
Information technology — Database
languages — SQL Technical Reports —
Part 3:
SQL Embedded in Programs using
the JavaTM programming language
Technologies de l’information — Langages de base de données — SQL
rapports techniques —
Partie 3: SQL intégrées dans des programmes utilisant le langage
de programmation de JavaTM

TECHNICAL
REPORT

ISO/IEC TR
19075-3

First edition
2015-07-01

Reference number
ISO/IEC TR 19075-3:2015(E)

© ISO/IEC 2015

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

﻿

ii� © ISO/IEC 2015 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC TR 19075-3:2015(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

Contents Page

Foreword. v

Introduction. vi

1 Scope. 1

2 Normative references. 3
2.1 ISO and IEC standards. 3

2.2 Other international standards. 3

3 Use of SQL in programs written in Java. 5
3.1 Design goals. 5

3.2 Advantages of SQL/OLB over JDBC. 5

3.3 Consistency with existing embedded SQL languages. 6

3.4 Profile customization overview. 6

3.4.1 Profile customization process. 7

3.4.2 Profile customization utilities. 8

3.5 Examples. 8

3.5.1 Example of Profile generation and naming. 8

3.5.2 Example of a JAR manifest file. 8

3.5.3 Host variables. 9

3.5.4 Host expressions. 9

3.5.5 SQL/OLB clauses. 10

3.5.6 Connection contexts. 10

3.5.7 Default connection context. 10

3.5.8 Iterators. 11

3.5.8.1 Positional bindings to columns. 11

3.5.8.2 Named bindings to columns. 12

3.5.8.3 Providing names for columns of queries. 13

3.5.9 Invoking SQL-invoked routines. 13

3.5.10 Using multiple SQL/OLB contexts and connections. 14

3.5.11 SQL execution control and status. 15

3.5.12 Multiple java.sql.ResultSet objects from SQL-invoked procedure calls. 16

3.5.13 Creating an SQL/OLB iterator object from a java.sql.ResultSet object. 17

3.5.14 Obtaining a java.sql.ResultSet object from an iterator object. 17

3.5.15 Working with user-defined types. 18

3.5.16 Batching. 19

3.5.17 Example program. 19

3.5.18 Host variable definition. 20

©ISO/IEC 2014 – All rights reserved Contents iii

DTR 19075-3:2014(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

Index. 23

iv SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC
have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication as an Interna-
tional Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide
to publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to
review every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 19075-3 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 32, Data management and interchange.

ISO/IEC TR 19075 consists of the following parts, under the general title Information technology — Database
languages — SQL Technical Reports:

— Part 1: XQuery Regular Expression Support in SQL

— Part 2: SQL Support for Time-Related Information

— Part 3: SQL Embedded in Programs Using the Java™ Programming Language

— Part 4: SQL With Routines and Types Using the Java™ Programming Language

— Part 5: Row Pattern Recognition in SQL

NOTE 1 — The individual parts of multi-part technical reports are not necessarily published together. New editions of one or more
parts may be published without publication of new editions of other parts.

©ISO/IEC 2014 – All rights reserved Foreword v

DTR 19075-3:2014(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

Introduction

The organization of this part of ISO/IEC 19075 is as follows:

1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 19075.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this part of
ISO/IEC 19075, constitute provisions of this part of ISO/IEC 19075.

3) Clause 3, “Use of SQL in programs written in Java”, provides a tutorial on the embedding of SQL
expressions and statements in programs written in the Java programming language.

vi SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

TECHNICAL REPORT ISO/IEC DTR 19075-3:2014

Information technology — Database languages — SQL Technical Reports —

Part 3:
SQL Embedded in Programs Using the Java™ Programming Language

1 Scope

This Technical Report describes the support for the use of SQL within programs written in Java.

The Report discusses the following features of the SQL Language:

— The embedding of SQL expressions and statements in programs written in the Java programming language

©ISO/IEC 2014 – All rights reserved Scope 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

(Blank page)

2 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 ISO and IEC standards

[ISO9075-1] ISO/IEC 9075-1:2011, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

[ISO9075-2] ISO/IEC 9075-2:2011, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation).

[ISO9075-10] ISO/IEC 9075-10:2008, Information technology — Database languages — SQL — Part 10:
Object Language Bindings (SQL/OLB).

