a widely used set of definitions [19]:

» Computational Error: ,<the difference
between a computed, observed, or measured
value or condition and\the true, specified, or
theoretically correctwalue or condition.”

* Error: “A human/ action that produces an
incorrect restilt:=” A slip or mistake that a per-
son makes-Also called human error.

* DefectsAn “imperfection or deficiency in a
work\product where that work product does
not'meet its requirements or specifications
and needs to be either repaired or replaced.”
A defect is caused by a person committing
an error.

» Fault: A defect in source code. An “incorrect
step, process, or data definition in computer
program.” The encoding of a human error in
source code. Fault is the formal name of a bug.

* Failure: An “event in which a system or sys-
tem component does not perform a required
function within specified limits.” A failure is
produced when a fault is encountered by the
processor under specified conditions.

Using these definitions three widely used soft-
ware quality measurements are defect density
(number of defects per unit size of documents),
fault density (number of faults per 1K lines of
code), and failure intensity (failures per use-hour

As new design methods and languages evolve,
along with advances in overall software technolo-
gies, new classes of defects appear, and a great
deal of effort is required to interpret previously
defined classes. When tracking defects, the soft-
ware engineer is interested in not only the number
of defects but also the types. Information alone,
without some classification, may not be sufficient
to identify the underlying causes of the defects.

or per test-hour). Reliability models are built
from failure data collected during software test-
ing or from software in service and thus can be
used to estimate the probability of future failures
and to assist in decisions on when to stop testing.

One probable action resulting from SQM find-
ings is to remove the defects from the product
under examination (e.g., find and fix bugs, create
new build). Other activities attempt to eliminate

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

the causes of the defects—for example, root cause
analysis (RCA). RCA activities include analyzing
and summarizing the findings to find root causes
and using measurement techniques to improve
the product and the process as well as to track the
defects and their removal. Process improvement

ing Process KA, with the SQM process being a
source of information.

Data on inadequacies and defects found by
software quality control techniques may be lost
unless they are recorded. For some techniques
(e.g., technical reviews, audits, inspections),
recorders are present to set down such informa-
tion, along with issues and decisions. When auto-
mated tools are used (see topic 4, Software Qual-
ity Tools), the tool output may provide the defect
information. Reports about defects are provided
to the management of the organization.

3.3. Software Quality Management Techniques
[7%, ¢7s3] [8%, c17] [9%, c12s5, c15sl1, p4l7]
[16%]

Software quality control techniques can be @at-
egorized in many ways, but a straightferward
approach uses just two categories: static and
dynamic. Dynamic techniques involweé‘executing
the software; static techniques ipvolve analyzing
documents and source code but hot executing the
software.

3.3.1. Static Techuiques

Static technigu¢s“examine software documenta-
tion (including requirements, interface specifica-
tions, designs, and models) and software source
codewithout executing the code. There are many
tools'and techniques for statically examining soft-
ware work-products (see section 2.3.2). In addi-
fion, tools that analyze source code control flow

ISO/IEC TR 19759:2016(E)
Software Quality 10-11

also Formal Methods in the Software Engineer-
ing Models and Methods KA.)

3.3.2. Dynamic Techniques

Dynamic techniques involve executing the soft-
are-code—Differentlkinds-ofdvnamictechniaycs

maintenance of software. Generally, these §
testing techniques, but techniques suchlas si

people with.different roles and experience in
organization+nay consider and apply these te¢h-
niques differently.

Different groups may perform testing during
software development, including groups inde-
pendent of the development team. The Software
Testing KA is devoted entirely to this subject.

3.3.3. Testing

Two types of testing may fall under V&V becayse
of their responsibility for the quality of the mafe-
rials used in the project:

 Evaluation and tests of tools to be used jon
the project
* Conformance tests (or review of confpr-
mance tests) of components and COTS prqd-
ucts to be used in the product.

Sometimes an independent (third-party [or
IV&V) organization may be tasked to perfofm
testing or to monitor the test process V&V nfay
be called upon to evaluate the testing itself: adle-

and search for dead code are considered to be
static analysis tools because they do not involve
executing the software code.

Other, more formal, types of analytical tech-
niques are known as formal methods. They are
notably used to verify software requirements and
designs. They have mostly been used in the veri-
fication of crucial parts of critical systems, such
as specific security and safety requirements. (See

© ISO/IEC 2016 — All rights reserved

quacy of plans, processes, and procedures, and
adequacy and accuracy of results.

The third party is not the developer, nor is it
associated with the development of the product.
Instead, the third party is an independent facil-
ity, usually accredited by some body of authority.
Their purpose is to test a product for conformance
to a specific set of requirements (see the Software
Testing KA).

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
10-12 SWEBOK® Guide V3.0

3.4. Software Quality Measurement
[3%, c4] [8%, c17] [9%, p90]

Software quality measurements are used to
support decision-making. With the increasing
sophistication of software, questions of quality

troublesome areas of the software product under
examination. The resulting charts and graphs
are visualization aids, which the decision mak-
ers can use to focus resources and conduct pro-
cess improvements where they appear to be most
needed. Results from trend analysis may indicate

gorbeyond-whetherornot-the-sefiware-worksto
how well it achieves measurable quality goals.
Pecisions supported by software quality mea-
sufement include determining levels of software
quality (notably because models of software
product quality include measures to determine
th¢ degree to which the software product achieves
quiality goals); managerial questions about effort,
copt, and schedule; determining when to stop test-
ing and release a product (see Termination under
seg¢tion 5.1, Practical Considerations, in the Soft-
wire Testing KA); and determining the efficacy
of[process improvement efforts.

The cost of SQM processes is an issue fre-
quently raised in deciding how a project or a soft-
wire development and maintenance group should
be| organized. Often, generic models of cost are
usgd, which are based on when a defect is found
anfd how much effort it takes to fix the defect rela-
tile to finding the defect earlier in the develop*
mént process. Software quality measurement data
coflected internally may give a better picture of
copt within this project or organization.

While the software quality measurement data
mgy be useful in itself (e.g., the number of defec-
tie requirements or the proportion of defective
requirements), mathematical and graphical tech-
niques can be applied tejaid in the interpretation
oflthe measures (seethe-Engineering Foundations
KA). These techniques include

=.

o =

b descriptive" statistics based (e.g., Pareto
analysts, run charts, scatter plots, normal
distribution)

statistical tests (e.g., the binomial test, chi-

that-a-schedule-is-beinanet—such-asH-testng—or
that certain classes of faults may become more
likely to occur unless some corrective action(is
taken in development. The predictive techniques
assist in estimating testing effort and, gehedule
and in predicting failures. More discussion on
measurement in general appears in"the Software
Engineering Process and Software Engineering
Management KAs. More specific information on
testing measurement is presented in the Software
Testing KA.

Software quality-measurement includes mea-
suring defect occurrences and applying statistical
methods to understand the types of defects that
occur mosffrequently. This information may be
used by-seftware process improvement for deter-
mining methods to prevent, reduce, or eliminate
theiprecurrence. They also aid in understanding
trends, how well detection and containment tech-
niques are working, and how well the develop-
ment and maintenance processes are progressing.

From these measurement methods, defect
profiles can be developed for a specific applica-
tion domain. Then, for the next software project
within that organization, the profiles can be used
to guide the SQM processes—that is, to expend
the effort where problems are most likely to occur.
Similarly, benchmarks, or defect counts typical of
that domain, may serve as one aid in determining
when the product is ready for delivery. Discus-
sion on using data from SQM to improve devel-
opment and maintenance processes appears in the
Software Engineering Management and Software
Engineering Process KAs.

squared test)

» trend analysis (e.g., control charts; see
The Quality Toolbox in the list of further
readings)

* prediction (e.g., reliability models).

Descriptive statistics-based techniques and
tests often provide a snapshot of the more

4. Software Quality Tools

Software quality tools include static and dynamic
analysis tools. Static analysis tools input source
code, perform syntactical and semantic analysis
without executing the code, and present results to
users. There is a large variety in the depth, thor-
oughness, and scope of static analysis tools that

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

can be applied to artifacts including models, in
addition to source code. (See the Software Con-
struction, Software Testing, and Software Main-
tenance KAs for descriptions of dynamic analysis
tools.)

Categories of static analysis tools include the

followina:
+OTTOVWHRES

ISO/IEC TR 19759:2016(E)

Software Quality 10-13

* Tools that support tracking of software prob-

lems provide for entry of anomalies discov-
ered during software testing and subsequent
analysis, disposition, and resolution. Some
tools include support for workflow and for
tracking the status of problem resolution.

s Taaole that analuzo data contiiead o o ft-
OO tHataHaryAe—adta—captitrea—roi—+

* Tools that facilitate and partially automate
reviews and inspections of documents and
code. These tools can route work to differ-
ent participants in order to partially automate
and control a review process. They allow
users to enter defects found during inspec-
tions and reviews for later removal.

* Some tools help organizations perform soft-
ware safety hazard analysis. These tools
provide, e.g., automated support for failure
mode and effects analysis (FMEA) and fault
tree analysis (FTA).

ware engineering environments and “sgft-
ware test environments and produCe, visjial
displays of quantified data in_theform |of
graphs, charts, and tables. Thésg-tools sonpe-
times include the functipnality to perform
statistical analysis on datasets (for the ppr-
pose of discerning tfends and making fofe-
casts). Some of_these tools provide defgct
and removal injection rates; defect densitips;
yields; disttibufion of defect injection and
removal-for/each of the life cycle phases.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
10-14 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

(71

(371

*
*

Kan 2002
131

Bott et]|al. 2000
[6%]

Galin 2004

Naik and Tfipathy 2008

[
[

Sommenyville 2011
1971
Voland 2003
IEEE Std{ 1028-2008
[16%]
Moorje 2006

ok

lesWe)

Software
uality
lundamentals

S

1.1. Software
Engineering
Culture and
Ethics

cls4

c2s3.5

<,
<o

1.2. Value and
Cost of Quality

cl7,
c22

)

1.3. Models
and Quality
Characteristics

c24sl

c2s4

Y/
P

1.4. Software

Quality
Improvement

cls4

cll

24 | 04

1.5. Software
Safety

clls3

o 20N

Software
uality
[anagement
rocesses

2.1. Software

Quality .
Assurancg&

c4—co,
cll,
c26-27

%

D

€ Verification

X alidats
AT v araatiorr

c2
s2.3,
c8, cl5

c21
s3.3

2.3. Reviews
and Audits

c24s3 *

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Quality 10-15

= ®
o S = =
S o = = = S—_| 8|S~ S _
I el Nl ol =l B~ O N S S
Sl s= === 3= =32 52| &3
v - < = £ =S =z S ie)
2 |° |5 | |5 |=» |2 (B
2 4 =
: |7 2 ‘¥
z O
A\
3. Software '\(b
Quality Practical Q‘
Considerations A
QD cls
3.1. Software O\\Q/ Si‘fézv
Quality cllsl C9 331 cl2
Requirements s\\ e
O s9.10
3.2. Defect césg, Q&
Characterization Cose, \\
c10s2 D
%) cl2s5,
%jéllsn?l\ﬁes g’@ cl7 | clssl, *
1 & p417
3.4. Software Q\J
Quality 4 | xO cl7 | p90
Measurement) eb
4. Software C)\\
Quality Tools .

O 3
D
&

D
C)O

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

10-

16 SWEBOK® Guide V3.0

FURTHER READINGS

N.

Leveson, Safeware: System Safety and
Computers [20].

This book describes the importance of software

safety practices and how these practices can be

INngeFporatediHo-5o0 aFe-aev-eropetpro

TH
ing
M
bo
to)
ac

T.

TH
ca
te
re
in

.|Gilb, Principles of Software Engineering

Management [21].

is is one of the first books on iterative and
tremental development techniques. The Evo
pthod defines quantified goals, frequent time-
xed iterations, measurements of progress
vard goals, and adaptation of plans based on
ual results.

Gilb and D. Graham, Software Inspection
[22].

is book introduces measurement and statisti-
sampling for reviews and defects. It presents
hniques that produce quantified results for
lucing defects, improving productivity, track-
b projects, and creating documentation.

K.E. Wiegers, Peer Reviews in Software: A
Practical Guide [23].

This book provides clear, succinct explanations
of different peer review methods distinguished by

guidance for implementing the methods and how,
to select which methods are appropriate for given
circumstances is provided.

N.R. Tague, The Quality Toolbox, 2nd ed., [24].

Provides a pragmatic how-to, €xplanation of a
comprehensive set of methods; tools, and tech-
niques for solving quality~improvement prob-
lems. Includes the sewen”basic quality control
tools and many others.

IEEE Std. P730~2013 Draft Standard for
Softwawe Quality Assurance Processes [5].

This:draft standard expands the SQA processes
identified in IEEE/ISO/IEC 12207-2008. P730
establishes standards for initiating, planning,
controlling, and executing the software quality
assurance processes of a software development
or maintenance project. Approval of this draft
standard is expected in 2014.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

REFERENCES
[1] P.B. Crosby, Quality Is Free, McGraw-Hill,
1979.

[2] W. Humphrey, Managing the Software
Process, Addison-Wesley, 1989.

ISO/IEC TR 19759:2016(E)

Software Quality 10-17

[13] IEEE Std. 12207-2008 (a.k.a. ISO/IEC
12207:2008) Standard for Systems and
Software Engineering—Software Life Cycle
Processes, IEEE, 2008.

[3*] S.H. Kan, Metrics and Models in Software
Quality Engineering, 2nd ed., Addison-
Wesley, 2002.

[4] ISO/IEC 25010:2011 Systems and Software
Engineering—Systems and Software
Quality Requirements and Evaluation
(SQuaRE)—Systems and Software Quality
Models, ISO/IEC, 2011.

[S] IEEE P730™/D8 Draft Standard for
Software Quality Assurance Processes,
IEEE, 2012.

[6*] F. Bott et al., Professional Issues in
Software Engineering, 3rd ed., Taylor &
Francis, 2000.

[7*] D. Galin, Software Quality Assurance;
From Theory to Implementation, Rearson
Education Limited, 2004.

[8*] S. Naik and P. Tripathy, Software Testing
and Quality Assurancé_Theory and
Practice, Wiley-Spektrum, 2008.

[9*] P. Clements-ctal., Documenting Software
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[10*¥)(Gy Voland, Engineering by Design, 2nd
ed., Prentice Hall, 2003.

[111 RTCA DO-178C, Software Considerations

,,,,,,,,,,,,,,,,,,,,,,,
Systems—Fundamentals and Vocabuléry,
IS0, 2005.

[15] IEEE Std. 1012-2012 Standard-for System
and Software Verification-gnd Validation
IEEE, 2012.

[16*] IEEE Std. 1028-2008, Software Reviews
and Audits, IEEE/2008.

[17*] JW. Moore, The Road Map to Software
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 20

o

A8%] K.E. Wiegers, Software Requirements, 2nd
ed., Microsoft Press, 2003.

[19] ISO/IEC/IEEE 24765:2010 Systems and
Software Engineering—Vocabulary, ISO
IEC/IEEE, 2010.

[20] N. Leveson, Safeware: System Safety and,
Computers, Addison-Wesley Professional
199s.

[21] T. Gilb, Principles of Software Engineerifg
Management, Addison-Wesley Professionfal,
1988.

[22] T. Gilb and D. Graham, Software
Inspection, Addison-Wesley Professional,
1993.

[23] K. Wiegers, Peer Reviews in Software: A

in Airborne Systems and Equipment
Certification, Radio Technical Commission
for Aeronautics, 2011.

[12] IEEE Std. 15026.1-2011 Trial-Use Standard
Adoption of ISO/IEC TR 15026-1:2010
Systems and Software Engineering—
Systems and Software Assurance—Part 1.
Concepts and Vocabulary, IEEE, 2011.

© ISO/IEC 2016 — All rights reserved

Practical Guide, Addison-Wesley
Professional, 2001.

[24] N.R. Tague, The Quality Toolbox, 2nd ed.,
ASQ Quality Press, 2010.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 11

SOFTWARE ENGINEERING

PROFESSIONAL PRACTICE

ACRONYMS

ACM Assoc.latlon for Computing
Machinery

BCS British Computer Society

CSDA Certlﬁed Software Development
Associate

CSDP Certlﬁe.d Software Development
Professional
International Electrotechnical

IEC .
Commission

IEEE CS | IEEE Computer Society
International. Federation for

IFIP . .
Information Processing

1P Intellectual Property

SO International Organization for
Standardization

NDA Non-Disclosur¢ Agreement

WIPO World ‘Inte.llectual Property
Organigzation

WTO World Trade Organization

INTRODUCTION

The=Software Engineering Professional Prac-
tice knowledge area (KA) is concerned with the
knowledge, skills, and attitudes that software

software with known characteristics and reliabil-
ity. This requirement calls forsoftware enginegrs
who possess a proper sét/of knowledge, skills,
training, and experience in professional practid

The term “professional practice” refers tq a
way of conducting'services so as to achieve cpr-
tain standards.ot criteria in both the process|of
performing.a-service and the end product resylt-
ing fronmthe service. These standards and crife-
ria_¢ah include both technical and nontechnig¢al
aspects. The concept of professional practice dan
be viewed as being more applicable within thgse
professions that have a generally accepted body
of knowledge; codes of ethics and professional
conduct with penalties for violations; accepfed
processes for accreditation, certification, and
licensing; and professional societies to provide
and administer all of these. Admission to th¢se
professional societies is often predicated on a pte-
scribed combination of education and experienge.

A software engineer maintains a professional
practice by performing all work in accordarce
with generally accepted practices, standards, and
guidelines notably set forth by the applicable pro-
fessional society. For example, the Association for
Computing Machinery (ACM) and IEEE Com-
puter Society (IEEE CS) have established a Sdft-
ware Engineering Code of Ethics and ProfessiO{Qal

o®

Practice. Both the British Computer Society (B(S)
and the International Federation for Informatjon

engineers must possess to practice software engi-
neering in a professional, responsible, and ethi-
cal manner. Because of the widespread applica-
tions of software products in social and personal
life, the quality of software products can have
profound impact on our personal well-being
and societal harmony. Software engineers must
handle unique engineering problems, producing

Processing (IFIP) have established similar profes-
sional practice standards. ISO/IEC and IEEE have
further provided internationally accepted software
engineering standards (see Appendix B of this
Guide). IEEE CS has established two international
certification programs (CSDA, CSDP) and a corre-
sponding Guide to the Software Engineering Body
of Knowledge (SWEBOK Guide). All of these are

11-1

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

11-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Software
Engineering
Professional

Practice

> Certification,
and Licensing

Codes of Ethics
—» and Professional
Conduct

Nature and Role
I of Professional
Societies

Nature and Role
of Software
Engineering
Standards

Economic Impact
of Software

Employment
Contracts

> Working in
Teams/Groups

Individual
Cognition

Dealing with
> Problem
Complexity

Interacting with
Stakeholders

Dealing with
> Uncertaifityj and
Ambiguity

Dealing with

> Multicultural
Environments

Group Dynamics Communication
= ofesstomrattsmr—T =
b and Psychology Skills
Accreditation, Dynamics of Reading,

» Understanding,
and Summarizing

—» Writing

Team and Group
Communieation

Presentation
Skills

—> Legal Issues

—» Documentation

Tradeoff
Analysis

Figure 11.1. Breakdown of Topics for the Software Engineering Professional Practice KA

elements that lay the foundation for of the profes-
sional practice of software engineering.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
PROFESSIONAL PRACTICE

The Software Engineering Professional Practice
KA’s breakdown of topics is shown in Figure

© ISO/IEC 2016 — All rights reserved

11.1. The subareas presented in this KA are pro-
fessionalism, group dynamics and psychology,
and communication skills.

1. Professionalism
A software engineer displays professionalism

notably through adherence to codes of ethics
and professional conduct and to standards and

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

practices that are established by the engineer’s
professional community.

The professional community is often repre-
sented by one or more professional societies;
those societies publish codes of ethics and profes-
sional conduct as well as criteria for admittance
for accreditation and licensing activities and may
be used as a measure to determine engineering
competence or negligence.

1.1. Accreditation, Certification, and Licensing
[1*, c1s4.1, c1s5.1—cls5.4]

1.1.1. Accreditation

Accreditation is a process to certify the compe-
tency, authority, or credibility of an organization.
Accredited schools or programs are assured to
adhere to particular standards and maintain cer-
tain qualities. In many countries, the basic means
by which engineers acquire knowledge is through
completion of an accredited course of study.
Often, engineering accreditation is performed by
a government organization, such as the ministry
of education. Such countries with goveérnment
accreditations include China, France, Germany,
Israel, Italy, and Russia.

In other countries, however~the accredita-
tion process is independent, pf ‘government and
performed by private menibership associations.
For example, in the United States, engineer-
ing accreditation is, _performed by an organiza-
tion known as ABET. An organization known as
CSAB serving as’a participating body of ABET
is the lead seciety within ABET for the accredita-
tion of degree programs in software engineering.

Whilg the process of accreditation may be dif-
fefentfor each country and jurisdiction, the general
meaning is the same. For an institution’s course of
Study to be accredited means that “the accredita-

Software Engineering Professional Practice 11-3

of certification is professional certification, where
a person is certified as being able to complete an
activity in a certain discipline at a stated level
of competency. Professional certification also
can also verify the holder’s ability to meet pro-
fessional standards and to apply professional
Professional certification can also involve
verification of prescribed knowledge, th€ mastpr-
ing of best practice and proven methodologips,
and the amount of professional experience.

An engineer usually obtaips, certification by
passing an examination in conjunction with otler
experience-based criteria/~These examinatigns
are often administered bysnongovernmental orga-
nizations, such as proféssional societies.

In software_‘engineering, certification tegti-
fies to one’s-qualification as a software enginger.
For example;the IEEE CS has enacted two cpr-
tificatiomprograms (CSDA and CSDP) desigrjed
to confirm a software engineer’s knowledge [of
standard software engineering practices and|to
advance one’s career. A lack of certification dges
not exclude the individual from working ag a
software engineer. Currently certification in sqft-
ware engineering is completely voluntary. In fact,
most software engineers are not certified under
any program.

1.1.3. Licensing

“Licensing” is the action of giving a person the
authorization to perform certain kinds of actiyi-
ties and take responsibility for resultant enginefpr-
ing products. The noun “license” refers to bgth
that authorization and the document recording
that authorization. Governmental authorities [or
statutory bodies usually issue licenses.

Obtaining a license to practice requires not of
that an individual meets a certain standard, |

ily
ut

also that they do so with a certain ability to pr:

\C-

tion body recognizes an educational institution as
maintaining standards that qualify the graduates
for admission to higher or more specialized insti-
tutions or for professional practice” [2].

1.1.2. Certification

Certification refers to the confirmation of a per-
son’s particular characteristics. A common type

tice or operate. Sometimes there is an entry-level
requirement which sets the minimum skills and
capabilities to practice, but as the professional
moves through his or her career, the required
skills and capabilities change and evolve.

In general, engineers are licensed as a means of
protecting the public from unqualified individuals.
In some countries, no one can practice as a pro-
fessional engineer unless licensed; or further, no

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

11-4 SWEBOK® Guide V3.0

company may offer “engineering services” unless
at least one licensed engineer is employed there.

1.2. Codes of Ethics and Professional Conduct
[1%, cls6—cls9] [3%, c8] [4%, cls2] [5*, ¢33]
[6*]

ISO/IEC TR 19759:2016(E)

Since standards and codes of ethics and pro-
fessional conduct may be introduced, modified,
or replaced at any time, individual software engi-
neers bear the responsibility for their own con-
tinuing study to stay current in their professional
practice.

Cqdes of ethics and professional conduct com-
prise the values and behavior that an engineer’s
prpfessional practice and decisions should
enpbody.

The professional community establishes codes
of| ethics and professional conduct. They exist
in[the context of, and are adjusted to agree with,
sofietal norms and local laws. Therefore, codes
of]ethics and professional conduct present guid-
anpe in the face of conflicting imperatives.

Dnce established, codes of ethics and profes-
signal conduct are enforced by the profession,
as|represented by professional societies or by a
stdtutory body.

Violations may be acts of commission, such
as|concealing inadequate work, disclosing con-
fidential information, falsifying information, or
misrepresenting one’s abilities. They may also
ocfur through omission, including failure to dis*
clgse risks or to provide important informatidn,
faflure to give proper credit or to acknowledge
references, and failure to represent client inter-
ests. Violations of codes of ethics and profes-
signal conduct may result in penalties and pos-
sibhle expulsion from professional status.

A code of ethics and professional conduct for
software engineering was.approved by the ACM
Cquncil and the IEEE ‘€8 Board of Governors in
1999 [6*]. According to the short version of this
cofle:

Softwatre engineers shall commit them-
selves to making the analysis, specifica-
ton, design, development, testing and

1.3. Nature and Role of Professional Societies
[1%, clsl—c1s2] [4%, c1s2] [5%*, 3581

Professional societies are comprised of-a’mix
of practitioners and academics. These \societies
serve to define, advance, and regulate’their cor-
responding professions. Professtenal societies
help to establish professional standards as well
as codes of ethics and professional conduct. For
this reason, they also engage in related activities,
which include

* establishingjand promulgating a body of gen-
erally accepted knowledge;

* acerediting, certifying, and licensing;

* dispensing disciplinary actions;

s.advancing the profession through confer-
ences, training, and publications.

Participation in professional societies assists
the individual engineer in maintaining and sharp-
ening their professional knowledge and relevancy
and in expanding and maintaining their profes-
sional network.

1.4. Nature and Role of Sofiware Engineering
Standards
[1%, ¢553.2, ¢10s2.1] [5%, €32s6] [7%, cls2]

Software engineering standards cover a remark-
able variety of topics. They provide guidelines for
the practice of software engineering and processes
to be used during development, maintenance, and
support of software. By establishing a consensual

maintenance of software a beneficial and
respected profession. In accordance with
their commitment to the health, safety and
welfare of the public, software engineers
shall adhere to the eight principles con-
cerning the public, client and employer,
product, judgment, management, profes-
sion, colleagues, and self, respectively.

© ISO/IEC 2016 — All rights reserved

body of knowledge and experience, software engi-
neering standards establish a basis upon which fur-
ther guidelines may be developed. Appendix B of
this Guide provides guidance on IEEE and ISO/
IEC software engineering standards that support
the knowledge areas of this Guide.

The benefits of software engineering standards
are many and include improving software quality,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

helping avoid errors, protecting both software
producers and users, increasing professional dis-
cipline, and helping technology transition.

1.5. Economic Impact of Sofiware
[3%, c10s8] [4%, clsl.1] [8*, cl]

Software Engineering Professional Practice 11-5

consideration. Here, we are most concerned with
the engineer-to-customer arrangement and its
attendant agreements or contracts, whether they
are of the direct-hire or consultant variety, and
the issues they typically address.

A common concern in software engineering

Software has economic effects at the individual,
business, and societal levels. Software “success”
may be determined by the suitability of a product
for a recognized problem as well as by its effec-
tiveness when applied to that problem.

At the individual level, an engineer’s continu-
ing employment may depend on their ability
and willingness to interpret and execute tasks
in meeting customers’ or employers’ needs and
expectations. The customer or employer’s finan-
cial situation may in turn be positively or nega-
tively affected by the purchase of software.

At the business level, software properly applied
to a problem can eliminate months of work
and translate to elevated profits or more effec-
tive organizations. Moreover, organizations that
acquire or provide successful software may beia
boon to the society in which they operate by pro-
viding both employment and improved sérvices.
However, the development or acquisitiefrcosts of
software can also equate to those of-any major
acquisition.

At the societal level, direct impacts of software
success or failure include. Qv exclude accidents,
interruptions, and loss of service. Indirect impacts
include the successor failure of the organization
that acquired or praduced the software, increased
or decreasedssoeietal productivity, harmonious
or disruptive social order, and even the saving or
loss of property and life.

