TECHNICAL ISO/IECTR
REPORT 19075-3

First edition
2015-07-01

Information technology < "Database
languages — SQL Technical Reports —

Part 3:
SQL Embedded in®Programs using
the Java™ programming language

Technologies de l'information — Langages de base de donnges — SQL
rapports techniques,—

Partie 3: SQL integrées dans des programmes utilisant le lapgage
de programnigtion de Java™

Reference number

@ m ISO/IEC TR 19075-3:2015(E)
Y=
©ISO/IEC 2015

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

ISO/IEC TR 19075-3:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

WwWw.iso.org

ii © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)

Contents Page
0 1= (0 o P Y
INErOAUCTION. .« .o O Y
L GO0 i A 1
2 Normative referenCes. D .3
2.1 ISOand IEC standards. e .3
2.2 Other international standards. i N .3
3 Useof SQL inprogramswritteninJava.coooviiiiiieedSdr i5
3.1 Design goals.5
3.2 Advantages of SQL/OLB over JDBC.t N e e ..5
3.3 Consistency with existing embedded SQL languages. (Y oo ..6
34 Profile customization OVErVIeW. m e ..6
34.1 Profile customization process. Q0 T
34.2 Profile customization UtIHties. o N .. 8
3.5 EXaMPIES. .« . e ..8
35.1 Example of Profile generation and naming.s. 8
3.5.2 Example of a JAR manifest file. o8 . ..8
3.5.3 Host variables.9
3.54 HOSt eXPressions. % .9
355 SQL/OLB ClaUSES. . .« . o v e o e et e e e e e e e e e e e .10
3.5.6 CONNECTION CONEEXES. . o s ettt ettt e e e e e e e e e e .10
3.5.7 Default connection GONEEXL.ttt .10
358] 0] 11
35.8.1 Positional bindings to columNS. e 11
3.5.8.2 Named bindings to COIUMNS. o .12
3.5.83 Providing names for columns of queries. i .13
3.5.9 Inveking SQL-INVOKed roUtines.o .13
3.5.10 | «Using multiple SQL/OLB contexts and CONNECtioNS. vv it i e n .14
3.5.11 L_sQl executioncontrglgpd-statnssr————— — ——— — - .15
3.5.12 Multiple java.sql .ResultSet objects from SQL-invoked procedure calls. 16
3.5.13 Creating an SQL/OLB iterator object from a java.sql .ResultSetoobject...................... 17
3.5.14 Obtaining a Java.sqgl .ResultSet object from an iterator object. 17
3.5.15 Working with user-defined types.ot 18
3516 BatChing. . ..o 19
3507 EXample Program. e 19
3.5.18 Hostvariable definition. 20
©ISO/IEC 2014 — All rights reserved Contents iii

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)

iv SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the

respec
collab
in liaig
have e

Interna

Them
adopte
tional

In excs
that w
to pub
review

Attent
rights.

ISO/IH
Subco

ISO/IH
langug

— P3
— Pe
— Pg
— Pg
— P3

NG

paits may be published without publication of new editions of other parts.

on with 1SO and IEC, also take part in the work. In the field of information technology, 1IS©’and
btablished a joint technical committee, ISO/IEC JTC 1.

in task of the joint technical committee is to prepare International Standards. Dratt-International Sta
d by the joint technical committee are circulated to national bodies for voting.-Publication as an |
Standard requires approval by at least 75 % of the national bodies casting'a vote.

pptional circumstances, when the joint technical committee has collécted data of a different kind
nich is normally published as an International Standard (“state of the art”, for example), it may d
ish a Technical Report. A Technical Report is entirely informative in nature and shall be subject
every five years in the same manner as an International Standard.

on is drawn to the possibility that some of the elements:of this document may be the subject of |
ISO and IEC shall not be held responsible for identifying any or all such patent rights.

C TR 19075-3 was prepared by Joint Technical-Committee ISO/IEC JTC 1, Information techno
mmittee SC 32, Data management and interchange.

C TR 19075 consists of the following parts, under the general title Information technology — D4
ges — SQL Technical Reports:

rt 1: XQuery Regular ExpressioncSupport in SQL

rt 2: SQL Support for Time-Related Information

rt 3: SQL Embedded in.Programs Using the Java™ Programming Language
rt 4: SQL With Routines and Types Using the Java™ Programming Language
rt 5: Row Pattern-Recognition in SQL

TE 1 — TheSindividual parts of multi-part technical reports are not necessarily published together. New editions of one

tional Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

IVE organization to deal with particular Tields of technical activity. ISO and TEC technical commjttees
prate in fields of mutual interest. Other international organizations, governmental and non-governmental,

IEC

ndards

nterna-

from
ecide
to

atent

ogy,

tabase

or more

©ISO/IE

C 2014 — All rights reserved Foreword v

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)

I ntroduction

The organization of this part of ISO/IEC 19075 is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 19075.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this paft of
ISO/IEC 19075, constitute provisions of this part of ISO/IEC 19075.

