TECHNICAL ISO/IEC
REPORT TR
13066-6

First edition
2014-07-15

Information technology —dnteropetability
with assistive technology (AT) —

Part G:
Java accessibility application
programming interface (API)

Technologies de l'information — Interopérabilité avec les technologies
d'assistance —

Partie 6: Interface de programmation d'applications (API) d'a¢cessibilité
Java

Reference number
ISO/IEC TR 13066-6:2014(E)

iz o © ISO/IEC 2014

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

—COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

Contents Page
o1 =NV o '
L e Yo 11 T o) o vi
1 8T o - 1
2 Terms and Definitions.......c..ooo i smn e s s sme B e 1
3 (€710 1= I B To=T o2] o] 4T o T SO S-S PP 5
3.1 General DeSCription ... e ssssr e e s s smsnn e e e s s s s s s smnnn e e nessnspmadanbonnnnnns ensnnnnnnnnnas 5
3.2 o T L= o L= . AR IR 5
4 USING the AP ... s s s B b s e 6
41 L0 Y=Y VT o0 WY PO 6
4.2 Package javax.accessSibility™ ... T e e s aa e e e e e e s nann 7
4.211 The AccessibleContext Classccoccriiriiiiicsissrrirr e el bere e s snnn e e s s s s s s ssas e s e e e nssnenas 7
4.2]12 The AccessibleAction interface ..o e n e san e e s 8
4.2]13 The AccessibleComponent and AccessibleExtendedComponent interfacesfoeeiiceennn. 8
4.2|/4 The AccessibleIcon iNterfaceccccccoiiiiiiiiciireniinc e T e sssmnr s e e s s s snmn s e e s s s s s s ssmnns feeessannsnnns 10
4.2]5 The AccessibleSelection interfacecccccvviceceriece e ssmr e sme e e e s 10
4.2|6 The AccessibleStreamable interface.........ccccovieeoere e s S i e 10
4.2]7 The AccessibleTable and AccessibleExtendedTable interfaces...........ccoccmveeecervrcccennne i, 1
4.2|18 The AccessibleText, AccessibleEditableText, AccessibleExtendedText, and

AccessibleHypertextText interfaces............d i e, 12
4.2]9 The AccessibleValue iNterfacecccccciai o csserrr s sssssssmsr s s e s s s ssmss s s s sssssssssnns feesssnsnssnns 13
4.3 Implementing the Java accessibility APk ... e 13
4.3|1 Using existing accessible user interface componentsccccccovrrriiricccccccerennscccssseee fereensceenns 14
4.3|12 Subclassing existing accessible userinterface componentscccccee e ferennnnns 16
4.3|3 Creating accessible user interface. components “from scratch”............ccccoevcvirrrrvcccciccccfeennniccnne 17
5 Exposing User Interface Element Informationcccccovvmmniininsnseese e feeneenn 18
5.1 Role, state(s), boundary, name, and description of the user interface element.............|............. 18
5111 Role informationi i ccrr e s s s e s s mne e e e s e s sn s nnmnennees | snssnnnnnnes 19
5.1{2 State(s) information. s 19
5.1(3 Boundary information ..o e 20
5114 Name information ... e e s e mnnn e e e e e e s s mnnnn e 21
5.1(5 Description information ... - 21
5.2 Current value-and any minimum or maximum values, if the user interface element

represents.one of a range of Valuesccccceviiimrninmns s s 22
5.2(1 Additional value information: setting values........c.cccccnnriimmnnnimne e, 23
5.3 Text contents, text attributes, and the boundary of text rendered to the screen...........|............. 23
54 The-relationship of the user interface element to other user interface elements...........|............. 24
5.4]1 , \in'a single data value, whether this user interface element is a label for another user

interface element or is labelled by another user interface element.............ccocniicicnnii e, 24
5.4.2 in a table, the row and column that it is in, including headers of the row and column i

0 =TT = o 25
5.4.3 in a hierarchical relationship, any parent containing the user interface element, and any

children contained by the user interface element ... 26
6 Exposing User Interface Element ACHiONSccccciiiiiiiiccciccirie e sses s s e 27
7 L= V] o To = T I o X o 1= 28
71 Tracking (and modifying) FOCUS ... s 28
7.2 Tracking (and modifying) text insertion point............cci 29
7.21 Tracking (and modifying) selection attributes ... 30
© ISO/IEC 2014 — All rights reserved iii