2.2 Other international standards

[Unicode] The Unicode Consortium, The Unicode Standard. (Information about the latest version of the
Unicode standard can be found by using the "Latest Unicode Version" link on the "Enumerated Versions of
The Unicode Standard" page.)
http://www.unicode.org/versions/enumeratedversions.html

[Java] The Java™ Language Specification, Third Edition, James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha, Prentice Hall, June 14, 2005, ISBN 0-321-24678-0.

[JDBC] JDBC™ 4.0 Specification, Final v1.0, Lance Andersen, Sun Microsystems, Inc., November 7, 2006.

[JNDI] Java Naming and Directory Interface™, Sun Microsystems, Inc. http://java.sun.com/-
j2se/1.5.0/docs/guide/jndi/index.html.

[JavaBeans] The JavaBeans™ 1.01 Specification
http://java.sun.com/products/javabeans/docs/spec.html

©ISO/IEC 2014 – All rights reserved Normative references 3

DTR 19075-3:2014(E)
2.1 ISO and IEC standards

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

http://www.unicode.org/versions/enumeratedversions.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html
http://java.sun.com/products/javabeans/docs/spec.html
https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

(Blank page)

4 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

3 Use of SQL in programs written in Java

3.1 Design goals

The following items represent the major design features of [ISO9075-10].

— Provide a concise, legible mechanism for embedding SQL-statements in a program that otherwise conforms
to [Java].

— Syntactic and semantic check of SQL-statements prior to program execution.

SQL/OLB can use an implementation-defined mechanism at translate time to check embedded SQL-
statements to make sure that they are syntactically and semantically correct.

— Allow the syntax and semantics of SQL-statements to be location-independent.

The syntax and semantics of SQL-statements in an SQL/OLB program do not depend on the configuration
under which SQL/OLB is running. This makes it possible to implement SQL/OLB programs that run on
the client, in the SQL-server, or in a middle tier.

— Provide facilities that enable the programmer to move between the SQL/OLB and JDBC environments by
sharing a single SQL-connection in both environments.

— Provide for binary portability of translated and compiled Java SQL-client applications such that they can
be used transparently with multiple SQL-servers. In addition, binary portability profiles allow for customiza-
tion and optimization of SQL-statements within an SQL/OLB application.

3.2 Advantages of SQL/OLB over JDBC

JDBC provides a complete, low-level SQL interface from Java to SQL-implementations. SQL/OLB is designed
to fill a complementary role by providing a higher-level programming interface to SQL-implementations in
such a manner as to free the programmer from the tedious and complex programming interfaces found in lower-
level APIs.

The following are some major differences between the two:

— SQL/OLB source programs are smaller than equivalent JDBC programs since the translator can implicitly
handle many of the tedious programming chores that dynamic interfaces require.

— SQL/OLB programs can type-check SQL code at translate time using an implementation-dependent
mechanism. JDBC, being a completely dynamic API, can not.

— SQL/OLB programs allow direct embedding of Java host expressions within SQL-statements. JDBC
requires a separate call statement for each bind variable and specifies the binding by position number.

— SQL/OLB enforces strong typing of query outputs and values returned and allows type checking on calls.
JDBC passes values to and from SQL without compile time type checking.

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 5

DTR 19075-3:2014(E)
3.1 Design goals

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

— SQL/OLB provides simplified rules for invoking SQL-invoked routines. [JDBC] requires a generic call
to an SQL-invoked routine, fun, to have the following syntax:

prepStmt.prepareCall("{call fun(...)}"); // For SQL-invoked procedures
prepStmt.prepareCall("{? = call fun(...)}"); // For SQL-invoked functions

SQL/OLB provides simplified notations:

#sql { CALL fun(...) }; // SQL-invoked procedure
// Declare x
...
#sql x = { VALUES(fun(...)) }; // SQL-invoked function
 // VALUES is an SQL construct

3.3 Consistency with existing embedded SQL languages

Programming languages containing embedded SQL are called host languages. Java differs from the traditional
host languages (Ada, C, COBOL, Fortran, MUMPS (M), Pascal, PL/I) in ways that significantly affect its
embedding of SQL.

— Java has automatic storage management (also known as “garbage collection”) that simplifies the management
of storage for data retrieved from SQL-implementations.

