TECHNICAL ISO/IEC
REPORT TR

15580

Second edition
2001-06-01

Information technology — Rrogramming
languages — Fortran — Floating-poipt
exception handling

Technologies de l'information —Langages de programmation 4 Fortran —
Manipulation de I'exception du‘peint flottant

Reference number
ISO/IEC TR 15580:2001(E)

© ISO/IEC 2001

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. 1ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with 1SO and IEC, also take part in the work.

In the field of information technology, 1SO and IEC have established a joint technica committee,
ISO/IEC JTC 1.

The main task of technical committeesisto prepare International Standards, but in exceptional ci reurnsiances a
technical gommittee may propose the publication of a Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason therg is the
futurg but not immediate possibility of an agreement on an International Standard;

— type 3, when atechnica committee has collected data of a different kind from that which is nprmally
publigshed as an International Standard (“state of the art”, for exampl€).

Technical |Reports of types 1 and 2 are subject to review within threewyears of publication, to decide ywhether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily haye to be
reviewed Uintil the data they provide are considered to be no longer valid or useful.

Technical [Reports are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Attention |s drawn to the possibility that some of the.elements of this Technical Report may be the supject of
patent rights. 1SO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 15580, which is a Technica -Report of type 2, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their envirgnments
and system softwar e interfaces.

This secdnd edition cancels and replaces the first edition (ISO/IEC TR 15580:1998), which has been
technically revised.

Annex A ¢f this Technical 'Report is for information only.

This Technicad Report specifies an extension of the programming language Fortran, specified by
ISO/IEC 1539-1:1997.

It is the infention of ISO/IEC JTC 1/SC 22 that the semantics and syntax described in this Technical Report be
incorporated in the next revision of ISO/IEC 1539-1:1997 exactly as they are specified here unless experience
in the implementation and use of this feature has identified any errors which need to be corrected, or changes
are required in order to achieve proper integration, in which case every reasonable effort will be made to
minimize the impact of such integration changes on existing commercial implementations.

© ISO/IEC 2001 — All rights reserved i

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

| ntroduction

Exception handling is required for the development of robust and efficient numerical software. In particular, it
is necessary in order to be able to write portable scientific libraries. In numerical Fortran programming, current
practiceisto employ whatever exception handling mechanisms are provided by the system/vendor. This clearly
inhibits the production of fully portable numerical libraries and programs. It is particularly frustrating now that
|EEE arithmetic (specified by IEEE 754-1985 Sandard for binary floating-point arithmetic, also published as
IEC 559:1989, Binary floating-point arithmetic for microprocessor systems) is so widely used, since built into
it are the five conditions. overflow, invalid, divide-by-zero, underflow, and inexact. Our aim is to provide
support for these conditions.

We have taken the opportunity to provide support for other aspects of the |IEEE standard through a set of
elemental [functions that are applicable only to |EEE data types.

This proppsal involves three standard modules.

® | EHE EXCEPTI ONS contains a derived type, some named constants of this type,-and some|simple
progedures. They allow the flags to be tested, cleared, set, saved, or restored.

® | EHE ARI THMVETI C behaves as if it contained a USE statement for al of | EEE_EXCEPTI ONS and
provides support for other IEEE features through further derived types, named constants, and|simple
progedures.

® | EHE FEATURES contains some hamed constants that permit the userto indicate which |EEE features
are essential in the application. Some processors may execute more’slowly when certain features are
requested.

To facilitgte maximum performance, each of the proposed functions-does very little processing of arguments.
In many gases, a processor may generate only afew inline machine code instructions rather than library calls.

In order tp alow for the maximum number of processors t0.provide the maximum value to users, we(do not
require |EEE conformance. A vendor with no |EEE hardware need not provide these modules and any fequest
by the user for any of them with a USE statement-will give a compile-time diagnostic. A vendor|whose
hardware floes not fully conform with the IEEE standard may be unable to provide certain features. In th|s case,
a request for such a feature will give a compilestime diagnostic. Another possibility is that not all flags are
supported|or that the extent of support varies-according to the kind type parameter. The user must utilize an
inquiry fupction to determine if he or she ¢an count on a specific feature of the |EEE standard.

Note that pn implementor should aveid-a macro implementation, as |EEE conformance is often controjled by
compiler $witches. A processor whieh offers a switch to turn off afacility should adjust the values returped for
these inquiries. For example, a processor which allows gradual underflow to be turned off (replaced with flush
to zero) should return falsefor'| EEE_SUPPORT _DENORMAL(X) when a source file is processed wjth that
option on{ Naturally it should return true when that option is not in effect.

The most jmportant yse-of a floating-point exception handling facility is to make possible the development of
much mole efficient software than is otherwise possible. The following ‘hypotenuse’ function, yx?+y?,
illustrates|the use.of the facility in developing efficient software.

REAL FUNCTFON HYPOT(X,)
I Inrare circunstances this nay |lead to the signaling of | EEE OVERFLOW
USE, INTRINSIC :: | EEE_ARI THVETIC
REAL X, Y
REAL SCALED X, SCALED Y, SCALED RESULT
LOG CAL, DI MENSION(2) :: FLAGS
TYPE (| EEE_FLAG TYPE), PARAMETER, DI MENSION(2) :: &
OUT_OF_RANGE = (/ | EEE_OVERFLOW | EEE_UNDERFLOW /)
| NTRI NSI C SQRT, ABS, EXPONENT, MAX, DIG TS, SCALE
I The processor clears the flags on entry

iv © ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

I Try a
HYPOT
CALL
IF (

ISO/IEC TR 15580: 2001(E)

fast algorithmfirst

= SORT(X**2 + Y**2)

| EEE_GET_FLAG(OUT_OF_RANGE, FLAGS)
ANY(FLAGS)) THEN

CALL | EEE_SET_FLAG(OUT_OF RANGE, . FALSE.)
IF (X==0.0 .OR Y==0.0) THEN

EL

EL

HYPOT = ABS(X) + ABS(Y)

SE | F (2* ABS(EXPONENT(X) - EXPONENT(Y)) > DIGA TS(X)+1) THEN
HYPOT = MAX(ABS(X), ABS(Y))! one of X and Y can be ignored
SE I scale so that ABS(X) is near 1

SCALED X = SCALE(X, -EXPONENT(X))

SCALED_Y = SCALE(Y, -EXPONENT(X))

END | F

END |
I The pr
END FUNC

An attemg
time, but i

dlower evaluation may involve scaling and unscaling, and in (very rare) extreme'eases this unscaling ca

overflow

If the ove
exceptiong

Can dl th
aternative
specidl, in
alwaysthg
cases and

if

el

el

end

But this i

Fairgrievgand Tang(1994) and Demmel and Li (1994).

The code

SUALED RESULT = SIKI(SCALED X**°Z2 + SCALED Y* 72)
HYPOT = SCALE(SCALED RESULT, EXPONENT(X)) ! mmy cause overfl ow

F
ocessor resets any flag that was signaling on entry
[Tl ON HYPOT

t is made to evaluate this function directly in the fastest possible way. This-will work almos

after all, the true result might overflow if X and Y are both near the.overflow limit).

flow or underflow flag is signaling on entry, it is reset on«efurn by the processor, so that
are not lost.

this respect, in that the normal and alternative ¢odes try to accomplish the same task. Thig

(inthe first exceptional*region) then
handl e this case

se if (in the second>éxceptional region) then
handl e this case

se
execut e the/nornmal code

5 not only inefficient, it also inverts the logic of the computation. For other examples, se

for, the*HYPOT function can be generalized in an obvious way to compute the Euclidean

every

an exception occurs during this fast computation, a safe but slower way evaluates the functiop. This
| calise

earlier

s be accomplished without the help of an exceptionshandling facility? Yes, it can — in fact, the
code can do the job, but of courseit is much less eificient. That's the point. The HYPOT fungtion is

is not

case. Infact, it very often happens that the alternative code concentrates on handling the exceptional
s not able to handle all of the non-exceptional cases. When this happens, a program which jcannot
take advartage of hardware flags could have a structure like the following:

e Hull,

norm,

X2+ x2+|s¥x2 of an n—vector; the generalization of the aternative code is not so obvious (

though

straightforward) and will be much sower relative to the normal code than is the case with the HYPOT function.

In connection with reliable computation, there is a need for intrinsic conditions further to those of the IEEE

floating-p

oint standard. Examples are:

® | NSUFFI Cl ENT_STORAGE for when the processor is unable to find sufficient storage to continue
execution.

® | NTEGER OVERFLOWand | NTEGER DI VI DE_BY_ZEROfor when an intrinsic integer operation has
avery large result or has a zero denominator.

© ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC

® | NTRI NSI Cfor when an intrinsic procedure has been unsuccessful.

TR 15580: 2001(E)

® SYSTEM ERROR for when a system error occurs.

This proposal has been designed to allow such enhancements in the future.

References

Demmel, JW. and Li, X. (1994). Faster Numerical Algorithms via Exception Handling. |EEE Transactions on
Computers, 43, no. 8, 983-992.