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

8 Y=Y 3 31
8.1 changes in the user interface element value...........ccccoiiiicccccerieiii s e 31
8.2 changes in the name of the user interface element..............rrrriicccc e 31
8.3 changes in the description of the user interface element...........c.occcccoiriiir e, 31
8.4 changes in the boundary of the user interface element..........ccccoo i 31
8.5 changes in the hierarchy of the user interface element...........cccco o 32
8.6 changes in other accessibility aspects of user interface componentscccccciiiiiiicciiiccnnnenn. 32
9 Programmatic Modifications of States, Properties, Values, and Text........ccccccviiiiiiiciiicnnnninnnnes 33
9.1 Programmatic Modifications of Statesccccccminiiiiinii e ——————— 33
9.2 Programmatic Modifications of Propertiesc..uueeeiceenniiiiiiiiiinneniiisissiiine s 34
9.3

9.4

10

10.1

10.2

11

11.1

11.2

113

11.4

Bibliogra

iv © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-

Foreword

ISO (the International Organization for Standardization) and

IEC (the International Elect

6:2014(E)

rotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental

and
tec

Thd
int
dod
I1SQ

Attention is drawn to the possibility that some of the elements of this document may be the subje

righ
pat
list

Any
cor

For
as
seqd

The
SC

1S
Intq

non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of
hnology, 1ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

procedures used to develop this document and those intended for its further maintenance arg
ne ISO/IEC Directives, Part 1. In particular the different approval criteria needed forthe differg
ument should be noted. This document was drafted in accordance with thé) editorial ry
/IEC Directives, Part 2 (see www.iso.org/directives).

ts. ISO and IEC shall not be held responsible for identifying any or all such patent rights. De|
ent rights identified during the development of the document will b€ in“the Introduction and/or
pf patent declarations received (see www.iso.org/patents).

trade name used in this document is information given for' the convenience of users an
stitute an endorsement.

an explanation on the meaning of ISO specific terms.and expressions related to conformity a
vell as information about ISO's adherence to thesxWTO principles in the Technical Barriers to T
the following URL: Foreword - Supplementary-information

committee responsible for this documeént is ISO/IEC JTC 1, Information technology, Su
35, User interfaces.
/IEC 13066 consists of the following parts, title Information teg
roperability with assistive technology (AT):

under the general

Part 1: Requirements and recommendations for interoperability

Part 2: Windows aceessibility application programming interface (API)
Part 3: IAccessible2 accessibility application programming interface (API)
Part 4: Linux/UNIX graphical environments accessibility application programming interface (AP

Part 6: Java accessibility application programming interface (API)

nformation

described
nt types of
les of the

ct of patent
tails of any
pn the I1ISO

1 does not

ssessment,
rade (TBT)

bcommittee

hnology —

N—

© ISO/IEC 2014 — All rights reserved

http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

Introduction

Assistive technology (AT) is specialized information technology (IT) hardware or software that is added to or
incorporated within a system that increases accessibility for an individual. In other words, it is special purpose
IT that interoperates with another IT product enabling a person with a disability to use the IT product.

Interoperability involves the ability to add or replace Assistive Technology (AT) to existing components of
Informatiorl Technology (IT) systems. Interoperability between AT and IT is best facilitated via the use of
standardizgd, public interfaces for all IT components.

This part of ISO/IEC 13066 describes the Java accessibility API that can be used as a framewark {0 support
software tq software IT-AT interoperability on the multiple computing platforms. It also describes the Java
Access Brifige for Windows — for enabling AT on Windows to interoperate with accessible-dava applicatipns
on the Micosoft Windows platform — and the Java Access Bridge for GNOME - for enabling’ AT on UNIX &and
GNUY/Linux| platforms running the GNOME graphical desktop to interoperate with accessible Java applicatipns
on UNIX and GNU/Linux environments.

NOTE 1 GNOME is both a common and accessible graphical desktop for Linux / UNIX graphical environments, as vell
as an open| source project delivering a collection of software libraries and applicatiens. It was formerly an acrofym
meaning “GNU Network Object Model Environment”.

NOTE 2 The code examples contained in this document are illustrative insnature. With rare exception, they do|not
include errof checking or exception handling, and should be treated moré. like pseudo-code than as cookbook templates
that can usel directly in applications or assistive technologies.