— All Java types representing composite data, and data of varying sizes, have a distinguished value null,
which can be used to represent the SQL NULL value. This gives Java programs an alternative to the indi-
cator variables that are part of the interfaces to other host languages.

— Java is designed to support programs that are automatically heterogeneously portable (also called “super
portable” or simply “downloadable”). That, along with Java's type system of classes and interfaces, enables
component software. In particular, an SQL/OLB translator, written in Java, can call components that are
specialized by SQL-implementations, in order to leverage the existing authorization, schema checking,
type checking, transactional, and recovery capabilities that are traditional of SQL-implementations, and
to generate code optimized for particular SQL-implementations.

— Java is designed for binary portability in heterogeneous networks, which promises to enable binary porta-
bility for applications that use SQL.

— SQL/OLB extends the traditional concept of embedded host variables by allowing generalized host
expressions.

3.4 Profile customization overview

This Subclause describes how implementation-specific “customized” SQL execution control can be added to
SQL/OLB applications. The SQL/OLB runtime framework uses the following interfaces:

— SQLJ.runtime.profile.RTStatement to execute SQL-statements.

— SQLJ.runtime.profile.RTResultSet to describe query results.

6 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.2 Advantages of SQL/OLB over JDBC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

— SQLJ.runtime.profile.ConnectedProfile to create RTStatement objects corresponding to particular SQL-
statements.

An implementation is able to control SQL execution by providing an implementation of the RTStatement,
RTResultSet, and ConnectedProfile interfaces. An implementation is able to redirect control to their imple-
mentation by registering customization hooks with the application profiles.

For example, if the client connects to SQL-server A, then a customization that understands SQL-server A's
system will be used. If the client connects to SQL-server B, then SQL-server B's customization will be used.
In the absence of a connection specific customization, the default JDBC based customization will be used. Like
the profile object, customization objects are serializable. This allows the customization state to be stored and
restored with the profile. In this manner, an implementation-dependent deployment tool is able to load the
profile, inspect and precompile the SQL-statements it contains, register an appropriate customization, and store
the profile in persistent storage. Then at application runtime, the profile and the registered implementation-
dependent customization will both be restored, and the customization will be used to execute the SQL-statements.

3.4.1 Profile customization process

The profile customization process is the act of registering profile customization objects with the profile(s)
associated with an application. The profile customization process can be generalized to the following steps:

1) Discover the profile objects within a JAR file.

2) For each profile, deserialize the profile object from the appropriate JAR entry.

3) Create an SQL-connection with which the profile will be customized.

4) Create and register a profile customization with the profile.

5) Serialize the customized profile back to persistent storage.

6) Recreate the JAR contents using the customized serialized profiles.

Of the above steps, only step 4) is likely to change from implementation to implementation. While step 3) is
implementation-dependent, it can be done using a parameterized tool and JDBC. The rest of the steps involve
actions that can be performed by any generic utility without specific knowledge of the customization being
performed.

The act of creating and registering a customization object with a profile (step 4 above) is abstractly defined by
the Java interface SQLJ.runtime.profile.util.ProfileCustomizer. The intent of defining this interface is to
allow SQL implementations to concentrate on writing profile customizers and customization objects (step 4
above), while tools and application implementations concentrate on writing generic tools that apply customizers
to application profiles (steps 1 – 3 and 5 – 6 above).

The profile customizer interface is able to support most customization registration requirements. However, it
is not required that all utilities that register customization objects with a profile implement this interface.
SQL/OLB applications will be able to run and leverage all implementation-specific customization objects reg-
istered with a profile, regardless of whether or not they were registered by a profile customizer. The primary
benefit of conforming to the profile customizer interface is to be able to take advantage of existing and future
automated profile customization utilities that are able to load, call and manipulate profile customizers.

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 7

DTR 19075-3:2014(E)
3.4 Profile customization overview

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

3.4.2 Profile customization utilities

Profile customizers can be instantiated and used by automated general-purpose profile customization utilities.
An implementation might include a command-line based tool that serves as a customization utility prototype.
In addition to a command line-based utility, other useful customization utilities might include:

— GUI-based IDEs used to drag-and-drop customizations into profiles.

— Tight integration of customization utilities with SQL-implementations to automatically customize the
profiles loaded into the SQL-server.