3) Clause 3, “Use of SQL in programs written in Java”, provides a tutorial on the embedding-of SQL
expressions and statements in programs written in the Java programming language.

vi SQL Embedded in Programs Using thethe Java™ Programming Language ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

TECHNICAL REPORT ISO/IEC DTR 19075-3:2014

| nfor mation technology — Database languages — SQL Technical Reports —

Part 3:
SQL [Embedded in Programs Using the Java™ Programming L anguage

1 Stope

This Technical Report describes the support for the use of SQL within programs yuritten in Java.

The Report discusses the following features of the SQL Language:

— The embedding of SQL expressions and statements in programs writtenin the Java programming lapguage

©ISO/IEC 2014 — All rights reserved

Scope 1

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)

(Blank page)

2 SQL Embedded in Programs Using the the Java™ Programming L anguage ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
2.1 1SO and |EC standards

2 Normativereferences

The following referenced documents are indispensable for the application of this document For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (ingluding
any anpendments) applies.

2.1 | 1SO and |EC standards

[1ISQ9075-1] ISO/IEC 9075-1:2011, Information technology — Database languages — SQL — Part|1:
Framework (SQL/Framework).

[1SP9075-2] ISO/IEC 9075-2:2011, Information technology — Databaselanguages — SQL — Part|2:
Foundation (SQL/Foundation).

[1ISP9075-10] ISO/IEC 9075-10:2008, Information technology “— Database languages — SQL — Part 10:
Object Language Bindings (SQL/OLB).

2.2 | Other international standards

[Unjicode] The Unicode Consortium, The Unicode Standard. (Information about the latest version of the
Unitode standard can be found by using:the "Latest Unicode Version" link on the "Enumerated Versjons of
ThelUnicode Standard™ page.)
htgp://www.unicode.org/yersions/enumeratedversions.html

[Java] The Java™ Language Specification, Third Edition, James Gosling, Bill Joy, Guy Steele, and Gilad
Bragha, Prentice Hall, June.14;2005, ISBN 0-321-24678-0.

[JDBC] JDBC™ 4.0 Spegification, Final v1.0, Lance Andersen, Sun Microsystems, Inc., November 7| 2006.

[JNPI] Java Naming-and Directory Interface™, Sun Microsystems, Inc. http://java.sun.com/-
J2%e/1.5_074docs/guide/jndi/index.html.

[JaaBeans].Fhe JavaBeans™ 1.01 Specification
http://java.sun.com/products/javabeans/docs/spec.html

©ISO/IEC 2014 — All rights reserved Normativereferences 3

http://www.unicode.org/versions/enumeratedversions.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html
http://java.sun.com/products/javabeans/docs/spec.html
https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)

(Blank page)

4 SQL Embedded in Programs Using thethe Java™ Programming L anguage ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

3

31

The

3.2

JDBC
to fill 4

DTR 19075-3:2014(E)
3.1 Design goals

Use of SQL in programswritten in Java

Design goals

fo’[Iowing items represent the major design features of [1SO9075-10].

Priovide a concise, legible mechanism for embedding SQL-statements in a program that\otherwise co
to|[Java].

Syntactic and semantic check of SQL-statements prior to program execution(

statements to make sure that they are syntactically and semantically eorrect.
Allow the syntax and semantics of SQL-statements to be location-independent.

Tlpe syntax and semantics of SQL-statements in an SQL/OLB-program do not depend on the config
under which SQL/OLB is running. This makes it possibleto implement SQL/OLB programs that
the client, in the SQL-server, or in a middle tier.

Priovide facilities that enable the programmer to move between the SQL/OLB and JDBC environm
sharing a single SQL-connection in both envirgnments.

Provide for binary portability of translated and compiled Java SQL-client applications such that th
bq used transparently with multiple SQL-servers. In addition, binary portability profiles allow for cust
tion and optimization of SQL-statements within an SQL/OLB application.

Advantages of SQL/OLB over JDBC

such ajmanner as to'free the programmer from the tedious and complex programming interfaces found in
level APIs.

The

©ISO/IEC 2014 — All rights reserved

foLlowing are some major differences between the two:

SQL/OLB source programs are smaller than equivalent JDBC programs since the translator can im

SQL/OLB can use an implementation-defined mechanism at translate time to check embedded SQL-

provides a complete,low-level SQL interface from Java to SQL-implementations. SQL/OLB is de
complementary.role by providing a higher-level programming interface to SQL-implementations in

hforms

ration
un on

ents by

by can
bmiza-

signed

lower-

plicitly

handle many of the tedious programming chores that dynamic interfaces require.