L6-Employment Contracts
[1%, 7]

contracte 1o oconfdontiality ve
HFaets—i5 HHaeRtary-

commercial advantage from intellectual propeity,
so they strive to protect that property from dis-

gain through association“with the customer.
terms of these agreements may extend past te
nation of the assoeidtion.

tions, inmventions, discoveries, and ideas—
reside’'with the employer or customer, either un
explicit contract terms or relevant laws, if thgse
assets are obtained during the term of the sqft-
ware engineer’s relationship with that employer
or customer. Contracts differ in the ownership|of
assets created using non-employer-owned equjp-
ment or information.

Finally, contracts can also specify among
other elements the location at which work is|to
be performed; standards to which that work will
be held; the system configuration to be used for
development; limitations of the software enpi-
neer’s and employer’s liability; a communication
matrix and/or escalation plan; and administrat{ve
details such as rates, frequency of compensatign,
working hours, and working conditions.

1.7. Legal Issues
[1*, c6, c11] [3*, c5s3—c5s4] [9%, c1s]0]

Legal issues surrounding software engineering

Software engineering services may be provided
under a variety of client-engineer relationships.
The software engineering work may be solic-
ited as company-to-customer supplier, engineer-
to-customer consultancy, direct hire, or even
volunteering. In all of these situations, the cus-
tomer and supplier agree that a product or ser-
vice will be provided in return for some sort of

professional practice notably include matters
related to standards, trademarks, patents, copy-
rights, trade secrets, professional liability, legal
requirements, trade compliance, and cybercrime.
It is therefore beneficial to possess knowledge of
these issues and their applicability.

Legal issues are jurisdictionally based; soft-
ware engineers must consult attorneys who

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

11-6 SWEBOK® Guide V3.0

specialize in the type and jurisdiction of any iden-
tified legal issues.

1.7.1. Standards

Software engineering standards establish guide-
lines—o a i : i
mym requirements for products and services pro-
vidled by a software engineer. Appendix B of this
Gyide provides guidance on software engineer-
ing standards that are applicable to each KA.
Standards are valuable sources of requirements
an(d assistance during the everyday conduct of
software engineering activities. Adherence to
stgndards facilitates discipline by enumerating
minimal characteristics of products and practice.
THat discipline helps to mitigate subconscious
asfumptions or overconfidence in a design. For
th¢se reasons, organizations performing software
engineering activities often include conformance
to [standards as part of their organizational poli-
ci¢s. Further, adherence to standards is a major
component of defense from legal action or from
allegations of malpractice.

/.7.2. Trademarks

A ftrademark relates to any word, name, symbol,
or|device that is used in business trapsactions.
It s used “to indicate the source or origin of the
goods” [2].

lrademark protection protécts” names, logos,
infages, and packaging. However, if a name, image,
orjother trademarked assefbecomes a generic term,
th¢n trademark protection is nullified.

The World Intellectual Property Organization
(WIPO) is theauthority that frames the rules and
regulations (o1 trademarks. WIPO is the United
N{tions-agency dedicated to the use of intellec-
tugl property as a means of stimulating innova-
tign ‘and creativity.

ISO/IEC TR 19759:2016(E)

are an old form of idea-ownership protection and
date back to the 15th century.

Application for a patent entails careful records
of the process that led to the invention. Patent
attorneys are helpful in writing patent disclosure
claims in a manner most likely to protect the soft-

5

Note that, if inventions are made during the
course of a software engineering contract, owners
ship may belong to the employer or customerjor
be jointly held, rather than belong to the §eftiware
engineer.

There are rules concerning what“is-and is not
patentable. In many countries, software code is
not patentable, although software algorithms may
be. Existing and filed patent-applications can be
searched at WIPO.

1.7.4. Copyrights

Most goverriments in the world give exclusive
rights ofan original work to its creator, usually
for arlimited time, enacted as a copyright. Copy-
rights protect the way an idea is presented—not
the idea itself. For example, they may protect the
particular wording of an account of an historical
event, whereas the event itself is not protected.
Copyrights are long-term and renewable; they
date back to the 17th century.

1.7.5. Trade Secrets

In many countries, an intellectual asset such as
a formula, algorithm, process, design, method,
pattern, instrument, or compilation of informa-
tion may be considered a “trade secret,” provided
that these assets are not generally known and may
provide a business some economic advantage.
The designation of “trade secret” provides legal
protection if the asset is stolen. This protection
is not subject to a time limit. However, if another

1.7.3. Patents

Patents protect an inventor’s right to manufac-
ture and sell an idea. A patent consists of a set
of exclusive rights granted by a sovereign gov-
ernment to an individual, group of individuals, or
organization for a limited period of time. Patents

© ISO/IEC 2016 — All rights reserved

party derives or discovers the same asset legally,
then the asset is no longer protected and the other
party will also possess all rights to use it.

1.7.6. Professional Liability

It is common for software engineers to be con-
cerned with matters of professional liability. As

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

an individual provides services to a client or
employer, it is vital to adhere to standards and
generally accepted practices, thereby protecting
against allegations or proceedings of or related to
malpractice, negligence, or incompetence.

For engineers, including software engineers,

ISO/IEC TR 19759:2016(E)

Software Engineering Professional Practice 11-7

1.7.8. Trade Compliance

All software professionals must be aware of
legal restrictions on import, export, or reexport
of goods, services, and technology in the juris-
dictions in which they work. The considerations

;;;;;;;;;;;;;;;;;

ity. Under the laws and rules governing in their
jurisdiction, engineers may be held to account
for failing to fully and conscientiously follow
recommended practice; this is known as “negli-
gence.” They may also be subject to laws govern-
ing “strict liability” and either implied or express
warranty, where, by selling the product, the engi-
neer is held to warrant that the product is both
suitable and safe for use. In some countries (for
example, in the US), “privity” (the idea that one
could only sue the person selling the product) is
no longer a defense against liability actions.

Legal suits for liability can be brought under
tort law in the US allowing anyone who is harmed
to recover their loss even if no guarantees were
made. Because it is difficult to measure the suit-
ability or safety of software, failure to take due
care can be used to prove negligence on the part
of software engineers. A defense against suech an
allegation is to show that standards and. generally
accepted practices were followed inthe develop-
ment of the product.

1.7.7. Legal Requirements

Software engineersynust operate within the con-
fines of local, pational, and international legal
frameworks. Fhercfore, software engineers must
be aware ofilegal requirements for

* 1egistration and licensing—including exami-
nation, education, experience, and training
requirements;

e contractual agreements;

Helude-export-controls-and-classification-transfer
of goods, acquisition of necessary governmenital
licenses for foreign use of hardware and Softwajre,
services and technology by sanctioned natign,
enterprise or individual entitie§~-and impprt
restrictions and duties. Trade experts should |be
consulted for detailed compliance guidance.

1.7.9. Cybercrime

Cybercrime refers“to any crime that involyes
a computer,~computer software, computer npt-
works, or embedded software controlling a sys-
tem. Theyeomputer or software may have bden
usediih the commission of a crime or it may hgve
been’ the target. This category of crime includes
fraud, unauthorized access, spam, obscene |or
offensive content, threats, harassment, theft|of
sensitive personal data or trade secrets, and yse
of one computer to damage or infiltrate otler
networked computers and automated syst¢m
controls.

Computer and software users commit fraud by
altering electronic data to facilitate illegal actjv-
ity. Forms of unauthorized access include ha¢k-
ing, eavesdropping, and using computer systems
in a way that is concealed from their owners.

Many countries have separate laws to coyer
cybercrimes, but it has sometimes been difficplt
to prosecute cybercrimes due to a lack of pre-
cisely framed statutes. The software engineer has
a professional obligation to consider the threat|of
cybercrime and to understand how the softwgre
system will protect or endanger software and uger
information from accidental or malicious accefs,

 noncontractual legalities, such as those gov-
erning liability;

 Basic information on the international legal
framework can be accessed from the World
Trade Organization (WTO).

use, modification, destruction, or disclosure.

1.8. Documentation
[1*, c10s5.8] [3%*, cls5] [5*, ¢32]

Providing clear, thorough, and accurate docu-

mentation is the responsibility of each software
engineer. The adequacy of documentation is

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
11-8 SWEBOK® Guide V3.0

judged by different criteria based on the needs of
the various stakeholder audiences.

Good documentation complies with accepted
standards and guidelines. In particular, software
engineers should document

of the software source code or the right to modify
the code, the software engineer should provide
documentation of the functional specifications,
the software design, the test suite, and the neces-
sary operating environment for the software.

The minimum length of time documents should

releyant footo
relevantfaects;
b significant risks and tradeoffs, and

b warnings of undesirable or dangerous conse-
quences from use or misuse of the software.

Software engineers should avoid

b certifying or approving unacceptable products,
b disclosing confidential information, or
b falsifying facts or data.

[n addition, software engineers and their man-
agprs should notably provide the following docu-
m¢ntation for use by other elements of the soft-
wgre development organization:

b software requirements specifications, soft-
ware design documents, details on the soft-
ware engineering tools used, software test
specifications and results, and details on the
adopted software engineering methods;

b problems encountered during the deyélop-
ment process.

For external stakeholders (customer, users,
others) software documentation) should notably
provide

b information needed-to determine if the soft-
ware is likely to”meet the customer’s and
users’ needs,

b description*of the safe, and unsafe, use of the
software,

b deseription of the protection of sensitive
iaformation created by or stored using the

be-keptis-the-duration-ofthe-softwareproduets”
life cycle or the time required by relevant organi-
zational or regulatory requirements.

1.9. Tradeoff Analysis
[3%, cls2, c10] [9:.¢9s5.10]

Within the practice of software’engineering, a
software engineer often has to~choose between
alternative problem solutions. The outcome of
these choices is determined by the software engi-
neer’s professional-evaluation of the risks, costs,
and benefits of alternatives, in cooperation with

stakeholders. The software engineer’s evaluation
is called ‘tradeoff analysis.” Tradeoff analysis
notably~enables the identification of compet-
ing .and* complementary software requirements
incorder to prioritize the final set of require-
ments defining the software to be constructed
(see Requirements Negotiation in the Software
Requirements KA and Determination and Nego-
tiation of Requirements in the Software Engi-
neering Management KA).

In the case of an ongoing software develop-
ment project that is late or over budget, tradeoff
analysis is often conducted to decide which soft-
ware requirements can be relaxed or dropped
given the effects thereof.

A first step in a tradeoff analysis is establish-
ing design goals (see Engineering Design in the
Engineering Foundations KA) and setting the
relative importance of those goals. This permits
identification of the solution that most nearly
meets those goals; this means that the way the
goals are stated is critically important.

software, and
* clear identification of warnings and critical
procedures.

Use of software may include installation, oper-
ation, administration, and performance of other
functions by various groups of users and support
personnel. If the customer will acquire ownership

© ISO/IEC 2016 — All rights reserved

Design goals may include minimization of
monetary cost and maximization of reliability,
performance, or some other criteria on a wide
range of dimensions. However, it is difficult to
formulate a tradeoff analysis of cost against risk,
especially where primary production and second-
ary risk-based costs must be traded against each
other.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

A software engineer must conduct a tradeoff
analysis in an ethical manner—notably by being
objective and impartial when selecting criteria for
comparison of alternative problem solutions and
when assigning weights or importance to these
criteria. Any conflict of interest must be disclosed

2. Group Dynamics and Psychology

Engineering work is very often conducted in the
context of teamwork. A software engineer must
be able to interact cooperatively and construc-
tively with others to first determine and then
meet both needs and expectations. Knowledge of
group dynamics and psychology is an asset when
interacting with customers, coworkers, suppliers,
and subordinates to solve software engineering
problems.

2.1. Dynamics of Working in Teams/Groups
[3%, c1s6] [9%, cls3.5, c10]

Software engineers must work with others. Qn
one hand, they work internally in engineefing
teams; on the other hand, they work with. cus-
tomers, members of the public, reguldtors, and
other stakeholders. Performing teams—those
that demonstrate consistent quality of work and
progress toward goals—are cohesive and possess
a cooperative, honest, and(focused atmosphere.
Individual and team goals are aligned so that the
members naturally commit to and feel ownership
of shared outcomes:

Team members’ facilitate this atmosphere by
being intellectually honest, making use of group
thinking) admitting ignorance, and acknowledg-
ing mistakes. They share responsibility, rewards,
and-workload fairly. They take care to communi-
cate clearly, directly to each other and in docu-
ments, as well as in source code, so that informa-

ISO/IEC TR 19759:2016(E)

Software Engineering Professional Practice 11-9

One point to emphasize is that software engi-
neers must be able to work in multidisciplinary
environments and in varied application domains.
Since today software is everywhere, from a phone
to a car, software is impacting people’s lives far
beyond the more traditional concept of software

made—forinformationtnanasementin-a-busiRess

environment.

2.2. Individual Cognition
[3*,,¢1s625] [5%, c}3]

Engineers desire to solve problems. The ability| to
solve problems effectively/and efficiently is what
every engineer strives for. However, the linits
and processes of individual cognition affect prgb-
lem solving. In software engineering, notably due
to the highly‘\abstract nature of software itsglf,
individual ‘epgnition plays a very prominent r¢le
in problem solving.

In‘general, an individual’s (in particular, a softwhre
engineer’s) ability to decompose a problem and cfe-
atively develop a solution can be inhibited by

* need for more knowledge,

* subconscious assumptions,

* volume of data,

« fear of failure or consequence of failure,

 culture, either application domain [or
organizational,

* lack of ability to express the problem,

* perceived working atmosphere, and

+ emotional status of the individual.

The impact of these inhibiting factors can [be
reduced by cultivating good problem solving
habits that minimize the impact of misleading
assumptions. The ability to focus is vital, as|is
intellectual humility: both allow a software enpi-
neer to suspend personal considerations and cqn-
sult with others freely, which is especially imppr-

tion is accessible to everyone. Peer reviews about
work products are framed in a constructive and
nonpersonal way (see Reviews and Audits in the
Software Quality KA). This allows all the mem-
bers to pursue a cycle of continuous improvement
and growth without personal risk. In general,
members of cohesive teams demonstrate respect
for each other and their leader.

tant when working in teams.

There is a set of basic methods engineers use
to facilitate problem solving (see Problem Solv-
ing Techniques in the Computing Foundations
KA). Breaking down problems and solving them
one piece at a time reduces cognitive overload.
Taking advantage of professional curiosity and
pursuing continuous professional development

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
11-10 SWEBOK® Guide V3.0

through training and study add skills and knowl-
edge to the software engineer’s portfolio; reading,
networking, and experimenting with new tools,
techniques, and methods are all valid means of
professional development.

2. 3Deglinasvith Problem Complexifs
. PGS A O DT OIRPHEXH:

Therefore, it is vital to maintain open and pro-
ductive communication with stakeholders for the
duration of the software product’s lifetime.

2.5. Dealing with Uncertainty and Ambiguity
[4%, c24s4, c26s2] [9%*, c9s4]

4

[3%, ¢3s2] [5*, ¢33]

Mhpny, if not most, software engineering prob-
lemns are too complex and difficult to address as
hole or to be tackled by individual software
inecers. When such circumstances arise, the
al means to adopt is teamwork and problem
omposition (see Problem Solving Techniques
he Computing Foundations KA).

eams work together to deal with complex and
e problems by sharing burdens and draw-
upon each other’s knowledge and creativity.
en software engineers work in teams, differ-
views and abilities of the individual engineers
plement each other and help build a solution
that is otherwise difficult to come by. Some spe-
cific teamwork examples to software engineering
ar¢ pair programming (see Agile Methods in the
Sqftware Engineering Models and Methods KA)
code review (see Reviews and Audits in-the
Sqftware Quality KA).

2.4. Interacting with Stakeholders
[9%, c253.1]

Syccess of a software engineering endeavor
depends upon positive-interactions with stake-
hollders. They should provide support, informa-
tign, and feedback at all stages of the software
lifp cycle progess: For example, during the early
stdges, it is ¢ritical to identify all stakeholders and
digcover.how the product will affect them, so that
sufficient’ definition of the stakeholder require-
m¢nts‘Can be properly and completely captured.

As with engineers of other fields, software engi-
neers must often deal with and resolve uncér
tainty and ambiguities while providing services
and developing products. The software €ngineer
must attack and reduce or eliminate.any lack of
clarity that is an obstacle to performing work.

Often, uncertainty is simply a‘eflection of lack
of knowledge. In this case, investigation through
recourse to formal sources,such as textbooks and
professional journals, interviews with stakehold-
ers, or consultation-with teammates and peers can
overcome it.

When uncertainty or ambiguity cannot be over-
come easilyy¢software engineers or organizations
may choose to regard it as a project risk. In this
caseswork estimates or pricing are adjusted to
mitigdte the anticipated cost of addressing it (see
Risk Management in the Software Engineering
Management KA).

2.6. Dealing with Multicultural Environments
[9%, c10s7]

Multicultural environments can have an impact
on the dynamics of a group. This is especially
true when the group is geographically separated
or communication is infrequent, since such sepa-
ration elevates the importance of each contact.
Intercultural communication is even more dif-
ficult if the difference in time zones make oral
communication less frequent.

Multicultural environments are quite prevalent
in software engineering, perhaps more than in
other fields of engineering, due to the strong trend

During development, stakeholders may pro-
vide feedback on specifications and/or early
versions of the software, change of priority, as
well as clarification of detailed or new software
requirements. Last, during software maintenance
and until the end of product life, stakeholders pro-
vide feedback on evolving or new requirements
as well problem reports so that the software may
be extended and improved.

© ISO/IEC 2016 — All rights reserved

of international outsourcing and the easy shipment
of software components instantaneously across
the globe. For example, it is rather common for a
software project to be divided into pieces across
national and cultural borders, and it is also quite
common for a software project team to consist of
people from diverse cultural backgrounds.

For a software project to be a success, team
members must achieve a level of tolerance,

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

acknowledging that some rules depend on soci-
etal norms and that not all societies derive the
same solutions and expectations.

This tolerance and accompanying understand-
ing can be facilitated by the support of leadership
and management. More frequent communication,

ISO/IEC TR 19759:2016(E)

Software Engineering Professional Practice 11-11

or rewriting software, it is critical to understand
both its implementation directly derived from the
presented code and its design, which must often
be inferred.

3.2. Writing

including facetofacemeetines—canhelotommit
meluding face—tofacemeetingsean-help-to-mit
gate geographical and cultural divisions, promote
cohesiveness, and raise productivity. Also, being
able to communicate with teammates in their

native language could be very beneficial.
3. Communication Skills

It is vital that a software engineer communicate
well, both orally and in reading and writing. Suc-
cessful attainment of software requirements and
deadlines depends on developing clear under-
standing between the software engineer and
customers, supervisors, coworkers, and suppli-
ers. Optimal problem solving is made possible
through the ability to investigate, comprehend,
and summarize information. Customer product
acceptance and safe product usage depend on the
provision of relevant training and documentation.
It follows that the software engineer’s owr.career
success is affected by the ability to cefisistently
provide oral and written communigcation effec-
tively and on time.

3.1. Reading, Understanding)and Summarizing
[5%, c33s3]

Software engingers-are able to read and under-
stand technical~material. Technical material
includes referénce books, manuals, research
papers,and program source code.

Reading is not only a primary way of improv-
ing:skills, but also a way of gathering informa-
tion necessary for the completion of engineering
6oals. A software engineer sifts through accu-

2 elss]

Software engineers are able to produc€ writfen
products as required by customer requests or g¢n-
erally accepted practice. These wiittén produfts
may include source code, software project plaps,
software requirement documents, risk analysgs,
software design documefits;y software test plans,
user manuals, technical reports and evaluatios,
justifications, diagrams and charts, and so fortl.

Writing clearly and concisely is very important
because often\it/is the primary method of com-
municatipinamong relevant parties. In all casps,
written (software engineering products must |be
writfeh so that they are accessible, understand-
able/and relevant for their intended audience(s).

3.3. Team and Group Communication
[3%, c156.8] [4*, c22s3] [5%, c2751]
[9%, c10$4]

Effective communication among team and group
members is essential to a collaborative software
engineering effort. Stakeholders must be cqn-
sulted, decisions must be made, and plans mfyist
be generated. The greater the number of tegm
and group members, the greater the need |to
communicate.

The number of communication paths, hofw-
ever, grows quadratically with the addition [of
each team member. Further, team membgrs
are unlikely to communicate with anyone ppr-
ceived to be removed from them by more than
two degrees (levels). This problem can be mgre
serious when software engineering endeavors|or

mulated information, filtering out the pieces that
will be most helpful. Customers may request that
a software engineer summarize the results of
such information gathering for them, simplifying
or explaining it so that they may make the final
choice between competing solutions.

Reading and comprehending source code is
also a component of information gathering and
problem solving. When modifying, extending,

organizations are spread across national and con-
tinental borders.

Some communication can be accomplished in
writing. Software documentation is a common
substitute for direct interaction. Email is another
but, although it is useful, it is not always enough;
also, if one sends too many messages, it becomes
difficult to identify the important information.
Increasingly, organizations are using enterprise

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
11-12 SWEBOK® Guide V3.0

collaboration tools to share information. In addi-
tion, the use of electronic information stores,
accessible to all team members, for organiza-
tional policies, standards, common engineering
procedures, and project-specific information, can
be most beneficial.

fage-to-face interaction and promote such inter-
acfion by office space arrangement. Although
private offices improve individual productivity,
cofjocating team members in physical or virtual
forms and providing communal work areas is
inportant to collaborative efforts.

3.4. Presentation Skills
[3%*, cl1s5] [4*, c22] [9%*, c10s7—c10s8]

Sqftware engineers rely on their presentation
skills during software life cycle processes. For
expmple, during the software requirements

phase, software engineers may walk customers
and teammates through software requirements
and conduct formal requirements reviews (see
Requirement Reviews in the Software Require-
ments KA). During and after software design,
software construction, and software maintenance,

Quality KA), and training. All of these require tie
ability to present technical information to groups
and solicit ideas or feedback.

The software engineer’s ability ~to, convey
concepts effectively in a presentatien’ therefore
influences product acceptances~management,
and customer support; it also influences the abil-
ity of stakeholders to comprehend and assist in
the product effort. This\kfiowledge needs to be
archived in the form\of slides, knowledge write-
up, technical whitepapers, and any other material
utilized for knowledge creation.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Engineering Professional Practice 11-13

MATRIX OF TOPICS VS. REFERENCE MATERIAL

d 2003

il
]

rville 2011
ey 2009
9%]

(7]
(8]

Bott dt al. 2000
[5*]
IEEE-CB/ACM 1999
(6]

Mogqre 2006
TocKey 2004

[1%]
Vol
I
Sommgdrvi
4
McCoLnell 2004
Fair

l

=

1. Professionalism

1.1. Accreditation, cls4.1, N
Certification, and cls5.1-
Licensing cls5.4

1.2. Codes of Ethics cls6—
and Professional c8 cls2 c33

cls9
Conduct

1.3. Nature and s\
. clsl—
Role of Professional cls2

.. cls2
Societies

1.4. Nature and
Role of Software c5s3.2, Q\\
Engineering cl0s2.1 s\

Standards O

1.5. Economic)
C clsl.1 cl
Impact of Software RN
-~

1.6. Employment o7 \g,
Contracts N

7

2

(y
O/%\

Des,
A

c32s6 cls2

\J

S U B
1.7. Legal Issues ('J%, cll 055834 clsl(

1.8. Documerﬁ@n " ¢10s5.8 cls5 c32
19. Trade(&U‘ cls2,
Analysig,_\ ¢l0 c9s3.10

2.Gr)‘fnamics
and(Psychology

.1. Dynamics of o183
\Q , Working in Teams/ cls6

Grouns clo
Groups

2.2. Individual
Cognition

2.3. 2.3 Dealing with
Problem Complexity

cls6.5 c33

c3s2 c33

2.4. Interacting with
Stakeholders c2s3.1

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
11-14 SWEBOK® Guide V3.0

= = §

e S

S |8 | |5 |z & | |t

_ N = — = QO — 3 —_ a [

SE|Ea| tR| Eh | 58| 2| Bk | 25

s | E | E | |9 |2 |E %

E > g 3 5 = = =

. . Y
2.5. Dealing with (1/
. c24s4, .
Uncertainty and 62 p 4
Ambiguity \
2.6. Dealing with N
Multicultural &Q‘ cl0s7
Environments C
3| Communication \<</
Skills (\\
3.1. Reading, \fb"
Understanding, and c33s3 Os\
Summarizing
.. N
3.2. Writing clsS O«
N
3.3. Team and Group cls6.8 | c22s3 1 c10s4
Communication Q
3.4. Presentation cl0s7-
Skills cls3 :\z& c10s8
N
R\
xO
<
o

N

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

FURTHER READINGS

Gerald M. Weinberg, The Psychology of
Computer Programming [10].

This was the first major book to address program-

ISO/IEC TR 19759:2016(E)

Software Engineering Professional Practice 11-15

REFERENCES

[1*] F. Bott et al., Professional Issues in
Software Engineering, 3rd ed., Taylor &
Francis, 2000.

e acanandioidial and toos offart o d baooaaao
£aSai-Hharvyatdraia-teai-errortabe H

a classic in the field.

Kinney and Lange, P.A., Intellectual Property
Law for Business Lawyers [11].

This book covers IP laws in the US. It not only
talks about what the IP law is; it also explains
why it looks the way it does.

2 Merricmtebster-s—Cotesiate-Dictionarsy.

Tres TETTOTTET s

11th ed., 2003.

p==y

[3*] G. Voland, Engineering by Design,2nd e
Prentice Hall, 2003.

[4*] I. Sommerville, Software.Engineering, 9th
ed., Addison-Wesley;2011.

[5*] S. McConnelly Code Complete, 2nd ed.,
Microsoft Press, 2004.

[6¥] IEEE €S/ACM Joint Task Force on
Software Engineering Ethics and
Professional Practices, “Software
Engineering Code of Ethics and
Professional Practice (Version 5.2),” 1999
www.acm.org/serving/se/code.htm.

[7*] JW. Moore, The Road Map to Software
Engineering: A Standards-Based Guide,
Wiley-IEEE Computer Society Press, 20

o

[8*] S. Tockey, Return on Software: Maximizijg
the Return on Your Software Investment,
Addison-Wesley, 2004.

[9*] R.E. Fairley, Managing and Leading
Software Projects, Wiley-IEEE Computel
Society Press, 20009.

[10] G.M. Weinberg, The Psychology
of Computer Programming: Silver
Anniversary Edition, Dorset House, 1998

[11] Kinney and Lange, P.A., Intellectual
Property Law for Business Lawyers,
Thomson West, 2013.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 12

SOFTWARE ENGINEERING ECONOMICS

ACRONYMS
EVM Earned Value Management
IRR Internal Rate of Return
MARR Minimum Acceptable Rate of
Return
SDLC Software Development Life Cycle
SPLC Software Product Life Cycle
ROI Return on Investment
ROCE Return on Capital Employed
TCO Total Cost of Ownership
INTRODUCTION

Software engineering economics is about mak-
ing decisions related to software engineering in a
business context. The success of a sgftware prod-
uct, service, and solution depends, on good busi-
ness management. Yet, in many companies and
organizations, software buginess relationships to
software development(and engineering remain
vague. This knowledge area (KA) provides an
overview on software engineering economics.
Economics~1sthe study of value, costs,
resources, and their relationship in a given context
or situation. In the discipline of software engi-
neerifig) “activities have costs, but the resulting
software itself has economic attributes as well.
Software engineering economics provides a way
to study the attributes of software and software

the business goals of the organization. In fll
types of organizations—be it “faf-profit,” “npt-
for-profit,” or governmental—this translates ito
sustainably staying in business. In “for—proIlt”
organizations this additionally relates to achigv-
ing a tangible return. onthe invested capital—
both assets and capital employed. This KA has
been formulated\in*a way to address all types|of
organizations ‘independent of focus, product and
service pottfelio, or capital ownership and taya-
tion restrictions.