— Background “SQL/OLB installer” process used as administrative tool to discover and customize SQL/OLB
applications for available SQL-schemas.

NOTE 2 — Implementors are encouraged to implement utilities using these and other ideas. Making such tools publically available
will greatly benefit and facilitate the SQL/OLB binary-portability effort.

3.5 Examples

3.5.1 Example of Profile generation and naming

Suppose we have the following file, Bar.SQLJ, which defines package COM.foo, and contains three <executable
clause>s associated with two <connection context>s.

package COM.foo;
#sql context MyContext;
public class Bar
{
 public static void doSQL(MyContext ctx) throws SQLException
 {
 // 1: explicit context
 #sql [ctx] { UPDATE TAB1 SET COL1 = COL1 + 2 };
 // 2: implicit context
 #sql { INSERT INTO TAB2 VALUES(3, 'Hello there') };
 // 3: explicit context again
 #sql [ctx] { DELETE FROM TAB1 WHERE COL1 > 500 };
 }
}

Two profiles are created for this file; they are named COM.foo.Bar_SJProfile0 and COM.foo.Bar_SJProfile1.
COM.foo.Bar_SJProfile0 contains information describing <executable clause>s 1 and 3, and is stored in a
file called Bar_SJProfile0.ser. Com.foo.Bar_SJProfile1 describes clause 2, and is stored in file
Bar_SJProfile1.ser.

3.5.2 Example of a JAR manifest file

Working again with the file Bar.SQLJ from the last example, if the Bar application were packaged for
deployment as a JAR file, the JAR's manifest can be used by SQL/OLB customization utilities to locate the

8 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.4 Profile customization overview

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

application's profile files. To allow that use, the profile section of the manifest file would have the following
entries:

— Name: COM/foo/Bar_SJProfile0.ser SQLJProfile: TRUE

— Name: COM/foo/Bar_SJProfile1.ser SQLJProfile: TRUE

3.5.3 Host variables

The following query contains host variable :x (which is the Java variable, Java field, or parameter x visible
in the scope containing the query):

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

3.5.4 Host expressions

Host expressions are evaluated from left to right and can cause side effects. For example:

SELECT COL1, COL2 FROM TABLE1 WHERE :(x++) > COL3

Host expressions are always passed to and retrieved from the SQL-server using pure value semantics. For
instance, in the above example, the value of x++ is determined prior to statement execution and its determined
value is the value that is passed to the SQL-server for statement execution.

SELECT COL1, COL2 FROM TABLE1 WHERE :(x[--i]) > COL3

In the above example, prior to statement execution, the value of i is decremented by 1 (one) and then the value
of the i-th element of x is determined and passed to the SQL-server for statement execution.

Consider the following example of an SQL/PSM <assignment statement>:

SET :(z[i++]) = :(x[i++]) + :(y[i++])

Assume that i has an initial value of 1 (one). Host expressions are evaluated in lexical order.

Therefore, the array index used to determine the location in the array z is 1 (one), after which the value of i
is incremented by 1 (one). Conseqently, the array index used to determine the location in the array x is 2, after
which the value of i is incremented by 1 (one). As a result, the array index used to determine the location in
the array y is 3, after which the value of i is incremented by 1 (one). The value of i in the Java space is now
4. The statement is then executed. After statement execution, the output value is assigned to z[1].

Assignments to output host expressions are also performed in lexical order. For example, consider the following
call to an SQL-invoked procedure foo that returns the values 2 and 3.

CALL foo(:OUT x, :OUT x)

After execution, x has the value 3.

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 9

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

3.5.5 SQL/OLB clauses

The following SQL/OLB clause is permitted to appear wherever a Java statement can legally appear and its
purpose is to delete all of the rows in the table named TAB:

#sql { DELETE FROM TAB };

The following Java method, when invoked, inserts its arguments into an SQL table. The method body consists
of an SQL/OLB executable clause containing the host expressions x, y, and z.

void m (int x, String y, float z) throws SQLException
{
 #sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };
}

The following method selects the address of the person whose name is specified by the input host expression
name and then retrieves an associated address from the assumed table PEOPLE, with columns NAME and
ADDRESS, into the output host expressions addr, where it is then permitted to be used, for example, in a call
to System.out.println:

void print_address (String name) throws SQLException
{
 String addr;
 #sql { SELECT ADDRESS INTO :addr

FROM PEOPLE
WHERE :name = NAME };

}

3.5.6 Connection contexts

In the following SQL/OLB clause, the connection context is the value of the Java variable myconn.