SQL/OLB programs can type-check SQL code at translate time using an implementation-dependent

mechanism. JDBC, being a completely dynamic API, can not.

SQL/OLB programs allow direct embedding of Java host expressions within SQL-statements. JDBC
requires a separate call statement for each bind variable and specifies the binding by position number.

SQL/OLB enforces strong typing of query outputs and values returned and allows type checking on calls.

JDBC passes values to and from SQL without compile time type checking.

Useof SQL in programswrittenin Java 5

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.2 Advantages of SQL/OLB over JDBC

— SQL/OLB provides simplified rules for invoking SQL-invoked routines. [JDBC] requires a generic call

to an SQL-invoked routine, fun, to have the following syntax:

prepStmt.prepareCall (""{call fun(...)}");: // For SQL-invoked procedures
prepStmt._prepareCall (""{? = call fun(...)}"); // For SQL-invoked functions

SQL/OLB provides simplified notations:

#9ql { CALL fun(...) }; // SQL-invoked procedure
// Declare x

#4991 x = { VALUES(fun(.-.)) }; // SQL-invoked function
// VALUES is an SQL construct

3.3 | Consistency with existing embedded SQL languages

ming languages containing embedded SQL are called host languages. Java differs from the tragitional
guages (Ada, C, COBOL, Fortran, MUMPS (M), Pascal, PL/I)(in ways that significantly affect|its
ing of SQL.

a has automatic storage management (also known as “garbage collection) that simplifies the management
storage for data retrieved from SQL-implementations:

— AJl Java types representing composite data, and data.of varying sizes, have a distinguished value njul |,
which can be used to represent the SQL NULL value. This gives Java programs an alternative to thg indi-
cgtor variables that are part of the interfaces to @ther host languages.

— Java is designed to support programs that ake automatically heterogeneously portable (also called |'super
pqrtable” or simply “downloadable”). That, along with Java's type system of classes and interfaces, gnables
cgmponent software. In particular, an SQL/OLB translator, written in Java, can call components that are
specialized by SQL-implementations, in order to leverage the existing authorization, schema checking,
type checking, transactional, andrecovery capabilities that are traditional of SQL-implementationg, and
to|generate code optimized(for particular SQL-implementations.

— Java is designed for binary portability in heterogeneous networks, which promises to enable binary| porta-
bijity for applications that use SQL.

—F

— SQL/OLB extends-the traditional concept of embedded host variables by allowing generalized hos
eXpressions.

3.4 | Profile customization overview

This Subclause describes how implementation-specific “customized” SQL execution control can be added to
SQL/OLB applications. The SQL/OLB runtime framework uses the following interfaces:

— SQLJ.runtime.profile.RT Statement to execute SQL-statements.

— SQLJ.runtime.profile. RT ResultSet to describe query results.

6 SQL Embedded in Programs Using the the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.4 Profile customization overview

— SQLJ.runtime.profile.ConnectedProfileto create RTStatement objects corresponding to particular SQL-
statements.

An implementation is able to control SQL execution by providing an implementation of the RT Statement,
RTResultSet, and ConnectedProfile interfaces. An implementation is able to redirect control to their imple-
mentation by registering customization hooks with the application profiles.

For example, if the client connects to SQL-server A, then a customization that understands SQL-server A's

syste
Inthe
the prg
restorg
profile
the prg
depenc

34.1
The pr
associ
1) D
2) Fq
3y C
4) C
5) Se
6) R

Of the
impler
action

will be used. If the client connects to SQL-server B, then SQL-server B's customization will be
bsence of a connection specific customization, the default JDBC based customization will be'use

d with the profile. In this manner, an implementation-dependent deployment tool is ableyto load

Profile customization process

ted with an application. The profile customization process-¢an be generalized to the following s
scover the profile objects within a JAR file.

r each profile, deserialize the profile object from-the appropriate JAR entry.

eate an SQL-connection with which the profile will be customized.

eate and register a profile customization with the profile.

rialize the customized profile back to persistent storage.

pcreate the JAR contents using theCcustomized serialized profiles.

hentation-dependent, it can’be done using a parameterized tool and JDBC. The rest of the steps i
that can be performed\by any generic utility without specific knowledge of the customization b

perforimed.