Hull, T.E

exception

Vi

handling. ACM Trans. Math. Software 20, 215-244.

b using

© I1SO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

TECHNICAL REPORT I SO/IEC TR 15580:2001(E)

| nfor mation technology — Programming languages — Fortran —

Floating-point exception handling

1 General

1.1 Scope

This Technical Report specifies an extension of the“programming language Fortran, specified py the
international standard |SO/IEC 1539-1:1997. Its maipa-aim is to provide support for the five exceptiong of the
| EEE stanglard for floating-point arithmetic, but it also’provides support for other features of the | EEE standard.
A processpr is permitted to provide partial support and there are facilities for enquiring about which features
are supported or requiring support of certain features.

Clause 2 gf this Technical Report contains a technical description of the features. It provides an overvigw and
doesnot injclude all the fine details. Elarise 3 contains the editorial changesto the standard and thereby prjovides
a complet¢ definition.

1.2 Normative r eferences

The folloying notmeative documents contain provisions which, through reference in this text, canstitute
provisiong of this;Technica Report. For dated references, subsequent amendments to, or revisions of | any of
these publ|cations do not apply. However, parties to agreements based on this Technical Report are encpuraged
to investigate the-possibility-of apphying the most recent editions-of the normative documents-indicated bel ow.
For undated references, the latest edition of the normative document referred to applies. Members of 1SO and
IEC maintain registers of currently valid Internationa Standards.

ISO/IEC 1539-1:1997, Information technology — Programming languages — Fortran — Part 1: Base language.
IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

Since |EC 60559:1989 was originally |EEE 754-1985 Standard for binary floating-point arithmetic, and iswidely
known by this name, we refer to it as the |EEE standard in this Technical Report.

© ISO/IEC 2001 — All rights reserved 1

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580: 2001(E)

2 Technical specification

2.1 Themodd

This proposal is based on the IEEE model with flags for the floating-point exceptions (invalid, overflow,
divide-by-zero, underflow, inexact), a flag for the rounding mode (nearest, up, down, to-zero), and flags for
whether halting occurs following exceptions. It is not necessary for the hardware to have any such flags (they
may be simulated by software) or for it to support all the modes. Inquiry procedures are available to alow a
program to determine the extent of support. Inquiries are in terms of reals, but the same level of support is
provided for the corresponding complex kind.

Some hargh eak ; G
faster with complled codethat does not support all thefealures ThIS proposal therefore mvolves threer trinsic
modules. | EEE_EXCEPTI ONS is for the exceptions and the minimum requirement is for the\support of
overflow @nd divide-by-zero for all kinds of real and complex data. | EEE_ARI THVETI C-ehaves gs if it
contained |a USE statement for all of | EEE_EXCEPTI ONS and provides support for other 1EEE faatures.
| EEE_FBATURES contains some named constants that permit the user to indicate which\features are egsential
in the applfication. A program isrequired to fail if arequested feature is not available, A he'modules contgin five
derived types (subclause 2.3), named constants to control the level of support (subclause 2.4), and a coljection
of procedyres (subclauses 2.5 to 2.10). None of the procedures is permitted as.an actual argument.

2.2 The|USE statement for an intrinsic module

New syntax on the USE statement provides control over whether it iSintended to access an intrinsic mgdule:
USE, INTRINSIC :: | EEE_ARI THVETI C
or not:
USE, NON_INTRINSIC :: MY_| EEE_ARLTHMVETI C

The | NTRI NSI C statement is not extended. For the old form:
USE | EEE_ARI THVETI C
the processor looks first for a non-intrinsic module.

2.3 Thelderived types and data objects
The module | EEE_EXCEPTI ONS(cahtains the derived types:

® | EEE FLAG TYPE, fariidentifying a particular exception flag. Its only possible values are those of
named constants _(défined in the module: | EEE | NVALI D, | EEE_OVERFLOW
| EEE DI VI DE_BY“"ZERO, | EEE_ UNDERFLOW and | EEE | NEXACT. The modules a so contdinsthe
named array constants

| EEE_USUALN = (/| EEE_OVERFLOW | EEE_DI VI DE_BY_ZERO, | EEE_| NVALI D))

and

| EEE\ALL = (/1 EEE_USUAL, | EEE_UNDERFLOW | EEE | NEXACT/)

o I EE CTI\TI IS TVDI: faor caana tha currant flaatina narpt ctatic

= TOT oV g tHC GO T Ot T Toaiig PO it otcae ol os

The module | EEE_ARI THMVETI C contains the derived types:

® | EEE_CLASS_TYPE, for identifying a class of floating-point values. Its only possible values are those
of named constants defined in the module:
| EEE_SI GNALI NG _NAN, | EEE_QUI ET_NAN, | EEE_NEGATI VE_I NF,
| EEE_NEGATI VE_NORVAL, | EEE_NEGATI VE_DENORVAL, | EEE_NEGATI VE_ZERQ,
| EEE_PGSI Tl VE_ZERQO, | EEE_PCSI Tl VE_DENORVAL, | EEE_POCSI TI VE_NORVAL, and
| EEE_PGSI TI VE_I NF.

2 © ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

| SO/IEC TR 15580:2001(E)

® | EEE_ROUND_TYPE, for identifying a particular rounding mode. Its only possible values are those of
named constants defined in the module: | EEE NEAREST, | EEE TO ZERO | EEE UP, and
| EEE_DOWN for the IEEE modes; and | EEE_OTHER for any other mode.

® Theelementa operator == for two values of one of these typesto return .TRUE. if the values are the same
and .FALSE. otherwise.

® The elemental operator /= for two values of one of these types to return .TRUE. if the values differ and
.FALSE. otherwise.

The module | EEE_FEATURES contains the derived type:

® | EEE_FEATURES_TYPE, for expressing the need for particular |EEE features. Its only possible values
are those of named constants defined in the maodule: | EEE DATATYPE | EEE DENORMAL,
| EEE_DI VI DE, | EEE_HALTI NG, | EEE_| NEXACT_FLAG, | EEE_I NF, | EEE_I NVALLD.[FLAG,
| EEE_NAN, | EEE_ROUNDI NG, | EEE_SQRT, and | EEE_UNDERFLOW FLAG

2.4 Thellevel of support

When ||EEE_EXCEPTIONS or |EEE ARITHVETIC is accessible, J-EEE OVERFLOW and
| EEE DI VI DE_BY_ZERO are supported in the scoping unit for al kinds of reahand complex data. Which
other excdptions are supported may be determined by the function | EEE_SUPPORT _FLAG, see sulpclause
2.6. Whetler control of halting is supported may be determined by the functiond/EEE_SUPPORT_HALTI NG

The extent of support of the other exceptions may be influenced by the aceessibility of the named copstants
| EEE_| NEXACT_FLAG | EEE | NVALI D FLAG and | EEE_UNDERFLOW FLAG of the module
| EEE_FBATURES. If a scoping unit has access to | EEE_UNDERKLOW FLAG of | EEE_FEATURES, the
scoping unit must support underflow and return true from | EEE_SUPPORT_FLAG(| EEE_UNDERFL X)

for at leag one kind of real. Similarly, if | EEE | NEXACT FLAGor | EEE | NVALI D_FLAG s accgssible,
the scoping unit must support the exception and return true from the corresponding inquiry for at least ome kind
of real. Algo, if | EEE_HALTI NGis accessible, the scopihg-unit must support control of halting and retyrn true
from | EEE_SUPPORT_HALTI NG FLAG) for the flag/

If a scopijpg unit does not access | EEE_EXCERTI ONS or | EEE_ARI THVETI C, the level of support is
processor dependent, and need not include support for any exceptions. If aflag is signaling on entry tofsuch a
scoping unit, the processor ensures that it issignaling on exit. If aflagis quiet on entry to such a scoping unit,
whether it|is signaling on exit is processaor dependent.

For processors with IEEE arithmetic, further IEEE support is available through the mnodule
| EEE_ARI THVETI C. The extent of support may be influenced by the accessibility of the named constiants of
the modulg | EEE_FEATURES:If a scoping unit has accessto | EEE_DATATYPE of | EEEFEATURES, the
scoping uhit must support- FlEEE arithmetic and return true from | EEE_SUPPORT_DATATYPE(X) (see
subclause|2.6) for at least.one kind of real. Similarly, if | EEE_DENORVAL, | EEE_DI VI DE, | EEH_| NF,
| EEE_NAN, | EEE_ROUNDI NG, or | EEE_SQRT is accessible, the scoping unit must support the feature and
return trde from (the corresponding inquiry function for at least one kind of rea. In the cpse of
| EEE NDFNG, it must return true for all the rounding modes | EEE_NEAREST, | EEE TO [ZERO,
| EEE_UH, and1T EEE_DOWN.

Execution may be slowed on some processors by the support of some features. If | EEE_EXCEPTI ONS or
| EEE_ARI THVETI Cis accessed but | EEE_FEATURES is not accessed, the vendor is free to choose which
subset to support. The processor’s fullest support is provided when all of | EEE_FEATURES is accessed:

USE | EEE_ARI THVETI C, USE | EEE_FEATURES

but execution may then be slowed by the presence of a feature that is not needed. In all cases, the extent of
support may be determined by the inquiry functions of subclause 2.6.