#sql [myconn] { SELECT ADDRESS INTO :addr
FROM PEOPLE
WHERE :name = NAME } ;

The following illustrates an SQL/OLB connection clause that defines a connection context class named
“Inventory”:

#sql context Inventory;

3.5.7 Default connection context

If an invocation of an SQL/OLB translator indicates that the default connection context class is class Green,
then all SQL/OLB clauses that use the default connection will be translated as if they used the explicit connection
context object Green.getDefaultContext(). For example, the following two SQL/OLB clauses are
equivalent if the default connection context class is class Green:

10 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

#sql { UPDATE TAB SET COL = :x };
#sql [Green.getDefaultContext()] { UPDATE TAB SET COL = :x };

Programs are permitted to install a connection context object as the default connection by calling setDefault-
Context. For example:

Green.setDefaultContext(new Green(argv[0], autoCommit));

argv[0] is assumed to contain a URL. autoCommit is a boolean flag that is true if auto commit mode
should be on, and false otherwise.

3.5.8 Iterators

3.5.8.1 Positional bindings to columns

The following is an example of an iterator class declaration that binds by position. It declares an iterator class
called ByPos, with two columns of types String and int.

#sql public iterator ByPos (String, int);

Assume a table PEOPLE with columns FULLNAME and BIRTHYEAR:

CREATE TABLE PEOPLE (FULLNAME VARCHAR(50),
 BIRTHYEAR NUMERIC(4,0))

An iterator object of type ByPos is used in conjunction with a FETCH...INTO statement to retrieve data
from table PEOPLE, as illustrated in the following example:

{
 ByPos positer; // declare iterator object
 String name = null;
 int year = 0;
 // populate it
 #sql positer = { SELECT FULLNAME, BIRTHYEAR

FROM PEOPLE };
 #sql { FETCH :positer INTO :name, :year };
 while (!positer.endFetch())
 {
 System.out.println(name + " was born in " + year);
 #sql { FETCH :positer INTO :name, :year };
 }
}

The predicate method endFetch() of the iterator object returns true if no more rows are available from the
iterator (specifically, it becomes true following the first FETCH that returns no data).

The first SQL/OLB clause in the block above effectively executes its query and constructs an iterator object
containing the result set returned by the query, and assigns it to variable positer. The type of the iterator
object is derived from the assignment target, which is of type ByPos.

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 11

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

The second SQL/OLB clause in that block contains a FETCH...INTO statement. The SQL/OLB translator
checks that the types of host variables in the INTO clause match the positionally corresponding types of the
iterator columns. The types of the SQL columns in the query shall be convertible to the types of the positionally
corresponding iterator columns, according to the SQL to Java type mapping of SQL/OLB. Those conversions
are statically checked at SQL/OLB translation time if an SQL-connection to an exemplar schema is provided
to the translator.

3.5.8.2 Named bindings to columns

The following is an example of an iterator class declaration that binds by name. It declares an iterator class
called ByName, the named accessor methods fullNAME and birthYEAR of which correspond to the columns
FULLNAME and BIRTHYEAR:

#sql public iterator ByName (String fullNAME,
 int birthYEAR);

That iterator class can then be used as follows:

{
 ByName namiter; // define iterator object
 #sql namiter = { SELECT FULLNAME, BIRTHYEAR

FROM PEOPLE };
 String s;
 int i;
 // advances to next row
 while (namiter.next())
 {
 i = namiter.birthYEAR(); // returns column named BIRTHYEAR
 s = namiter.fullNAME(); // returns column named FULLNAME
 System.out.println(s + " was born in "+i);
 }
}

In this example, the first SQL/OLB clause constructs an iterator object of type ByName, as that is the type of
the assignment target in that clause. That iterator has generated accessor methods birthYEAR() and
fullNAME() that return the data from the result set columns with those names.

The names of the generated accessor methods are an exact case-sensitive match with their definitions on the
iterator declaration clause. Matching a specific accessor method to a specific column name in the SELECT list
expressions is performed using a case-insensitive match.