The ag
the Jav
allow
above
to app

t of creating and-registering a customization object with a profile (step 4 above) is abstractly defi
a interfacelSQL J.runtime.profile.util .ProfileCustomizer. The intent of defining this interface
QL implementations to concentrate on writing profile customizers and customization objects (s

ication profiles (steps 1 — 3 and 5 — 6 above).

used.
. Like

file object, customization objects are serializable. This allows the customization state to bg stored and

the

inspect and precompile the SQL-statements it contains, register an appropriate customization, and store
file in persistent storage. Then at application runtime, the profile and the registered implementatjon-
ent customization will both be restored, and the customization will be used to exectite the SQL-statgments.

pfile customization process is the act of registering profile customization objects with the profile[s)

eps:

above steps, only step 4) is\likely to change from implementation to implementation. While steg 3) is

nvolve
bing

ned by
s to
ep 4

. while:tools and application implementations concentrate on writing generic tools that apply custgmizers

The profile customizer interface is able to support most customization registration requirements. However, it
is not required that all utilities that register customization objects with a profile implement this interface.
SQL/OLB applications will be able to run and leverage all implementation-specific customization objects reg-
istered with a profile, regardless of whether or not they were registered by a profile customizer. The primary
benefit of conforming to the profile customizer interface is to be able to take advantage of existing and future
automated profile customization utilities that are able to load, call and manipulate profile customizers.

©ISO/IE

C 2014 — All rights reserved Use of SQL in programswrittenin Java 7

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.4 Profile customization overview

342

Profile customization utilities

Profile customizers can be instantiated and used by automated general-purpose profile customization utilities.
An implementation might include a command-line based tool that serves as a customization utility prototype.

In add
— G

— Tight integration of customization utilities with SQL-implementations to automatically customize
prpfiles loaded into the SQL-server.

— B

afplications for available SQL-schemas.

ition to a command line-based utility, other useful customization utilities might include:

Ul-based IDEs used to drag-and-drop customizations into profiles.

the

ckground “SQL/OLB installer” process used as administrative tool to discover and customize SQL/OLB

NQTE 2 — Implementors are encouraged to implement utilities using these and other ideas. Making such’tools publically gvailable

wi

3.5

351

Suppo
clause

packa
#sql
publi

{
pub

{

}
}

Two p
COM
file ca

| greatly benefit and facilitate the SQL/OLB binary-portability effort.

Examples

Example of Profile generation and nhaming

be we have the following file, Bar.SQL J, which defines package COM .foo, and contains three <exeg
s associated with two <connection context>s.

ge COM foo;
Context MyContext;
t class Bar

ic static void doSQL(MyContext ctx) throws SQLException

f/ 1: explicit context

tsql [ctx] { UPDATE TAB1 SET COL1 = COL1 + 2 };

f/ 2: implicit context

tsql { INSERT INT@-TAB2 VALUES(3, "Hello there®) };
¥/ 3: explicit-context again

tsql [ctx] { DELETE FROM TAB1 WHERE COL1 > 500 };

R R Y G T

ooBar_SJProfile0 contains information describing <executable clause>s 1 and 3, and is stored
ed Bar SIProfileQ.ser Com.fooBar S1Profilel describes clatise 2, and-is stored in file

]f)files are created for this file; they are named COM .foo.Bar_SJProfileDand COM .foo.Bar_SJPr

Bar_SJProfilel.ser.

352

Worki

Example of a JAR manifest file

ng again with the file Bar.SQL J from the last example, if the Bar application were packaged for

utable

pfilel.
ina

deployment as a JAR file, the JAR's manifest can be used by SQL/OLB customization utilities to locate the

8 SQ

L Embedded in Programs Using thethe Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

application’s profile files. To allow that use, the profile section of the manifest file would have the following

entries

— Name: COM/foo/Bar_SIJProfile0.ser SQL JProfile: TRUE
— Name: COM/foo/Bar_SJProfilel.ser SQL JProfile: TRUE

353

The following query contains host variable : x (which is the Java variable, Java field, or parameter X vi

in the

SELEC

354

Host e

SELEC

Host e
instang
value i

SELEC

In the
of the

Consig

SET

Assun

Host variables

fcope containing the query):

[COL1, COL2 FROM TABLE1 WHERE :x > COL3

Host expressions

xpressions are evaluated from left to right and can cause side-effects. For example:

[COL1, COL2 FROM TABLE1 WHERE : (x++) > COL3

xpressions are always passed to and retrieved from the*SQL-server using pure value semantics. R
e, in the above example, the value of x++ is determined prior to statement execution and its dete
S the value that is passed to the SQL-server forstatement execution.

[COL1, COL2 FROM TABLE1 WHERE : (Xx[>~i]) > COL3

bhove example, prior to statement execution, the value of i is decremented by 1 (one) and then th
-th element of x is determined and passed to the SQL-server for statement execution.

er the following example of an:SQL/PSM <assignment statement>:

z[i++4]) = o (x[i++4]). +2 (y[i++])
e thati has an initiakvalue of 1 (one). Host expressions are evaluated in lexical order.

There
isincr

re, the array index used to determine the location in the array z is 1 (one), after which the valug
mented by-AY(ene). Consegently, the array index used to determine the location in the array x is

sible

or
mined

b value

of i
D after

whichthe valueofi is incremented by 1 (one). As a result, the array index used to determine the locatjon in

the arr|
4. The

Assig
call to

y y is:3; after which the value of i is incremented by 1 (one). The value of i in the Java space
statemient is then executed. After statement execution, the output value is assigned to z[1] .