If aflag issignaling on entry to a procedure, the processor will set it to quiet on entry and restore it to signaling

© I1SO/IEC 2001 — All rights reserved 3

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

on return.

If aflag is quiet on entry to a procedure with accessto | EEE_EXCEPTI ONS or | EEE_ARI THVETI Cand is
signaling on return, the processor will not restore it to quiet.

In a procedure, the processor ensures that the flags for halting have the same values on return as on entry.
In a procedure, the processor ensures that the flags for rounding have the same values on return as on entry.

2.5 The exception flags

The flags are initially quiet and signal when an exception occurs. The value of a flag is determined by the
elemental subroutine

EEE_GET_FLAG (FLAG FLAG VALUE)

where FLAGIs of type | EEE_FLAG_TYPE and FLAG_VALUE is of type default LOG CAL. Béing e gnental
allows an prray of flag values to be obtained at once and obviates the need for alist of flags:

Flag valugs may be assigned by the elemental subroutine
EEE_SET_FLAG (FLAG FLAG_VALUE)

An exceptjon must not signal if this could arise only during execution of an operation further to those required
or permitted by the standard. For example, the statement

IF (F(X)>0.0) Y =1.0/Z
must not ggnal | EEE_DI VI DE_BY_ZEROwhen both F(X) and Z-are zero and the statement
VWHERE(A>0.0) A = 1.0/A

must not g§gnal | EEE_DI VI DE_BY_ZERO. On the other hand, when X has the value 1.0 and Y has the value
0.0, the eqpression

X>0. 00001 . OR X/ Y>0.00001
is permitted to cause the signaling of | EEE_DI VIEDE BY_ZERO.

2.6 Inquiry functions for the features supported
The module | EEE_EXCEPTI ONS eontains the following inquiry functions:

® | EEE SUPPORT FLAG(FLAJ , X]) True if the processor supports an exception flag for all rgals (X
abseqt) or for reals of the'same kind type parameter as the argument X.

® | EEE SUPPORT .HALTI N FLAG) True if the processor supports the ability to control [during
program executionwhether to abort or continue execution after an exception.

The module | EEE\ARI THMETI C contains the following inquiry functions:

® | EEE _SUPPORT_DATATYPE([X]) True if the processor supports |IEEE arithmetic for al reas (X
absent).or for redls of the same kind type parameter as the argument X. Here support means employing an
|EEE data format and performing the operations of +, —, and * as in the IEEE standard whenever the
operands and result all have normal values.

® | EEE_SUPPORT_DENORMAL([X]) True if the processor supports the IEEE denormalized numbers
for all reals (X absent) or for reals of the same kind type parameter as the argument X.

® | EEE_SUPPORT_DI VI DE([X]) Trueif the processor supports divide with the accuracy specified by
the |EEE standard for all reals (X absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT _| NF([X]) True if the processor supports the IEEE infinity facility for al reals (X

4 © ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT_NAN([X]) True if the processor supports the IEEE Not-A-Number facility for all
reals (X absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT_ROUNDI NG ROUND _VALUE[, X]) True if the processor supports a particular
rounding mode for all reals (X absent) or for reals of the same kind type parameter as the argument X.
Here, support includes the ability to change the mode by

CALL | EEE_SET_ROUNDI NG_MODE(ROUND_VAL UE)

® | EEE_SUPPORT_SQRT([X]) Trueif the processor supports |EEE sguare root for al reals (X absent)
or for reals of the same kind type parameter as the argument X.

2.7 Elemental functions

The modyle | EEE_ARI THVETI C contains the following elementa functions for(feals X and Y for|which
| EEE_SUPPORT_DATATYPE(X) and | EEE_SUPPORT_DATATYPE(Y) aretrue:

® | EEE CLASS(X) Returns the IEEE class (see subclause 2.3 for the possible values).
® | EEE COPY_SI G\(X, Y) |EEE copysign function, that is X with the sign of Y.

® | EEE | S _FI NI TE(X) IEEE finite function. Trueif | EEE_CLASS(X) has one of the values
| EEE_NEGATI VE_NORMNAL, | EEE_NEGATI VE_DENORNAL; | EEE_NEGATI VE_ZERQ,
| EEE_PCsI Tl VE_ZERQO, | EEE_PCSI Tl VE_DENORVAL, | EEE_PGCSI TI VE_NORVAL.

| EEE_| S_NAN(X) Trueif the value is IEEE Not-a:Number.

| EEE | S _NEGATI VE(X) Trueif the value is negative (including negative zero).
| EEE | S_NORVAL(X) Trueif the value is@mnormal number.

| EEE LOGB(X) |IEEE logb function, thati's, the unbiased exponent of X.

| EEE NEXT_AFTER(X, Y) Returns.the next representable neighbor of X in the direction towargl Y.

| EEE_REM X, Y) ThelEEE REM function, that is X — Y* N, where N is the integer nearest to the exact
value X/ Y.

| EEE_RI NT(X) Round.to-an integer value according to the current rounding mode.
| EEE_SCALB (X,)(Rettrns 2' X.
| EEE UNORDERED(X, Y) |EEE unordered function. Trueif X or Y isaNaN and false otherwig

| EEE_VALUE(X, CLASS) Generate avalue of agiven |IEEE class. The value of CLASS is permjtted to
be

)

@ I 'EEE SI GNALI NG NAN or | EEE_ QUI ET_NAN if | EEE._ SUPPORT NAN(X) has thé value
true,

® | EEE NEGATI VE | NF or | EEE_POSI Tl VE_I NF if | EEE_SUPPORT | NF(X) has the
value true,

® | EEE_NEGATI VE_DENORMAL or | EEE_PCSI Tl VE_DENORMAL if
| EEE_SUPPORT _DENCORMAL(X) has the value true,

® | EEE_NEGATI VE_NORVAL, | EEE_NEGATI VE_ZERO, | EEE_POSI Tl VE_ZEROor
| EEE_POSI Tl VE_NORVAL.

© ISO/IEC 2001 — All rights reserved 5

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

Although in most casesthe value is processor dependent, the value does not vary between invocations for
any particular X kind type parameter and CLASS value.

2.8 Elemental subroutines
The module | EEE_EXCEPTI ONS contains the following elemental subroutines:
® | EEE_GET_FLAGQ FLAG FLAG VALUE) Get an exception flag.

® | EEE GET_HALTI NG _MODE(FLAG, HALTI NG Get hating mode for an exception. The initial
halting mode is processor dependent. Halting is not necessarily immediate, but normal processing does
not continue.

® | EEE_SET_FLAG(FLAG, FLAG VALUE) Set an exception flag.
® | EEE SET HALTI NG _MODE(FLAG, HALTI NG Controls continuation or halting on exceptions.

2.9 Nontelemental subroutines
The module | EEE_EXCEPTI ONS contains the following non-elemental subroutines;

® | EEE GET_STATUS(STATUS VALUE) Get the current values of the set of flags that define the
current state of the floating point environment. STATUS_VALUE is of typel EEE_STATUS_TYRE.

® | EEE SET_STATUS(STATUS_VALUE) Restore the values of the set of flags that define the gurrent
statel of the floating point environment (usually the floating point status register). STATUS_VALUE is of
type[l EEE_STATUS_TYPE and has been set by acall of | EEE* GET_STATUS.

The module | EEE_ARI THVETI C contains the following non-elemental subroutines:

® | EEE GET_ROUNDI NG MODE(ROUND VALUE) \Get the current I|EEE rounding [mode.
ROUND_VALUE is of type | EEE_ROUND_TYPE.

® | EEE SET_ROUNDI NG_MODE(ROUND_VALUE) Set the current IEEE rounding |mode.
ROUND_VALUE is of type LEEE_ROUND_TYPE. If this is invoked,
| EEE_SUPPORT_ROUNDI NG ROUND:VALUE, X) must be true for any X suchl that
| EEE_SUPPORT_DATATYPE(X) istrue.

210 Transformational function
The module | EEE_ARI THVETHC contains the following transformational function:

® | EEE_SELECTED REAL KIND([P,][R]) As for SELECTED REAL_KI ND but gives ar| IEEE
kind

6 © I1SO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

3 Editstothe standard (I1SO/IEC 1539-1:1997)

Xvi/16. Add ‘A module may be intrinsic (defined by the standard) or nonintrinsic (defined by Fortran code).’
19/6. After ‘procedures,’” add ‘modules,’.
94/11+. Add new item:

(5a) A reference to the transformational function | EEE_SELECTED REAL_KI ND from the intrinsic
module | EEE_ARI THVETI C, where each argument is an initialization expression.

131/33. Add: ‘If any exception (15) is signaling, the processor shall issue awarning on the unit identified by *
in aVRI TE statement, indicating which exceptions are signaling.’.

186/17. AddAn-intrinsic module is defined h\}/ the standard _A-—nhonintrinsic module is defined h\JI —ortran
codg’

186/17+ Add paragraph:
Procgdures and types defined in an intrinsic module are not themselves intrinsic.