Two column names that differ only in the case of one or more characters shall use the SQL AS clause to avoid
ambiguity, even if one or both of those column names are specified using delimited identifiers.

Method next() advances the iterator object to successive rows of the result set. It returns true if a next row
is available and false if it fails to retrieve a next row because the iterator contains no more rows.

A Java compiler will detect type mismatch errors in the uses of named accessor methods. Additionally, if a
connection to an exemplar schema is provided at translate time, then the SQL/OLB translator will statically
check the validity of the types and names of the iterator columns against the SQL queries associated with it.

12 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

3.5.8.3 Providing names for columns of queries

If the expressions selected by a query are unnamed, or have SQL names that are not legal Java identifiers, then
SQL column aliases can be used to name them. Consider a table named "Trouble!" with a column called
"Not a legal Java identifier":

CREATE TABLE "Trouble!" (
 "Not a legal Java identifier" VARCHAR(10),
 col2 FLOAT)

The following line generates an iterator class called xY.

#sql iterator xY (String x, double Y);

The SQL/OLB clause in the following block uses column aliases to associate that column's name with an
expression in the query:

{
 xY it;
 #sql it = { SELECT "Not a legal Java identifier" AS "x",
 COL2 * COL2 AS Y

FROM "Trouble!" };
 while (it.next()) { System.out.println(it.x() + it.Y());
 }
}

The first line declares a local variable of that iterator class.

The second line initializes that variable to contain a result set obtained from the specified query.

The while() loop calls the named accessor methods of the iterator to obtain and print data from its rows.

3.5.9 Invoking SQL-invoked routines

An SQL/OLB executable clause, appearing as a Java statement, can call an SQL-invoked procedure by means
of the SQL CALL statement. For example:

#sql { CALL SOME_PROC(:INOUT myarg) };

Support for invoking SQL-invoked routines is not required for conformance to Core SQL/OLB.

SQL-invoked procedures can have IN, OUT, or INOUT parameters. In the above case, the value of host variable
myarg is changed by the execution of that clause.

An SQL/OLB executable clause can invoke an SQL-invoked function by means of the SQL VALUES construct.
For example, assume an SQL-invoked function F that returns an integer. The following example illustrates an
invocation of that function that then assigns its result to Java local variable x.

{
 int x;

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 13

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

 #sql x ={ VALUES (F(34)) };
}

3.5.10 Using multiple SQL/OLB contexts and connections

The following program demonstrates the use of multiple concurrent connections. It uses one user-defined
context to access a table of employees through one connection and another user-defined context to access
employee department information via a separate connection. By using distinct contexts, it is possible for the
employee and department information to be stored on physically different SQL-servers.

// declare a new context class for obtaining departments
#sql context DeptContext;
#sql context EmpContext;
#sql iterator Employees (String ename, int deptno);
class MultiSchema {
 void masterRoutine(String deptURL, String empURL)
 throws SQLException
 {
 // create a context for querying department info
 DeptContext deptCtx = new DeptContext(deptURL, true);
 // a second connection
 EmpContext empCtx = new EmpContext(empURL, true);
 printEmployees(deptCtx, empCtx);
 deptCtx.close();
 empCtx.close();
 }
// performs a join on deptno field of two tables
// accessed from different connections.
void printEmployees(DeptContext deptCtx, EmpContext empCtx)
 throws SQLException
 {
 // obtain the employees from the emp table connection context
 Employees emps;
 #sql [empCtx] emps = { SELECT ENAME, DEPTNO FROM EMP };
 // for each employee, obtain the department name
 // using the dept table connection context
 while (emps.next())
 {
 String dname;
 #sql [deptCtx]
 {

SELECT DNAME INTO :dname
FROM DEPT
WHERE DEPTNO = :(emps.deptno())

 };
 System.out.println("employee: " + emps.ename() +
 ", department: " + dname);
 }
 emps.close();

14 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

 }
}

For now, it is sufficient to note that close() executed against the connection contexts DeptContext and
EmpContext, and against the iterator emps, frees the resources associated with the object against which it
is invoked.

A programmer might wish to release the resources maintained by the connection context (e.g., ConnectedProfile,
and RTStatement objects) without actually closing the underlying SQL-connection. To this end, connection
context classes also support a close method that takes a boolean argument indicating whether or not to close
the underlying SQL-connection. Pass the constant CLOSE_CONNECTION if the SQL-connection should
be closed, and KEEP_CONNECTION if it should be retained. The variant of close that takes no arguments
is a shorthand for calling close(CLOSE_CONNECTION).