S NoOw

an SQL-invoked procedure f 0o that returns the values 2 and 3.

CALL foo(:OUT x, :OUT x)

After execution, x has the value 3.

©ISO/IEC 2014 — All rights reserved

lowing

Use of SQL in programswrittenin Java 9

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

355

SQL/OLB clauses

The following SQL/OLB clause is permitted to appear wherever a Java statement can legally appear and its
purpose is to delete all of the rows in the table named TAB:

#sql { DELETE FROM TAB };

The fo - -
of an QL/OLB executable clause containing the host expressions x, y, and z.

void

{
}

#s@l { INSERT INTO TABL VALUES (X, :y, :z) }:

The following method selects the address of the person whose name is specified by the input host exprg

nane

ADDRESS, into the output host expressions addr , where it is then permittedtg be used, for example, i
to Sygtem.out._printin:

void
{
St

#sql { SELECT ADDRESS INTO : addr

356

In the

#sql

The following illustratés an SQL/OLB connection clause that defines a connection context class named
“I nvgnt ory™

#sql

357

h (int x, String y, float z) throws SQLException

and then retrieves an associated address from the assumed table PEOCPL E; with columns NAME 4

brint_address (String nane) throws SQLException
ring addr ;

FROM PEOPLE
WHERE : name = NAME };

Connection contexts

Following SQL/OLB clause, the connection context is the value of the Java variable myconn.
[myconn] { SELECT ADDRESS INTO :addr

FROM PEOPLE
WHERE «zname = NAME } ;

context\lnventory;

pnsists

pssion
nd
h a call

Default connection context

If an invocation of an SQL/OLB translator indicates that the default connection context class is class G een,
then all SQL/OLB clauses that use the default connection will be translated as if they used the explicit connection
context object G een. get Def aul t Cont ext () . For example, the following two SQL/OLB clauses are
equivalent if the default connection context class is class Gr een:

10 SQL Embedded in Programs Using the the Java™ Programming L anguage

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

#sql { UPDATE TAB SET COL = :x };
#sql [G een. get Def aul t Context ()] { UPDATE TAB SET COL = :Xx };

Programs are permitted to install a connection context object as the default connection by calling setDefaul t-
Context. For example:

Green_setDefaultContext(new Green(argv[0], autoCommit));

argv[0] is assumed to contain a URL. aut oCormmi t is a boolean flag that is true if auto commitimpde
should be on, and false otherwise.

3.5.8 | lterators

3.5.8.1 Positional bindingsto columns

The foflowing is an example of an iterator class declaration that binds-by’position. It declares an iteratgr class
called By Pos, with two columns of types String and int.

#sql public iterator ByPos (String, int);
Assurrle a table PEOPLE with columns FULLNANME and. BKRTHYEAR:

CREATE TABLE PEOPLE (FULLNAME VARCHAR(50),
BIRTHYEAR NUMERIC(4:®))

An itefator object of type By Pos is used in cohjunction with a FETCH. . . | NTOstatement to retrieve (data
from table PEOPLE, as illustrated in the following example:

{
ByPos positer; // declare iterator object
String name = null;
int year = 0;

// populate it

#sql positer = { SELECT FULLNAME, BIRTHYEAR
FROM PEOPLE };

#sql { FETCH zpositer INTO :name, :year };
whije (!positer.endFetch(Q))

bystem-out._printin(name + " was born in " + year);
#sglh{ FETCH :positer INTO :-name, :year };

}

}

The predicate method endFetch () of the iterator object returns true if no more rows are available from the
iterator (specifically, it becomes true following the first FETCH that returns no data).

The first SQL/OLB clause in the block above effectively executes its query and constructs an iterator object
containing the result set returned by the query, and assigns it to variable posi t er . The type of the iterator
object is derived from the assignment target, which is of type By Pos.

©ISO/IEC 2014 — All rights reserved Useof SQL in programswritten in Java 11

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

The second SQL/OLB clause in that block contains a FETCH. . . | NTOstatement. The SQL/OLB translator
checks that the types of host variables in the | NTOclause match the positionally corresponding types of the
iterator columns. The types of the SQL columns in the query shall be convertible to the types of the positionally
corresponding iterator columns, according to the SQL to Java type mapping of SQL/OLB. Those conversions
are statically checked at SQL/OLB translation time if an SQL-connection to an exemplar schema is provided
to the translator.