Decgisions like “Should we use a specific compo-
nent?” may look easy from a technical perspectiye,
but can have serious implications on the busingss
viability of a software project and the resulting
product. Often engineers wonder whether stych
concerns apply at all, as they are “only enpi-
neers.” Economic analysis and decision-making
are important engineering considerations becayse
engineers are capable of evaluating decisions bgth
technically and from a business perspective. The
contents of this knowledge area are important tgp-
ics for software engineers to be aware of ever] if
they are never actually involved in concrete busi-
ness decisions; they will have a well-rounded vigw
of business issues and the role technical consjd-
erations play in making business decisions. Many
engineering proposals and decisions, such as mgke
versus buy, have deep intrinsic economic impagts
that should be considered explicitly.

This KA first covers the foundations, key tpr-
minology, basic concepts, and common practi¢es

processes in a systematic way that relates them
to economic measures. These economic measures
can be weighed and analyzed when making deci-
sions that are within the scope of a software orga-
nization and those within the integrated scope of
an entire producing or acquiring business.
Software engineering economics is concerned
with aligning software technical decisions with

of software engineering economics to indicate
how decision-making in software engineering
includes, or should include a business perspec-
tive. It then provides a life cycle perspective,
highlights risk and uncertainty management, and
shows how economic analysis methods are used.
Some practical considerations finalize the knowl-
edge area.

12-1

© ISO/IEC 2016 — All rights reserved

http://www.acm.org/serving/se/code.htm
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-2 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Software
Engineering
Economics
Software
Engineering Life Cycle | Risk and | Economic | Practical
Economics Economics Uncertainty Analysis Methods Considerations
Fundamentals
Goals, For-Profit The “Good
> Finance > Product > Estimates, and > Decision > Enough”
Plans Analysis Principle
) . Estimation Minimum Friction-
[Accounting —» Project T . > Acceptable 9 Free
echniques
Rate of Return Economy
X Addressing Return on
> Controlling —» Program Uncertainty Investment > Ecosystems’
Return on Offshofing
[Cash Flow > Portfolio > Prioritization I Capital and
Employed Qutsourcing
Decision- . .
N Product Life Decisions Cost-Benefit,
> Making Cycl under Risk i
Process ycle Analysis
Project Life Decisions ol :
[Valuation Cycle 9 under I Effectiveness
4 Uncertainty Analysis
> Inflation > Proposals > Break»Even
Analysis
o Investment X
—» Depreciation Decisions [Business Case
\ Multiple
[Taxation [’lan_nmg > Attribute
Horizon .
Evaluation
Time-Value, of" Price and Optimization
Money Pricing Analysis
s Cost and
- Efficiency Costing
> Effectiveness Performance
Measurement

= Productivity

Earned Value

Management

Termination
Decisions

Replacement
and

Retirement
Decisions

Figure 12.1. Breakdown of Topics for the Software Engineering Economics KA

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING ECONOMICS

The breakdown of topics for the Software Engi-
neering Economics KA is shown in Figure 12.1.

Fundamentals

1.1. Finance
[1%, c2]

Finance is the branch of economics concerned
with issues such as allocation, management,
acquisition, and investment of resources. Finance
is an element of every organization, including
software engineering organizations.

The field of finance deals with the concepts of
time, money, risk, and how they are interrelated.
It also deals with how money is spent and bud-
geted. Corporate finance is concerned with pro-
viding the funds for an organization’s activities.
Generally, this involves balancing risk and profit-
ability, while attempting to maximize an organi=
zation’s wealth and the value of its stock. This
holds primarily for “for-profit” organizations,
but also applies to “not-for-profit” orgafiizations.
The latter needs finances to ensure sustainability,
while not targeting tangible profit, To do this, an
organization must

* identify organizatignal goals, time horizons,
risk factors, tax considerations, and financial
constraints;

* identify and~implement the appropriate busi-
ness strategy, such as which portfolio and
inyestmient decisions to take, how to manage
¢ash flow, and where to get the funding;

«<-measure financial performance, such as
cash flow and ROI (see section 4.3, Return
on Investment), and take corrective actions

Software Engineering Economics 12-3

to know the results of their investment: did they
get the profit they were expecting? In “for-profit”
organizations, this relates to the tangible ROI
(see section 4.3, Return on Investment), while in
“not-for-profit” and governmental organizations
as well as “for-profit” organizations, it translates
. etai stavinein business. iengry
role of accounting is to measure the orgamita-
tion’s actual financial performance and to com-
municate financial information about a,/busingss
entity to stakeholders, such as/~Shareholddrs,
financial auditors, and investors, Communication
is generally in the form of financial statements
that show in money terms‘the economic resourges
to be controlled. It is.important to select the right
information that is’ both relevant and reliable|to
the user. Informatioh and its timing are partiafly
governed by- risk management and governarjce
policies. , Aceounting systems are also a rich
source gfhistorical data for estimating.

13 Controlling
[1%, c}5]

Controlling is an element of finance and accoupt-
ing. Controlling involves measuring and correft-
ing the performance of finance and accounting.
It ensures that an organization’s objectives and
plans are accomplished. Controlling cost is a sjpe-
cialized branch of controlling used to detect vqri-
ances of actual costs from planned costs.

1.4. Cash Flow
[1%, ¢3]

Cash flow is the movement of money into or ¢gut
of a business, project, or financial product ovef a
given period. The concepts of cash flow instanges
and cash flow streams are used to describe the
business perspective of a proposal. To makg a
meaningful business decision about any specilffic

in case of deviation from objectives and
Strategy.

1.2. Accounting
[1%, c15]

Accounting is part of finance. It allows people
whose money is being used to run an organization

© ISO/IEC 2016 — All rights reserved

proposal, that proposal will need to be evaluated
from a business perspective. In a proposal to
develop and launch product X, the payment for
new software licenses is an example of an outgo-
ing cash flow instance. Money would need to be
spent to carry out that proposal. The sales income
from product X in the 11th month after market
launch is an example of an incoming cash flow

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-4 SWEBOK® Guide V3.0

Cash flow
(currency,
e.g., USS or €)
A

ISO/IEC TR 19759:2016(E)

Repetitive income from sales

v v'Y

maintenance)

Initial investment

inftance. Money would be coming in because of
cafrying out the proposal.

The term cash flow stream refers to the set of
caph flow instances over time that are caused by
cafrying out some given proposal. The cash flow
stifeam 1is, in effect, the complete financial picture
of| that proposal. How much money goes out?
When does it go out? How much money comes
inf When does it come in? Simply, if the cash
flgqw stream for Proposal A is more desirable than
th¢ cash flow stream for Proposal B, then*all
other things being equal—the organizatien is bet-
te off carrying out Proposal A than Proposal B.
THus, the cash flow stream is anrifnportant input
fof investment decision-making: A cash flow
in§tance is a specific amount. of money flowing
info or out of the organiZation at a specific time
as|a direct result of some’activity.

A cash flow diagram is a picture of a cash flow
stgeam. It gives the reader a quick overview of
th¢ financial picture of the subject organization or
prpject, Figure 12.2 shows an example of a cash
flqw diagram for a proposal.

Life-cycle expenses
(e.g., development,

Time
(equal periods,
e.g., quarters)

Figure 12.2. A Cash Flow Diagram

solutions. A commercial, off-the-shelf, object-
request broker product might cost a few thousand
dollars, but theyeffort to develop a homegrown
service that/gives the same functionality could
casily gost,several hundred times that amount.

If.the candidate solutions all adequately solve
thesproblem from a technical perspective, then
the selection of the most appropriate alternative
should be based on commercial factors such as
optimizing total cost of ownership (TCO) or
maximizing the short-term return on investment
(ROI). Life cycle costs such as defect correction
field service, and support duration are also rel-
evant considerations. These costs need to be fac-
tored in when selecting among acceptable tech-
nical approaches, as they are part of the lifetime
ROI (see section 4.3, Return on Investment).

A systematic process for making decisions will
achieve transparency and allow later justifica-
tion. Governance criteria in many organizations
demand selection from at least two alternatives.
A systematic process is shown in Figure 12.3.
It starts with a business challenge at hand and
describes the steps to identify alternative solu-

1.5. Decision-Making Process
[1%, c2, c4]

If we assume that candidate solutions solve a
given technical problem equally well, why should
the organization care which one is chosen? The
answer is that there is usually a large differ-
ence in the costs and incomes from the different

tions, define selection criteria, evaluate the solu-
tions, implement one selected solution, and moni-
tor the performance of that solution.

Figure 12.3 shows the process as mostly step-
wise and serial. The real process is more fluid.
Sometimes the steps can be done in a different
order and often several of the steps can be done
in parallel. The important thing is to be sure that

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Engineering Economics 12-5
Define the
selection criteria
Evaluate each
Understand the .
—> real problem proposal against —
p Identify all selection criteria
reasonable
g technically
feasible solutions
Monitor the
welees e performance of
referred >
p "1 the selected >
proposal
proposal
Figure 12.3. The Basic Business Decision-Making Ppogess
none of the steps are skipped or curtailed. It’s also 1.6. Valuation
important to understand that this same process [1%, c5, ¢8]

applies at all levels of decision making: from a
decision as big as determining whether a software
project should be done at all, to a deciding on an
algorithm or data structure to use in a software
module. The difference is how financially sig-
nificant the decision is and, therefore, how mmuch
effort should be invested in making that deci-
sion. The project-level decision is finandially sig-
nificant and probably warrants a relatively high
level of effort to make the decisjon. Selecting an
algorithm is often much less financially signifi-
cant and warrants a much:léwer level of effort to
make the decision, evén though the same basic
decision-making process is being used.

More often thamnot, an organization could
carry out morerthan one proposal if it wanted
to, and usually there are important relationships
among proposals. Maybe Proposal Y can only be
carriédout if Proposal X is also carried out. Or
maybe Proposal P cannot be carried out if Pro-
pesal Q is carried out, nor could Q be carried out
if P were. Choices are much easier to make when

In_an abstract sense, the decision-making pfo-
eess~—be it financial decision making or other—
1$ about maximizing value. The alternative that
maximizes total value should always be chos¢n.
A financial basis for value-based comparison| is
comparing two or more cash flows. Several bages
of comparison are available, including

* present worth

* future worth

* annual equivalent

* internal rate of return

* (discounted) payback period.

Based on the time-value of money, two or mgre
cash flows are equivalent only when they eqyal
the same amount of money at a common pojnt
in time. Comparing cash flows only makes serse
when they are expressed in the same time franje.

Note that value can’t always be expressed|in
terms of money. For example, whether an it¢gm

there are mutually exclusive paths—for example,
either A or B or C or whatever is chosen. In pre-
paring decisions, it is recommended to turn any
given set of proposals, along with their various
interrelationships, into a set of mutually exclu-
sive alternatives. The choice can then be made
among these alternatives.

© ISO/IEC 2016 — All rights reserved

is a brand name or not can significantly affect
its perceived value. Relevant values that can’t
be expressed in terms of money still need to be
expressed in similar terms so that they can be
evaluated objectively.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-6 SWEBOK® Guide V3.0

1.7. Inflation
[1% c13]

Inflation describes long-term trends in prices.
Inflation means that the same things cost more
than they did before. If the planning horizon of

ISO/IEC TR 19759:2016(E)

1.10. Time-Value of Money
[1%, c5, cl1]

One of the most fundamental concepts in
finance—and therefore, in business decisions—
is that money has time-value: its value changes

a husiness-deciston-islonserthan-afew yearsor
if the inflation rate is over a couple of percentage
pojints annually, it can cause noticeable changes
in [the value of a proposal. The present time value
th¢refore needs to be adjusted for inflation rates

anfd also for exchange rate fluctuations.

1.4. Depreciation
[1%, c14]

Dgpreciation involves spreading the cost of a
taipgible asset across a number of time periods;
it |s used to determine how investments in capi-
talized assets are charged against income over
seyeral years. Depreciation is an important part
of[determining after-tax cash flow, which is criti-
cal for accurately addressing profit and taxes. If
a goftware product is to be sold after the devel-
opjment costs are incurred, those costs should be
capitalized and depreciated over subsequent time
periods. The depreciation expense for each tifne
pefiod is the capitalized cost of developing-the
software divided across the number of, periods
in(which the software will be sold; A”software
prpject proposal may be compared_to other soft-
w4re and nonsoftware proposals)or to alternative
inyestment options, so its important to deter-
mine how those other proposals would be depre-
cigted and how profits would be estimated.

1.9. Taxation
[1*, cl6, c17]

Ggvernments charge taxes in order to finance
expenses that society needs but that no single orga-

over-tine—A-speciic-amount-ofmeoney+isht-now
almost always has a different value than the same
amount of money at some other time. This coi
cept has been around since the earliest recorded
human history and is commonly knowndas time-
value. In order to compare proposals,or portfo-
lio elements, they should be normalized in cost,
value, and risk to the net presentxalue. Currency
exchange variations over time ‘need to be taken
into account based on historieal data. This is par-
ticularly important in_cross-border developments
of all kinds.

1.11. Efficiency
[2%, cl]

Economic efficiency of a process, activity, or
tagk s the ratio of resources actually consumed to
tesources expected to be consumed or desired to
be consumed in accomplishing the process, activ-
ity, or task. Efficiency means “doing things right.”
An efficient behavior, like an effective behavior,
delivers results—but keeps the necessary effort to
a minimum. Factors that may affect efficiency in
software engineering include product complex-
ity, quality requirements, time pressure, process
capability, team distribution, interrupts, feature
churn, tools, and programming language.

1.12. Effectiveness
[2%, cl]

Effectiveness is about having impact. It is the
relationship between achieved objectives to
defined objectives. Effectiveness means “doing

nization would invest in. Companies have to pay
income taxes, which can take a substantial portion
of a corporation’s gross profit. A decision analysis
that does not account for taxation can lead to the
wrong choice. A proposal with a high pretax profit
won’t look nearly as profitable in posttax terms.
Not accounting for taxation can also lead to unre-
alistically high expectations about how profitable a
proposed product might be.

the right things.” Effectiveness looks only at
whether defined objectives are reached—not at
how they are reached.

1.13. Productivity
[2*, c23]

Productivity is the ratio of output over input from
an economic perspective. Output is the value

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

delivered. Input covers all resources (e.g., effort)
spent to generate the output. Productivity com-
bines efficiency and effectiveness from a value-
oriented perspective: maximizing productivity
is about generating highest value with lowest
resource consumption.

Software Engineering Economics 12-7

from managing them individually.”* Programs
are often used to identify and manage different
deliveries to a single customer or market over a
time horizon of several years.

2.4. Portfolio

2. Life Cycle Economics

2.1. Product
[2%*, c22] [3%, c6]

A product is an economic good (or output) that is
created in a process that transforms product fac-
tors (or inputs) to an output. When sold, a prod-
uct is a deliverable that creates both a value and
an experience for its users. A product can be a
combination of systems, solutions, materials,
and services delivered internally (e.g., in-house
IT solution) or externally (e.g., software applica-
tion), either as-is or as a component for another
product (e.g., embedded software).

2.2. Project
[2*, c22] [3*gcl]

A project is “a temporary endeavor uiidertaken
to create a unique product, servicener result”.!
In software engineering, different project types
are distinguished (e.g., product development,
outsourced services, software maintenance, ser-
vice creation, and so on).)During its life cycle, a
software product may require many projects. For
example, during-the product conception phase,
a project might-be conducted to determine the
customer need and market requirements; during
maintepanee, a project might be conducted to
produce a next version of a product.

2.3. Program

Portfolios are “projects, programs, subportfelips,
and operations managed as a group td achidve
strategic objectives.” Portfolios are usedto group
and then manage simultaneously allassets witlin
a business line or organizatipn.\Looking to |an
entire portfolio makes sure that'impacts of defi-
sions are considered, such/as resource allocation
to a specific project—=which means that the sae
resources are not available for other projects.

2.5. Product-Life Cycle
[2%, ¢2] [3%, ¢2]

A séftware product life cycle (SPLC) includes
all\activities needed to define, build, operate,
maintain, and retire a software product or service
and its variants. The SPLC activities of “oppr-
ate,” “maintain,” and “retire” typically occur|in
a much longer time frame than initial software
development (the software development ljfe
cycle—SDLC—see Software Life Cycle Mqd-
els in the Software Engineering Process KA).
Also the operate-maintain-retire activities of [an
SPLC typically consume more total effort and
other resources than the SDLC activities (ee
Majority of Maintenance Costs in the Softwgre
Maintenance KA). The value contributed by a
software product or associated services can |be
objectively determined during the “operate and
maintain” time frame. Software engineering eg¢o-
nomics should be concerned with all SPLC actjv-
ities, including the activities after initial prodjict
release.

A program is “a group of related projects, sub-
programs, and program activities managed in a
coordinated way to obtain benefits not available

1 Project Management Institute, Inc., PMI Lexicon
of Project Management Terms, 2012, www.pmi.org/

2.6. Project Life Cycle
[2%, c2] [3%, 2]

Project life cycle activities typically involve five
process groups—Initiating, Planning, Execut-
ing, Monitoring and Controlling, and Closing [4]

PMBOK-Guide-and-Standards/~/media/Registered/
PMI Lexicon Final.ashx.

© ISO/IEC 2016 — Al rights reserved

2 Ibid.
3 Ibid.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-8 SWEBOK® Guide V3.0

(see the Software Engineering Management KA).
The activities within a software project life cycle
are often interleaved, overlapped, and iterated
in various ways [3*, c2] [5] (see the Software
Engineering Process KA). For instance, agile
product development within an SPLC involves

mwltnle e S h nroduce—inerermen S

defiverable software. An SPLC should include
management and synchronization with dif-
fetent suppliers (if any), while providing audit-
abje decision-making information (e.g., comply-
ing with product liability needs or governance
regulations). The software project life cycle and
th¢ software product life cycle are interrelated; an
SHLC may include several SDLCs.

2.Y. Proposals

[1%, c3]

Mgking a business decision begins with the
notion of a proposal. Proposals relate to reaching
a business objective—at the project, product, or
folio level. A proposal is a single, separate
option that is being considered, like carrying out
a particular software development project or not.
Afpother proposal could be to enhance an exist*
ing software component, and still another might
be|to redevelop that same software from scratch.
E4ch proposal represents a unit of choige—either
you can choose to carry out that proposal or you
cah choose not to. The whole purp@se of business
defision-making is to figure out, given the current
bukiness circumstances, which proposals should
be|carried out and which'shouldn’t.

2.8. Investment Decisions
[1%, c4]

Inyestorssmake investment decisions to spend
m@ney, and resources on achieving a target objec-
tie.\Investors are either inside (e.g., finance,

ISO/IEC TR 19759:2016(E)

2.9. Planning Horizon
[1%, cl1]

When an organization chooses to invest in a par-
ticular proposal, money gets tied up in that pro-
posal—so-called “frozen assets.” The economic

operat-
ing and maintenance costs of elements associated
with the proposal tend to start low but increase
over time. The total cost of the proposal—-that
is, owning and operating a product-—is\the sum
of those two costs. Early on, frozen, asset costs
dominate; later, the operating, and maintenance
costs dominate. There is a point'in time where the
sum of the costs is minimized; this is called the
minimum cost lifetime,

To properly comparé a proposal with a four-
year life span to“aproposal with a six-year life
span, the economic effects of either cutting the
six-year preposal by two years or investing the
profits Atom the four-year proposal for another
two.years need to be addressed. The planning
herizon, sometimes known as the study period,
is, the consistent time frame over which propos-
als are considered. Effects such as software life-
time will need to be factored into establishing a
planning horizon. Once the planning horizon is
established, several techniques are available for
putting proposals with different life spans into
that planning horizon.

2.10. Price and Pricing
[1%, c13]

A price is what is paid in exchange for a good or
service. Price is a fundamental aspect of financial
modeling and is one of the four Ps of the marketing
mix. The other three Ps are product, promotion,
and place. Price is the only revenue-generating ele-
ment amongst the four Ps; the rest are costs.

board) or outside (e.g., banks) the organization.
The target relates to some economic criteria, such
as achieving a high return on the investment,
strengthening the capabilities of the organization,
or improving the value of the company. Intangi-
ble aspects such as goodwill, culture, and compe-
tences should be considered.

Pricing is an element of finance and marketing.
It is the process of determining what a company
will receive in exchange for its products. Pricing
factors include manufacturing cost, market place-
ment, competition, market condition, and quality
of product. Pricing applies prices to products and
services based on factors such as fixed amount,
quantity break, promotion or sales campaign,

© ISO/IEC 2016 — All rights reserved

http://www.pmi.org/PMBOK-Guide-and-Standards/~/media/Registered/PMI_Lexicon_Final.ashx
http://www.pmi.org/PMBOK-Guide-and-Standards/~/media/Registered/PMI_Lexicon_Final.ashx
http://www.pmi.org/PMBOK-Guide-and-Standards/~/media/Registered/PMI_Lexicon_Final.ashx
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

specific vendor quote, shipment or invoice date,
combination of multiple orders, service offerings,
and many others. The needs of the consumer can
be converted into demand only if the consumer
has the willingness and capacity to buy the prod-
uct. Thus, pricing is very important in marketing.

Software Engineering Economics 12-9

parameters used to determine whether programs,
investments, and acquisitions are achieving the
desired results. It is used to evaluate whether
performance objectives are actually achieved; to
control budgets, resources, progress, and deci-
sions; and to improve performance.

Pricina 1o toatially dona Ay g tha orotoot doitio
e ESHHHarY-eoRe-at R Ete-projectiiits

tion phase and is a part of “go” decision making.

2.11. Cost and Costing
[1% cl15]

A cost is the value of money that has been used up
to produce something and, hence, is not available
for use anymore. In economics, a cost is an alter-
native that is given up as a result of a decision.

A sunk cost is the expenses before a certain
time, typically used to abstract decisions from
expenses in the past, which can cause emotional
hurdles in looking forward. From a traditional
economics point of view, sunk costs should not
be considered in decision making. Opportunity
cost is the cost of an alternative that must be for-
gone in order to pursue another alternative.

Costing is part of finance and product manage-
ment. It is the process to determine the cost based
on expenses (e.g., production, software.engineer-
ing, distribution, rework) and on the‘target cost
to be competitive and successful in a market.
The target cost can be below, the+actual estimated
cost. The planning and confrolling of these costs
(called cost managemerif) 1s important and should
always be includedqin costing.

An important cQfieept in costing is the total cost
of ownership~(F€0O). This holds especially for
software, because there are many not-so-obvious
costs related to SPLC activities after initial prod-
uct development. TCO for a software product is
defined as the total cost for acquiring, activating,
and keeping that product running. These costs
Can be grouped as direct and indirect costs. TCO

2.13. Earned Value Management
(3%, ¢8]

Earned value management (EVN) 35 a projgct
management technique for measuring progr¢ss
based on created value. At a‘given moment, the
results achieved to dateSin-a project are com-
pared with the projected*budget and the planrfed
schedule progress/forthat date. Progress relafes
already-consumed\" resources and achieyed
results at a given point in time with the respgc-
tive plannéd-values for the same date. It helps
to identify* possible performance problems at fan
earlystage. A key principle in EVM is tracking
eost/and schedule variances via comparison |of
planned versus actual schedule and budget vergus
actual cost. EVM tracking gives much earlier vjis-
ibility to deviations and thus permits correctiqns
earlier than classic cost and schedule tracking that
only looks at delivered documents and products.

2.14. Termination Decisions
[1*, c11, c12] [2*, ¢9]

Termination means to end a project or produgct.
Termination can be preplanned for the end of a
long product lifetime (e.g., when foreseeing thdt a
product will reach its lifetime) or can come ratler
spontaneously during product developm¢nt
(e.g., when project performance targets are fot
achieved). In both cases, the decision should |be
carefully prepared, considering always the altpr-
natives of continuing versus terminating. Costs|{of
different alternatives must be estimated—covpr-

is an accounting method that is crucial in making
sound economic decisions.

2.12. Performance Measurement
[3%*, ¢7, c8]

Performance measurement is the process whereby
an organization establishes and measures the

© ISO/IEC 2016 — All rights reserved

ing topics such as replacement, information col-
lection, suppliers, alternatives, assets, and utiliz-
ing resources for other opportunities. Sunk costs
should not be considered in such decision making
because they have been spent and will not reap-
pear as a value.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-10 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Goals
» External
» Business needs
» Examples:
requirements,
target cost Understand,
adapt, Plan
commit

Estimates

> Internal

» Constrained by
dependencies,
uncertainties

» Examples:
effort, duration

2.15. Replacement and Retirement Decisions
[1%, c12] [2*, c9]

A replacement decision is made when an organi-
zafion already has a particular asset and they ar¢
copsidering replacing it with something else;-for
expmple, deciding between maintaining andstp-
porting a legacy software product or redeveloping
it from the ground up. Replacement decisions use
th¢ same business decision processias described
abpve, but there are additiond] c¢hallenges: sunk
copt and salvage value. Retirement decisions are
aldo about getting out-ofian activity altogether,
suph as when a softwdre company considers not
selling a software product anymore or a hardware
mgnufacturer eonsiders not building and selling a
pafticular nodel of computer any longer. Retire-
m¢nt deciston can be influenced by lock-in fac-
tofs such-as technology dependency and high exit
copts:

» Breakdown of a goal into
activities and milestones in
order to reach this goal

» Relates goals and estimates to
best possibly reach the goals

» Approach: win-win

» Needs clear commitments ofall
impacted stakeholders

Figure 12.4. Goals, Estimates, and Plan§

A busingss/goal relates business needs (such as
increasing profitability) to investing resources
(suchas starting a project or launching a prod-
uect with a given budget, content, and timing).
Goals apply to operational planning (for instance,
to reach a certain milestone at a given date or to
extend software testing by some time to achieve a
desired quality level—see Key Issues in the Soft-
ware Testing KA) and to the strategic level (such
as reaching a certain profitability or market share
in a stated time period).

An estimate is a well-founded evaluation of
resources and time that will be needed to achieve
stated goals (see Effort, Schedule, and Cost Esti-
mation in the Software Engineering Management
KA and Maintenance Cost Estimation in the Soft-
ware Maintenance KA). A software estimate is
used to determine whether the project goals can
be achieved within the constraints on schedule,
budget, features, and quality attributes. Estimates

3. Risk and Uncertainty

3.1. Goals, Estimates, and Plans
[3%, c6]

Goals in software engineering economics are
mostly business goals (or business objectives).

are typically internally generated and are not
necessarily visible externally. Estimates should
not be driven exclusively by the project goals
because this could make an estimate overly opti-
mistic. Estimation is a periodic activity; estimates
should be continually revised during a project.

A plan describes the activities and milestones
that are necessary in order to reach the goals of

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

a project (see Software Project Planning in the
Software Engineering Management KA). The
plan should be in line with the goal and the esti-
mate, which is not necessarily easy and obvi-
ous—such as when a software project with given
requirements would take longer than the target

Software Engineering Economics 12-11

3.3. Addressing Uncertainty
[3%, c6]

Because of the many unknown factors during
project initiation and planning, estimates are
inherently uncertain; that uncertainty should be

date foreceon by tho oliont T cnobh cococ oo
aate—+oFeSeeh—Dy—te-creht—h—SHen—caseSPrahs

demand a review of initial goals as well as esti-
mates and the underlying uncertainties and inac-
curacies. Creative solutions with the underlying
rationale of achieving a win-win position are
applied to resolve conflicts.