As a final point, even if not using multiple SQL/OLB connection context objects, explicit manipulation of
connection objects is recommended. This allows applications to avoid hidden global state (e.g., Java “static
variables”) that would be necessarily used to implement the <SQL connection statement>. In particular, Java
“applets” and other multi-threaded programs are usually coded to avoid contention of global state. Such programs
should store connection objects in local variables and use them explicitly in SQL/OLB clauses.

3.5.11 SQL execution control and status

An execution context can be supplied explicitly as an argument to each SQL-statement.

ExecutionContext execCtx = new ExecutionContext();
 #sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };

If explicit execution context objects are used, each SQL-statement can be executed using a different execution
context object. If an explicit connection context object is also being used, both are available to be queried and
modified during execution of the SQL-statement.

#sql [connCtx, execCtx] { DELETE FROM EMP
WHERE SAL > 10000 };

If an execution context object is not supplied explicitly as an argument to an SQL-statement, then a default
execution context object is used implicitly. The default execution context object for a particular SQL-statement
is obtained via the getExecutionContext() method of the connection context object used in the operation.
For example:

#sql [connCtx] { DELETE FROM EMP WHERE SAL > 10000 };

The preceding example uses the execution context object associated with the connection context object given
by connCtx. If neither a connection context object nor an execution context object is explicitly supplied, then
the execution context object associated with the default connection context object is used.

The use of an explicit execution context object overrides the execution context boject associated with the con-
nection context object, referenced explicitly or implicitly by an SQL clause.

The following code demonstrates the use of some ExecutionContext methods.

{
 ExecutionContext execCtx = new ExecutionContext();
 // Wait only 3 seconds for operations to complete

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 15

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

 execCtx.setQueryTimeout(3);
 try {
 // delete using explicit execution context
 // if operation takes longer than 3 seconds,
 // SQLException is thrown
 #sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };
 System.out.println
 ("removed " + execCtx.getUpdateCount() + " employees");
 }
 catch(SQLException e) {
 // Assume a timeout occurred
 System.out.println("SQLException has occurred with" + " exception " + e);
 }
}

3.5.12 Multiple java.sql.ResultSet objects from SQL-invoked procedure calls

If execution of an SQL-statement produces multiple results, the resources are not released until all results have
been processed using getNextResultSet. Accordingly, if an SQL-invoked procedure might return side-channel
result sets, then the calling program should process all results using getNextResultSet until null is returned.
Further, if one or more side-channel result sets have been left open, they should be explicitly closed, because
their associated resources cannot be released until they are closed.

If the invocation of an SQL-invoked procedure does not produce side-channel result sets, then there is no need
to call getNextResultSet. All resources are automatically reclaimed as soon as the CALL execution completes.

The following code snippet demonstrates how multiple results are processed. The example assumes that an
SQL-invoked procedure named “multi_results” exists and produces one or more side-channel result sets
when executed.

#sql [execCtx] { CALL MULTI_RESULTS() };
ResultSet rs;
while ((rs = execCtx.getNextResultSet()) != null)
 { // process result set
 ...
 rs.close();
 }

The following snippet demonstrates how multiple result sets can be processed simultaneously. The example
assumes an SQL-invoked procedure named “multi_results” exists and produces between 2 and 10 side-
channel result sets when executed.

#sql [execCtx] { CALL MULTI_RESULTS() };
ResultSet[] rsets = new ResultSet[10];
ResultSet rs;
int rsCounter = 0;
// access the ResultSets
while ((rs = execCtx.getNextResultSet(Statement.KEEP_CURRENT_RESULT)) != null)
 { rsets[rsCounter++] = rs;
 }
// process ...
// close
for (int ii=0; ii < rsCounter; ii++)

16 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

 { rsets[ii].close();
 }

3.5.13 Creating an SQL/OLB iterator object from a java.sql.ResultSet object

An SQL/OLB iterator object can be created from a java.sql.ResultSet object with the <iterator conversion
clause>. Once an iterator object has been created this way, portable code should not issue any further calls to
the java.sql.ResultSet object, because the result of doing so is implementation-defined.