3.5.8.2 Named bindingsto columns

The following is an example of an iterator class declaration that binds by name. It declares(an iterator glass
called By Nanre, the named accessor methods f ul | NAME and bi r t hYEARof which correspond to the cglumns
FULLINAVE and Bl RTHYEAR:

#sqgl public iterator ByName (String TulINAME,
int birthYEAR);

That iterator class can then be used as follows:

{

ByName namiter; // define iterator object
#sql namiter = { SELECT FULLNAME, BIRTHYEAR

FROM PEOPLE };

String S;

int i;

// advances to next row

whife (namiter.next())

{

i namiter.birthYEAR(Q); // returns: column named BIRTHYEAR

s|= namiter_.fulINAME(Q); // retukns column named FULLNAME
System.out.printin(s + " was born in "+i);

}
}

In this|example, the first SQL/OLB clause constructs an iterator object of type By Nan®e, as that is the type of
the asgignment target in thaticlause. That iterator has generated accessor methods birthYEAR() and
Ful INAMEQ) that return-the data from the result set columns with those names.

The ngmes of the generated accessor methods are an exact case-sensitive match with their definitions on the
iteratof declaration clause. Matching a specific accessor method to a specific column name in the SELELCT list
exprespions is performed using a case-insensitive match.

Two column names that differ only in the case of one or more characters shall use the SQL AS clause t¢ avoid
ambiguity, even if one or both of those column names are specified using delimited identifiers.

Method next() advances the iterator object to successive rows of the result set. It returns true if a next row
is available and falseiif it fails to retrieve a next row because the iterator contains no more rows.

A Java compiler will detect type mismatch errors in the uses of named accessor methods. Additionally, if a
connection to an exemplar schema is provided at translate time, then the SQL/OLB translator will statically
check the validity of the types and names of the iterator columns against the SQL queries associated with it.

12 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

3.5.8.3 Providing namesfor columnsof queries

If the expressions selected by a query are unnamed, or have SQL names that are not legal Java identifiers, then
SQL column aliases can be used to name them. Consider a table named " Tr oubl e! " with a column called
"Not a legal Java identifier":

CREATE TABLE "Trouble!" (
"Not a legal Java identifier"™ VARCHAR(10),
col2 FLOAT)

The following line generates an iterator class called x .

#sql jterator xY (String x, double Y);
The SQL/OLB clause in the following block uses column aliases to associate that column's name with gn
exprespion in the query:

{
XY §t;

#sql it = { SELECT "Not a legal Java identifier'™ AS "X,
COL2 * COL2 AS Y

FROM "Trouble!™ };

whije (it.next()) { System.out.printin(it.x() + it.¥Y());

}
}

The finst line declares a local variable of that iterator class.
The second line initializes that variable to contain a@esult set obtained from the specified query.

The whi | e() loop calls the named accessor:methods of the iterator to obtain and print data from its{rows.

3.5.9 | Invoking SQL -invoked routines

An SQL/OLB executable clause, appearing as a Java statement, can call an SQL-invoked procedure by|means
of the BQL CALL statement;*For example:

#sql { CALL SOME_{®ROC(:INOUT myarg) };

Suppoft for invokifig SQL-invoked routines is not required for conformance to Core SQL/OLB.

SQL-ipvoked-procedures can have I N, OUT, or | NOUT parameters. In the above case, the value of host variable
myar gi; is.changed by the execution of that clause.

An SQL/OLB executable clause can invoke an SQL-invoked function by means of the SQL VALUES construct.
For example, assume an SQL-invoked function F that returns an integer. The following example illustrates an
invocation of that function that then assigns its result to Java local variable x.

{

int x;

©ISO/IEC 2014 — All rights reserved Useof SQL in programswritten in Java 13

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

#sql x ={ VALUES (F(34)) }:
ks

3.5.10 Using multiple SQL/OLB contexts and connections

The fO 1L 1l v € LLL® U U

context to access a table of employees through one connection and another user-defined context to aecess
employee department information via a separate connection. By using distinct contexts, it is possible fgr the
employee and department information to be stored on physically different SQL-servers.

// deg¢lare a new context class for obtaining departments
#sql ¢ontext DeptContext;
#sql ¢ontext EmpContext;
#sqgl fterator Employees (String ename, int deptno);
class|MultiSchema {
voig masterRoutine(String deptURL, String empURL)
throws SQLException
{
/f create a context for querying department info
DeptContext deptCtx = new DeptContext(deptURL, truev);
/{ a second connection
EmpContext empCtx = new EmpContext(empURL, trte);
printEmployees(deptCtx, empCtx);
de¢ptCtx.close();
empCtx.close();
}
// performs a join on deptno field of two~tables
// acgessed from different connections -
void printEmployees(DeptContext deptCitx, EmpContext empCtx)
throws SQLException
{
/{ obtain the employees from“the emp table connection context
Employees emps;
#$ql [empCtx] emps = { SELECT ENAME, DEPTNO FROM EMP };
/f for each employee, obtain the department name
/f using the dept «table connection context
while (emps.next())
{
String dname;
#sql [deptCtx]

SEEECT DNAME INTO :dname

FROM DEPT
WHERE DEPTNO = :(emps.deptno())
¥:
System.out.printIn(employee: " + emps.ename() +

", department: " + dname);

emps.close();

14 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

}
}

For now, it is sufficient to note that close () executed against the connection contexts DeptContext and
EmpContext, and against the iterator emps, frees the resources associated with the object against which it
is invoked.