To be of value, planning should involve con-
sideration of the project constraints and commit-
ments to stakeholders. Figure 12.4 shows how
goals are initially defined. Estimates are done
based on the initial goals. The plan tries to match
the goals and the estimates. This is an iterative
process, because an initial estimate typically does
not meet the initial goals.

3.2. Estimation Techniques
[3%, c6]

Estimations are used to analyze and forecastthe
resources or time necessary to implement require-
ments (see Effort, Schedule, and Cost Estimation
in the Software Engineering Management KA
and Maintenance Cost Estimatiop-in the Software
Maintenance KA). Five families of estimation
techniques exist:

» Expert judgment

* Analogy
 Estimation by parts
 Parametric’methods
« Statistical methods.

No*single estimation technique is perfect, so
nsing multiple estimation technique is useful.
Convergence among the estimates produced by

addressed—n-business—decisions—lechnigues—or
daafesSea—H—BusHess—aeciSioRs—reeiHqHes

addressing uncertainty include

* consider ranges of estimates
« analyze sensitivity to changes®fassumptiqns
¢ delay final decisions.

3.4. Prioritization
[3%, ¢6]

Prioritization in%olves ranking alternatives baded
on common-criteria to deliver the best possible
value. In software engineering projects, software
requirements are often prioritized in order [to
deliver the most value to the client within c@n-
straints of schedule, budget, resources, and te¢h-
nology, or to provide for building product incfe-
ments, where the first increments provide the
highest value to the customer (see Requirements
Classification and Requirements Negotiation|in
the Software Requirements KA and Softwgre
Life Cycle Models in the Software Engineering
Process KA).

—_—

3.5. Decisions under Risk
[1%, c24] [3*%, ¢9]

Decisions under risk techniques are used when
the decision maker can assign probabilities to the
different possible outcomes (see Risk Manage-
ment in the Software Engineering Managem¢nt
KA). The specific techniques include

« expected value decision making
» expectation variance and decision making

different techniques indicates that the estimates
are probably accurate. Spread among the esti-
mates indicates that certain factors might have
been overlooked. Finding the factors that caused
the spread and then reestimating again to pro-
duce results that converge could lead to a better
estimate.

© ISO/IEC 2016 — All rights reserved

* Monte Carlo analysis
* decision trees
« expected value of perfect information.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1212 SWEBOK® Guide V3.0 ISO/IEC TR 19759:2016(E)

Arrange the alternatives
in order of increasing
initial investment

v

Assume first alternative is
the current best

Are there more
alternatives to
compare?

Compare next
candidate to the
current best

Is the next
candidate
strictly better
than the current
best?2

The current best is
the best overall

Make that next
candidate the new
current best

Figure 12.5. The\for-profit decision-making process

3.9. Decisions under Uncertainty. 4. Economic Analysis Methods
[1*, c25] [3*, ¢9]

4.1. For-Profit Decision Analysis
Dgcisions under uncertainty techniques are used [1%, c10]
wlien the decision maker'cannot assign probabili-
tigs to the different.possible outcomes because Figure 12.5 describes a process for identifying
nepded inforgmation is not available (see Risk the best alternative from a set of mutually exclu-
Mpnagemerit int the Software Engineering Man- sive alternatives. Decision criteria depend on the

agement. KA). Specific techniques include business objectives and typically include ROI
(see section 4.3, Return on Investment) or Return
p Laplace Rule on Capital Employed (ROCE) (see section 4.4,
* Maximin Rule Return on Capital Employed).
* Maximax Rule For-profit decision techniques don’t apply for
* Hurwicz Rule government and nonprofit organizations. In these
* Minimax Regret Rule. cases, organizations have different goals—which

means that a different set of decision techniques
are needed, such as cost-benefit or cost-effective-
ness analysis.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

4.2. Minimum Acceptable Rate of Return
[1%, c10]

The minimum acceptable rate of return (MARR)
is the lowest internal rate of return the organi-
zation would consider to be a good investment.

another activity that’s known to return 20%.
The MARR is a statement that an organization
is confident it can achieve at least that rate of
return. The MARR represents the organization’s
opportunity cost for investments. By choosing
to invest in some activity, the organization is
explicitly deciding to not invest that same money
somewhere else. If the organization is already
confident it can get some known rate of return,
other alternatives should be chosen only if their
rate of return is at least that high. A simple way
to account for that opportunity cost is to use the
MARR as the interest rate in business decisions.
An alternative’s present worth evaluated at the
MARR shows how much more or less (in pres-
ent-day cash terms) that alternative is worth than
investing at the MARR.

4.3. Return on Investment
[1*, c10]

Return on investment (ROI)_is & measure of the
profitability of a company_or business unit. It
is defined as the ratio (ofy money gained or lost
(whether realized ogunrealized) on an investment
relative to the amount of money invested. The
purpose of ROT varies and includes, for instance,
providing a.rationale for future investments and
acquisitiondecisions.

4.4 Return on Capital Employed

The return on capital employed (ROCE) is a mea-

Software Engineering Economics 12-13

4.5. Cost-Benefit Analysis
[1%, c18]

Cost-benefit analysis is one of the most widely
used methods for evaluating individual propos-

als. Any proposal with a benefit-cost ratio of less
h A 0 be retecte d thao tther

efit. Proposals with a higher ratio need“to"cqn-
sider the associated risk of an inyestment and
compare the benefits with the optidir-of investing
the money at a guaranteed interest rate (see s¢c-
tion 4.2, Minimum Acceptable Rate of Return).

4.6. Cost-Effectiveness Analysis
[1%, c]8]

Cost-effectiveness analysis is similar to cost-
benefit apalysis. There are two versions of cofst-
effectiveness analysis: the fixed-cost version
maximizes the benefit given some upper bound
on‘cost; the fixed-effectiveness version minimizes
the cost needed to achieve a fixed goal.

4.7. Break-Even Analysis
[1%, ¢c}9]

Break-even analysis identifies the point wh¢re
the costs of developing a product and the reverjue
to be generated are equal. Such an analysis dan
be used to choose between different proposalg at
different estimated costs and revenue. Given egti-
mated costs and revenue of two or more prop¢s-
als, break-even analysis helps in choosing among
them.

4.8. Business Case
[1%, ¢3]

The business case is the consolidated information
summarizing and explaining a business propopal

sure of the profitability of a company or business
unit. It is defined as the ratio of a gross profit
before taxes and interest (EBIT) to the total assets
minus current liabilities. It describes the return on
the used capital.

© ISO/IEC 2016 — All rights reserved

from different perspectives for a decision maker
(cost, benefit, risk, and so on). It is often used
to assess the potential value of a product, which
can be used as a basis in the investment decision-
making process. As opposed to a mere profit-
loss calculation, the business case is a “case” of
plans and analyses that is owned by the product

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-14 SWEBOK® Guide V3.0

manager and used in support of achieving the
business objectives.

4.9. Multiple Attribute Evaluation

[1%, ¢26]

it’

nigues allow other, nonfinancial criteria to be fac-
tofed into the decision.

There are two families of multiple attribute
defision techniques that differ in how they use
th¢ attributes in the decision. One family is the
“cpmpensatory,” or single-dimensioned, tech-
niques. This family collapses all of the attributes
onfto a single figure of merit. The family is called
conpensatory because, for any given alternative,
a lpwer score in one attribute can be compensated
or traded off against—a higher score in otlier
atfributes. The compensatory techniques include

b nondimensional scaling
b additive weighting
b analytic hierarchy process,

[n contrast, the otherfamily is the “noncom-
pepsatory,” or fully- dimensioned, techniques.
THis family does mot allow tradeoffs among the
atfributes. Eachy aftribute is treated as a separate
entity in the(decision process. The noncompensa-
tofy techfiiques include

dominance

ISO/IEC TR 19759:2016(E)

find the point where overall performance is best.
Software’s classic space-time tradeoff is an
example of optimization; an algorithm that runs
faster will often use more memory. Optimization
balances the value of the faster runtime against

the value of project choices, including the value
of delaying a decision. Such options are diffictlt
to compute with precision. However, awareness
that choices have a monetary value, provides
insight in the timing of decisions such-as increas-
ing project staff or lengthening time\to'market to
improve quality.

5. Practical Considerations

5.1. The “Good Eneugh” Principle
[1%, c21]

Often software engineering projects and products
are nop-precise about the targets that should be
achieyed. Software requirements are stated, but
thexmarginal value of adding a bit more function-
ality cannot be measured. The result could be late
delivery or too-high cost. The “good enough”
principle relates marginal value to marginal cost
and provides guidance to determine criteria when
a deliverable is “good enough” to be delivered.
These criteria depend on business objectives and
on prioritization of different alternatives, such as
ranking software requirements, measurable qual-
ity attributes, or relating schedule to product con-
tent and cost.

The RACE principle (reduce accidents and
control essence) is a popular rule towards good
enough software. Accidents imply unnecessary
overheads such as gold-plating and rework due
to late defect removal or too many requirements
changes. Essence is what customers pay for. Soft-
ware engineering economics provides the mech-

* satisficing
* lexicography.

4.10. Optimization Analysis
[1%, c20]

The typical use of optimization analysis is to
study a cost function over a range of values to

anisms to define criteria that determine when a
deliverable is “good enough” to be delivered.
It also highlights that both words are relevant:
“good” and “enough.” Insufficient quality or
insufficient quantity is not good enough.

Agile methods are examples of “good enough”
that try to optimize value by reducing the over-
head of delayed rework and the gold plating that

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

results from adding features that have low mar-
ginal value for the users (see Agile Methods in
the Software Engineering Models and Methods
KA and Software Life Cycle Models in the Soft-
ware Engineering Process KA). In agile meth-

erable product that is tested and evaluated by user
representatives.

5.2. Friction-Free Economy

Economic friction is everything that keeps mar-
kets from having perfect competition. It involves
distance, cost of delivery, restrictive regulations,
and/or imperfect information. In high-friction
markets, customers don’t have many suppliers
from which to choose. Having been in a business
for a while or owning a store in a good location
determines the economic position. It’s hard for
new competitors to start business and compete.
The marketplace moves slowly and predictably.
Friction-free markets are just the reverse. New
competitors emerge and customers are quicke;to
respond. The marketplace is anything but predict-
able. Theoretically, software and IT aré friction-
free. New companies can easily create products
and often do so at a much lower-eost than estab-
lished companies, since they; need not consider
any legacies. Marketing.and ‘sales can be done
via the Internet and sdcial networks, and basi-
cally free distribution mechanisms can enable a
ramp up to a global-business. Software engineer-
ing economigs \aims to provide foundations to
judge how a,software business performs and how
frictionsfree’ a market actually is. For instance,
competition among software app developers is
inhibited when apps must be sold through an app
store and comply with that store’s rules.

Software Engineering Economics 12-15

In a typical ecosystem, there are producers and
consumers, where the consumers add value to
the consumed resources. Note that a consumer is
not the end user but an organization that uses the
product to enhance it. A software ecosystem is,
for instance, a supplier of an application working

ith-companies—deina—the—installation—and—syp-
port in different regions. Neither one couldvexist
without the other. Ecosystems can be permangnt
or temporary. Software engineering. economjcs
provides the mechanisms to evaluate-alternatiyes
in establishing or extending an ‘ecosystem—Tfor
instance, assessing whether to, work with a spe-
cific distributor or have the*distribution done by a
company doing service i an area.

5.4. Offshoring and’Outsourcing

Offshoring\means executing a business activjty
beyond(sales and marketing outside the hofne
country of an enterprise. Enterprises typicafl\y
either have their offshoring branches in low-
cost countries or they ask specialized companjes
abroad to execute the respective activity. Offshpr-
ing should therefore not be confused with opit-
sourcing. Offshoring within a company is called
captive offshoring. Outsourcing is the result-qri-
ented relationship with a supplier who execufes
business activities for an enterprise when, tfa-
ditionally, those activities were executed inside
the enterprise. Outsourcing is site-independept.
The supplier can reside in the neighborhood|of
the enterprise or offshore (outsourced offshor-
ing). Software engineering economics provides
the basic criteria and business tools to evalupte
different sourcing mechanisms and control thgir
performance. For instance, using an outsourcing
supplier for software development and mainfe-
nance might reduce the cost per hour of softwgre
development, but increase the number of hoyirs
and capital expenses due to an increased need for

5.3. Ecosystems

An ecosystem is an environment consisting of all
the mutually dependent stakeholders, business
units, and companies working in a particular area.

© ISO/IEC 2016 — All rights reserved

monitoring and communication. (For more infor-
mation on offshoring and outsourcing, see “Out-
sourcing” in Management Issues in the Software
Maintenance KA.)

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-16 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

ISO/IEC TR 19759:2016(E)

—
=
S N 2
S > =
N = —_ N
5 e z& D
=< [} o)
E £ £
= £ = INe)
5 N
/ Q
)
1} Software Engineering Economics (,-)(b :
Fundamentals o~
1.1. Finance c2 N~
1.2. Accounting cl5 i
1.3. Controlling cls P Q
1.4. Cash Flow c3 A\Qo
1.5. Decision-Making Process c2,c4)
1.6. Valuation c5, c8 s\\"
1.7. Inflation cl3 ¢, v
1.8. Depreciation cyl)o\
1.9. Taxation %‘817
1.10. Time-Value of Money A‘\%, cll
1.11. Efficiency Q{\\‘O cl
1.12. Effectiveness A$) cl
1.13. Productivity R 23
2| Life Cycle Economics xO
2.1. Product . (\,{‘ c22 c6
2.2. Project C)\ c22 cl
2.3. Program - \’ .
2.4. Portfolio (j\\\
2.5. Product Life Eytle 2 2
2.6. Projec@ﬁé\bycle c2 c2
2.7. ProQ@}s c3
2.8 @thment Decisions c4
‘IZmning Horizon cll
2.10. Price and Pricing cl3
2.11. Cost and Costing cl5
2.12. Performance Measurement c7,c8
2.13. Earned Value Management c8
2.14. Termination Decisions cll, cl2 c9
2.15. Replacement and Retirement Decisions cl2 c9

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Software Engineering Economics 12-17

-
S
S N 2
S k) S
o —- — o
g =) g
= g AR
& Q'\
3. Risk and Uncertainty (,\(b :
3.1. Goals, Estimates, and Plans . s\ o6
3.2. Estimation Techniques {): A c6
3.3. Addressing Uncertainty &‘ c6
3.4, Prioritization i) c6
3.5. Decisions under Risk c24 r\\ c9
3.6. Decisions under Uncertainty c25 WV c9
4. Economic Analysis Methods rs\\\
4.1. For-Profit Decision Analysis PR 10
4.2. Minimum Acceptable Rate of Return O\)CIO
4.3. Return on Investment n B0
4.4. Return on Capital Employed O
4.5. Cost-Benefit Analysis) \'\Qv cl8
4.6. Cost-Effectiveness Analysis 01@ cl8
. N\
4.7. Break-Even Analysis N cl9
4.8. Business Case » \,O c3
4.9. Multiple Attribute E\\@ﬁlﬁon c26
4.10. Optimization A():al}sis c20
5. Practical Considerations
5.1. The “(}o@ﬁnough” Principle c21
5.2. Friq@r-‘kree Economy
AN
5.£®y5tems
‘&kb‘ffshoring and Outsourcing
N
N

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

12-18 SWEBOK® Guide V3.0

FURTHER READINGS

A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) [4].

The PMBOK® Guide provides guidelines for

ISO/IEC TR 19759:2016(E)

REFERENCES

[1*] S. Tockey, Return on Software: Maximizing
the Return on Your Software Investment,
Addison-Wesley, 2004.

manasiaindividual-projects-and-definesprojeet
mgnagement related concepts. It also describes
th¢ project management life cycle and its related
prpcesses, as well as the project life cycle. It is
a globally recognized guide for the project man-

agpment profession.

Software Extension to the Guide to the Project
Management Body of Knowledge (SWX) [5].

SWX provides adaptations and extensions to the
geheric practices of project management docu-
m¢nted in the PMBOK® Guide for managing
software projects. The primary contribution of
this extension to the PMBOK® Guide is descrip-
tign of processes that are applicable for managing
adpptive life cycle software projects.

B.W. Boehm, Software Engineering Economics

[6].

THis book is the classic reading on software
engineering economics. It provides anceverview
of| business thinking in software_engineering.
Altthough the examples and figurés are dated, it
stifl is worth reading.

C.|Ebert and R. Dumke, Software Measurement
(7]

THis book proyides an overview on quantita-
tije methods')in software engineering, starting
with measurement theory and proceeding to
pefformance management and business decision
mgking.

=,

(257 T Allen et ol Sofivare Secwrity:

P H-Alenet-alSoftware-Secu ity
Engineering: A Guide for Project
Managers, Addison-Wesley, 2008.

[3*] R.E. Fairley, Managing and Leading
Software Projects, Wiley-IEEE Eomputer
Society Press, 20009.

[4] Project Management Institute, 4 Guide
to the Project Management Body of
Knowledge (PMBOK(R) Guide), 5th ed.,
Project Management Institute, 2013.

[5] Project Mammagement Institute and IEEE
Compiiter Society, Software Extension
tothe PMBOK® Guide Fifth Edition, ed:
Rroject Management Institute, 2013.

6] B.W. Boehm, Software Engineering
Economics, Prentice-Hall, 1981.

[7] C. Ebert and R. Dumke, Software
Measurement, Springer, 2007.

[8] D.J. Reifer, Making the Software Business
Case: Improvement by the Numbers,
Addison Wesley, 2002.

D.J. Reifer, Making the Software Business Case:
Improvement by the Numbers [8].

This book is a classic reading on making a busi-
ness case in the software and IT businesses. Many
useful examples illustrate how the business case
is formulated and quantified.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 13

COMPUTING FOUNDATIONS

© ISO/IEC 2016 — All rights reserved

ACRONYMS
AOP Aspect-Oriented Programming SCSI Small Computer SyStem Interface
ALU Arithmetic and Logic Unit SQL Structured QuerinLanguage
AP Application Programming TCP Transport Conttol Protocol
Interface UDP User Datagram Protocol
ATM Asynchronous Transfer Mode VPN Virtual Private Network
B/S Browser-Server WAN | Widé'Area Network
CERT Computer Emergency Response
Team
COTS | Commercial Off-The-Shelf INTRODUCTION
CRUD Create, Read, Update, Delete . .
- The scope of the Computing Foundations knowl-
C/s Client-Server edge area (KA) encompasses the developm¢nt
CS Computer Science and operational environment in which softwgre
DBMS | Database Management Systetfy evolves and executes. Because no software dan
FPU Float Point Unit exist in a vacuum or run without a computer, the
core of such an environment is the computer and
1/0 Input an.d Output - its various components. Knowledge about the
ISA Instruction Set Architecture computer and its underlying principles of hard-
1SO International.Qrganization for ware and software serves as a framework fon
Standardizatibn which software engineering is anchored. Thus, jall
ISP InternetService Provider software engineers must have good understard-
ing of the Computing Foundations KA.
LAN Local)Area Network It i .
: t is generally accepted that software enpi-
MUX Multiplexer neering builds on top of computer science. Hor
NIC Network Interface Card example, “Software Engineering 2004: Cpr-
0oP Object-Oriented Programming riculum Guidelines for Undergraduate Degtee
08 0 e S Programs in Software Engineering” [1] cleafly
perating System . states, “One particularly important aspect is tJlat
OSI Open Systems Interconnection software engineering builds on computer scierjce
PC Personal Computer and mathematics” (italics added).
PDA Personal Digital Assistant Steve Tockey wrote in his book Return on
PPP Point-to-Point Protocol Software:
RFID | Radio Frequency Identification Both computer science and software engi-
RAM Random Access Memory neering deal with computers, computing,
ROM Read Only Memory and software. The science of computing, as

a body of knowledge, is at the core of both.

13-1

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-2 SWEBOK® Guide V3.0

Computing
Foundations

[

ISO/IEC TR 19759:2016(E)

[

Problem Solving
Techniques

Programming
Language Basics

Algorithms and
Complexity

Operating
Systems Basics

Network
Communication
Basics

Basic Developer
Human Factors

Debugging Tools

Basic Concept

Parallel and

Secure Software,

Abstraction

and Techniques of a System

Distributed
Computing

Compiler Basics Developmentand

Maintenance

Data Structure
and
Representation

Programming
Fundamentals

Computer
Organization

Database Basics
and Data
Management

Basic User
Human Factors

... Software engineering is concerned with
the application of computers, computing,
and software to practical purposes, specifi-
cally the design, construction, and opera-
tion of efficient and economical software
systems.

Thus, at the core of software engineering is an
uniderstanding of computer science.

While few people will deny the role computer
sclence plays in the development of software
engineering both as a discipline and as a body of
knowledge, the importance of computes, science
to[software engineering cannot be overempha-
siged; thus, this Computing Fourdations KA is
bejng written.

The majority of topics discussed in the Com-
puting Foundations KA-ate also topics of discus-
sign in basic courses’ given in computer science
unidergraduate and .graduate programs. Such
coprses include \programming, data structure,
algorithms, (computer organization, operating
syptems,.‘compilers, databases, networking, dis-
triputedssystems, and so forth. Thus, when break-
ing down topics, it can be tempting to decompose

=

Figure 13.1. Breakdown of Topics for the Computing Foundations KA

KA. For example, coniputer graphics—while an
important course ia‘a/computer science degree
program—is not inetuded in this KA.

Second, somie“topics discussed in this guide-
line do not'exist as standalone courses in under-
graduate er'graduate computer science programs.
Consequently, such topics may not be adequately
covered in a purely course-based breakdown. For
example, abstraction is a topic incorporated into
several different computer science courses; it is
unclear which course abstraction should belong
to in a course-based breakdown of topics.

The Computing Foundations KA is divided into
seventeen different topics. A topic’s direct useful-
ness to software engineers is the criterion used for
selecting topics for inclusion in this KA (see Figure
13.1). The advantage of this topic-based breakdown
is its foundation on the belief that Computing Foun-
dations—if it is to be grasped firmly—must be con-
sidered as a collection of logically connected topics
undergirding software engineering in general and
software construction in particular.

The Computing Foundations KA is related
closely to the Software Design, Software Con-
struction, Software Testing, Software Main-

the Computing Foundations KA according to
these often-found divisions in relevant courses.
However, a purely course-based division of
topics suffers serious drawbacks. For one, not
all courses in computer science are related or
equally important to software engineering. Thus,
some topics that would otherwise be covered in a
computer science course are not covered in this

tenance, Software Quality, and Mathematical
Foundations KAs.

BREAKDOWN OF TOPICS FOR
COMPUTING FOUNDATIONS

The breakdown of topics for the Computing
Foundations KA is shown in Figure 13.1.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

1. Problem Solving Techniques
[2%, 53.2, c4] [3*, c5]

The concepts, notions, and terminology introduced
here form an underlying basis for understanding
the role and scope of problem solving techniques.

Computing Foundations 13-3

1.3. Analyze the Problem

Once the problem statement is available, the next
step is to analyze the problem statement or situ-
ation to help structure our search for a solution.
Four types of analysis include situation analysis,

m—vwhich-thetnost-urcent-orerittcal-aspects—of a
HI—HE HOSHFEeRt-o-cHtHcaaspects

1.1. Definition of Problem Solving

Problem solving refers to the thinking and activi-
ties conducted to answer or derive a solution to
a problem. There are many ways to approach a
problem, and each way employs different tools
and uses different processes. These different
ways of approaching problems gradually expand
and define themselves and finally give rise to dif-
ferent disciplines. For example, software engi-
neering focuses on solving problems using com-
puters and software.

While different problems warrant different
solutions and may require different tools and
processes, the methodology and techniques used
in solving problems do follow some guidelines
and can often be generalized as problem solving
techniques. For example, a general guidelingfor
solving a generic engineering problem is<te use
the three-step process given below [2*]!

* Formulate the real problem.
 Analyze the problem.
* Design a solution searchstrategy.

1.2. Formulating the Real Problem

Gerard Voland writes, “It is important to recog-
nize that a specific problem should be formulated
if one 49 t0 develop a specific solution” [2*].
This fomulation is called the problem statement,
which explicitly specifies what both the problem
and the desired outcome are.

Although there is no universal way of stat-

situation are identified first; problem analysisy|in
which the cause of the problem must be, detpr-
mined; decision analysis, in which _thelaction(s)
needed to correct the problem @j~eliminate [its
cause must be determined; and-potential problgm
analysis, in which the action(s) needed to prevgnt
any reoccurrences of the proeblem or the develgp-
ment of new problems must be determined.

1.4. Design a Solution Search Strategy

Once the preblem analysis is complete, we dan
focus omstructuring a search strategy to find the
solution. In order to find the “best” solution (heye,
“pest” could mean different things to differ¢nt
people, such as faster, cheaper, more usable, dif-
ferent capabilities, etc.), we need to eliminjte
paths that do not lead to viable solutions, design
tasks in a way that provides the most guidance{in
searching for a solution, and use various attribufes
of the final solution state to guide our choices|in
the problem solving process.

1.5. Problem Solving Using Programs

The uniqueness of computer software gives prgb-
lem solving a flavor that is distinct from genefal
engineering problem solving. To solve a probl¢m
using computers, we must answer the following
questions.

* How do we figure out what to tell the com-
puter to do?
* How do we convert the problem statem¢nt

ing a problem, in general a problem should be
expressed in such a way as to facilitate the devel-
opment of solutions. Some general techniques
to help one formulate the real problem include
statement-restatement, determining the source
and the cause, revising the statement, analyzing
present and desired state, and using the fresh eye
approach.

© ISO/IEC 2016 — All rights reserved

into an algorithm?
* How do we convert the algorithm into
machine instructions?

The first task in solving a problem using a com-
puter is to determine what to tell the computer to
do. There may be many ways to tell the story, but
all should take the perspective of a computer such

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-4 SWEBOK® Guide V3.0

that the computer can eventually solve the prob-
lem. In general, a problem should be expressed
in such a way as to facilitate the development of
algorithms and data structures for solving it.

The result of the first task is a problem state-
ment. The next step is to convert the problem state-

mentinte-algerithms-that-solve-the-problem—Onee

anf algorithm is found, the final step converts the

)Development of algorithms from the prob-
lem statement.

b) Application of algorithms to the problem.

) Transformation of algorithms to program

code.

he conversion of a problem statementinto
algorithms and algorithms into program codes
uspally follows a “stepwise refinement” (a.k.a.
syptematic decomposition) in which we start
with a problem statement, réwrite it as a task,
an(d recursively decompose ‘the task into a few
sippler subtasks until the-task is so simple that
solutions to it are straightforward. There are three
bapic ways of degomposing: sequential, condi-
tignal, and iterative.

=
Q

2. |Abstraction
[3%*, s5.2-5.4]

ISO/IEC TR 19759:2016(E)

“Through abstraction,” according to Voland,
“we view the problem and its possible solution
paths from a higher level of conceptual under-
standing. As a result, we may become better pre-
pared to recognize possible relationships between
different aspects of the problem and thereby gen-

eativae a0 tone b ha

is particularly true in computer science in genera
(such as hardware vs. software) and in softwaie
engineering in particular (data structure vs,-data
flow, and so forth).

2.1. Levels of Abstraction

When abstracting, we concentrate on one “level”
of the big picture at a time-with confidence that
we can then connect efféetively with levels above
and below. Although/we focus on one level,
abstraction does netmean knowing nothing about
the neighboringylevels. Abstraction levels do not
necessarily“«correspond to discrete components
in realjty*or in the problem domain, but to well-
defined standard interfaces such as programming
APIs:" The advantages that standard interfaces
provide include portability, easier software/hard-
ware integration and wider usage.