187/22-23 Changeto

R1107 use-stmt is USE[[, module-nature] ::] module-name [, rename-list]
or USE [[, module-nature] ::] module-name, ONLY: [only-list]

R1107a module-nature is INTRINSIC
or NON_INTRINSIC

Congtraint: If module-nature is INTRINSIC, module-name shall. be'the name of an intrinsic modyle.

Congtraint: If module-nature is NON_INTRINSIC, modulé-name shall be the name of a noniftrinsic
modyile.

187/31+. Add ‘A use-stmt without a module-nature provides access either to an intrinsic or to a noni mtrinsic
modple. If the module-name is the name of both anvintrinsic and a nonintrinsic module, the nonintrinsic
modpleis accessed.’

228/36. Change ‘.’ to *, unless the intrinsic module tEEE_ARITHMETIC (clause 15) is accessible and IElhere is
support for an infinite or a NaN result,”as appropriate. If an infinite result is returned, the flag
IEEE_OVERFLOW or IEEE_DIVIDE BY_ZERO shal signal; if a NaN result is returned, the flag
IEEE_INVALID shall signal. If all\results are normal, these flags must have the same status as wien the
intrimsic procedure was invoked.!

297/10. Change ‘intrinsic function’.to ‘function that is either intrinsic or is defined in an intrinsic module and’.
297/25. Change ‘and procedlres’ to ‘ procedures, and modules'.

297/26. After ‘and’ add ‘that’.

297/27. Agd ‘ Procedures and types defined in an intrinsic module are not themselvesintrinsic.’.
301/1 Change ‘intrinsic function’ to ‘function that is either intrinsic or is defined in an intrinsic modulq and’.

292+. Add

15. Exceptions and | EEE arithmetic

The modules |IEEE EXCEPTIONS, IEEE ARITHMETIC, and |IEEE FEATURES provide support for
exceptions and IEEE arithmetic. Whether the modules are provided is processor dependent. If the module
IEEE_FEATURES s provided, which of the named constants defined by this standard are included is processor
dependent. The module IEEE_ ARITHMETIC behaves as if it contained a USE statement for
IEEE_EXCEPTIONS and everything that is publicin IEEE_EXCEPTIONS s publicin IEEE_ ARITHMETIC.

When |EEE_EXCEPTIONS or I|EEE_ARITHMETIC is accessible, |EEE_OVERFLOW and

© ISO/IEC 2001 — All rights reserved 7

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

| SO/IEC TR 15580: 2001(E)

IEEE_DIVIDE_BY_ZERO are supported in the scoping unit for all kinds of real and complex data. Which
other exceptions are supported may be determined by the function IEEE_SUPPORT_FLAG, see subclause
15.9, and whether control of halting is supported may be determined by the function
IEEE_SUPPORT_HALTING. The extent of support of the other exceptions may be influenced by the
accessibility of the named constants IEEE INEXACT _FLAG, IEEE INVALID FLAG, and
IEEE_UNDERFLOW_FLAG of the module IEEE _FEATURES. If a scoping unit has access to
IEEE_UNDERFLOW_FLAG of IEEE_FEATURES, the scoping unit must support underflow and return true
from |IEEE_SUPPORT_FLAG(IEEE UNDERFLOW, X) for at least one kind of real. Similarly, if
IEEE_INEXACT_FLAG or IEEE_INVALID_FLAG isaccessible, the scoping unit must support the exception
and return true from the corresponding inquiry for at least one kind of real. Also, if IEEE HALTING is
accessible, the scoping unit must support control of halting and return true from
|[EEE_SUPPORT _HALTING(FCAG) fortheftag:

If a scoping unit does not access IEEE_EXCEPTIONS or IEEE_ARITHMETIC, the level of\support is
processor dependent, and need not include support for any exceptions. If aflag is signaling on entry tofsuch a
scoping umit, the processor ensures that it is signaling on exit. If aflag is quiet on entry to sueh-a scoping unit,
whether it|is signaling on exit is processor dependent.

For processors with IEEE arithmetic, further IEEE support is available)_through the 1nodule
IEEE_AR|THMETIC. The extent of support may be influenced by the accessibility~of the named constiants of
the module IEEE_FEATURES. If a scoping unit has access to IEEE_DATATY.PE of IEEE_FEATURES, the
scoping unit must support IEEE arithmetic and return true from IEEE\SUPPORT_DATATYPE(X) (see
subclause|15.9) for at least one kind of real. Similarly, if IEEE_DENORMAL, IEEE_DIVIDE, |IEEE_INF,
IEEE_NAN, IEEE_ROUNDING, or IEEE_SQRT is accessible, the scoping unit must support the featlire and
return trde from the corresponding inquiry function for at least one kind of rea. In the cpse of
IEEE_ROPNDING, it must return true for al the rounding-modes |IEEE NEAREST, |IEEE TO ZERO,
IEEE_UP]and IEEE_DOWN.

Execution| may be slowed on some processors by the support of some features. If IEEE_ EXCEPTIQNS or
IEEE AR|THMETIC is accessed but IEEE_FEATURES is not accessed, the vendor is free to choosg which
subset to gupport. The processor’s fullest support is‘provided when all of IEEE_FEATURES is accessefl:

USE | EEE_ARI THVETI C, USE: I’EEE_FEATURES

but execufion may then be slowed by the presence of a feature that is not needed. In al cases, the extent of
support mpy be determined by the inquiry.functions.

Notg: The types and procedures,defined in these modules are not themselves intrinsic.

15.1 Derjived data types defined in the module

The modujes IEEE_EXCEPTIONS, IEEE_ ARITHMETIC, and IEEE_FEATURES contain five derived types,
whose components are private.

The module LEEE EXCEPTIONS contains:

® |EEE G— de a-pa 3 ag—lts o ssible-\
constants defined in the modules: IEEE INVALID, |IEEE OVERFLOW,

10se of

named

IEEE_DIVIDE_BY_ZERO, |IEEE_UNDERFLOW, and IEEE_INEXACT. The modules also contains
the array named constants

IEEE_USUAL = (/ IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID /)

and IEEE_ALL = (/ IEEE_USUAL, IEEE_UNDERFLOW, IEEE_INEXACT /).

® |EEE_STATUS TYPE, for saving the current floating point status.
The module IEEE_ARITHMETIC contains:

8 © I1SO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

The module IEEE_FEATURES contains:

15.2 The exceptions

The exceptions are:

ISO/IEC TR 15580:2001(E)

IEEE_CLASS TYPE, for identifying aclass of floating-point values. Its only possible values are those of
named constants defined in the modulee |EEE SIGNALING NAN, IEEE QUIET _NAN,
|IEEE_NEGATIVE_INF, |[EEE_NEGATIVE_NORMAL, |IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO, |[EEE_POSITIVE_ZERO, |[EEE_POSITIVE_DENORMAL,
IEEE_POSITIVE_NORMAL, IEEE_POSITIVE_INF.

IEEE_ROUND_TYPE, for identifying a particular rounding mode. Its only possible values are those of
named constants defined in the module: |EEE NEAREST, IEEE TO ZERO, |EEE UP, and
IEEE_DOWN for the IEEE modes; and IEEE_OTHER for any other mode.

The elemental operator == for two values of one of these typesto return .TRUE. if the values are the same
and .FALSE. otherwise.

The glemental operator /= for two values of one of these types to return .TRUE. if the values differ and
.FALSE. otherwise.

IEEE_FEATURES TY PE, for expressing the need for particular |EEE features. Its 0nly possiblefvalues
are fthose of named constants defined in the module: |IEEE DATATYPE,NEEE DENORMAL,
IEEE_DIVIDE, |EEE HALTING, IEEE INEXACT_FLAG, I|EEE_INF,<4{EEE_INVALID_FLAG,
IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, and IEEE_UNDERFLOW- FLAG.

IEEE_OVERFLOW
This|exception occurs when the result for an intrinsicreal operation or assignment has an absolut¢ value
grealer than a processor-dependent limit, or the Feal or imaginary part of the result for an intrinsic
coen?])I ex operation or assignment has an absolutewal ue greater than a processor-dependent limit.

|IEEE_DIVIDE_BY_ZERO
This|exception occurs when areal or compléx division has a nonzero numerator and a zero denoninator.

IEEE_INVALID
This|exception occurs when areal-ar-complex operation or assignment isinvalid; examples are SQRT(X)
when X is real and has a nonzero negative value, and conversion to an integer (by assignment or an
intrimsic procedure) when the result is too large to be representable.

|[EEE_UNDERFLOW
This|exception occurs when the result for an intrinsic real operation or assignment has an absolut¢ value
less than a processor-dependent limit and loss of accuracy is detected, or the real or imaginary par{ of the
result for anidntrinsic complex operation or assignment has an absolute value less than a
processor-dépendent limit and loss of accuracy is detected.