A programmer might wish to release the resources maintained by the connection context (e.g., ConnectedProfile,
and RTStatement objects) without actually closing the underlying SQL-connection. To this end, conpegtion
context classes also support a close method that takes a boolean argument indicating whether or not.te’close
the unglerlying SQL-connection. Pass the constant CLOSE_CONNECTION if the SQL-connegtion should
be cloged, and KEEP_CONNECTION if it should be retained. The variant of close that takes:no arguments
is a sherthand for calling close(CL OSE_CONNECTION).

As a fipal point, even if not using multiple SQL/OLB connection context objects, explicit manipulatior] of
connegtion objects is recommended. This allows applications to avoid hidden global state (e.g., Java “sfatic
variables”) that would be necessarily used to implement the <SQL connection statement>. In particular, Java
“applefs” and other multi-threaded programs are usually coded to avoid contentien of global state. Such programs
should store connection objects in local variables and use them explicitly in.SQL/OLB clauses.

3.5.11 SQL execution control and status

An exgcution context can be supplied explicitly as an argument to each SQL-statement.

ExecutionContext execCtx = new ExecutionContext();
#STI [execCtx] { DELETE FROM EMP WHERE.SAL > 10000 };
I

If expljcit execution context objects are used, each SQL-statement can be executed using a different exgcution
context object. If an explicit connection context object is also being used, both are available to be queried and
modifipd during execution of the SQL-statement.

#sqgl [connCtx, execCtx] { DELETE FROM EMP
WHERE SAL > 10000 };

If an ekecution context object is not supplied explicitly as an argument to an SQL-statement, then a default

executjon context object is:used implicitly. The default execution context object for a particular SQL-stafement
is obta|ned via the getExecutionContext() method of the connection context object used in the oparation.
For example:

#sql [connCtk]){ DELETE FROM EMP WHERE SAL > 10000 };

The preceding example uses the execution context object associated with the connection context object given
by copnCax. If neither a connection context object nor an execution context object is explicitly supplied, then
the execution context object assoclated with the default connection context object Is used.

The use of an explicit execution context object overrides the execution context boject associated with the con-
nection context object, referenced explicitly or implicitly by an SQL clause.

The following code demonstrates the use of some ExecutionContext methods.

{

ExecutionContext execCtx = new ExecutionContext();
// Wait only 3 seconds for operations to complete

©ISO/IEC 2014 — All rights reserved Useof SQL in programswritten in Java 15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR

19075-3: 2014(E)

3.5 Examples

execCtx.setQueryTimeout(3);
try {

cat¢h(SQLException e) {

3.5.174 Multiplejava.sgl.ResultSet objects from SQL -invoked procedure calls

If exeqution of an SQL-statement produces multiple results, the resources.are not released until all resul

been
resul

Furthef, if one or more side-channel result sets have been left open,‘they should be explicitly closed, bg

their

If the ipvocation of an SQL-invoked procedure does not praduce side-channel result sets, then there is n
to call getNextResultSet. All resources are automaticallyreclaimed as soon as the CALL execution com

The following code snippet demonstrates how muktiple results are processed. The example assumes thg

SQL

when g¢xecuted.

#sql

ResultSet rs;

whil
{

}

The folowing snippet.demonstrates how multiple result sets can be processed simultaneously. The exa
assumes an SQL<invoked procedure named “mul ti _r esul t s” exists and produces between 2 and 1

chan

#sql

ResultSef][] rsets = new ResultSet[10];

// delete using explicit execution context
// if operation takes longer than 3 seconds,
// SQLException is thrown
#sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };
System.out.println

("'removed " + execCtx.getUpdateCount() +

employees™);

/f Assume a timeout occurred
System.out.printIn("'SQLException has occurred with" +

exception " + e)3

processed using getNextResultSet. Accordingly, if an SQL-invoked'procedure might return side-¢
t gets, then the calling program should process all results using‘'getNextResultSet until null is retu

associated resources cannot be released until they are closed.

-invoked procedure named “rul t i _r esul t's” exists and produces one or more side-channel res

[execCtx] { CALL MULTI_RESULTSQ };

e| ((rs = execCtx.getNextResultSet()) = null)
/f process result set

;:close();

-

nel resultsets when executed.