2.2. Encapsulation

Encapsulation is a mechanism used to imple-
ment abstraction. When we are dealing with one
level of abstraction, the information concerning
the levels below and above that level is encapsu-
lated. This information can be the concept, prob-
lem, or observable phenomenon; or it may be the
permissible operations on these relevant entities.
Encapsulation usually comes with some degree
of information hiding in which some or all of
the underlying details are hidden from the level
above the interface provided by the abstraction.
To an object, information hiding means we don’t

Abstraction is an indispensible technique associ-
ated with problem solving. It refers to both the
process and result of generalization by reducing
the information of a concept, a problem, or an
observable phenomenon so that one can focus
on the “big picture.” One of the most important
skills in any engineering undertaking is framing
the levels of abstraction appropriately.

need to know the details of how the object is rep-
resented or how the operations on those objects
are implemented.

2.3. Hierarchy

When we use abstraction in our problem formula-
tion and solution, we may use different abstractions

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

at different times—in other words, we work on dif-
ferent levels of abstraction as the situation calls.
Most of the time, these different levels of abstrac-
tion are organized in a hierarchy. There are many
ways to structure a particular hierarchy and the
criteria used in determining the specific content of

individuals performing the work.

Sometimes, a hierarchy of abstraction is sequen-
tial, which means that each layer has one and only
one predecessor (lower) layer and one and only
one successor (upper) layer—except the upmost
layer (which has no successor) and the bottommost
layer (which has no predecessor). Sometimes,
however, the hierarchy is organized in a tree-like
structure, which means each layer can have more
than one predecessor layer but only one successor
layer. Occasionally, a hierarchy can have a many-
to-many structure, in which each layer can have
multiple predecessors and successors. At no time,
shall there be any loop in a hierarchy.

A hierarchy often forms naturally in task decom-
position. Often, a task analysis can be decomposed
in a hierarchical fashion, starting with the larger
tasks and goals of the organization and breaking
each of them down into smaller subtasks that can
again be further subdivided This contimious divi-
sion of tasks into smaller ones would-produce a
hierarchical structure of tasks-subtasks.

2.4. Alternate Abstractions.

Sometimes it is useful to have multiple alternate
abstractions for the;same problem so that one can
keep differentperspectives in mind. For exam-
ple, we can\have a class diagram, a state chart,
and a seguence diagram for the same software
at th¢ same level of abstraction. These alternate
abstractions do not form a hierarchy but rather
coemplement each other in helping understanding
the problem and its solution. Though beneficial, it

Computing Foundations 13-5

perform a desired function. It is an indispensible
part in software construction. In general, pro-
gramming can be considered as the process of
designing, writing, testing, debugging, and main-
taining the source code. This source code is writ-
ten in a programming language.
he—process—o g —souree—code—ofien
requires expertise in many different sabjgct
areas—including knowledge of the application
domain, appropriate data structures,./specipl-
ized algorithms, various language~ construdts,
good programming techniques,, and software
engineering.

3.1. The Programming Process

Programming invelves design, writing, testing,
debugging, and_maintenance. Design is the cqn-
ception or\pvention of a scheme for turning a
customeryrequirement for computer software ito
operational software. It is the activity that lifks
application requirements to coding and debyg-
ging. Writing is the actual coding of the design
in an appropriate programming language. 7esting
is the activity to verify that the code one wrifes
actually does what it is supposed to do. Debyg-
ging is the activity to find and fix bugs (faults)in
the source code (or design). Maintenance is the
activity to update, correct, and enhance existing
programs. Each of these activities is a huge topic
and often warrants the explanation of an entjre
KA in the SWEBOK Guide and many books.

3.2. Programming Paradigms

Programming is highly creative and thus sonpe-
what personal. Different people often write dif-
ferent programs for the same requirements. This
diversity of programming causes much difficufty
in the construction and maintenance of laige
complex software. Various programming pafa-

is as times difficult to keep alternate abstractions
in sync.

3. Programming Fundamentals
[3*, c6-19]

Programming is composed of the methodologies
or activities for creating computer programs that

© ISO/IEC 2016 — All rights reserved

digms have been developed over the years to put
some standardization into this highly creative and
personal activity. When one programs, he or she
can use one of several programming paradigms to
write the code. The major types of programming
paradigms are discussed below.

Unstructured Programming: In unstructured
programming, a programmer follows his/her

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-6 SWEBOK® Guide V3.0

hunch to write the code in whatever way he/she
likes as long as the function is operational. Often,
the practice is to write code to fulfill a specific
utility without regard to anything else. Programs
written this way exhibit no particular structure—
thus the name “unstructured programming.”

called ad hoc programming.
Structured/Procedural/ Imperative Program-
g: A hallmark of structured programming is
th¢ use of well-defined control structures, includ-
ing procedures (and/or functions) with each pro-
ceflure (or function) performing a specific task.
Inferfaces exist between procedures to facilitate
cofrect and smooth calling operations of the pro-
grims. Under structured programming, program-
m¢rs often follow established protocols and rules
of[thumb when writing code. These protocols
anfd rules can be numerous and cover almost the
ire scope of programming—ranging from the
sifpplest issue (such as how to name variables,
functions, procedures, and so forth) to more com-
plgx issues (such as how to structure an interface,
how to handle exceptions, and so forth).
Dbject-Oriented Programming: While proce-
dufral programming organizes programs around
procedures, object-oriented programming (OOP)
organize a program around objects, whicli“are
abptract data structures that combine both data
anfd methods used to access or manipulate the
dafa. The primary features of OOR @ve that objects
representing various abstract afidConcrete entities
ar¢ created and these objects. interact with each
other to collectively fulfilt:the desired functions.
Uspect-Oriented (Programming: Aspect-ori-
enfed programming.(AOP) is a programming
paradigm that/s built on top of OOP. AOP aims
to fisolate seCondary or supporting functions from
th¢ main<program’s business logic by focusing
on| the,‘eross sections (concerns) of the objects.
THe “primary motivation for AOP is to resolve

ISO/IEC TR 19759:2016(E)

problems. In functional programming, all com-
putations are treated as the evaluation of math-
ematical functions. In contrast to the imperative
programming that emphasizes changes in state,
functional programming emphasizes the applica-
tion of functions, avoids state and mutable data,

4. Programming Language Basics
(4%, ¢6]

Using computers to solve problems \involves
programming—which is writing ‘and organiz-
ing instructions telling the coniputer what to do
at each step. Programs must be written in some
programming language with-which and through
which we describe necessary computations. In
other words, we use\the facilities provided by a
programming language to describe problems,
develop algorithms, and reason about problem
solutions, T write any program, one must under-
stand at-east one programming language.

4sI\ Programming Language Overview

A programming language is designed to express
computations that can be performed by a com-
puter. In a practical sense, a programming lan-
guage is a notation for writing programs and thus
should be able to express most data structures and
algorithms. Some, but not all, people restrict the
term “programming language” to those languages
that can express all possible algorithms.

Not all languages have the same importance
and popularity. The most popular ones are often
defined by a specification document established
by a well-known and respected organization. For
example, the C programming language is speci-
fied by an ISO standard named ISO/IEC 9899.
Other languages, such as Perl and Python, do not
enjoy such treatment and often have a dominant

the object tangling and scattering associated with
OOP, in which the interactions among objects
become very complex. The essence of AOP is
the greatly emphasized separation of concerns,
which separates noncore functional concerns or
logic into various aspects.

Functional Programming: Though less popu-
lar, functional programming is as viable as
the other paradigms in solving programming

implementation that is used as a reference.

4.2. Syntax and Semantics of Programming
Languages

Just like natural languages, many programming
languages have some form of written specifica-
tion of their syntax (form) and semantics (mean-
ing). Such specifications include, for example,

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

specific requirements for the definition of vari-
ables and constants (in other words, declara-
tion and types) and format requirements for the
instructions themselves.

In general, a programming language supports
such constructs as variables, data types, con-
statements, procedures, functions, and comments.
The syntax and semantics of each construct must
be clearly specified.

4.3. Low-Level Programming Languages

Programming language can be classified into two
classes: low-level languages and high-level lan-
guages. Low-level languages can be understood
by a computer with no or minimal assistance and
typically include machine languages and assem-
bly languages. A machine language uses ones
and zeros to represent instructions and variables,
and is directly understandable by a computer. An
assembly language contains the same instructions
as a machine language but the instructions and
variables have symbolic names that are easier for
humans to remember.

Assembly languages cannot be directly<under-
stood by a computer and must be translated into a
machine language by a utility program’ called an
assembler. There often exists a~eorrespondence
between the instructions of an,assembly language
and a machine language, and the translation from
assembly code to machine code is straightfor-
ward. For example, “add rl, 12, r3” is an assem-
bly instruction fertadding the content of register
r2 and r3 and storing the sum into register r1. This
instruction tean be easily translated into machine
code “00010001 0010 0011.” (Assume the oper-
ation(code for addition is 0001, see Figure 13.2).

add rl, 12, 3
0001 0001 0010 0011

Computing Foundations 13-7

4.4. High-Level Programming Languages

A high-level programming language has a strong
abstraction from the details of the computer’s
ISA. In comparison to low-level programming
languages, it often uses natural-language ele-

understand. Such languages allow symbolic‘mam-
ing of variables, provide expressiverness, and
enable abstraction of the underlying bardwaje.
For example, while each microprocessor has [its
own ISA, code written in a highslevel program-
ming language is usually portable between many
different hardware platfoums. For these reasops,
most programmers use ‘and most software gre
written in high-leyel/programming languagps.
Examples of high-l€vel programming languages
include C, C++,/C#, and Java.

4.5. Declgrative vs. Imperative Programming
Languages

Most programming languages (high-level or low-
level) allow programmers to specify the infi-
vidual instructions that a computer is to exectite.
Such programming languages are called impefa-
tive programming languages because one has|to
specify every step clearly to the computer. But
some programming languages allow program-
mers to only describe the function to be pgr-
formed without specifying the exact instruction
sequences to be executed. Such programming
languages are called declarative programming
languages. Declarative languages are high-leyel
languages. The actual implementation of the
computation written in such a language is hidden
from the programmers and thus is not a conc¢rn
for them.

The key point to note is that declarative pfo-
gramming only describes what the progrgm
should accomplish without describing how [to

Figure 13.2. Assembly-to-Binary Translations

One common trait shared by these two types
of language is their close association with the
specifics of a type of computer or instruction set
architecture (ISA).

© ISO/IEC 2016 — All rights reserved

accomplish it. For this reason, many people
believe declarative programming facilitates
easier software development. Declarative pro-
gramming languages include Lisp (also a func-
tional programming language) and Prolog, while
imperative programming languages include C,
C++, and JAVA.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-8 SWEBOK® Guide V3.0

5. Debugging Tools and Techniques
[3%*, c23]

Once a program is coded and compiled (compila-
tion will be discussed in section 10), the next step
is debuggmg, Wthh is a methodical process of

in program The purpose of debuggrng isto ﬁnd
out why a program doesn’t work or produces a
wiong result or output. Except for very simple
programs, debugging is always necessary.

5.1. Types of Errors

When a program does not work, it is often because
th¢ program contains bugs or errors that can be
either syntactic errors, logical errors, or data errors.
Ldgical errors and data errors are also known as
twp categories of “faults” in software engineering
tefminology (see topic 1.1, Testing-Related Ter-
minology, in the Software Testing KA).

Syntax errors are simply any error that pre-
vepts the translator (compiler/interpreter) from
sufcessfully parsing the statement. Every state-
m¢nt in a program must be parse-able before its
m¢aning can be understood and interpreted (and;
th¢refore, executed). In high-level programming
1aI§uages, syntax errors are caught during-the

cofnpilation or translation from the high-level
lajguage into machine code. For example, in the
C/C++ programming language,. (the statement
“1R3=constant;” contains a syntax error that will
be|caught by the compiler,during compilation.

. ogic errors are semantic errors that result in
in¢orrect computations-or program behaviors.
Yqur program is legal, but wrong! So the results
do[not match the problem statement or user expec-
tafions. For@xample, in the C/C++ programming
lapguagesithe inline function “int f(int x) {return
f(§-1);)2Aor computing factorial x! is legal but
logically incorrect. This type of error cannot be

ISO/IEC TR 19759:2016(E)

5.2. Debugging Techniques

Debugging involves many activities and can be
static, dynamic, or postmortem. Static debug-
ging usually takes the form of code review, while
dynamzc debuggmg usually takes the forrn of

Postmortem debuggmg is the act of debuggmg
the core dump (memory dump) of a process. Caie
dumps are often generated after a process has ter-
minated due to an unhandled exception, Adl-three
techniques are used at various stages-of\program
development.

The main activity of dynamic~debugging is
tracing, which is executing the program one piece
at a time, examining the gonténts of registers and
memory, in order to examine the results at each
step. There are three'ways to trace a program.

* Single-stepping: execute one instruction at
a timeto make sure each instruction is exe-
cuted\correctly. This method is tedious but
useful in verifying each step of a program.

s\ Breakpoints: tell the program to stop execut-
ing when it reaches a specific instruction.
This technique lets one quickly execute
selected code sequences to get a high-level
overview of the execution behavior.

* Watch points: tell the program to stop when a
register or memory location changes or when
it equals to a specific value. This technique
is useful when one doesn’t know where or
when a value is changed and when this value
change likely causes the error.

5.3. Debugging Tools

Debugging can be complex, difficult, and tedious.
Like programming, debugging is also highly cre-
ative (sometimes more creative than program-
ming). Thus some help from tools is in order. For

caught by a compiler during compilation and is
often discovered through tracing the execution of
the program (Modern static checkers do identify
some of these errors. However, the point remains
that these are not machine checkable in general).
Data errors are input errors that result either in
input data that is different from what the program
expects or in the processing of wrong data.

dynamic debugging, debuggers are widely used
and enable the programmer to monitor the execu-
tion of a program, stop the execution, restart the
execution, set breakpoints, change values in mem-
ory, and even, in some cases, go back in time.

For static debugging, there are many static
code analysis tools, which look for a specific
set of known problems within the source code.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Both commercial and free tools exist in various
languages. These tools can be extremely useful
when checking very large source trees, where it is
impractical to do code walkthroughs. The UNIX
lint program is an early example.

[5%, s2.1-2.6]

Programs work on data. But data must be
expressed and organized within computers before
being processed by programs. This organization
and expression of data for programs’ use is the
subject of data structure and representation. Sim-
ply put, a data structure tries to store and organize
data in a computer in such a way that the data can
be used efficiently. There are many types of data
structures and each type of structure is suitable
for some kinds of applications. For example, B/
B+ trees are well suited for implementing mas-
sive file systems and databases.

6.1. Data Structure Overview

Data structures are computer representations’,of
data. Data structures are used in almost evety:. pro-
gram. In a sense, no meaningful program can be
constructed without the use of some\sort of data
structure. Some design methodsyand program-
ming languages even organize an entire software
system around data structupes. Fundamentally,
data structures are absttactions defined on a col-
lection of data and its ‘associated operations.
Often, data structures are designed for improv-
ing program or algorithm efficiency. Examples of
such data structures include stacks, queues, and
heaps. Ab other times, data structures are used for
concéptual unity (abstract data type), such as the
namerand address of a person. Often, a data struc-
fure can determine whether a program runs in a
few seconds or in a few hours or even a few days.

Computing Foundations 13-9

6.2. Types of Data Structure

As mentioned above, different perspectives can
be used to classify data structures. However, the
predominant perspective used in classification
centers on physical and logical ordering between

tures into linear and nonlinear structures. ISinh¢ar

top of other (more primitive) data structures and,
in some way, can be viewed as the same structyre
as the underlying structure. Examples of com-
pound structures include sets, graphs, and pafti-
tions. For example, a partition can be viewed|as
a set of sets.

6.3. Operations on Data Structures

All data structures support some operations that
produce a specific structure and ordering, |or
retrieve relevant data from the structure, store djta
into the structure, or delete data from the structulre.
Basic operations supported by all data structufes
include create, read, update, and delete (CRUD).

e Create: Insert a new data entry into the

From the perspective of physical and logi-
cal ordering, a data structure is either linear or
nonlinear. Other perspectives give rise to dif-
ferent classifications that include homogeneous
vs. heterogeneous, static vs. dynamic, persistent
vs. transient, external vs. internal, primitive vs.
aggregate, recursive vs. nonrecursive; passive vs.
active; and stateful vs. stateless structures.

© ISO/IEC 2016 — All rights reserved

structure.
* Read: Retrieve a data entry from the structure.
« Update: Modify an existing data entry.
e Delete: Remove a data entry from the
structure.

Some data structures also support additional
operations:

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-10 SWEBOK® Guide V3.0

* Find a particular element in the structure.

* Sort all elements according to some ordering.
 Traverse all elements in some specific order.
» Reorganize or rebalance the structure.

Different structures support different opera-
tiops—waith—different—efficiencies—Ihe—difference
befween operation efficiency can be significant.
Fdr example, it is easy to retrieve the last item
ingerted into a stack, but finding a particular ele-
m¢nt within a stack is rather slow and tedious.

7.|Algorithms and Complexity
[5%, s1.1-1.3, s3.3-3.6, s4.1-4.8, s5.1-5.7,
§6.1-6.3, s7.1-7.6, s11.1, s12.1]

Prpgrams are not random pieces of code: they are
m¢ticulously written to perform user-expected
aclions. The guide one uses to compose programs
ar¢ algorithms, which organize various functions
info a series of steps and take into consideration
th¢ application domain, the solution strategy, and
th¢ data structures being used. An algorithm can
be|very simple or very complex.

7.1. Overview of Algorithms

Alpstractly speaking, algorithms guide the opera-
tigns of computers and consist of a seguence of
acfions composed to solve a problem. Alternative
definitions include but are not limited to:

=

b An algorithm is any well-defined computa-
tional procedure thatitakes some value or set
of values as inputrand produces some value
or set of values as output.

b An algorithmiis a sequence of computational
steps that'transform the input into the output.

b An_algorithm is a tool for solving a well-
speeified computation problem.

ISO/IEC TR 19759:2016(E)

7.2. Attributes of Algorithms

The attributes of algorithms are many and often
include modularity, correctness, maintainabil-
ity, functionality, robustness, user-friendliness
(i.e. easy to be understood by people), program-

monly emphasized attribute is “performance’;
or “efficiency” by which we mean both tirfig
and resource-usage efficiency while generally
emphasizing the time axis. To some degfedy effi-
ciency determines if an algorithm is~féasible or
impractical. For example, an algorithn that takes
one hundred years to terminateiis-virtually use-
less and is even considered incorrect.

7.3. Algorithmic Analysis

Analysis of algorithms is the theoretical study
of computer-program performance and resource
usage; to sorme extent it determines the goodness
of an algerithm. Such analysis usually abstracts
awaysthe particular details of a specific computer
and.focuses on the asymptotic, machine-indepen-
dent analysis.

There are three basic types of analysis. In
worst-case analysis, one determines the maxi-
mum time or resources required by the algorithm
on any input of size n. In average-case analysis,
one determines the expected time or resources
required by the algorithm over all inputs of size
n; in performing average-case analysis, one often
needs to make assumptions on the statistical dis-
tribution of inputs. The third type of analysis is
the best-case analysis, in which one determines
the minimum time or resources required by the
algorithm on any input of size n. Among the
three types of analysis, average-case analysis is
the most relevant but also the most difficult to
perform.

Besides the basic analysis methods, there are

Of course, different definitions are favored
by different people. Though there is no univer-
sally accepted definition, some agreement exists
that an algorithm needs to be correct, finite (in
other words, terminate eventually or one must be
able to write it in a finite number of steps), and
unambiguous.

also the amortized analysis, in which one deter-
mines the maximum time required by an algo-
rithm over a sequence of operations; and the
competitive analysis, in which one determines
the relative performance merit of an algorithm
against the optimal algorithm (which may not
be known) in the same category (for the same
operations).

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

7.4. Algorithmic Design Strategies

The design of algorithms generally follows one
of the following strategies: brute force, divide
and conquer, dynamic programming, and greedy
selection. The brute force strategy is actually a

way to tackle a problem. If a problem has a solu-
tion, this strategy is guaranteed to find it; however,
the time expense may be too high. The divide and
conquer strategy improves on the brute force
strategy by dividing a big problem into smaller,
homogeneous problems. It solves the big prob-
lem by recursively solving the smaller problems
and combing the solutions to the smaller prob-
lems to form the solution to the big problem. The
underlying assumption for divide and conquer is
that smaller problems are easier to solve.

The dynamic programming strategy improves
on the divide and conquer strategy by recogniz-
ing that some of the sub-problems produced by
division may be the same and thus avoids solving
the same problems again and again. This elimina-
tion of redundant subproblems can dramatically:
improve efficiency.

The greedy selection strategy further improves
on dynamic programming by recognizing that
not all of the sub-problems contributeto the solu-
tion of the big problem. By eliminating all but
one sub-problem, the greedy selection strategy
achieves the highest efficiéncy among all algo-
rithm design strategies. Sometimes the use of
randomization can improve on the greedy selec-
tion strategy by-eliminating the complexity in
determining the}greedy choice through coin flip-
ping or randoutization.

7.5. Algorithmic Analysis Strategies

The analysis strategies of algorithms include
basic counting analysis, in which one actually

Computing Foundations 13-11

aggregation, potential, and accounting to ana-
lyze the worst performance of an algorithm on a
sequence of operations; and competitive analysis,
in which one uses methods such as potential and
accounting to analyze the relative performance of
an algorithm to the optimal algorithm.
Eor—complex—problems—and—aloorithms—qne
may need to use a combination of the aforémgn-
tioned analysis strategies.

8. Basic Concept of a System
[6%, c{0]

Ian Sommerville writes,“a’system is a purposeful
collection of interrelated> components that wark
together to achieve some objective” [6*]. A sys-
tem can be verysimple and include only a fegw
componentss-liké an ink pen, or rather complgx,
like an aireraft. Depending on whether humgns
are partof the system, systems can be divided
into%echnical computer-based systems and socjo-
technical systems. A technical computer-baded
system functions without human involvement,
such as televisions, mobile phones, thermostat,
and some software; a sociotechnical syst¢gm
will not function without human involvemept.
Examples of such system include manned spdce
vehicles, chips embedded inside a human, and|so
forth.

8.1. Emergent System Properties

A system is more than simply the sum of its paits.
Thus, the properties of a system are not simply the
sum of the properties of its components. Instead,
a system often exhibits properties that are propfr-
ties of the system as a whole. These properties are
called emergent properties because they develop
only after the integration of constituent parts|in
the system. Emergent system properties can |be
either functional or nonfunctional. Functiopal

counts the number of steps an algorithm takes to
complete its task; asymptotic analysis, in which
one only considers the order of magnitude of
the number of steps an algorithm takes to com-
plete its task; probabilistic analysis, in which
one makes use of probabilities in analyzing the
average performance of an algorithm; amor-
tized analysis, in which one uses the methods of

© ISO/IEC 2016 — All rights reserved

properties describe the things that a system does.
For example, an aircraft’s functional properties
include flotation on air, carrying people or cargo,
and use as a weapon of mass destruction. Non-
functional properties describe how the system
behaves in its operational environment. These
can include such qualities as consistency, capac-
ity, weight, security, etc.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-12 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

> MEMORY
7Y 7y
A
INPUT 3 OUTPUT
CENTRAL PROCESSING IINIT

Examples: Examples:
Keyboard Arlthmetlc gnd Float Point Unit Prlnj[er

Mouse Logic Unit Monitor

Scanner Disk

x Z
CONTROL UNIT

8.2. Systems Engineering

“Systems engineering is the interdisciplinary
approach governing the total technical and mana-
gefial effort required to transform a set of cus-
er needs, expectations, and constraints into

its life.” [7]. The life cycle stages of systeins
ineering vary depending on the system being
bulilt but, in general, include system requirements
definition, system design, sub-system~develop-
mént, system integration, systepitesting, sys-
tef installation, system evolution, and system
defommissioning.

any practical guidelinies have been produced
in [the past to aid people-in performing the activi-
tigs of each phase. For example, system design
cah be broken/into smaller tasks of identification
subsystems,” assignment of system require-
m¢nts tosubsystems, specification of subsystem
fupctionality, definition of sub-system interfaces,
soforth.

Figure 13.3. Basic Components of a Computer System Based on the yon\Neumann Model

and electronic cgmponents with each component
performing\d preset function. Jointly, these com-
ponents~are' able to execute the instructions that
are given by the program.

Abstractly speaking, a computer receives some
input, stores and manipulates some data, and
provides some output. The most distinct feature
of a computer is its ability to store and execute
sequences of instructions called programs. An
interesting phenomenon concerning the computer
is the universal equivalence in functionality.
According to Turing, all computers with a certain
minimum capability are equivalent in their abil-
ity to perform computation tasks. In other words,
given enough time and memory, all computers—
ranging from a netbook to a supercomputer—are
capable of computing exactly the same things,
irrespective of speed, size, cost, or anything else.

Most computer systems have a structure that
is known as the “von Neumann model,” which
consists of five components: a memory for storing
instructions and data, a central processing unit

8.3. Overview of a Computer System

Among all the systems, one that is obviously rel-
evant to the software engineering community is
the computer system. A computer is a machine
that executes programs or software. It consists of
a purposeful collection of mechanical, electrical,

for performing arithmetic and logical operations,
a control unit for sequencing and interpreting
instructions, input for getting external informa-
tion into the memory, and output for producing
results for the user. The basic components of a
computer system based on the von Neumann
model are depicted in Figure 13.3.

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

9. Computer Organization
[8*, cl—c4]

From the perspective of a computer, a wide
semantic gap exists between its intended behav-
ior and the workings of the underlying electronic

desacecthat actually do tho wuorl sathin tho oo
eeveesthat-acttitry-ao-the-Work— Wit \

Computing Foundations 13-13

the ISA, which specifies such things as the native
data types, instructions, registers, addressing
modes, the memory architecture, interrupt and
exception handling, and the I/Os. Overall, the
ISA specifies the ability of a computer and what
can be done on the computer with programming.

puter. This gap is bridged through computer orga-
nization, which meshes various electrical, elec-
tronic, and mechanical devices into one device
that forms a computer. The objects that computer
organization deals with are the devices, connec-
tions, and controls. The abstraction built in com-
puter organization is the computer.

9.1. Computer Organization Overview

A computer generally consists of a CPU, mem-
ory, input devices, and output devices. Abstractly
speaking, the organization of a computer can be
divided into four levels (Figure 13.4). The macro
architecture level is the formal specification of all
the functions a particular machine can carry out
and is known as the instruction set architectuge
(ISA). The micro architecture level is the imple-
mentation of the ISA in a specific CPU—in other
words, the way in which the ISA’s specifications
are actually carried out. The logic ¢ircuits level
is the level where each functienal component
of the micro architecture is_built up of circuits
that make decisions based (on simple rules. The
devices level is the level where, finally, each logic
circuit is actually built of electronic devices such
as complementary,metal-oxide semiconductors
(CMOS), n-channel metal oxide semiconductors
(NMOS), or gallium arsenide (GaAs) transistors,
and so forth:

Macro Architecture Level (ISA)
Micro Architecture Level

9.2. Digital Systems

At the lowest level, computations are-carried ¢ut
by the electrical and electronic dévices within a
computer. The computer uses eircuits and mem-
ory to hold charges that represénts the preserjce
or absence of voltage. Fhe-presence of voltqge
is equal to a 1 while thevabsence of voltage i$ a
zero. On disk the polarity of the voltage is repfe-
sented by Os and\I's'that in turn represents the daita
stored. Everything—including instruction and
data—is expressed or encoded using digital zegos
and onesy*In this sense, a computer become§ a
digitat system. For example, decimal value 6 dan
bevencoded as 110, the addition instruction njay
be encoded as 0001, and so forth. The compongnt
of the computer such as the control unit, ALJU,
memory and I/O use the information to compyite
the instructions.