IEEE_INEXACT

Thislexecention-occurs-when-the result of areal or-complex-operation-or-assianment-is-hot-exact
excepHon SWAeR-HeesUH-BH-a1-6a—-B-cEHAPHEX-BPErEH-BR-BI-assIgReAH-S-HO-ExaGt-

Each exception has aflag whose valueis either quiet or signaling. The value may be determined by the function
IEEE_ GET_FLAG. Itsinitial valueis quiet and it signals when the associated exception occurs. Its status may
aso be changed by the subroutine IEEE_SET FLAG or the subroutine IEEE_SET STATUS. Once signaling,
it remains signaling unless set quiet by an invocation of the subroutine IEEE_SET_FLAG or the subroutine
IEEE_SET STATUS.

If aflag issignaling on entry to a procedure, the processor will set it to quiet on entry and restore it to signaling
on return.

© I1SO/IEC 2001 — All rights reserved 9

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

| SO/IEC TR 15580: 2001(E)

Evaluation of a specification expression may cause an exception to signal.

In a scoping unit that has access to IEEE_ EXCEPTIONS or IEEE_ ARITHMETIC, if an intrinsic procedure
executes normally, the values of the flags IEEE_OVERFLOW, I|IEEE DIVIDE BY_ZERO, and
IEEE_INVALID shall be as on entry to the procedure, even if one or more signals during the calculation. If a
real or complex result is too large for the intrinsic to handle, IEEE_OVERFLOW may signdl. If area or
complex result is a NaN because of an invalid operation (for example, LOG(-1.0)), IEEE_INVALID may
signal. Similar rules apply to format processing and to intrinsic operations: no signaling flag shall be set quiet
and no quiet flag shall be set signaling because of an intermediate calculation that does not affect the result.

Note: An implementation may provide alternative versions of an intrinsic procedure; a practical example
of such alternatives might be one version suitable for a call from a scoping unit with access to

|EEW —
In a seqlience of statements that contains no invocations of IEEE GET _FLAG, |IEEE SET FLAG,

IEEE_GEJ_STATUS, IEEE SET HALTING, or IEEE_SET_STATUS, if the execution of an operation/would
cause an pxception to signa but after execution of the sequence no value of a variable depends jon the
operation,[whether the exception is signaling is processor dependent. For example, when Yvhas the value zero,
whether the code

X=10Y
X =3.0

signals IEEE_DIVIDE BY_ZERO is processor dependent. Another example'is the following:
REAL, PARAMETER :: X=0.0, Y=6.0

F (1.0/X == Y) PRINT *,' Hello world'

where the|processor is permitted to discard the IF statement siice the logical expression can never be trjue and
no value df a variable depends on it.

An exceptjon must not signal if this could arise only during execution of an operation further to those required
or permitted by the standard. For example, the statement

IF (F(X)>0.0) Y = 1X0/Z
must not ggnal IEEE_DIVIDE BY_ZER®When both F(X) and Z are zero and the statement
VWHERE(A>0. 0) A= 1.0/ A

must not ggnal IEEE_DIVIDE_BY ~ZERO. On the other hand, when X hasthe value 1.0 and Y has the value
0.0, the eqpression

X>0. 00001 . OR X/ Y>0. 00001
is permitted to cause the'signaling of IEEE_DIVIDE BY_ZERO.

The procgssor need not support |[EEE INVALID, IEEE UNDERFLOW, and IEEE INEXACT.| If an
exception [is not ;supported, its flag is always quiet. The function IEEE_SUPPORT_FLAG may be yised to
inquire whether a particular flag is supported. If IEEE_INVALID is supported, it signas in the gase of
conversionto an integer (dy assignment or an Mtrinsic procedure) if the Testit 1S 100 farge to be representable.

15.3 The rounding modes
IEEE 754-1985 (also |EC 559:1989) specifies four rounding modes:
® |EEE_NEAREST rounds the exact result to the nearest representable value.
® |EEE _TO ZERO rounds the exact result towards zero to the next representable value.

10 © I1SO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

I SO/IEC TR 15580:2001(E)

® |EEE_UP rounds the exact result towards +infinity to the next representable value.
® |EEE_DOWN rounds the exact result towards —infinity to the next representable value.

The function IEEE_GET_ROUNDING_MODE may be used to inquire which rounding mode is in operation.
Its value is one of the above four or IEEE_OTHER if the rounding mode does not conform to |EEE 754-1985.

If the processor supports the alteration of the rounding mode during execution, the subroutine
IEEE_SET_ROUNDING_MODE may be used to alter it. The function IEEE_SUPPORT_ROUNDING may
be used to inquire whether this facility is available for a particular mode.

In aprocedure other than IEEE_SET _ROUNDING_MODE, the processor shall not change the rounding mode
on entry, and on return shall ensure that the rounding mode is the same as it was on entry.

Note: Within a program, aT Titeral constants thal have the same form have the same value (4.1.2). Therefore,
the value ¢f aliteral constant is not affected by the rounding mode.

154 Hallti ng

Some progessors allow control during program execution of whether to abort or continue execution gfter an
exception|Such control is exercised by invocation of the subroutine IEEE_SET_HALTING_MODE. H3tingis
not pregse and may occur any time after the exception haS_ occurred. The fuinction
IEEE_SUPPORT_HALTING may be used to inquire whether this facility isévailable. The initia halting mode
is processpr dependent.

In a proceplure other than IEEE_SET HALTING_MODE, the processor shall not change the halting mpde on
entry, and|on return shall ensure that the halting mode is the same as-it was on entry.

15.5 The floating point status

The values of al the supported flags for exceptions, founding mode, and halting may be saved in g scalar
variable of type TYPE(IEEE_STATUS_TY PE) with the function IEEE_GET_STATUS and restored with the
subrouting IEEE_SET _STATUS. There are no-facilities for finding the values of particular flags held|within
such avarjable.

Notg: Some processors hold all theseflagsin afloating point status register that can be saved and restored
as ayhole much faster than all-individual flags can be saved and restored. These procedures are prpvided
to eXploit this feature.

15.6 Exgeptional vatues
|EEE 75441985 specifies the following exceptional floating point values:
® Denormalized values have very small absolute values and lowered precision.

@ Infirfitevalues (+infinity and —infinity) are created by overflow or division by zero.

® Not-a-Number (NaN) values are undefined values or values created by an invalid operation.
In this standard, the term normal is used for values that are not in one of these exceptional classes.

The functions IEEE IS FINITE, IEEE IS NAN, IEEE IS NEGATIVE, and IEEE IS NORMAL are
provided to test whether avalueisfinite, NaN, negative, or normal. The function IEEE_VALUE is provided to
generate an |EEE number of any class, including an infinity or a NaN. The functions
IEEE_SUPPORT_DENORMAL, |IEEE_SUPPORT_DIVIDE, IEEE_SUPPORT _INF, and
IEEE_SUPPORT_NAN may be used to inquire whether this facility is available for a particular kind of real.

© ISO/IEC 2001 — All rights reserved 11

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

15.7 |[EEE arithmetic

Thefunction IEEE_SUPPORT _DATATY PE may be used to inquire whether |EEE arithmetic is available for a
particular kind of real. Complete conformance with the IEEE standard is not required, but the normalized
numbers must be exactly those of IEEE single or |EEE double; the arithmetic operators must be implemented
with at least one of the IEEE rounding modes; and the functions copysign, scalb, logb, nextafter, REM, and
unordered must be provided by the functions IEEE COPY_SIGN, IEEE SCALB, |EEE LOGB,
IEEE_NEXT_AFTER, |IEEE_REM, and IEEE_UNORDERED. The inquiry function
IEEE_SUPPORT _DIVIDE is provided to inquire whether the processor supports divide with the accuracy
specified by the IEEE standard. For each of the other arithmetic operators and for each implemented |IEEE
rounding mode, the result shall be as specified in the | EEE standard whenever the operands and | EEE result are
normalized

The inquify function IEEE_SUPPORT_NAN is provided to inquire whether the processor supperts |EEE
NaNs. WHere these are supported, their behaviour for unary and binary operations, including these defined by
intrinsic fyginctions and by functions in intrinsic modules, is as specified in the |EEE standard:

The inquiy function IEEE_SUPPORT _INF is provided to inquire whether the processor supports IEEE
infinities. Where these are supported, their behaviour for unary and binary operations, including those defined
by intrinsig functions and by functions in intrinsic modules, is as specified in the | EEE standard.

IEEE 754;1985 specifies a square root function that returns —0.0 for the square root of —0.0. The fynction
IEEE_SUPPORT_SQRT may be used to inquire whether SQRT is implemented in accord with the |IEEE
standard for a particular kind of real.

The inquiny function IEEE_SUPPORT_STANDARD is provided to ifquire whether the processor suppprts all
the |EEE facilities defined in this standard for a particular kind of real.

15.8 Tahles of the procedures

In this subclause, the procedures defined in the modules are tabulated with the names of their arguments and a
short descfiption.

15.8.1 Induiry functions
The module IEEE_EXCEPTIONS contains the following inquiry functions:
® |EEE_SUPPORT_FLAG(FLAG [, X]) Inquire if the processor supports an exception.

® |EEE_SUPPORT_HALTING(FLAG) Inquire if the processor supports control of halting alter an
exception.