[execCtx] { CALL MULTI_RESULTSQ) };

IS have
hannel
rned.

cause

0 need
pletes.

t an
Lt sets

mple
D side-

ResultSet rs;

int

rsCounter = 0;

// access the ResultSets

whil
{
}

e ((rs = execCtx.getNextResultSet(Statement.KEEP_CURRENT_RESULT)) != null)
rsets[rsCounter++] = rs;

// process ...
// close

for

16 SQL Embedded in Programs Using the the Java™ Programming L anguage

(int 1i=0; i1 < rsCounter; ii++)

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

{ rsets[ii].close();
3

3.5.13 Creating an SQL/OLB iterator object from ajava.sql.ResultSet object

A . areq o . _ H e ersion
clausep een created this way, portable code should not issue any furtherchlls to
a.sql .ResultSet object, because the result of doing so is implementation-defined,

CLV O TAY; v, v,

As an pxample, assume we have the following iterator declaration:

#sql iterator Employees (String ename, double sal) ;

The foJlowing method uses JDBC to perform a dynamic query and uses an instance,of the above iterator decla-
ration fo view the results. It illustrates the use of an iterator conversion statement.

public void listEarnings(Connection conn, String whereClause)
throws SQLException
{
{/ prepare a java.sgl.Statement object to execute a dynamic query
PreparedStatement stmt = conn.prepareStatement()g;
btring query = ""SELECT ename, sal FROM emp WHERE *';
uery += whereClause;
esultSet rs = stmt_executeQuery(query);
mployees emps;
/ Use the iterator conversion statement to create a
/ SQL/OLB iterator from a java.sql_.ResultSet object
sql emps = { CAST :rs };
hile (emps.next()) {

System.out._printin(emps.ename() +

*earns " + emps.sal());

mps.-close(); // closingceéemps also closes rs
stmt_.close();

3.5.14 Obtainingajava.sql.ResultSet object from an iterator object

Every SQL/QLBiterator object, whether typed or untyped, has a getResultSet method that returns a
Javalsqgl .ResultSet object representation of its data. For portable code, the getResultSet() method
should bednvoked before the first next() method invocation on the iterator object. And, once the
Java_sgl-ResultSetobjectias been produced, ati-operations to fetch data, or update the Resuitset,
should be through that java.sqgl .ResultSet object; doing so avoids potential problems due to the
implementation-defined nature of the synchronization (if any) between the iterator object and its
jJava.sql .ResultSet object.

As an example, the following method uses a weakly typed iterator to hold to results of an SQL/OLB query and
then process them using a Java.sql .ResultSet object:

public void showEmployeeNames() throws SQLException

{

©ISO/IEC 2014 — All rights reserved Useof SQL in programswritten in Java 17

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

DTR 19075-3:2014(E)
3.5 Examples

SQLJ.runtime.ResultSetlterator iter;
#sqgl iter = { SELECT ename FROM emp };
ResultSet rs = iter.getResultSet();
while (rs.next(Q)) {
System.out.printIn("employee name: ' + rs.getString(1));
}

iter.close(); // close the iterator, not the result set

}

3.5.13 Working with user-defined types

NQTE 3 — Readers of this Subclause should note that some of the examples herein depend on optional features of the SQL language
ang of the JDBC specification. As a consequence, not all examples are guaranteed to work on all SQL/OLB implementatjons.
They are provided for educational purposes only.

Consider the following type mapping information to be specified in file addrpckg/address-
map - properties:

Fil¢: addressmap.properties
class|addrpckg.Address = STRUCT ADDRESS
class|addrpckg.BusinessAddress = STRUCT BUSINESS
class|addrpckg.HomeAddress = STRUCT HOME
class|addrpckg.ZipCode = DISTINCT ZIPCODE

The first entry defines that the Java class Address in packagé addrpckg corresponds to the SQL user-defined
type ADDRESS. It further indicates that the SQL type.is)a structured type.

The type map specified in the above file can be attached to a connection context class as part of the connection
context declaration in the following way:

#sql ¢ontext Ctx with (typeMap = "addrpckg.addressmap'™)

The SQL/OLB translator and runtime will interpret the specified type map ""addrpckg.addressmap' as
a Javaresource bundle family name;-and look for an appropriate properties or class file using the Java ¢lass

path. This means that the type map can easily be packaged with the rest of the SQL/OLB application off appli-
cation|module.

It is nqw possible to define’host variables or iterators based on the Java types that participate in the typ¢ map:

#sql public iterator ByPos (String, int, addrpckg.Address);
Assumle a table PEOPL E with columns FULLNAME, BIRTHYEAR, and ADDRESS:

CREATE TABLE PEOPLE (

FULENAME CHARACTER VARYING(SQ),
BIRTHYEAR NUMERIC(4,0),
ADDR ADDRESS)

An iterator object of type ByPos is used in conjunction with a FETCH...INTO statement to retrieve data,
including instances of the user-defined type ADDRESS from table PEOPLE, as illustrated in the following
example:

{

ByPos positer; // declare iterator object

18 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