9.3. Digital Logic

Obviously, logics are needed to manipulate djta
and to control the operation of computers. This
logic, which is behind a computer’s proper fuc-
tion, is called digital logic because it deals wjth
the operations of digital zeros and ones. Digital
logic specifies the rules both for building variqus
digital devices from the simplest elements (sych
as transistors) and for governing the operation|of
digital devices. For example, digital logic spdlls
out what the value will be if a zero and onef is
ANDed, ORed, or exclusively ORed together| It
also specifies how to build decoders, multipl¢x-

togicCircuits tevet

Devices Level

Figure 13.4. Machine Architecture Levels

Each level provides an abstraction to the level
above and is dependent on the level below. To a
programmer, the most important abstraction is

© ISO/IEC 2016 — All rights reserved

ers (MUX), memory, and adders that are used to
assemble the computer.

9.4. Computer Expression of Data
As mentioned before, a computer expresses data

with electrical signals or digital zeros and ones.
Since there are only two different digits used in

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-14 SWEBOK® Guide V3.0

data expression, such a system is called a binary
expression system. Due to the inherent nature of
a binary system, the maximum numerical value
expressible by an n-bits binary code is 2" — 1.

ISO/IEC TR 19759:2016(E)

* Memory cells and chips

* Memory boards and modules

* Memory hierarchy and cache

* Memory as a subsystem of the computer.

Specifically, binary number aa _...aa, corre-

sponds to @ X 2" +a_ X 2"'+ ... +a x2'+ Memory cells and chips deal with single-digital

a 2% Thus—the numericalvalueof the binary— storace—and—the—assembline of sinale diait units
. —Fhus—the-numerical-value-of-the-binary—storage—and—the-assemblin s—of-single-digit—units

expression of 1011 is I x 8 +0x4+1x2+1
x [l = 11. To express a nonnumerical value, we
nepd to decide the number of zeros and ones to
usp and the order in which those zeros and ones
ar¢ arranged.

Df course, there are different ways to do the
enfoding, and this gives rise to different data
expression schemes and subschemes. For example,
infegers can be expressed in the form of unsigned,
onke’s complement, or two’s complement. For
chhracters, there are ASCII, Unicode, and IBM’s
EBCDIC standards. For floating point numbers,
th¢re are IEEE-754 FP 1, 2, and 3 standards.

9.3. The Central Processing Unit (CPU)

THe central processing unit is the place where
in§tructions (or programs) are actually executed.
THe execution usually takes several steps, includ*
ing fetching the program instruction, decoding
th¢ instruction, fetching operands, perforiing
arfthmetic and logical operations on the oper-
ands, and storing the result. The qmain compo-
nepts of a CPU consist of registers(where instruc-
tigns and data are often read ftom'and written to,
th¢ arithmetic and logic unit (ALU) that performs
th¢ actual arithmetic (sueh as addition, subtrac-
tign, multiplication, and-division) and logic (such
as|AND, OR, shift, and so forth) operations, the
coptrol unit thatvis responsible for producing
prpper signdls)to control the operations, and vari-
ous (datayaddress, and control) buses that link the
components together and transport data to and
frgmitHese components.

into one-dimensional memory arrays as well
as the assembling of one-dimensional storage
arrays into multi-dimensional storage memaory
chips. Memory boards and modules concetn the
assembling of memory chips into memory sys-
tems, with the focus being on the’organization,
operation, and management ,of/the individual
chips in the system. Memory.hierarchy and cache
are used to support efficient-memory operations.
Memory as a sub-systenndeals with the interface
between the memery_system and other parts of
the computer.

9.7. Input gud Output (1/0)

A computer is useless without I/O. Common
input-devices include the keyboard and mouse;
common output devices include the disk, the
screen, the printer, and speakers. Different 1/O
devices operate at different data rates and reli-
abilities. How computers connect and manage
various input and output devices to facilitate the
interaction between computers and humans (or
other computers) is the focus of topics in I/O.
The main issues that must be resolved in input
and output are the ways I/O can and should be
performed.

In general, I/O is performed at both hard-
ware and software levels. Hardware 1/O can be
performed in any of three ways. Dedicated 1/0
dedicates the CPU to the actual input and output
operations during I/0; memory-mapped 1/0O treats
/O operations as memory operations; and Aybrid
1/0 combines dedicated I/O and memory-mapped

9.6. Memory System Organization

Memory is the storage unit of a computer. It con-
cerns the assembling of a large-scale memory
system from smaller and single-digit storage
units. The main topics covered by memory sys-
tem architecture include the following:

/O into a single holistic I/O operation mode.
Coincidentally, software I/O can also be per-
formed in one of three ways. Programmed 1/O
lets the CPU wait while the I/O device is doing
1/O; interrupt-driven I/0 lets the CPU’s handling
of I/O be driven by the I/O device; and direct
memory access (DMA) lets 1/O be handled by a
secondary CPU embedded in a DMA device (or

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

channel). (Except during the initial setup, the
main CPU is not disturbed during a DMA 1/O
operation.)

Regardless of the types of I/O scheme being
used, the main issues involved in I/O include /O
addressing (which deals with the issue of how to

of how to make the CPU and I/O device work
in harmony during I/O), and error detection and
correction (which deals with the occurrence of
transmission errors).

10. Compiler Basics
[4%*, 56.4] [8%, s8.4]

10.1. Compiler/Interpreter Overview

Programmers usually write programs in high
level language code, which the CPU cannot exe-
cute; so this source code has to be converted into
machine code to be understood by a computer.
Due to the differences between different ISAs,
the translation must be done for each ISA or spe~
cific machine language under consideration.

The translation is usually performed by*a piece
of software called a compiler or an irterpreter.
This process of translation from a high-level lan-
guage to a machine language is-ealled compila-
tion, or, sometimes, interpretation.

10.2. Interpretation and Gompilation

There are two ways*to translate a program writ-
ten in a higher=level language into machine code:
interpretation ."and compilation. [Interpretation
translates the source code one statement at a time
into_machine language, executes it on the spot,
and-then goes back for another statement. Both
the'high-level-language source code and the inter-
preter are required every time the program is run.

Computing Foundations 13-15

there are some important differences between the
two methods. First, a compiler makes the conver-
sion just once, while an interpreter typically con-
verts it every time a program is executed. Second,
interpreting code is slower than running the com-
piled code, because the interpreter must analyze
eaeh ementinthe-prosram-whenitis-exeecuted

and then perform the desired action, whereasythe

a fixed context determined by the compilatig
Third, access to variables is alsg-slower in jan
interpreter because the mapping ‘of identifiers|to
storage locations must be done repeatedly at ryn-
time rather than at compile*time.

The primary tasks.of a compiler may inclyde
preprocessing, lexical-analysis, parsing, semanftic
analysis, code_genération, and code optimita-
tion. Program‘faults caused by incorrect compifer
behavior,can-be very difficult to track down. Hor
this reasort, compiler implementers invest a lot{of
timeensuring the correctness of their software

10.3. The Compilation Process

Compilation is a complex task. Most compilgrs
divide the compilation process into many phasps.
A typical breakdown is as follows:

 Lexical Analysis

+ Syntax Analysis or Parsing
+ Semantic Analysis

* Code Generation

Lexical analysis partitions the input text (the
source code), which is a sequence of charactgrs,
into separate comments, which are to be ignofed
in subsequent actions, and basic symbols, which
have lexical meanings. These basic symbpls
must correspond to some terminal symbols [of
the grammar of the particular programming lgn-
ouage. Here terminal symbols refer to the efe-

Compilation translates the high-level-language
source code into an entire machine-language pro-
gram (an executable image) by a program called a
compiler. After compilation, only the executable
image is needed to run the program. Most appli-
cation software is sold in this form.

While both compilation and interpretation con-
vert high level language code into machine code,

© ISO/IEC 2016 — All rights reserved

mentary symbols (or tokens) in the grammar that
cannot be changed.

Syntax analysis is based on the results of the
lexical analysis and discovers the structure in the
program and determines whether or not a text
conforms to an expected format. Is this a textu-
ally correct C++ program? or Is this entry tex-
tually correct? are typical questions that can be

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-16 SWEBOK® Guide V3.0

answered by syntax analysis. Syntax analysis
determines if the source code of a program is cor-
rect and converts it into a more structured rep-
resentation (parse tree) for semantic analysis or
transformation.

Semantic analysis adds semantic information
to pheparsetree butdurina the-syviatasanabyss
and builds the symbol table. It performs vari-
ous semantic checks that include type checking,
object binding (associating variable and function
references with their definitions), and definite
aspignment (requiring all local variables to be
inftialized before use). If mistakes are found, the
semantically incorrect program statements are
rejected and flagged as errors.

Dnce semantic analysis is complete, the phase
of| code generation begins and transforms the
infermediate code produced in the previous
phiases into the native machine language of the
computer under consideration. This involves
regource and storage decisions—such as deciding
wlhich variables to fit into registers and memory
and the selection and scheduling of appropriate
mgchine instructions, along with their associated
addressing modes.

[t is often possible to combine multiple phases
info one pass over the code in a compiler imple-
m¢ntation. Some compilers also have a prépro-
cepsing phase at the beginning or after the lexical
anplysis that does necessary housekeeping work,
suph as processing the program-instructions for
th¢ compiler (directives). Sofne ‘compilers pro-
vidle an optional optimization.phase at the end of
th¢ entire compilation te optimize the code (such
as| the rearrangementof instruction sequence)
for efficiency and .other desirable objectives
requested by the users.

[¢]

11} Operating Systems Basics
[4%, 3]

ISO/IEC TR 19759:2016(E)

11.1. Operating Systems Overview

Operating systems is a collection of software and
firmware, that controls the execution of computer
programs and provides such services as computer
resource allocation, job control, input/output con-
Conceptually, an operating system is a computer;
program that manages the hardware resources
and makes it easier to use by applications by pre-
senting nice abstractions. This nice ab§traction
is often called the virtual machine and\includes
such things as processes, virtual memory, and
file systems. An OS hides the domplexity of the
underlying hardware and isfound on all modern
computers.

The principal roles played by OSs are manage-
ment and illusion. Management refers to the OS’s
management (allocation and recovery) of physi-
cal resources amtong multiple competing users/
applications/tasks. [llusion refers to the nice
abstractions the OS provides.

112> Tasks of an Operating System

The tasks of an operating system differ signifi-
cantly depending on the machine and time of its
invention. However, modern operating systems
have come to agreement as to the tasks that must
be performed by an OS. These tasks include CPU
management, memory management, disk man-
agement (file system), I/O device management,
and security and protection. Each OS task man-
ages one type of physical resource.

Specifically, CPU management deals with the
allocation and releases of the CPU among com-
peting programs (called processes/threads in OS
jargon), including the operating system itself. The
main abstraction provided by CPU management is
the process/thread model. Memory management
deals with the allocation and release of memory

Every system of meaningful complexity needs
to be managed. A computer, as a rather complex
electrical-mechanical system, needs its own man-
ager for managing the resources and activities
occurring on it. That manager is called an operat-
ing system (OS).

space among competing processes, and the main
abstraction provided by memory management
is virtual memory. Disk management deals with
the sharing of magnetic or optical or solid state
disks among multiple programs/users and its main
abstraction is the file system. I/O device manage-
ment deals with the allocation and releases of
various [/O devices among competing processes.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Security and protection deal with the protection of
computer resources from illegal use.

11.3. Operating System Abstractions

The arsenal of OSs is abstraction. Corresponding
to—the A

Computing Foundations 13-17

* Multiprogrammed batching OS: adds mul-
titask capability into earlier simple batching
OSs. An example of such an OS is IBM’s
0S/360.

* Time-sharing OS: adds multi-task and inter-
active capabilities into the OS. Examples of

e—phyucical taclc (OQc voo Ova obotran
Te—HV-ePr ar—tatichs =4 SEe—Hv-e—aot

Ay st
tions: process/thread, virtual memory, file sys-
tems, input/output, and protection domains. The
overall OS abstraction is the virtual machine.

For each task area of OS, there is both a physi-
cal reality and a conceptual abstraction. The phys-
ical reality refers to the hardware resource under
management; the conceptual abstraction refers
to the interface the OS presents to the users/pro-
grams above. For example, in the thread model
of the OS, the physical reality is the CPU and the
abstraction is multiple CPUs. Thus, a user doesn’t
have to worry about sharing the CPU with others
when working on the abstraction provided by an
OS. In the virtual memory abstraction of an OS,
the physical reality is the physical RAM or ROM
(whatever), the abstraction is multiple unlim-
ited memory space. Thus, a user doesn’t have ¢o
worry about sharing physical memory with others
or about limited physical memory size.

Abstractions may be virtual or transparent;
in this context virtual applies to sonfething that
appears to be there, but isn’t (like-usable memory
beyond physical), whereas, transparent applies
to something that is there, but appears not to be
there (like fetching memopy contents from disk or
physical memory).

11.4. Operating Systems Classification

Different _operating systems can have different
functionality implementation. In the early days
of'the computer era, operating systems were rela-
tively simple. As time goes on, the complexity
and sophistication of operating systems increases

* Real-time OS: adds timing predictalil-
ity into the OS by scheduling ifdividjyal
tasks according to each task’s_.completion
deadlines. Examples of such ©OS inclyde
VxWorks (WindRiver) and DART (EMC).

* Distributed OS: adds the\cdpability of man-
aging a network of computers into the OS

* Embedded OS: has limited functionality and
is used for embedded systems such as cars
and PDAs, \Examples of such OSs inclyde
Palm OS \Windows CE, and TOPPER.

cuch OSc 1noludo TINAX. T 1ouxy oo d NT
=4 SHerHer) H—ahe— -

Alterpatively, an OS can be classified by |its
applicable target machine/environment into the
following.

Mainframe OS.: runs on the mainframe com-
puters and include OS/360, OS/390, AS/4(0,
MVS, and VM.
Server OS: runs on workstations or servers
and includes such systems as UNIX, Win-
dows, Linux, and VMS.
Multicomputer OS. runs on multiple com-
puters and include such examples as Novell
Netware.
Personal computers OS: runs on personal
computers and include such examples |as
DOS, Windows, Mac OS, and Linux.
Mobile device OS: runs on personal devi¢es
such as cell phones, IPAD and include sych
examples of i0S, Android, Symbian, etc.

12. Database Basics and Data Management
[4*, ¢9]

significantly. From a historical perspective, an
operating system can be classified as one of the
following.

* Batching OS: organizes and processes work
in batches. Examples of such OSs include
IBM’s FMS, IBSYS, and University of
Michigan’s UMES.

© ISO/IEC 2016 — All rights reserved

A database consists of an organized collection of
data for one or more uses. In a sense, a database is
a generalization and expansion of data structures.
But the difference is that a database is usually
external to individual programs and permanent in
existence compared to data structures. Databases
are used when the data volume is large or logical

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-18 SWEBOK® Guide V3.0

relations between data items are important. The
factors considered in database design include per-
formance, concurrency, integrity, and recovery
from hardware failures.

12.1. Entity and Schema

ISO/IEC TR 19759:2016(E)

12.3. Database Query Language

Users/applications interact with a database
through a database query language, which is a spe-
cialized programming language tailored to data-
base use. The database model tends to determine

the quory lanauacec that aro avatlablo to ancocc
aFe—ad e S

THe things a database tries to model and store are
called entities. Entities can be real-world objects
sufh as persons, cars, houses, and so forth, or they
may be abstract concepts such as persons, salary,
names, and so forth. An entity can be primitive
sufh as a name or composite such as an employee
that consists of a name, identification number,
salary, address, and so forth.

The single most important concept in a database
is fhe schema, which is a description of the entire
dafabase structure from which all other database
acfivities are built. A schema defines the relation-
shjps between the various entities that compose a
dafabase. For example, a schema for a company
pajyroll system would consist of such things as
employee ID, name, salary rate, address, and so
fofth. Database software maintains the database
acfording to the schema.

Another important concept in database is the
ddfabase model that describes the type of rela-
tignship among various entities. The commenly
uspd models include relational, netwerk, and
objject models.

122. Database Management Systems (DBMS)

Dgtabase Management-System (DBMS) compo-
nepts include databasc-applications for the stor-
agp of structuredtand unstructured data and the
required database.management functions needed
to[view, colleot; store, and retrieve data from the
dafabasesiA DBMS controls the creation, main-
telance;-and use of the database and is usually
ca[[egorized according to the database model it

O U oT y Tt S SoottTrT IO

the database. One commonly used query lan-
guage for the relational database is the structuréd
query language, more commonly abbreviated|as
SQL. A common query language for objéet-data-
bases is the object query language (abbroviated as
OQL). There are three components 'of SQL: Data
Definition Language (DDL), Data~Manipulation
Language (DML), and Data Control Language
(DCL). An example of an, DML query may look
like the following:

SELECT Compenent No, Quantity
FROM COMPONENT
WHEREUtem No =100

The above query selects all the Component No
and.its corresponding quantity from a database
table called COMPONENT, where the Item No
equals to 100.

12.4. Tasks of DBMS Packages

A DBMS
capabilities:

system provides the following

* Database development is used to define and
organize the content, relationships, and struc-
ture of the data needed to build a database.

* Database interrogation is used for accessing
the data in a database for information retrieval
and report generation. End users can selec-
tively retrieve and display information and
produce printed reports. This is the operation
that most users know about databases.

supports—such as the relational, network, or
object model. For example, a relational database
management system (RDBMS) implements fea-
tures of the relational model. An object database
management system (ODBMS) implements fea-
tures of the object model.

* Database Maintenance is used to add, delete,
update, and correct the data in a database.

* Application Development is used to develop
prototypes of data entry screens, queries,
forms, reports, tables, and labels for a proto-
typed application. It also refers to the use of
4th Generation Language or application gen-
erators to develop or generate program code.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

12.5. Data Management

A database must manage the data stored in it.
This management includes both organization and
storage.

The organization of the actual data in a database
model, data are organized as tables with different
tables representing different entities or relations
among a set of entities. The storage of data deals
with the storage of these database tables on disks.
The common ways for achieving this is to use files.
Sequential, indexed, and hash files are all used in
this purpose with different file structures providing
different access performance and convenience.

12.6. Data Mining

One often has to know what to look for before
querying a database. This type of “pinpointing”
access does not make full use of the vast amount
of information stored in the database, and in fact
reduces the database into a collection of discrete
records. To take full advantage of a database, one
can perform statistical analysis and pattern @is-
covery on the content of a database using*atech-
nique called data mining. Such operatiohs can be
used to support a number of business’ activities
that include, but are not limited\to, marketing,
fraud detection, and trend analysts.

Numerous ways for performing data mining
have been invented in the past decade and include
such common techniques as class description,
class discriminationy cluster analysis, association
analysis, and outlier analysis.

13. Network Communication Basics
[8%*, c12]

A-computer network connects a collection of
computers and allows users of different comput-

Computing Foundations 13-19

provided by computer networks. These paradigms
include distributed computing, grid computing,
Internet computing, and cloud computing.

13.1. Types of Network

may be classified according to a wide variety|of
characteristics, including the network’s eohn¢c-
tion method, wired technologies, wireless te¢h-
nologies, scale, network topology¢ fiinctions, and
speed. But the classification that is familiar[to
most is based on the scale of'networking.

* Personal Area Network/Home Network i$ a
computer network used for communication
among computer(s) and different infornpa-
tion technological devices close to one ppr-
son., The“devices connected to such a npt-
work'may include PCs, faxes, PDAs, and
‘PVs. This is the base on which the Interpet
of Things is built.

* Local Area Network (LAN) connects com-
puters and devices in a limited geographigal
area, such as a school campus, computer 1gb-
oratory, office building, or closely positiorjed
group of buildings.

» Campus Network is a computer network mgde
up of an interconnection of local area netwofks
(LANSs) within a limited geographical area.

* Wide area network (WAN) is a computer
network that covers a large geographic arga,
such as a city or country or even across intpr-
continental distances. A WAN limited tq a
city is sometimes called a Metropolitan Afea
Network.

* Internet is the global network that connefts
computers located in many (perhaps gll)
countries.

Other classifications may divide networks ifito

ers to share resources with other users. A network
facilitates the communications between all the
connected computers and may give the illusion
of a single, omnipresent computer. Every com-
puter or device connected to a network is called
a network node.

Anumber of computing paradigms have emerged
to benefit from the functions and capabilities

© ISO/IEC 2016 — All rights reserved

control networks, storage networks, virtual pri-
vate networks (VPN), wireless networks, point-
to-point networks, and Internet of Things.

13.2. Basic Network Components

All networks are made up of the same basic hard-
ware components, including computers, network

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-20 SWEBOK® Guide V3.0

interface cards (NICs), bridges, hubs, switches,
and routers. All these components are called nodes
in the jargon of networking. Each component per-
forms a distinctive function that is essential for
the packaging, connection, transmission, amplifi-
cation, controlling, unpacking, and interpretation
of thedata—FEorexample—arepeateramphfiesthe
signals, a switch performs many-to-many connec-
tigns, a hub performs one-to-many connections,
an| interface card is attached to the computer and
pefforms data packing and transmission, a bridge
copnects one network with another, and a router is
a ¢omputer itself and performs data analysis and
flgw control to regulate the data from the network.
The functions performed by various network
components correspond to the functions specified
by| one or more levels of the seven-layer Open
Systems Interconnect (OSI) networking model,
wlich is discussed below.

=

1313. Networking Protocols and Standards

Cqmputers communicate with each other using
prptocols, which specify the format and regula-
tigns used to pack and un-pack data. To facilitate
eapier communication and better structure, net*
waork protocols are divided into different lay&rs
with each layer dealing with one aspect of-the
communication. For example, the physical lay-
ery deal with the physical connectioir between
th¢ parties that are to communicate, the data link
layer deals with the raw dat4_transmission and
flgw control, and the netwerk layer deals with the
parking and un-packing.of data into a particular
format that is understandable by the relevant par-
tigs. The most commonly used OSI networking
medel organizes\network protocols into seven
layers, as dépicted in Figure 13.5.

Dne thing'to note is that not all network proto-
cols implement all layers of the OSI model. For
expmple, the TCP/IP protocol implements neither

ISO/IEC TR 19759:2016(E)

link layer protocols include frame-relay, asyn-
chronous transfer mode (ATM), and Point-to-
Point Protocol (PPP). Application layer protocols
include Fibre channel, Small Computer System
Interface (SCSI), and Bluetooth. For each layer
or even each individual protocol, there may be
organizations to guide the design and develop;
ment of the corresponding protocols.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Dayer

Data-ink Layer

Physical Layer

Figure 13.5. The Seven-Layer OSI Networking Model

13.4, THe Internet

TheInternet is a global system of interconnected
governmental, academic, corporate, public and
private computer networks. In the public domain,
access to the internet is through organizations
known as internet service providers (ISP). The
ISP maintains one or more switching centers
called a point of presence, which actually con-
nects the users to the Internet.

13.5. Internet of Things

The Internet of Things refers to the networking
of everyday objects—such as cars, cell phones,
PDAs, TVs, refrigerators, and even buildings—
using wired or wireless networking technologies.
The function and purpose of Internet of Things
is to interconnect all things to facilitate autono-
mous and better living. Technologies used in the

the presentation layer nor the session layer.
There can be more than one protocol for each
layer. For example, UDP and TCP both work on
the transport layer above IP’s network layer, pro-
viding best-effort, unreliable transport (UDP) vs.
reliable transport function (TCP). Physical layer
protocols include token ring, Ethernet, fast Ether-
net, gigabit Ethernet, and wireless Ethernet. Data

Internet of Things iclude KRFID, wireless and
wired networking, sensor technology, and much
software of course. As the paradigm of Internet
of Things is still taking shape, much work is
needed for Internet of Things to gain wide spread
acceptance.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

13.6. Virtual Private Network (VPN)

A virtual private network is a preplanned virtual
connection between nodes in a LAN/WAN or on
the internet. It allows the network administrator
to separate network traffic into user groups that
all users in the same organization, or workgroup.
This circuit type may improve performance
and security between nodes and allows for eas-
ier maintenance of circuits when troubleshooting.

14. Parallel and Distributed Computing
(8%, c9]

Parallel computing is a computing paradigm that
emerges with the development of multi-func-
tional units within a computer. The main objec-
tive of parallel computing is to execute several
tasks simultaneously on different functional units
and thus improve throughput or response or both.
Distributed computing, on the other hand, is a
computing paradigm that emerges with the devel-
opment of computer networks. Its main objective
is to either make use of multiple computers incthe
network to accomplish things otherwise not pos-
sible within a single computer or improve com-
putation efficiency by harnessing the’power of
multiple computers.

14.1. Parallel and Distribufed Computing
Overview

Traditionally, parallel computing investigates
ways to maximize’ concurrency (the simultaneous
execution of multiple tasks) within the bound-
ary of a'eomputer. Distributed computing studies
distributed systems, which consists of multiple
quitoromous computers that communicate through
a—computer network. Alternatively, distributed
Computing can also refer to the use of distributed

Computing Foundations 13-21

Fundamentally, distributed computing is
another form of parallel computing, albeit on a
grander scale. In distributed computing, the func-
tional units are not ALU, FPU, or separate cores,
but individual computers. For this reason, some

of concurrency, they are both also called concpr-
rent computing.

14.2. Difference between Pargtlel.and Distrib
uted Computing

Though parallel and distributed computing resem-
ble each other on thessurface, there is a subtle But
real distinction between them: parallel compit-
ing does not-necessarily refer to the execution|of
programs on-different computers— instead, they
can be nupon different processors within a single
confputer. In fact, consensus among computing
professionals limits the scope of parallel compfut-
ing to the case where a shared memory is used by
all processors involved in the computing, whiile
distributed computing refers to computatigns
where private memory exists for each procesgor
involved in the computations.

Another subtle difference between parallel and
distributed computing is that parallel computing
necessitates concurrent execution of several tagks
while distributed computing does not have this
necessity.

Based on the above discussion, it is possible
to classify concurrent systems as being “parallel”
or “distributed” based on the existence or nong¢x-
istence of shared memory among all the procgs-
sor: parallel computing deals with computatiqns
within a single computer; distributed computing
deals with computations within a set of comppit-
ers. According to this view, multicore computing
is a form of parallel computing.

systems to solve computational or transactional
problems. In the former definition, distributed
computing investigates the protocols, mecha-
nisms, and strategies that provide the foundation
for distributed computation; in the latter definition,
distributed computing studies the ways of dividing
a problem into many tasks and assigning such tasks
to various computers involved in the computation.

© ISO/IEC 2016 — All rights reserved

14.3. Parallel and Distributed Computing
Models

Since multiple computers/processors/cores are
involved in distributed/parallel computing, some
coordination among the involved parties is nec-
essary to ensure correct behavior of the system.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-22 SWEBOK® Guide V3.0

Different ways of coordination give rise to differ-
ent computing models. The most common mod-
els in this regard are the shared memory (paral-
lel) model and the message-passing (distributed)
model.

In a shared memory (parallel) model, all com-

wlere local caches are used to speed up the
prpcessing power. These caches use a protocol
to|insure the localized data is fresh and up to
dafe, typically the MESI protocol. The algorithm
depigner chooses the program for execution by
eafh computer. Access to the central memory can
be| synchronous or asynchronous, and must be
coprdinated such that coherency is maintained.
Diffferent access models have been invented for
sufh a purpose.

[n a message-passing (distributed) model, all
computers run some programs that collectively
achieve some purpose. The system must work
cofrectly regardless of the structure of the net-
work. This model can be further classified into
client-server (C/S), browser-server (B/S), and
n-fier models. In the C/S model, the server pro-
vidles services and the client requests services
frgm the server. In the B/S model, the server pro*
vidles services and the client is the browser. In.the
n-fier model, each tier (i.e. layer) provides‘ser-
viges to the tier immediately above it andirequests
sefvices from the tier immediately below it. In
fa¢t, the n-tier model can be seer_as a chain of
client-server models. Often, tHe tiers between the
bottommost tier and the topmost tier are called
middleware, which is a-distinct subject of study
infits own right.