As an example, assume we have the following iterator declaration:

 #sql iterator Employees (String ename, double sal) ;

The following method uses JDBC to perform a dynamic query and uses an instance of the above iterator decla-
ration to view the results. It illustrates the use of an iterator conversion statement.

 public void listEarnings(Connection conn, String whereClause)
 throws SQLException
 {
 // prepare a java.sql.Statement object to execute a dynamic query
 PreparedStatement stmt = conn.prepareStatement();
 String query = "SELECT ename, sal FROM emp WHERE ";
 query += whereClause;
 ResultSet rs = stmt.executeQuery(query);
 Employees emps;
 // Use the iterator conversion statement to create a
 // SQL/OLB iterator from a java.sql.ResultSet object
 #sql emps = { CAST :rs };
 while (emps.next()) {
 System.out.println(emps.ename() +
 " earns " + emps.sal());
 }
 emps.close(); // closing emps also closes rs
 stmt.close();
 }

3.5.14 Obtaining a java.sql.ResultSet object from an iterator object

Every SQL/OLB iterator object, whether typed or untyped, has a getResultSet method that returns a
java.sql.ResultSet object representation of its data. For portable code, the getResultSet() method
should be invoked before the first next() method invocation on the iterator object. And, once the
java.sql.ResultSet object has been produced, all operations to fetch data, or update the ResultSet,
should be through that java.sql.ResultSet object; doing so avoids potential problems due to the
implementation-defined nature of the synchronization (if any) between the iterator object and its
java.sql.ResultSet object.

As an example, the following method uses a weakly typed iterator to hold to results of an SQL/OLB query and
then process them using a java.sql.ResultSet object:

 public void showEmployeeNames() throws SQLException
 {

©ISO/IEC 2014 – All rights reserved Use of SQL in programs written in Java 17

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

 SQLJ.runtime.ResultSetIterator iter;
 #sql iter = { SELECT ename FROM emp };
 ResultSet rs = iter.getResultSet();
 while (rs.next()) {
 System.out.println("employee name: " + rs.getString(1));
 }
 iter.close(); // close the iterator, not the result set
 }

3.5.15 Working with user-defined types

NOTE 3 — Readers of this Subclause should note that some of the examples herein depend on optional features of the SQL language
and of the JDBC specification. As a consequence, not all examples are guaranteed to work on all SQL/OLB implementations.
They are provided for educational purposes only.

Consider the following type mapping information to be specified in file addrpckg/address-
map.properties:

file: addressmap.properties
class.addrpckg.Address = STRUCT ADDRESS
class.addrpckg.BusinessAddress = STRUCT BUSINESS
class.addrpckg.HomeAddress = STRUCT HOME
class.addrpckg.ZipCode = DISTINCT ZIPCODE

The first entry defines that the Java class Address in package addrpckg corresponds to the SQL user-defined
type ADDRESS. It further indicates that the SQL type is a structured type.

The type map specified in the above file can be attached to a connection context class as part of the connection
context declaration in the following way:

#sql context Ctx with (typeMap = "addrpckg.addressmap")

The SQL/OLB translator and runtime will interpret the specified type map "addrpckg.addressmap" as
a Java resource bundle family name, and look for an appropriate properties or class file using the Java class
path. This means that the type map can easily be packaged with the rest of the SQL/OLB application or appli-
cation module.

It is now possible to define host variables or iterators based on the Java types that participate in the type map:

#sql public iterator ByPos (String, int, addrpckg.Address);

Assume a table PEOPLE with columns FULLNAME, BIRTHYEAR, and ADDRESS:

CREATE TABLE PEOPLE (
 FULLNAME CHARACTER VARYING(50),
 BIRTHYEAR NUMERIC(4,0),
 ADDR ADDRESS)

An iterator object of type ByPos is used in conjunction with a FETCH...INTO statement to retrieve data,
including instances of the user-defined type ADDRESS from table PEOPLE, as illustrated in the following
example:

{
 ByPos positer; // declare iterator object

18 SQL Embedded in Programs Using the the Java™ Programming Language ©ISO/IEC 2014 – All rights reserved

DTR 19075-3:2014(E)
3.5 Examples

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 19
07

5-3
:20

15

https://iecnorm.com/api/?name=350ac8338fec1f8efb6891608a9a7f4e