The module IEEE_ARITHMETIC contains the following inquiry functions:
® |EEE SUPPORT_DATATYPE([X]) Inquire if the processor supports | EEE arithmetic.
® |EEE_SUPPORT_DENORMAL([X]) Inquireif the processor supports denormalized numbers.

@ |EEE_SUPPORT DIWDE({XT)tnauireiftheprocessorsupportsdivide withrtheaccuracy specitied by
the |EEE standard.

® |EEE SUPPORT INF([X]) Inquire if processor supports the IEEE infinity.

IEEE_SUPPORT_NAN([X]) Inquire if processor supports the IEEE Not-A-Number.

® |EEE_SUPPORT_ROUNDING(ROUND_VALUE [, X]) Inquire if processor supports a particular
rounding mode.

® |EEE SUPPORT_ SQRT([X]) Inquire if the processor supports |EEE square root.

12 © I1SO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

® |EEE_SUPPORT_STANDARD([X]) Inquire if processor supports all |EEE facilities.

15.8.2 Elemental functions

The module IEEE_ARITHMETIC contains the following elemental functions for reals X and Y for which
|IEEE_SUPPORT_DATATY PE(X) and IEEE_SUPPORT_DATATYPE(Y) are true:

IEEE_CLASS(X) IEEE class.
IEEE_COPY _SIGN(X,Y) IEEE copysign function.
IEEE IS FINITE(X) Determineif value is finite.

15.8.3 Kiir
The modu

15.8.4 Ele
The modu

IEEE

| EER
| EER
| EER
| EER

value X/Y.

| EEH
| EEH
| EEH
| EEH
Notg
insg
thel

|EEE
prec

| EER
| EER
| EER

—SINANCODetermine-vatuets HEEENot=aeNumber
E 1S NORMAL (X) Whether avalueisnormal, that is, neither aninfinity, aNaN, nor denarm
F_LOGB(X) Unbiased exponent in the |EEE floating point format.

E NEXT_AFTER(X,Y) Returns the next representable neighbor of X in the direction toward
F REM(X,Y) The IEEE REM function, that is X — Y*N, where N is the integer nearest to th

E RINT(X) Round to an integer value according to the current rounding mode.

F SCALB(X,]) Returns 2' X.

F UNORDERED(X,Y) IEEE unordered function. True if X or-Y isaNaN and false otherwig
F VALUE(X, CLASS) Generate an | EEE value.

ctions 6.1 and 6.2 of the IEEE standard. For example; the result for an infinity shall be constru

d function
e |[EEE_ARITHMETIC containsthe following transformational function:

F SELECTED_REAL_KIND([P,][R]) Kind type parameter value for an |IEEE real with
sion and range.

mental subroutines

e |IEEE_EXCEPTIONS contains the following elemental subroutines:

F GET_FLAG(FLAG,FLAG_VALUE) Get an exception flag.

F GETHALTING_MODE(FLAG, HALTING) Get halting mode for an exception.
FSET_FLAG(FLAG,FLAG_VALUE) Set an exception flag.

miting case of the result with avalue of arbitrarily large magnitude, when such alimit existg

alized.

Y.
P exact

(D

. If X or Y hasavauethat isaninfinity or aNaN, the'result shall be consistent with the generdl rules

cted as

given

® |[EEE SET HALTING_MODE(FLAG,HALTING) Controls continuation or halting on exceptions.

15.8.5 Non-elemental subroutines

The module IEEE_EXCEPTIONS contains the following non-elemental subroutines:
® |EEE_GET_STATUS(STATUS VALUE) Get the current state of the floating point environment.
® |EEE_SET_STATUS(STATUS VALUE) Restore the state of the floating point environment.

© ISO/IEC 2001 — All rights reserved

13

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

| SO/IEC TR 15580: 2001(E)

The modul

e IEEE_ARITHMETIC contains the following non-elemental subroutines:

® |IEEE_GET_ROUNDING_MODE(ROUND_VALUE) Get the current | EEE rounding mode.
® IEEE_SET_ROUNDING_MODE(ROUND_VALUE) Set the current | EEE rounding mode.

15.9 Specifications of the procedures

In this section, the procedures are described in detail. The procedure names are generic and are not specific. All
the functions are pure. In the examples, it is assumed that the processor supports |EEE arithmetic for default

real.
Notgttisimtended that processors shoutd ot Theck a conditron giverT i a paragragiT tabeted Rest
at cgmpile time, but rather should rely on the programmer writing code such as
| F (1 EEE_SUPPORT _DATATYPE(X)) THEN
C = | EEE_CLASS(X)
ELSE
HDWF
to ajoid a call ever being made on a processor for which the condition is vidlated.
159.1 IEEE_CLASS (X)
Desgription. |EEE class function.
Clags. Elemental function.
Argliment. X shall be of type real.
R&I‘i ction. A program is prohibited from invoking this procedure if IEEE_ SUPPORT _DATATY|
has the value false.
Resylt Characteristics. TYPE(IEEE_CLASS TYPE).
Resylt Value. The result value is one®f: IEEE_SIGNALING_NAN, IEEE_QUIET_NAN,
IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO, IEEE-POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL,
IEEE_POSITIVE_NORMAL ,+EEE_POSITIVE_INF. Neither of the values IEEE_SIGNALING

and

Neit
|EEH
and
the v

Example lEEE_CLASS(—1.0) has the value IEEE_NEGATIVE_NORMAL.

EEE_QUIET_NAN:shall be returned unless IEEE_SUPPORT_NAN(X) has the vaue true.
ner of the values IEEE_NEGATIVE_INF and IEEE_POSITIVE_INF shal be returned
F SUPPORT_INF(X) has the value true. Neither of the values IEEE_NEGATIVE_DENO
EEE_POSKMVE_DENORMAL shall be returned unless IEEE_SUPPORT_DENORMAL (|
alue true.

iction

PE(X)

INAN

unless
RMAL
X) has

15.9.2 IEEE_COPY_SIGN (X, Y)
Description. |[EEE copysign function.

Class. Elemental function.

Arguments. The arguments shall be of type real.

Restriction. A program is prohibited from invoking this procedure if IEEE_ SUPPORT _DATATY PE(X)
or IEEE_SUPPORT_DATATY PE(Y) has the value false.

14

© I1SO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

Result Characteristics. Same as X.

Result Value. The result has the value of X with the sign of Y. Thisistrue even for |EEE special values,

such

asaNaN or an infinity (on processors supporting such values).

Examples. The value of IEEE_COPY _SIGN(X,1.0) is ABS(X) even when X is NaN.

1593 IEEE_GET_FLAG (FLAG, FLAG_VALUE)
Description. Get an exception flag.

Class. Elementa subroutine.

Arguments:

FLAIG shall be of type TYPE(IEEE FLAG _TYPE). It is an INTENT(IN) argument and specifies the
|EEE flag to be obtained.

FLAIG_VALUE shall be of type default logical. Itisan INTENT(OUT) argument. If thévalue of FLAG is
IEEE_INVALID, IEEE_OVERFLOW, IEEE DIVIDE_BY_ZERO, |IEEE~UNDERFLOW, or
IEEE_INEXACT, the result value is true if the corresponding exception flag is signalingland is
false otherwise.

Example. Following CALL IEEE_GET_FLAG(IEEE_OVERFLOW,FLAG VALUE), FLAG_VALUE

istrueif the IEEE_OVERFLOW flag issignaling and is false if it is quiet.

1594 |IEEE_GET_HALTING_MODE (FLAG, HALTING)

Desgription. Get halting mode for an exception.

Clags. Elemental subroutine.

Argliments.

FLAIG shall be of type TYPE(IEEE_FLAG.TYPE). It is an INTENT(IN) argument and specifjes the
IEEE flag. It shall have ong~of the values IEEE_INVALID, |EEE_OVERKLOW,
IEEE_DIVIDE_BY_ZERO, IEEE"UNDERFLOW, and IEEE_INEXACT.

HALUTING shall be of type default logical. It is of INTENT(OUT). The value is true if the exgeption
specified by FLAG will cause halting. Otherwise, the value is false.

Example. To store the hating mode for IEEE_ OVERFLOW, do a calculation without haltirlg, and

restgre the halting modedater:

, I NTRINSI C¢: = | EEE_ARI THVETI C
CAL HALTI'NG

| EEE_GET_HALTI NG MODE(| EEE_OVERFLOW HALTING) ! Store hal ting node
| EEE SET_HALTI NG_MODE(| EEE_OVERFLOW . FALSE.) ! No halting
I*~cal cul ation without halting

D

Notes: Theinitial halting mode is processor dependent. Halting is not precise and may occur some

time after the exception has occurred.

1595 |IEEE_GET_ROUNDING_MODE (ROUND_VALUE)
Description. Get the current | EEE rounding mode.

Class. Subroutine.

© ISO/IEC 2001 — All rights reserved

15

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

I SO/IEC TR 15580:2001(E)

15.9.6 IEEE_GET_STATUS (STATUS VAL UE)

15.9.7 |IEEE_IS FINITE(X)

16

Argument. ROUND_VALUE shall be scaar of type TYPE(IEEE_ROUND_TYPE). It is an
INTENT(OUT) argument and returns the floating point rounding mode, with value IEEE_NEAREST,
IEEE TO _ZERO, IEEE UP, or IEEE DOWN if one of the IEEE modes is in operation and
IEEE_OTHER otherwise.