14 4. Main Issues<in Distributed Computing

Cqordindtion among all the components in a dis-
triputedcomputing environment is often complex
and ‘time-consuming. As the number of cores/

ISO/IEC TR 19759:2016(E)

15. Basic User Human Factors
[3%, 8] [9%, ¢5]

Software is developed to meet human desires or
needs. Thus, all software design and develop-
ment must take into consideration human-user
people view software, and what humans expect
from software. There are numerous factors in the
human-machine interaction, and ISO 9241 _docu-
ment series define all the detailed standards of
such interactions.[10] But the basic Auman-user
factors considered here include input/output, the
handling of error messages, and‘the robustness of
the software in general.

15.1. Input and Output

Input and output ate-the interfaces between users
and software. Software is useless without input
and outputiHumans design software to process
some input and produce desirable output. All
software engineers must consider input and out-
put\as an integral part of the software product
they engineer or develop. Issues considered for
input include (but are not limited to):

* What input is required?

* How is the input passed from users to
computers?

* What is the most convenient way for users to
enter input?

* What format does the computer require of
the input data?

The designer should request the minimum
data from human input, only when the data is not
already stored in the system. The designer should
format and edit the data at the time of entry to
reduce errors arising from incorrect or malicious
data entry.

CPUs/computers increases, the complexity of
distributed computing also increases. Among
the many issues faced, memory coherency and
consensus among all computers are the most dif-
ficult ones. Many computation paradigms have
been invented to solve these problems and are
the main discussion issues in distributed/parallel
computing.

For output, we need to consider what the users
wish to see:

* In what format would users like to see
output?

* What is the most pleasing way to display
output?

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

If the party interacting with the software isn’t
human but another software or computer or con-
trol system, then we need to consider the input/
output type and format that the software should
produce to ensure proper data exchange between
systems.

ware. These rules of thumb include simple and
natural dialogue, speaking users’ language, mini-
mizing user memory load, consistency, minimal
surprise, conformance to standards (whether
agreed to or not: e.g., automobiles have a stan-
dard interface for accelerator, brake, steering).

15.2. Error Messages

It is understandable that most software con-
tains faults and fails from time to time. But
users should be notified if there is anything that
impedes the smooth execution of the program.
Nothing is more frustrating than an unexpected
termination or behavioral deviation of software
without any warning or explanation. To be user
friendly, the software should report all error ¢on-
ditions to the users or upper-level applications
so that some measure can be taken to 1getify the
situation or to exit gracefully. Therelare several
guidelines that define what copstitutes a good
error message: error messages should be clear, to
the point, and timely.

First, error messages should clearly explain
what is happening,so .that users know what is
going on in the-Software. Second, error mes-
sages should pinpoint the cause of the error, if at
all possibley so that proper actions can be taken.
Third, etror messages should be displayed right
when(the error condition occurs. According to
Jakob Nielsen, “Good error messages should be
expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest

Computing Foundations 13-23

15.3. Software Robustness

Software robustness refers to the ability of soft-
ware to tolerate erroneous inputs. Software is said
to be robust if it continues to function even when
erroneous inputs are given. Thus, it is unaccept-

able—torso e—to-stmphy—erash—when-enecoyn-

tering an input problem as this may cause ungx-
pected consequences, such as the loss of valuable
data. Software that exhibits such behavior is cqn-
sidered to lack robustness.

Nielsen gives a simpler description of software
robustness: “The software Should have a lpw
error rate, so that users,faake few errors during
the use of the system.and-so that if they do mgke
errors they can easily-récover from them. Further,
catastrophic errors.must not occur” [9*].

There are-many ways to evaluate the robulst-
ness of softwadre and just as many ways to mgke
softwarg~more robust. For example, to imprgve
robustness, one should always check the validjty
of'the inputs and return values before progreps-
ing further; one should always throw an excg¢p-
tion when something unexpected occurs, and
one should never quit a program without first
giving users/applications a chance to correct the
condition.

16. Basic Developer Human Factors
[3%, c31-32]

Developer human factors refer to the considpr-
ations of human factors taken when developing
software. Software is developed by humans, rgad
by humans, and maintained by humans. If any-
thing is wrong, humans are responsible for cor-
recting those wrongs. Thus, it is essential to wijite
software in a way that is easily understandable
by humans or, at the very least, by other softwgre
developers. A program that is easy to read and
understand exhibits readability.

a solution” [9*]. Fourth, error messages should
not overload the users with too much informa-
tion and cause them to ignore the messages all
together.

However, messages relating to security access
errors should not provide extra information that
would help unauthorized persons break in.

© ISO/IEC 2016 — All rights reserved

The means to ensure that software meet this
objective are numerous and range from proper
architecture at the macro level to the particular
coding style and variable usage at the micro level.
But the two prominent factors are structure (or
program layouts) and comments (documentation).

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-24 SWEBOK® Guide V3.0

16.1. Structure

Well-structured programs are easier to understand
and modify. If a program is poorly structured, then
no amount of explanation or comments is sufficient
to make it understandable. The ways to organize a
prograsn-2 == —
usg of white space, indentation, and parentheses to
ni¢e arrangements of groupings, blank lines, and
braces. Whatever style one chooses, it should be
copsistent across the entire program.

14 2. Comments

Td most people, programming is coding. These
pepple do not realize that programming also
in¢ludes writing comments and that comments are
anintegral part of programming. True, comments
ar¢ not used by the computer and certainly do not
copstitute final instructions for the computer, but
th¢y improve the readability of the programs by
explaining the meaning and logic of the statements
or[sections of code. It should be remembered that
programs are not only meant for computers, they
ar¢ also read, written, and modified by humans.
The types of comments include repeat of the
cofde, explanation of the code, marker of -the
cofde, summary of the code, description of-the
cofde’s intent, and information that canpot possi-
bly be expressed by the code itself, Some com-
m¢nts are good, some are not,»The¢ good ones
ar¢ those that explain the inténtjof the code and
justify why this code looks the way it does. The
baf ones are repeat of the-code and stating irrel-
evpnt information. Fhe-best comments are self-
documenting codey Ifthe code is written in such a
cl¢gar and precise manner that its meaning is self-
prpclaimedthen no comment is needed. But this
is easier.satd than done. Most programs are not
se|f-explanatory and are often hard to read and
undéxstand if no comments are given.

ISO/IEC TR 19759:2016(E)

e Within a function, comments should be
given for each logical section of coding to
explain the meaning and purpose (intention)
of the section.

* Comments should stipulate what freedom

that code.
* Comments are seldom required for indiy
vidual statements. If a statement needs_com-
ments, one should reconsider the statement.

17. Secure Software Developnient and
Maintenance
[11%*, c29]

Due to increasing~malicious activities targeted
at computer systéms; security has become a sig-
nificant issue inythe development of software. In
addition to\the usual correctness and reliability,
software,"developers must also pay attention to
the security of the software they develop. Secure
software development builds security in software
by following a set of established and/or recom-
mended rules and practices in software develop-
ment. Secure software maintenance complements
secure software development by ensuring the no
security problems are introduced during software
maintenance.

A generally accepted view concerning software
security is that it is much better to design security
into software than to patch it in after software is
developed. To design security into software, one
must take into consideration every stage of the soft-
ware development lifecycle. In particular, secure
software development involves software require-
ments security, software design security, sofiware
construction security, and software testing secu-
rity. In addition, security must also be taken into
consideration when performing software mainte-

Here are some general guidelines for writing
good comments:

» Comments should be consistent across the
entire program.

» Each function should be associated with
comments that explain the purpose of the
function and its role in the overall program.

nance as security faults and loopholes can be and
often are introduced during maintenance.

17.1. Software Requirements Security
Software requirements security deals with the

clarification and specification of security policy
and objectives into software requirements, which

© ISO/IEC 2016 — Al rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

lays the foundation for security considerations in
the software development. Factors to consider
in this phase include software requirements and
threats/risks. The former refers to the specific
functions that are required for the sake of secu-
rity; the latter refers to the possible ways that the

Computing Foundations 13-25

 Structure the process so that all sections
requiring extra privileges are modules. The
modules should be as small as possible and
should perform only those tasks that require
those privileges.

 Ensure that any assumptions in the program

securibofcoftuare 1o theaatanad
seeurtty-ofsoftware-is-threatened-
17.2. Software Design Security

Software Design security deals with the design
of software modules that fit together to meet
the security objectives specified in the security
requirements. This step clarifies the details of
security considerations and develops the specific
steps for implementation. Factors considered
may include frameworks and access modes that
set up the overall security monitoring/enforce-
ment strategies, as well as the individual policy
enforcement mechanisms.

17.3. Software Construction Security

Software construction security concerns the quess
tion of how to write actual programming codefor
specific situations such that security considetations
are taken care of. The term “Software Cefistruction
Security” could mean different things\fer different
people. It can mean the way a specific function is
coded, such that the coding itself is secure, or it can
mean the coding of security into software.

Most people entanglé the two together without
distinction. One reason for such entanglement is
that it is not cleac’how one can make sure that a
specific coding js“secure. For example, in C pro-
gramming language, the expression of i<<I (shift
the binary representation of i’s value to the left by
one Bit) and 2*i (multiply the value of variable i
by*constant 2) mean the same thing semantically,
but do they have the same security ramification?
The answer could be different for different com-

are—vatidated—H—this—is—hetpessible—dequ-
ment them for the installers and maintaingrs
so they know the assumptions that@ttackers
will try to invalidate.
* Ensure that the program do¢s’ not shgre
objects in memory with apy other progran.
* The error status of every, function must [be
checked. Do not try,to‘recover unless neitler
the cause of the. error nor its effects affgct
any security ,considerations. The program
should restore“the state of the software|to
the state-it. had before the process began, and
then, téxminate.

17 £ Software Testing Security

Software testing security determines that sqft-
ware protects data and maintains security spegi-
fication as given. For more information, plegse
refer to the Software Testing KA.

17.5. Build Security into Software Engineering
Process

Software is only as secure as its developm¢nt
process goes. To ensure the security of softwalre,
security must be built into the software enginefpr-
ing process. One trend that emerges in this reggrd
is the Secure Development Lifecycle (SDL) c@n-
cept, which is a classical spiral model that tales
a holistic view of security from the perspectfve
of software lifecycle and ensures that security] is
inherent in software design and development, ot
an afterthought later in production. The SDL pfo-
cess is claimed to reduce software maintenarjce

binations of ISAs and compilers. Due to this lack
of understanding, software construction secu-
rity—in its current state of existence—mostly
refers to the second aspect mentioned above: the
coding of security into software.

Coding of security into software can be
achieved by following recommended rules. A few
such rules follow:

© ISO/IEC 2016 — All rights reserved

costs and increase reliability of software concern-
ing software security related faults.

17.6. Software Security Guidelines
Although there are no bulletproof ways for secure

software development, some general guidelines
do exist that can be used to aid such effort. These

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-26 SWEBOK® Guide V3.0

guidelines span every phase of the software
development lifecycle. Some reputable guide-
lines are published by the Computer Emergency
Response Team (CERT) and below are its top
10 software security practices (the details can be
found in [12]:

Saonitizo data cont to n+l«s¥ seﬁma;e
+—aiHHEe-aata-SeRt+ tH -

ISO/IEC TR 19759:2016(E)

. Validate input.

. Heed compiler warnings.

. Architect and design for security policies.
. Keep it simple.

. Adhere to the principle of least privilege.

1
2
3
4
5. Default deny.
6
7
8
9
1

. Practice defense in depth.

. Use effective quality assurance techniqués:
0. Adopt a software construction security
standard.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Computing Foundations 13-27

MATRIX OF TOPICS VS. REFERENCE MATERIAL

5 =
- ® 2 = S
s |8 |8 |5 |8 |S |3 |&
Sz | 5| _|2_|2_|2_|%8
—_— - — < — - — = — —_ —_ —
Th|ER | 25| 3R | 28| 35| 55| 22
m = % g = < 2 ==
S Q =) z g & .
> - 2 2 B = d
& 5 =
T 7 Z ’('19
- Y
1. Problem Solving s3.2, /\<r_)
Techniques s4.2 R
1.1. Definition of T
Problem Solving 832 &Q‘
1.2. Formulating the 3.2 C)
Real Problem ' \\Q'
\)
1.3. Analyze the 32 %
Problem ¢ N\
1.4. Design a @
Solution Search s4.2 Q
Strategy >Q
1.5. Problem Solving 5 0\\
Using Programs As\
\ 4}
R
2. Abstraction 55'2_‘&‘
SN
2.1. Levels of Q&_
Abstraction 4 53
2.2. Encapsulation ..\l~\ s5.3
2.3. Hierarchy r.:\\U $5.2
3. Programming - N 6-19
Fundamentals < ¢
3.1. The .
Progra g c6—l9
Process.
é.@ogrammmg 6-c19
~ Paradigms
N\ .
3.3. Defensive
\Q/ D : c8
T 1\}51 (41111111115
4. Programming
.)
Language Basics
4.1. Programming
- 6.1
Language Overview
4.2. Syntax and
Semantics .of 6.2
Programming
Language

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-28 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

® S = S
<
I S S & 2 S S N
= Q Q) N = XN o
S_| 2 y = |2 | E2_|2_|&_
— vaml p— N — —_—— — p— X
S S < =z = £ S Z
> g E S g = 4]
=) ~ —
= » z o)
=N
4.3. Low Level $6.5— (1>:
Programming 6. . O
Language ’ A/\<Q
4.4. High Level 6.5 ?\%
Programing 6. . Q.
Language ' _ ‘&
4.5. Declarative Q/&J
vs. Imperative $6.5— \\
Programming 6.7 CO
Language ¢ \~>
5| Debugging Tools 23 o
apd Techniques N
5.1. Types of Errors s23.1 N Q\/
5.2. Debugging 032 &Q\\
Techniques: ' o
5.3. Debugging 035 \\,Q
Tools ’ h§
6| Data Structure and Q‘(U s2.1-
Representation \9 2.6
6.1. Data Structure . C\)lr s2.1-
Overview N 2.6
6.2. Types of Data . .V s2.1-
Structure] 2.6
6.3. Operations 0(}-) s2.1-
Data Structures, . 2.6
QS‘ sl.1-
O 13,
C)é $3.3—
3.6,
\% sd 1
4.8,
7. Algorithms and s5.1-
Complexity 57,
$6.1-
6.3,
s7.1-
7.6,
sl1.1,
s12.1

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Computing Foundations 13-29

® S — =
<
o S S .~ § Q . ~
4 Q N - = =3 =
> <) = =) =)
S| 3| s | s | B | 20| 2 | %
TA | E&H | 25| C | 28| 2% | 55| 22
s | ET |27 |7 | T | =T | 2T | &&=
2 Q 2z z £ = B Z
> < 5 S E = z =
[=) A —
== @ z
20
7.1. Overview of G112 Fl>)
Algorithms S (,q
7.2. Attributes of 3 J
Algorithms ' t\q
7.3. Algorithmic 3 &
Analysis ' |~
s3.3—
%
3.6, O\\<<
s4.1- %
4.8, ;\\
$5.10
7.4. Algorithmic ,
Design Strategies <) 6.1—
N[63,
W L
< 7.6
N D>
$\‘ sI1.1,
. \0.,’ s12.1
D) $3.3—
xQ 3.6,
. C\){‘ s4.1-
-\\ 48,
') s5.1-
7.5. Algonthm@ 5.7,
Analysis Str‘ $6.1—
6.3,
@ s7.1-
()Q‘ 7.6,
g s1L.1,
@ s12.1
\QIS. Basic Concept of a 1
System
8.1. Emergent
System Properties s10.1
8.2. .Syste.m $10.2
Engineering
8.3. Overview of a
Computer System

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

1330 SWEBOK® Guide V3.0 ISO/IEC TR 19759:2016(E)

N S
=) -
= |2 |2 & |3 |F |2 |a
S «a a = B 5 =) S
Q 5 — 5 s = 2 _ - Q& —
Ta | Ea | 22| fb| 28| S| §2| 22
< 3 & B £ 5 3 z
= @] =) = = < @
= 2 n% S = = z 2
S 4 S
A %
9| Computer q>:
q . . cl-4 .
rganization ¢ Oy
9.1. Computer /] \ J
Organization sl.1-1.2 ,\Q
Overview O~
9.2. Digital Systems c3 ,.‘)
9.3. Digital Logic &' ',
9.4. Computer Oc\2
Expression of Data N
N
9.5. The Central Os\ 41
Processing Unit Q n
(CPU) Q) '
9.6. Memory System \\<
Organization s\\‘} 546
9.7. Input and Output %]
10) _\\'\Q s4.5
\
1. Compiler Basics . @%6.4 s8.4
10.1. Compiler OQ w4
Overview _, b\ ’
10.2. Interpretation \\C)v 84
and Compilation C) '
103. The QO 56.4 s8.4
Compilation Process™
1]. Operating C)\"
. . c3
Systems Basics
111 z@fg, $3.2
Syster erview
112\ Thsks of
. s3.3
rating System
11.3. Operating 32
System Abstractions ’
11.4. Operating
Systems s3.1
Classification

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Computing Foundations 13-31

® S - S
<
I5e) S S Q § S e N
g N ~ ~ o 5 = S
8| = E— | S| 2~ S| =~ |
TA| EA | 2F | 2h | 28| Rk | 55 | 2o
S| B 23 5 2= 3% 28
° &} S B = = 2 2
> g E S g = z -2
=) < —
= » z o)
LN
12. Database (‘l>)
Basics and Data c9 Oy
Management A/\Q-)
12.1. Entity and 9.1 N
Schema ' L~
12.2. Database N
Management s9.1 Q\)
Systems (DBMS) /\\\ ’
12.3. Database Y
Query Language 92 K\%
12.4. Tasks of 9.2 Q O
DBMS Packages ()
12.5. Data 9 N
Management &\.
12.6. Data Mining _1.@89.6
13. Network)
Communication X ®$ cl2
Basics Q\
13.1. Types of xQ s12.2—
Network Lo 12.3
: N
13.2. Basic Network(_) 2.6
Components -
13.3. Networkifig® "
s12.4—
Protocols 12.5
Standards . '
13’.'4\@1}? Internet
&)Imernet of s12.8
(" ,Fhings
Y 136 Virtual Private
Network
14. Parallel and
Distributed c9
Computing
14.1. Parallel
and Distributed $9.4.1-
Computing 9.4.3
Overview

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

13-32 SWEBOK® Guide V3.0

ISO/IEC TR 19759:2016(E)

Security

® S = S
< S
e |2 [& |8 |8 [T |2 |=a
2 Q N —_ o = = S
Q| = S| E_ =l 2| = &=
=L | 2R | £E5 | %L | EE | Sk | 58 | =&
— = — »n — N — — — »n — =
= S 2 =) = = <
S 0 s = £ £ 2 &
R e B e
S = =
S I N
14.2. Differences ('1>:
between Parallel $9.4.4— O
and Distributed 9.4.5 /\<C)
Computing ,\Q
14.3. Bargllel 944 | &Q‘
and Distributed 0.4
Computing Models) /It)
14.4. Main Issues \\V
in Distributed CO
Computing ¢ \~>
1p. Basic User O\
c8 c5
Human Factors N
15.1. Input and Q\/ s5.1,
Output \\\\ s5.3
v s5.2,
15.2. Error Messages s\‘QQ 5.8
15.3. Software $ s5.5—
obustness \ N .
Rob R\ 5.6
16. Basic Developer c &QZ
Human Factors
16.1. Structure (-\\ c31
16.2. Comments L .V c32
17. Secure Software $\
Development and C> c29
Mlaintenance “\-
17.1. Two Sets of 9.1
Secure @ng ’
17. ing
ity into $29.4
Software
17.3. Requirement 292
Security ’
17.4. Design
Security $29.3
17.5. Implementation 9.5

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

REFERENCES

[1] Joint Task Force on Computing Curricula,
IEEE Computer Society and Association
for Computing Machinery, Software
Engineering 2004: Curriculum Guidelines

for Undergraduate Degree Programs in
S ofiapara—tonaineaiina 2004 hitn://citac
oftrarebiaiieer g fhttpiisites:

Computing Foundations 13-33

[7]1 ISO/IEC/IEEE 24765:2010 Systems and
Software Engineering—Vocabulary, 1SO/
IEC/IEEE, 2010.

[8*] L. Null and J. Lobur, The Essentials of

computer.org/ccse/SE2004Volume.pdf.

[2*] G. Voland, Engineering by Design, 2nd ed.,
Prentice Hall, 2003.

[3*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[4*] J.G. Brookshear, Computer Science: An
Overview, 10th ed., Addison-Wesley, 2008.

[5*] E. Horowitz et al., Computer Algorithms,
2nd ed., Silicon Press, 2007.

[6*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

2nd ed., Jones and Bartlett Publishers,
2006.

[9*] J. Nielsen, Usability Engineetiitg, Morgai
Kaufmann, 1993.

[10] ISO 9241-420:2011 Ergenomics of Humarp-
System Interaction, ¥SO, 2011.

[11¥] M. Bishop)Computer Security: Art and
Sciences. Addison-Wesley, 2002.

[12] R.€~Seacord, The CERT C Secure Codin,
Standard, Addison-Wesley Professional,
2008.

T

b

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

CHAPTER 14

MATHEMATICAL FOUNDATIONS

INTRODUCTION

Software professionals live with programs. In a
very simple language, one can program only for
something that follows a well-understood, non-
ambiguous logic. The Mathematical Foundations
knowledge area (KA) helps software engineers
comprehend this logic, which in turn is translated
into programming language code. The mathemat-
ics that is the primary focus in this KA is quite
different from typical arithmetic, where numbers
are dealt with and discussed. Logic and reason-
ing are the essence of mathematics that a software
engineer must address.

Mathematics, in a sense, is the study of formal
systems. The word “formal” is associated with
preciseness, so there cannot be any ambiguous or
erroneous interpretation of the fact. Mathemat-
ics is therefore the study of any amd-all certain
truths about any concept. This eoncept can be
about numbers as well as about symbols, images,
sounds, video—almost anything. In short, not
only numbers and numeric equations are sub-
ject to preciseness, On the contrary, a software
engineer needs to.hiave a precise abstraction on a
diverse appligation domain.

The SWEBOK Guide’s Mathematical Founda-
tions KAcevers basic techniques to identify a set
of rules)for reasoning in the context of the system
under study. Anything that one can deduce fol-
lewing these rules is an absolute certainty within
the context of that system. In this KA, techniques

short, you can write a program for a problem only
if it follows some logic. The objective of this KA
is to help you develop the skill\to identify and
describe such logic. The emphasis is on helping
you understand the basic‘eoncepts rather than jon
challenging your arithmetic abilities.

BREAKDOWN OF TOPICS FOR
MATHEMATICAL FOUNDATIONS

The breakdown of topics for the Mathematigal
Foufdations KA is shown in Figure 14.1.

1 Set, Relations, Functions
[1%, ¢2]

Set. A set is a collection of objects, called elemepts
of the set. A set can be represented by listing |its
elements between braces, e.g., S = {1, 2, 3}.

The symbol € is used to express that an efe-
ment belongs to a set, or—in other words—i$ a
member of the set. Its negation is represented by
¢,eg,le S butde S.

In a more compact representation of set using
set builder notation, {x | P(x)} is the set of al| x
such that P(x) for any proposition P(x) over any
universe of discourse. Examples for some imppr-
tant sets include the following:

N={0,1,2,3, ...} =the set of nonnegative
integers.
Z={..,-3,

—2,—1,0,1,2,3,...} =the setjf

that can represent and take forward the reasoning
and judgment of a software engineer in a precise
(and therefore mathematical) manner are defined
and discussed. The language and methods of logic
that are discussed here allow us to describe math-
ematical proofs to infer conclusively the absolute
truth of certain concepts beyond the numbers. In

14-1

integers.

Finite and Infinite Set. A set with a finite num-
ber of elements is called a finite set. Conversely,
any set that does not have a finite number of ele-
ments in it is an infinite set. The set of all natural
numbers, for example, is an infinite set.

© ISO/IEC 2016 — All rights reserved

http://sites.computer.org/ccse/SE2004Volume.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)
142 SWEBOK® Guide V3.0

Mathematical
Foundations

Proof
Techniques

Sets, Relations,
Functions

Graphs
and Trees

Numerical
Precision,

Accuracy,
4L

Finite State
Machines

Algebraic
Structures

Basics of

Basic Logic Counting

Discrete
Probability

Number

Grammars Theory

Cardinality. The cardinality of a finite set S is
th¢ number of elements in S. This is represented
IS} e.g., if S= {1, 2, 3}, then |S| = 3.

[Universal Set. In general S = {x € U | p(x)},
wlere U is the universe of discourse in which
th¢ predicate P(x) must be interpreted. The “uni-
vefse of discourse” for a given predicate is often
referred to as the universal set. Alternately, one
mgy define universal set as the set of all elements.
Set Equality. Two sets are equal if and only if
th¢y have the same elements, i.e.:

K=Y=Vp(pe X—peY).

Subset. X is a subset of set Y, or X is contdined
inlY, if all elements of X are included inX. This is
depoted by X C Y. In other words, X € Y if and
only if Vp(pe X —>peY).

For example, if X = {1,2,3} and Y = {1, 2, 3,
4,5}, then X C Y.

[X is not a subset of ¥t is denoted as X € Y.
Proper Subset. X ig-a proper subset of Y (denoted
byl X CY) if X isa subset of Y but not equal to Y,
i.¢}, there is same e€lement in Y that is not in X.

[n other Wonds, X CYiIf (X CY)A(X#Y).
For example, if X = {1, 2, 3}, Y = {1, 2, 3,
44 and\Z/= {1, 2, 3}, then X C Y, but X is not a
properrsubset of Z. Sets X and Z are equal sets.

=

Figure 14.1. Breakdown of Topics for the Mathematical Foundations KA

Empty Set. A set with no eleents is called an
empty set. An empty set, denoted by &, is also
referred to as a null or void'set.

Power Set. The set of\all subsets of a set X is
called the power set.of X. It is represented as
§2(X).

For example;if X = {a, b, ¢}, then p(X) = {J,
{a}, {b}, &, {a, b}, {a, ¢}, {b, ¢}, {a, b, c}}. If
[X] = nsthen | o (X)| = 2.

Venn DPiagrams. Venn diagrams are graphic rep-
resentations of sets as enclosed areas in the plane.

For example, in Figure 14.2, the rectangle rep-
resents the universal set and the shaded region
represents a set X.

U

Figure 14.2. Venn Diagram for Set X

1.1. Set Operations

If X is not a proper subset of Y, it is denoted
asXay.

Superset. If X is a subset of Y, then Y is called
a superset of X. This is denoted by Y D X, i.e., Y
D Xifandonlyif X C Y.

For example, if X = {1,2,3} and Y = {1, 2, 3,
4,5},thenY D X.

© ISO/IEC 2016 — All rights reserved

Intersection. The intersection of two sets X and
Y, denoted by X N'Y, is the set of common ele-
ments in both X and Y.

In other words, X " Y={p|(pe X)A(pe Y)}.

As, for example, {1,2,3} N {3,4,6} = {3}

If X nY =, then the two sets X and Y are said
to be a disjoint pair of sets.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

A Venn diagram for set intersection is shown in
Figure 14.3. The common portion of the two sets
represents the set intersection.

T xny

ISO/IEC TR 19759:2016(E)

Mathematical Foundations 14-3

The shaded portion of the Venn diagram in Fig-
ure 14.5 represents the complement set of X.

Set Difference or Relative Complement. The set
of elements that belong to set X but not to set Y
builds the set difference of Y from X. This is rep-
resented by X — Y.

Figure 14.3. Intersection of Sets X and Y

Union. The union of two sets X and Y, denoted
by X U, is the set of all elements either in X, or
inY, or in both.

In other words, X UY={p|(pe X)Vv(pe Y)}.

As, for example, {1, 2,3} U {3, 4, 6} = {1, 2,
3,4,6}.

T

XuyYy

Figure 14.4. Union of Sets X and.Y

It may be noted that |X W Y['= [X] + Y] — |X
NY|

A Venn diagram illustrating the union of two
sets is represented by the shaded region in Figure
14.4.

Complement. Fhe set of elements in the univer-
sal set that do 10t belong to a given set X is called
its complenient set X'.

In other words, X'={p | (pe€ U) A (p & X)}.

[

As, for example, {1,2,3} — {3,4, 6} = {172}.
It may be proved that X - Y =X N YT
Set difference X —Y is illustrated by the shaded
region in Figure 14.6 using a Venu.diagram.

SN

Figure 14.6. Venn Diagram for X — Y

Cartesian Product. An ordinary pair {p, q}| is
a set with two elements. In a set, the order of the
elements is irrelevant, so {p, q} = {q, p}-
In an ordered pair (p, q), the order of occpr-
rences of the elements is relevant. Thus, (p, q) #
(q, p) unless p = q. In general (p, q) = (s, t) if and
onlyifp=sandq=t.
Given two sets X and Y, their Cartesian prodyict
X xY is the set of all ordered pairs (p, q) such that
pe Xandqe Y.
In other words, X x Y = {(p, q) | (p € X) Al(q
€Y)}.
As for example, {a, b} x {1,2} = {(a, 1), (a,),
(b, 1), (b, 2)}

U

Figure 14.5. Venn Diagram for Complement Set of X

1.2. Properties of Set

Some of the important properties and laws of sets
are mentioned below.

1. Associative Laws:

Xuuz)=XuY)uZz
XNn(¥Yn2)=XnY)nZ

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

14-4 SWEBOK® Guide V3.0

2. Commutative Laws:
XuY=YuX XNY=YNnX

3. Distributive Laws:
Xui¥n2)=XuY)nXu?Z
XNYuZ)=XnY)uXn2Z)

this becomes a well-behaved relation and hence a
function. This means that, while all functions are
relations, not all relations are functions. In case
of a function given an X, one gets one and exactly
one y for each ordered pair (x, y).

For example, let’s consider the following two

relatione
et

4. [[dentity Laws:
Ku@gd=X XnU=X

5.Complement Laws:
XKuX=U XnX=0

6.[[dempotent Laws:

X UX=X XNnX=X
7. Bound Laws:
X UU=U XNd=J

8.|Absorption Laws:
K UXNY)=X XNnXuY)=X
9.|De Morgan’s Laws:
XuY)=X'nY' XNnY)y=XuY'
1.§. Relation and Function

A Jrelation is an association between two sefs of
information. For example, let’s consider a set
of[residents of a city and their phone~numbers.
THe pairing of names with corresponding phone
numbers is a relation. This pairing is ordered for
th¢ entire relation. In the gxample being consid-
er¢d, for each pair, eitherithe name comes first
followed by the phone“number or the reverse.
THe set from which the first element is drawn is
called the domqin set and the other set is called
th¢ range sét.\The domain is what you start with
and the range is what you end up with.

A function is a well-behaved relation. A rela-
tign R¢X, Y) is well behaved if the function maps

TTOTIOT

A: {(3,-9), (5, 8),(7,-6), (3, 9), (6, 3)}.
B: {(5, 8), (7, 8), (3, 8), (6, 8)}.

Are these functions as well?

In case of relation A, the domain“is all the
x-values, i.e., {3, 5, 6, 7}, and the*range is all the
y-values, i.e., {-9,-6, 3, 8, 9}.

Relation A is not a function, as there are two
different range values)*~9 and 9, for the same
x-value of 3.

In case of relation-B, the domain is same as that
for A, i.e., {3,5,6, 7}. However, the range is a
single element {8}. This qualifies as an example
of a funetion even if all the x-values are mapped
to the.same y-value. Here, each x-value is distinct
and.hence the function is well behaved. Relation
B, may be represented by the equation y = 8.

The characteristic of a function may be verified
using a vertical line test, which is stated below:

Given the graph of a relation, if one can draw
a vertical line that crosses the graph in more than
one place, then the relation is not a function.

A

Y

v
e

L1 L2

| |
| |
| |
| |

|
|

|
|
| |
| |
| |
| |
| |
L !
| |
| |
I I

Figure 14.7. Vertical Line Test for Function

every element of the domain set X to a single ele-
ment of the range set Y. Let’s consider domain set
X as a set of persons and let range set Y store their
phone numbers. Assuming that a person may have
more than one phone number, the relation being
considered is not a function. However, if we draw
a relation between names of residents and their
date of births with the name set as domain, then

© ISO/IEC 2016 — All rights reserved

In this example, both lines L1 and L2 cut the
graph for the relation thrice. This signifies that
for the same x-value, there are three different
y-values for each of case. Thus, the relation is not
a function.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

2. Basic Logic
[1%, cl]

2.1. Propositional Logic

A proposition is a statement that is either true

R

sentences for which it is meaningful to assign
either of the two status values: true or false. Some
examples of propositions are given below.

1. The sun is a star
2. Elephants are mammals.
3.2+3=5.

However, a + 3 = b is not a proposition, as it is
neither true nor false. It depends on the values of
the variables a and b.

The Law of Excluded Middle: For every propo-
sition p, either p is true or p is false.

The Law of Contradiction: For every proposi-
tion p, it is not the case that p is both true and false.

Propositional logic is the area of logic that
deals with propositions. A truth table displays
the relationships between the truth valuesyof
propositions.

A Boolean variable is one whose valug'is either
true or false. Computer bit operations.eorrespond
to logical operations of Boolean xariables.

The basic logical operatorsineluding negation
(— p), conjunction (p A g)fdisjunction (p Vv q),
exclusive or (p @ q), arid implication (p — q) are
to be studied. Compound propositions may be
formed using various logical operators.

A compound proposition that is always true is a
tautology. A.compound proposition that is always
false is/contradiction. A compound proposition
that i§ neither a tautology nor a contradiction is a
comtrgency.

Compound propositions that always have the
Same truth value are called logically equivalent

ISO/IEC TR 19759:2016(E)

Mathematical Foundations 14-5

Idempotent laws:

pPvP=p PAP=P

Double negation law:
“Cp=p

pvq=qvp PAQ=qApD

Associative laws:
(pvgvr=pv(qvr)
(PAg@Ar=pAa(qAr)

Distributive laws:
pv@an=pEvaAlpvr)
PA@QVD=PAPNV (pAT)

De Morgan’s laws:

“(pr@="pv"q “~(PVvVQ=ETpA~

e

2.2 Predicate Logic

A predicate is a verb phrase template that
describes a property of objects or a relationship
among objects represented by the variables. Hor
example, in the sentence, The flower is red, the
template is red is a predicate. It describes the
property of a flower. The same predicate may [be
used in other sentences too.

Predicates are often given a name, e.g., “Rdd”
or simply “R” can be used to represent the prefli-
cate is red. Assuming R as the name for the prefli-
cate is red, sentences that assert an object is of the
color red can be represented as R(x), where x r¢p-
resents an arbitrary object. R(x) reads as x is red.

Quantifiers allow statements about entire cpl-
lections of objects rather than having to enumpr-
ate the objects by name.

The Universal quantifier Vx asserts that a s¢n-
tence is true for all values of variable x.

For example, Vx Tiger(x) — Mammal(x)

(denoted by =). Some of the common equiva-
lences are:

Identity laws:

pAT=p pvF=p
Domination laws:
pvT=T pAF=F

means all tigers are mammals.
The Existential quantifier 3x asserts that a sen-
tence is true for at least one value of variable x.
For example, 3x Tiger(x) — Man-eater(x) means
there exists at least one tiger that is a man-eater.
Thus, while universal quantification uses
implication, the existential quantification natu-
rally uses conjunction.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

14-6 SWEBOK® Guide V3.0

A variable x that is introduced into a logical
expression by a quantifier is bound to the closest
enclosing quantifier.

A variable is said to be a free variable if it is not
bound to a quantifier.

Statements used in a proof include axioms
and postulates that are essentially the underlying
assumptions about mathematical structures, the
hypotheses of the theorem to be proved, and pre-
viously proved theorems.

A theorem is a statement that can be shown to

is [treated independently in propositional logic.
THere is no mechanism in propositional logic to
firld out whether or not the two are equivalent to
onfe another. Hence, in propositional logic, each
equivalent proposition-is* treated individually
rather than dealing with’a general formula that
copvers all equivalences collectively.

redicate logic\is supposed to be a more pow-
erful logic that addresses these issues. In a sense,
prgdicateslogic (also known as first-order logic
or|predicate calculus) is an extension of propo-
sitfjonal logic to formulas involving terms and

A lemma is a simple theorem used in the proof
of other theorems.

A corollary is a proposition that can be_estab-
lished directly from a theorem that has~been
proved.

A conjecture is a statement whose, ttuth value
is unknown.

When a conjecture’s proof is found, the conjec-
ture becomes a theorem.Many times conjectures
are shown to be false andyhénce, are not theorems.

3.1. Methods of.Proving Theorems

Direct Prodf. Direct proof is a technique to estab-
lish thatithe' implication p — q is true by showing
that.g.must be true when p is true.

For'example, to show that if n is odd then n>*~1
is even, suppose n is odd, i.e., n =2k + 1 for some
integer k:

son?=02k+1)?=4k>+4k + 1.

As the first two terms of the Right Hand Side
(RHS) are even numbers irrespective of the value
of k, the Left Hand Side (LHS) (i.e., n?) is an odd
number. Therefore, n?>—1 is even.

Proof by Contradiction. A proposition p is true
by contradiction if proved based on the truth of
the implication — p — q where q is a contradiction.

For example, to show that the sum of 2x + 1
and 2y — 1 is even, assume that the sum of 2x + 1
and 2y — lis odd. In other words, 2(x + y), which
is a multiple of 2, is odd. This is a contradiction.
Hence, the sum of 2x + 1 and 2y — 1 is even.

predicates.

3. Proof Techniques
[1%, cl]

A proof is an argument that rigorously establishes

the truth of a statement. Proofs can themselves be
represented formally as discrete structures.

© ISO/IEC 2016 — All rights reserved

An inference rule is a pattern establishing that
if a set of premises are all true, then it can be
deduced that a certain conclusion statement is
true. The reference rules of addition, simplifica-
tion, and conjunction need to be studied.

Proof by Induction. Proof by induction is done
in two phases. First, the proposition is estab-
lished to be true for a base case—typically for the

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

positive integer 1. In the second phase, it is estab-
lished that if the proposition holds for an arbitrary
positive integer &, then it must also hold for the
next greater integer, £ + /. In other words, proof
by induction is based on the rule of inference that
tells us that the truth of an infinite sequence of

BB o D = e L hed

if P(1) is true, and secondly, Vk € [2 ... n] if P(k)
— P(k+1).

It may be noted here that, for a proof by math-
ematical induction, it is not assumed that P(k) is
true for all positive integers k. Proving a theo-
rem or proposition only requires us to establish
that if it is assumed P(k) is true for any arbitrary
positive integer k, then P(k + 1) is also true. The
correctness of mathematical induction as a valid
proof technique is beyond discussion of the cur-
rent text. Let us prove the following proposition
using induction.

Proposition: The sum of the first n positive odd
integers P(n) is n’.

Basis Step: The proposition is true for n =1 as
P(1) = 1>=1. The basis step is complete.

Inductive Step: The induction hypothesis (IH)
is that the proposition is true for n =k, k being’an
arbitrary positive integer k.

Ll +3+5+ ..+ 2k- 1) =k
Now, it’s to be shown that P(k) — P(k + 1).

Pk+1)=1+3+5H.0+2k-1)+(2k+1)
=P(k) + 2k +)
=k?+ (2k +-)fusing [H]
=k + 2kt
= (k +1)?

Thas) it is shown that if the proposition is true
fors= Kk, then it is also true forn=k + 1.

The basis step together with the inductive step of
the proof show that P(1) is true and the conditional

ISO/IEC TR 19759:2016(E)

Mathematical Foundations 14-7

n, ways, and if these tasks cannot be done at the
same time, then there are n +n, ways to do either
task.

 If A and B are disjoint sets, then |A U B|=|A|
+|B.

generalH-AT—AL—Am—are—disteint
sets, then [A1 U A2 U ... U An| = |Al] #1142
+ ...+ |An]

For example, if there are 200{athletes doing
sprint events and 30 athletes swwho participate|in
the long jump event, then how many ways gre
there to pick one athletg‘who is either a sprinfer
or a long jumper?

Using the sum pule,/the answer would be 200
+ 30 = 230.

The product.ztle states that if a task t, can |be
done in n, ‘'ways and a second task t, can be dqne
in n, ways-after the first task has been done, then
therare n, * n, ways to do the procedure.

—

« If A and B are disjoint sets, then |A x B| =
|Al* [B].
 In general if A1, A2, ..., An are disjoint sdts,
then |A1 x A2 x ... x An|=|Al| * |A2] * |...
* |An].

For example, if there are 200 athletes doing
sprint events and 30 athletes who participate|in
the long jump event, then how many ways gre
there to pick two athletes so that one is a sprinfer
and the other is a long jumper?

Using the product rule, the answer would |be
200 * 30 = 6000.

The principle of inclusion-exclusion states that
if a task t, can be done in n, ways and a second
task t, can be done in n, ways at the same tifne
with t, then to find the total number of ways the
two tasks can be done, subtract the number |of
ways to do both tasks fromn, +n_.

—

statement P(k) — P(k + 1) is true for all positive
integers k. Hence, the proposition is proved.

4. Basics of Counting
[1*c6]

The sum rule states that if a task t can be done
in n, ways and a second task t, can be done in

« If A and B are not disjoint, |A U B| = |[A] +
B|—|A N BJ.

In other words, the principle of inclusion-
exclusion aims to ensure that the objects in the
intersection of two sets are not counted more than
once.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

14-8 SWEBOK® Guide V3.0

Recursion is the general term for the practice
of defining an object in terms of itself. There are
recursive algorithms, recursively defined func-
tions, relations, sets, etc.

A recursive function is a function that calls
itself. For example, we define f(n) =3 * f(n — 1)
fO N and-n O—and —_

An algorithm is recursive if it solves a problem
by|reducing it to an instance of the same problem
with a smaller input.

phenomenon is said to be random if individ-
outcomes are uncertain but the long-term pat-
of many individual outcomes is predictable.
he probability of any outcome for a ran-
phenomenon is the proportion of times the

he probability P(A) of any event A satisfies 0
P(A) < 1. Any probability is a number between
ind 1. If S is the sample space in a probabil-

pether must have probability of 1.
wo events A and B are disjoint if they have
outcomes in common and So can never occur

rule for disjoint events.

f two events have no outcomes in comion,
th¢ probability that one or the other oceurs is the
sum of their individual probabilities.

ermutation is an arrangement_of objects in
wliich the order matters withQut repetition. One
cap choose r objects in a particular order from a
tofal of n objects by using*¥P_ways, where, "p, =
n!}/ (n —r)!. Variougnotations like "P, and P(n, r)
ar¢ used to represent the number of permutations
offa set of n objeots taken r at a time.
Combination'is a selection of objects in which
th¢ order'does not matter without repetition. This
is fifferent from a permutation because the order
does ot matter. If the order is only changed (and

5. Graphs and Trees
[1%, c10, cl1]

5.1. Graphs

A graph G = (V, E) where V is the set of vertices

referred to as arcs or links.

A

B e2 C

Figure 14.8. Example of a Graph

F.s a function that maps the set of edges E to
aset of ordered or unordered pairs of elements V.
For example, in Figure 14.8, G = (V, E) where V
={A, B, C}, E={el, e2,e3}, and F = {(cl, (A,
0)), (2, (C, B)), (€3, (B, A))}.

The graph in Figure 14.8 is a simple graph that
consists of a set of vertices or nodes and a set of
edges connecting unordered pairs.

The edges in simple graphs are undirected.
Such graphs are also referred to as undirected
graphs.

For example, in Figure 14.8, (el, (A, C)) may
be replaced by (el, (C, A)) as the pair between
vertices A and C is unordered. This holds good
for the other two edges too.

In a multigraph, more than one edge may con-
nect the same two vertices. Two or more connect-
ing edges between the same pair of vertices may

not the members) then no new combination is
formed. One can choose r objects in any order
from a total of n objects by using "C_ways, where,
"C.=n!/[rl* (n—1)!].

© ISO/IEC 2016 — All rights reserved

reflect multiple associations between the same
two vertices. Such edges are called parallel or
multiple edges.

For example, in Figure 14.9, the edges e3 and
e4 are both between A and B. Figure 14.9 is a
multigraph where edges e3 and e4 are multiple
edges.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

Mathematical Foundations 14-9

A A directed graph G = (V, E) consists of a set of
ed vertices V and a set of edges E that are ordered
pairs of elements of V. A directed graph may con-
tain loops.
For example, in Figure 14.11, G =(V, E) where
el el V={A,B,C},E={el,e2,¢3},and F = {(el, (A,
CHe2-BCH+e3 B A
J75 \F=5" U > 5 S ERITY
\/ \ A
B e2 C
_ 15 76
Figure 14.9. Example of a Multigraph
. e3 el
In a pseudograph, edges connecting a node to
itself are allowed. Such edges are called loops.
iy B e2 03 C
Figure 14.12. Example of a Weighted Graph
e3 el In a weighted graph G = (V, E), each edge has a
e4 weight associated with it. The weight of an edge
typically represents the numeric value associafed
with the relationship between the corresponding
two vertices.
B e2 C

Figure 14.10. Example of a Pseudograph

For example, in Figute 14.10, the edge ¢4 both
starts and ends at B. Figure 14.10 is a pseudo-

graph in which e4is'a loop.

For example, in Figure 14.12, the weights for
the edges el, e2, and e3 are taken to be 76, 93,
and 15 respectively. If the vertices A, B, and| C
represent three cities in a state, the weights, for
example, could be the distances in miles betwden
these cities.

Let G = (V, E) be an undirected graph wjth
edge set E. Then, for an edge e € E where e = {u,
v}, the following terminologies are often used

* u, v are said to be adjacent or neighbors|or
connected.

* edge e is incident with vertices u and v.

» edge e connects u and v.

B e2 C

Figure 14.11. Example of a Directed Graph

* vertices u and v are endpoints for edge e.

If vertex v € V, the set of vertices in the undi-
rected graph G(V, E), then:

* the degree of v, deg(v), is its number of inci-

dent edges, except that any self-loops are
counted twice.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

14-10 SWEBOK® Guide V3.0

« a vertex with degree 0 is called an isolated A A e4 B
vertex.
» a vertex of degree | is called a pendant
vertex. e3 el e2 e3
Let G(V, E) be a directed graph. If e(u, v) is an
edge-o£-Gthen-thefollowingterminologies—are B 2 C D el C

offen used:

b U is adjacent to v, and Vv is adjacent from u.
b ¢ comes from u and goes to V.

b ¢ connects uto v, or e goes from uto v.

b the initial vertex of e is u.

b the terminal vertex of e is v.

[f vertex v is in the set of vertices for the

difected graph G(V, E), then

=

b in-degree of v, deg(v), is the number of
edges going to v, i.e., for which v is the ter-
minal vertex.

b out-degree of v, deg’(v), is the number of

edges coming from v, i.e., for which v is the

initial vertex.

degree of v, deg(v) = deg (v) + deg*(v), is the

sum of vs in-degree and out-degree.

b a loop at a vertex contributes 1 to both-in-

degree and out-degree of this vertex.

[t may be noted that, following the definitions
abpve, the degree of a node is unclfanged whether
w¢ consider its edges to be dirécted or undirected.
[n an undirected graph, a path of length n from
u to v is a sequence of n-adjacent edges from ver-
tex u to vertex v.

b A path is acircuit if u=v.

b A path frayerses the vertices along it.

b A path-is simple if it contains no edge more
than-once.

Figure 14.13. Example of Cycles C, and C,

An adjacency list is a table with oneeWw per
vertex, listing its adjacent vertices. The adjacency
listing for a directed graph maintains, & listing of
the terminal nodes for each ofthe- vertex in the
graph.

Vertex | Adiacency
A B,C
B A,B,C
C A,B

Figure 14.14. Adjacency Lists for Graphs in Figures 14.10
and 14.11

For example, Figure 14.14 illustrates the adja-
cency lists for the pseudograph in Figure 14.10
and the directed graph in Figure 14.11. As the
out-degree of vertex C in Figure 14.11 is zero,
there is no entry against C in the adjacency list.

Different representations for a graph—Iike
adjacency matrix, incidence matrix, and adja-
cency lists—need to be studied.

5.2. Trees

A tree T(N, E) is a hierarchical data structure of n
= |N| nodes with a specially designated root node
R while the remaining n — 1 nodes form subtrees
under the root node R. The number of edges |E| in

A cycle on n vertices C_for any n > 3 is a sim-
ple graph where V=1{v,v,,...,v } andE= {{v,
Vobs AV Vabs oo s AV, V1 AV, V

For example, Figure 14.13 illustrates two
cycles of length 3 and 4.

© ISO/IEC 2016 — All rights reserved

a tree would always be equal to [N| — 1.

The subtree at node X is the subgraph of the
tree consisting of node X and its descendants and
all edges incident to those descendants. As an
alternate to this recursive definition, a tree may
be defined as a connected undirected graph with
no simple circuits.

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

A

ISO/IEC TR 19759:2016(E)

Mathematical Foundations 14-11

at level 0. Alternately, the level of a node X is the
length of the unique path from the root of the tree
to node X.

For example, root node A is at level 0 in Fig-
ure 14.15. Nodes B, C, and D are at level 1. The
remaining nodes in Figure 14.15 are all at level 2.

Sk

Figure 14.15. Example of a Tree

J K

However, one should remember that a tree is
strictly hierarchical in nature as compared to a
graph, which is flat. In case of a tree, an ordered
pair is built between two nodes as parent and
child. Each child node in a tree is associated
with only one parent node, whereas this restric-
tion becomes meaningless for a graph where no
parent-child association exists.

An undirected graph is a tree if and only if.
there is a unique simple path between any two of.
its vertices.

Figure 14.15 presents a tree T(N, E) where the
setof nodes N={A,B,C,D, E, F, G, Hy1, J, K}.
The edge set E is {(A, B), (A, C), (A,D), (B, E),
(B, F), (B, G), (C, H), (C, I), D.d), (D, K)3.

The parent of a nonroot nede v is the unique
node u with a directed edge from u to v. Each
node in the tree has a unigue parent node except
the root of the tree.

For example, itiFigure 14.15, root node A is
the parent node fer nodes B, C, and D. Similarly,
B is the parent of E, F, G, and so on. The root
node A.does not have any parent.

A fiode that has children is called an internal
node:

For example, in Figure 14.15, node A or node B
are examples of internal nodes.

The-height-ofatree-is-the-maxinum-oi-thelev-
els of nodes in the tree.
For example, in Figure 14.15, the height of the
tree is 2.
A node is called a leaf'if it has no-children. The
degree of a leaf node is 0.
For example, in Figure 14/15; nodes E through
K are all leaf nodes with degree 0.
The ancestors or predecessors of a nonr¢ot
node X are all themodes in the path from root{to
node X.
For example,in Figure 14.15, nodes A and[D
form the sét.ef ancestors for J.
The sugeessors or descendents of a node X gre
all the'nodes that have X as its ancestor. For a tfee
with/n nodes, all the remaining n — 1 nodes gre
successors of the root node.
For example, in Figure 14.15, node B has siic-
cessors in E, F, and G.
If node X is an ancestor of node Y, then nod¢ Y
is a successor of X.
Two or more nodes sharing the same par¢nt
node are called sibling nodes.
For example, in Figure 14.15, nodes E and| G
are siblings. However, nodes E and J, thouigh
from the same level, are not sibling nodes.
Two sibling nodes are of the same level, but
two nodes in the same level are not necessanily
siblings.
A tree is called an ordered tree if the reja-
tive position of occurrences of children nodeg is
significant.
For example, a family tree is an ordered tfee
if, as a rule, the name of an elder sibling appeqrs
always before (i.e., on the left of) the younger

The degree of a node in a tree is the same as its
number of children.

For example, in Figure 14.15, root node A and
its child B are both of degree 3. Nodes C and D
have degree 2.

The distance of a node from the root node in
terms of number of hops is called its /evel. Nodes
in a tree are at different levels. The root node is

sibling.

In an unordered tree, the relative position of
occurrences between the siblings does not bear
any significance and may be altered arbitrarily.

A binary tree is formed with zero or more nodes
where there is a root node R and all the remaining
nodes form a pair of ordered subtrees under the
root node.

© ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

ISO/IEC TR 19759:2016(E)

14-12 SWEBOK® Guide V3.0

In a binary tree, no internal node can have more
than two children. However, one must consider
that besides this criterion in terms of the degree
of internal nodes, a binary tree is always ordered.
If the positions of the left and right subtrees for

any node in the tree are swapped, then a new tree
is derived
is gerived-

A A

B C C B
Figure 14.16. Examples of Binary Trees

For example, in Figure 14.16, the two binary
trdes are different as the positions of occurrences
oflthe children of A are different in the two trees.

A

D E

Figure 14.17. Example of a Full'‘Binary Tree

According to [1*], a binary.tree is called a full
bipary tree if every internial hode has exactly two
chjldren.

For example, the binary tree in Figure 14.17
is [a full binagy)tree, as both of the two internal
nodes A and Byare of degree 2.

A full<binary tree following the definition
abpve is-also referred to as a strictly binary tree.
F'or. €xample, both binary trees in Figure 14.18

R

S Ow

(2) (®)

Figure 14.18. Example of Complete Binaty\ITrees

Interestingly, following the definitions above,
the tree in Figure 14.18(b) is a‘complete but not
full binary tree as node B/has-only one child in D.
On the contrary, the tréenn Figure 14.17 is a full
—but not complete—<binary tree, as the children
of B occur in the'trec while the children of C do
not appear in the'ast level.

A binary‘tree of height H is balanced if all its
leaf nodes.occur at levels Hor H — 1.

For example, all three binary trees in Figures
14:17and 14.18 are balanced binary trees.

There are at most 2" leaves in a binary tree of
height H. In other words, if a binary tree with L
leaves is full and balanced, then its height is H =
rlogle

For example, this statement is true for the
two trees in Figures 14.17 and 14.18(a) as both
trees are full and balanced. However, the expres-
sion above does not match for the tree in Figure
14.18(b) as it is not a full binary tree.

A binary search tree (BST) is a special kind of
binary tree in which each node contains a distinct
key value, and the key value of each node in the
tree is less than every key value in its right subtree
and greater than every key value in its left subtree.

A traversal algorithm is a procedure for sys-
tematically visiting every node of a binary tree.
Tree traversals may be defined recursively.

are complete binary trees. The tree in Figure
14.18(a) is a complete as well as a full binary
tree. A complete binary tree has all its levels,
except possibly the last one, filled up to capacity.
In case the last level of a complete binary tree is
not full, nodes occur from the leftmost positions
available.

© ISO/IEC 2016 — All rights reserved

If T is binary tree with root R and the remain-
ing nodes form an ordered pair of nonnull left
subtree T, and nonnull right subtree T, below R,
then the preorder traversal function PreOrder(T)
is defined as:

PreOrder(T) = R, PreOrder(T,), PreOrder(T,)
...eqn. 1

https://iecnorm.com/api/?name=c2223ec7ac8eaa29774b66524c76221b

	Blank Page
	Blank Page
	Blank Page
	Blank Page