Example. To store the rounding mode, do a calculation with round to nearest, and restore the rounding
mode later:

USE, INTRINSIC :: | EEE_ARI THVETI C
TYPE(| EEE_ROUND_TYPE) ROUND_VALUE

CALL | EEE_GET_ROUNDI NG MODE(ROUND VALUE) ! Store the roundi ng node
LL 1 EEE SET ROUNDI NG MODE(| EEE_NEAREST)
I calculation with round to nearest
CALL | EEE_SET_ROUNDI NG_MODE(ROUND _VALUE) ! Restore the roundi ng rmede

Note: The result can legally be used only in an IEEE_SET_ROUNDING_MODE:invocatijon.

Desaription. Get the current values of the set of flags that define the current floating point |status,
inclyding al the exception flags.

Clags. Subroutine.

Argliments. STATUS VALUE shall be scaar of type TYPE(IEEE_STATUS TYPE). It
INTENT(OUT) argument and returns the floating point status.

Example. To store al the exception flags, do a calculation involving exception handling, and yestore
them later:

USE, INTRINSIC :: | EEE_ARI THVETI C
TYPE(| EEE_STATUS_TYPE) STATUS_VALUE

S an

CALL | EEE_GET_STATUS(STATUS_VALUE) ! Cet the flags

CALL | EEE_SET_FLAG(| EEE_ALL\~FALSE.) ! Set the flags quiet.
I calculation involying exception handling

CALL | EEE_SET_STATUS(STATUS VALUE) ! Restore the flags

Note: The result can he used only in an IEEE_SET_STATUS invocation.

Desgription. Whether avalue isfinite.
Class. Elemental function.

Argltment. X shall be of type real.

Restfiction. A program is prohibited from invoking this procedure if IEEE SUPPORT DATATYPE(X)
has the value false.

Result Characteristics. Default logical.

Result Value. Theresult hasthe value true if the value of X isfinite, that is, IEEE_CLASS(X) has one of
the values IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, and
IEEE_POSITIVE_NORMAL; otherwise, the result has the value false.

Example. IEEE IS FINITE(1.0) has the value true.

© ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

15.9.8 IEEE_IS NAN (X)
Description. Whether avalue is IEEE Not-a-Number.
Class. Elemental function.
Argument. X shall be of typereal.

Restriction. A program is prohibited from invoking this procedure if IEEE_SUPPORT_NAN(X) hasthe
value false.

Result Characteristics. Default logical.

Result Value. The result has the value true if the value of X is an IEEE NalN: otherwise. it has the value
falsg.

Example. IEEE IS NAN(SQRT(-1.0)) hasthe value true if IEEE_SUPPORT_SQRT(1.0)0)has the value
true.

15.99 |IEEE_IS NEGATIVE (X)
Desgription. Whether avalue is negative.

Class. Elemental function.

Restyiction. A program is prohibited from invoking this procedure if IEEE_SUPPORT_DATATYPE(X)

Arngmt. X shall be of type real.
has

e value false.
Resylt Characteristics. Default logical.

Resylt Value. The result has the vaueXtrue if IEEE CLASS(X) has one of the |values
IEEE_NEGATIVE_NORMAL, |EEE_ NEGATIVE DENORMAL, I|EEE_NEGATIVE ZER(® and
IEEE_NEGATIVE_INF; otherwise, the resdlt has the value false.

Example. IEEE IS NEGATIVE(0.0))-has the value false.

15.9.10 IHEE_IS NORMAL.(X)
Desaription. Whether avalue is normal, that is, neither an infinity, a NaN, nor denormalized.

Clags. Elemental, function.

Restriction. A program is prohibited from invoking this procedure if IEEE_SUPPORT_DATATYPE(X)
has

Arglment. X-shall be of type real.

wala-falca
IC VAIutT 1Tdl oC.

Result Characteristics. Default logical.

Result Value. The result has the value true if IEEE_CLASS(X) has one of the values
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO and
IEEE_POSITIVE_NORMAL; otherwise, the result has the value false.

Example. IEEE IS NORMAL(SQRT(-1.0)) hasthe value falseif IEEE_ SUPPORT_SQRT(1.0) hasthe
value true.

© ISO/IEC 2001 — All rights reserved 17

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

I SO/IEC TR 15580:2001(E)

15.9.11 |IEEE_L OGB (X)

15.9.12 IHEE_NEXT_AFTER (X, Y)

15.9.13 IHEE_REM (X}Y)

18

Description. Unbiased exponent in the |EEE floating point format.
Class. Elemental function.
Argument. X shall be of type real.

Restriction. A program is prohibited from invoking this procedure if IEEE_SUPPORT_DATATY PE(X)
has the value false.

Result Characteristics. Same as X.
Result Value.

VAN E VAP -t] ol tlha ol £ \/ 1 nartbar rafiaiin s ooy NN oo ot oo dlao ol
C \I} M /AToTITINMC ATV UITC VAuT Ul /A To TICIUNICr 2TV, IIIIIIIIl.y, U TNAN, NI TCOUIt TIGO U IC VAl Of the
unbiased exponent of X. Note: this value is equal to EXPONENT(X)-1.

Casg (ii): If X==0, theresult is—infinity if IEEE_SUPPORT_INF(X) is true and -HUGE(X) otherwise;
|[EEE_DIVIDE_BY_ZERO signals.

Example. IEEE_LOGB(-1.1) has the value 0.0.

Desgription. Returns the next representable neighbor of X in the direction toward Y.
Clags. Elemental function.
Argliments. The arguments shall be of type real.

Restyiction. A program is prohibited from invoking this precedure if IEEE_SUPPORT_DATATYPE(X)
or IHREE_SUPPORT_DATATY PE(Y) has the value false:

Resylt Characteristics. Same as X.
Resylt Value.
Casg (i): If X ==Y, theresult is X without-any exception ever being signaled.

Casg (ii): If X /=Y, the result has the value of the next representable neighbor of X in the direction of Y.
The neighbors of zero (of either sign) are both nonzero. IEEE_OVERFLOW is signaled when X
is finite but IEEE_ NEXTAFTER(X,Y) is infinite; IEEE_UNDERFLOW is signaled when
IEEE_NEXT_AFTER(X;Y) is denormalized; in both cases, IEEE_INEXACT signals.

Example. The value of |IEEE. NEXT_AFTER(1.0,2.0) is 1.0+EPSILON(X).

Desgription.dEEE REM function.
Clags. Elemental function.

Argliments. The arguments shall be of type real.

Restriction. A program is prohibited from invoking this procedure if IEEE_SUPPORT_DATATY PE(X)
or IEEE_SUPPORT_DATATY PE(Y) has the value false.

Result Characteristics. Real with the kind type parameter of whichever argument has the greater
precision.

Result Value. The result value, regardliess of the rounding mode, shall be exactly X —Y*N, where N is
the integer nearest to the exact value X/Y; whenever [N — X/Y| = 1/2, N shall be even. If the result value
is zero, the sign shall be that of X.

© ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

Examples. Thevalue of IEEE_REM(4.0,3.0) is 1.0, the value of IEEE_REM(3.0,2.0) is—1.0 the value of
|EEE_REM(5.0,2.0) is 1.0.

15.9.14 IEEE_RINT (X)
Description. Round to an integer value according to the current rounding mode.

Class. Elemental function.
Argument. X shall be of type real.
Restriction. A program is prohibited from invoking this procedure if IEEE_SUPPORT_DATATY PE(X)

hast

evaluefase

Rest

Resl
roun

Examples. If the current rounding mode is round-to-nearest, the value of IEEE_RINT(1.1) is 1.0

currg

15.9.15|E
Desq

Clas

It Characteristics. Same as X.
fing mode. If the result has the value zero, the sign is that of X.

Nt rounding mode is round-up, the value of IEEE_RINT(1.1) is 2.0.

EE_SCALB (X, 1)
ription. Returns 2' X.
s. Elemental function.

Argliments.

X

| shgll be of type integer.
Restfiction. A program is prohibited from inveking this procedure if IEEE_ SUPPORT_DATATY|

has

Resl
Resl
Casd
Cass

Cass

Cass

| be of type redl.

e value false.

It Characteristics. Same as X.

It Value.

(i): If 2' X is representaldle as a normal number, the result has this value.

(i): If X is finitetand 2' X is too large, the IEEE_OVERFLOW exception shall og
I[EEE_SUPPORT) INF(X) is true, the result value is infinity with the sign of X; otherwi
result value is-SIGN(HUGE(X),X).

(iii): If 2"Xis too small and there is loss of accuracy, the IEEE_UNDERFLOW exceptio
occurs. The result is the nearest representable number with the sign of X.

(iv):Jf X isinfinite, the result is the same as X; no exception signals.

It Value. The value of the result is the value of X rounded to an integer according to the ¢urrent

L If the

PE(X)

cur. If
se, the

n snall

Exam

nla Thavualiia Af I CAAL D1 NN 104N
MPTC T TIC VarOC O T OO C D (LU) TS U0

15.9.16 |[EEE_SELECTED_REAL_KIND ([P, R])

Description. Returns a value of the kind type parameter of a |EEE real datatype with decimal precision
of at least P digits and a decimal exponent range of at least R. For data objects of such a type,
|IEEE_SUPPORT_DATATY PE(X) has the value true.

Class. Transformational function.

© ISO/IEC 2001 — All rights reserved

19

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

I SO/IEC TR 15580:2001(E)

15.9.17 IHEE_SET_FLAG (FLAG, FLAG_VALUE)

15.9.18 IHEE_SET_HALTING_MODE (FLAG, HALTING)

20

Arguments. At least one argument shall be present.
P (optional) shall be scalar and of type integer.
R (optional) shall be scalar and of type integer.
Result Characteristics. Default integer scalar.

Result Value. The result has avalue equal to avalue of the kind type parameter of a IEEE real datatype
with decimal precision, as returned by the function PRECISION, of at least P digits and a decimal
exponent range, as returned by the function RANGE, of at least R, or if no such kind type parameter is
available on the processor, the result is—1 if the precision is not available, —2 if the exponent range is not
available, and -3 if neither isavailable. If more than one kind type parameter value meets the criteria, the

value_returned he one with the smallest decimal precision nless there are several such valjies, In

ple. IEEE_SELECTED_REAL_KIND(6,70) has the value KIND(0.0) on a machinejthat slipports
|EEK single precision arithmetic for its default real approximation method.

Desgription. Assign avalue to an exception flag.
Clags. Elemental subroutine.

Argliments.
FLAIG shall be of type TYPE(IEEE_FLAG_TYPE). It is andNTENT(IN) argument. If the v@ue of
FLAG is I[EEE_INVALID, |IEEE_OVERFLOW, |[EEE_DIVIDE_BY_FERO,

IEEE_UNDERFLOW, or IEEE_INEXACT, the corresponding exception flag is assigned g value.

FLAIG_VALUE shall be of type default logical. It isian INTENT(IN) argument. If it has the value true,
the flag is set to be signaling; otherwise, theffag is set to be quiet.

Example. CALL IEEE_SET _FLAG(IEEE_OVERFLOW,.TRUE.) sets the IEEE_OVERFLOW flag to
be signaling.

Desgription. Controls continuation or halting after an exception.
Clags. Elemental subroutine.
Argliments.

FLA|G shall be scalar-and of type TYPE(IEEE_FLAG_TYPE). Itisof INTENT(IN) and shall havg one of
the values: I[EEE_INVALID, |[EEE_OVERFLOW, IEEE_DIVIDE_BY_FERO,
IEEE.UNDERFLOW, and IEEE_INEXACT.

HALTING shall be scalar and of type default logical. It is of INTENT(IN). If the value is trpe, the
exception specified by FLAG will cause halting. Otherwise, execution will continue affer this
exception.

Restriction. A program is prohibited from invoking this procedure if
IEEE_SUPPORT_HALTING(FLAG) has the value false.

Example. CALL IEEE_SET HALTING_MODE(IEEE_DIVIDE_BY_ZERO,. TRUE.) causes halting
after adivide_by_zero exception.

Notes: Theinitia halting modeis processor dependent. Halting is hot precise and may occur some
time after the exception has occurred.

© ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

ISO/IEC TR 15580:2001(E)

15.9.19 IEEE_SET_ROUNDING_MODE (ROUND_VALUE)
Description. Set the current IEEE rounding mode.
Class. Subroutine.

Argument. ROUND_VALUE shall be scalar and of type TYPE(IEEE ROUND_TYPE). It is an
INTENT(IN) argument and specifies the mode to be set.

Restriction. A program is prohibited from invoking this procedure unless
IEEE_SUPPORT_ROUNDING (ROUND_VALUEX) is true for some X such that
|IEEE_SUPPORT_DATATY PE(X) istrue.

Example. To store the rounding mode, do a calculation with round to nearest, and restore the rounding
modp Tater:

USE, INTRINSIC :: | EEE_ARI THVETI C
TYPE(| EEE_ROUND_TYPE) ROUND_VALUE

CALL | EEE_GET_ROUNDI NG_MODE(ROUND_VALUE) ! Store the roundiyng node
CALL | EEE_SET _ROUNDI NG_MODE(| EEE_NEAREST)

: ! calculation with round to nearest

CALL | EEE_SET _ROUNDI NG_MODE(ROUND_VALUE) ! Restore the“wroundi ng node

15.9.20 IHEE_SET_STATUS (STATUS VALUE)
Desgription. Restore the values of the set of flags that define the the floating point status.
Clags. Subroutine.

Argliment. STATUS VALUE shall be scalar and.of*type TYPE(IEEE_STATUS TYPE). If is an
INTENT(IN) argument. Its value shall have been setin a previous invocation of IEEE GET_STATUS.

Example. To store all the exceptions flags, docacalculation involving exception handling, and festore
then) later:

USE, INTRINSIC :: | EEE_ARI THVETIC
TYPE(| EEE_STATUS_TYPE) STATUS VALUE

CALL | EEE_CGET_STATUS(STATUS_VALUE) ! Store the flags
CALL | EEE_SET_FLAGS(JEEE_ALL, . FALSE.) ! Set them qui et
I cal culation ‘involving exception handling

CALL | EEE_SET STATUS(STATUS_VALUE) ! Restore the fl ags

Note: Getting-and setting may be expensive operations. It isthe programmer’ s responsibility to do
it when/necessary to assure correct results.

15.9.21 |IHEE.‘\SUPPORT_DATATYPE ([X])

Description—tnquireif-theprocessor-supportstEEEarithmetic:
Class. Inquiry function.

Argument. X (optional) shall be scalar and of type real.
Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports IEEE arithmetic for al reas (X
absent) or for real variables of the same kind type parameter as X; otherwise, it has the value false. Here,
support means employing an |EEE data format and performing the binary operations of +, —, and * asin

© ISO/IEC 2001 — All rights reserved 21

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

I SO/IEC TR 15580:2001(E)

the |IEEE standard whenever the operands and result all have normal values.

Example. IEEE_SUPPORT_DATATYPE(1.0) has the value true if default reals are implemented as in
the |EEE standard except that underflowed values flush to zero instead of being denormal.

15.9.22 |IEEE_SUPPORT_DENORMAL ([X])

15.9.23 IHEE_SUPPORT _DIVIDE ([X])

Description. Inquire if the processor supports |EEE denormalized numbers.
Class. Inquiry function.
Argument. X (optional) shall of typereal. It may be scalar or array valued.

Req etion A nrookam. s nrobihited from mvolana thic nrocedura wiath, AY4 nracy t If
TotTror: 7T pProgrart o Prorrorea ot TV O 1Y tHro—pProccoarce—yvrtaT—7x T |

|IEEE_SUPPORT_DATATY PE(X) has the value false.
Result Characteristics. Default logical scalar.

Resylt Value. The result has the value true if the processor supports arithmeti¢,operations and
assignments with denormalized numbers (biased exponent e = 0 and fraction f # 0{.seé subclausg 3.2 of
the IEEE standard) for all reals (X absent) or for real variables of the same kind'type parametef as X;
othefwise, it has the value false.

Example. IEEE_SUPPORT_DENORMAL (X) has the value true if the precessor supports denormalized
numpers for X.

Notes. The denormalized numbers are not included in the@3.7.1 model for real numbers pnd all
satisfy the inequality ABS(X) < TINY(X). They usually occur as a result of an arithmetic
operation whose exact result is less thans TINY(X). Such an operation |causes
IEEE_UNDERFLOW to signal unless the resultéis exact. IEEE_SUPPORT_DATATY PE(X) is
falseif the processor never returns a denormalized number as the result of an arithmetic operation.

Desgription. Inquire if the processor supperts divide with the accuracy specified by the |EEE stapdard.
Class. Inquiry function.
Argliment. X (optional) shall of type real. It may be scalar or array valued.

Restfriction. A program (S,*prohibited from invoking this procedure with X present if
|IEEE_SUPPORT_DATATYPE(X) has the value false.

Resylt CharacteristicS. 'Default logical scalar.

Resylt Value. Thetresult hasthe valuetrue if the processor supports divide with the accuracy specified by
the I[EEE standard for al reals (X absent) or for real variables of the same kind type parametef as X;
othefwise, it hasthe value false.

Exarlnple. IEEE_SUPPORT_DIVIDE(X) has the value true if the processor supports IEEE dividg for X.

15.9.24 |EEE_SUPPORT_FLAG (FLAG [, X])

22

Description. Inquire if the processor supports an exception.
Class. Inquiry function.
Arguments.

FLAG shall be scalar and of type TYPE(IEEE_FLAG_TYPE). Itsvalue shall be one of IEEE_INVALID,
IEEE_OVERFLOW, |IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT.

© ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=83bcc8e54c6ed4698da08d4fb9355f18