Vi © ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

TECHNICAL REPORT ISO/IEC TR 13066-6:2014(E)

Information technology — Interoperability with assistive
technology (AT) —

Part 6:
Java accessibility application programming interface (API)

1 | Scope
This part of ISO/IEC 13066 provides an overview to the structure and terminology ef.the Java accegsibility API

It wiill provide:
— | A description of the overall architecture and terminology of the API;

— | Further introductory explanations regarding the content and use\of the API beyond those found in Annex
A of ISO/IEC 13066-1;

— | An overview of the main properties, including of:
— user interface elements;

— how to get and set focus;

— of communication mechanisms in the 'API;

— adiscussion of design considerations for the API (e.g. pointers to external sources of infgrmation on
accessibility guidance related to using the API);

— information on extendingthe API (and where this is appropriate);

— an introduction to, the programming interface of the API (including pointers to external |sources of
information).

— an introduction to the Java Access Bridge for Windows and the Java Access Bridge for GNOME
It wlill provide this*information as an introduction to the Java API to assist:

— | IT system level developers who create custom controls and/or interface to them;

— | Adevelopers involved in programming "hardware to software" and "software to software" intefactions

2 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

21
accessible object
a part of the user interface that is accessible by and exposes the Java accessibility API

Note 1 to entry An accessible object is represented by an object of the “AccessibleContext” Java class

© ISO/IEC 2014 — All rights reserved 1

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

2.2

application programming interface

API

collection of invocation methods and associated parameters used by one piece of software to request actions
from another piece of software

[SOURCE: ISO/IEC 18012-1 Information technology — Home electronic system — Guidelines for product
interoperability — Introduction, definition 3.1.1]

23

application software

software thit is specific to the solution of an application problem

[SOURCE:|ISO/IEC 2381-1, definition 10.04.01]

EXAMPLE A spreadsheet program is application software.

24

Assistive Technology

(AT)

hardware ¢r software that is added to or incorporated within a system that increases accessibility for| an
individual

EXAMPLE Braille displays, screen readers, screen magnification software_and eye tracking devices are assigtive
technologieg.

[SOURCE:|ISO 9241-171, definition 3.5]

Note 1 to enftry Within this document, where Assistive Technology(and its abbreviation AT) is used, it is to be considgred
as both singular and plural, without distinction. If it is to be used.in)the singular only, it will be preceded by the article [an"
(i.e. an Ass|stive Technology). If it is to be used in the plural only, it will be preceded by the adjective "multiple” {i.e.
multiple AT)

25

class

a term from object oriented programming;‘also used in the Java programming language, denoting [the
definition/description of an object containing code (methods) and data (fields)

EXAMPLE All objects in object oriented programming belong to a class (e.g. a specific window object is an instance
of the windojw class).

Note 1 to eniryMuch of the Java-accessibility API consists of these class definitions, and implementations of the Java
accessibility]API are instances.of these classes.

Note 2 to enfryIn objected oriented programming — and specifically in the Java programming language — classes carnj be
“subclassed| (e.g.<axdialog box class is a subclass of the more generic window class), and portions of the Java
accessibility] API(are’ implemented as subclasses (e.g. AccessibleRole, AccessibleState, and AccessibleRelation arg all
subclasses ¢f.the-more generic AccessibleBundle class).

2.6

compatibility

the capability of a functional unit to meet the requirements of a specified interface without appreciable
modification

[SOURCE: ISO/IEC 2381-1, definition 10.06.11]

2 © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

2.7

information/communication technology

(ICT)

technology for gathering, storing, retrieving, processing, analysing and transmitting information

[SOURCE: ISO 9241-20, definition 3.4]
EXAMPLE A computer system is a type of ICT.2.13

2.8
interface

<ggneral software> a shared boundary between two functional units, defined by various chgracteristics

perfaining to the functions, physical interconnections, signal exchanges, and other charact
apgropriate

[SQURCE: ISO/IEC 2381-1, definition 10.01.38]

29
interface
<Jdva programming language> in object oriented programming generally>— and the Java Iz
parficular — an interface is a set of public methods (and potentially public fields) that all objects im
thelinterface must include

Notg 1 to entry As with Java programming language classes that can be *subclassed”, interfaces can be “sul
well — and the result is called a “subinterface”.

ristics, as

nguage in
plementing

classed” as

Notge 2 to entryMuch of the Java accessibility APl is implementeddas Java interfaces, and some of these as slubinterfaces

(e.d the AccessibleEditableText interface is a subinterface of the more generic AccessibleText inte

21D
int¢roperability

the|capability to communicate, execute programs, or transfer data among various functional units i
that requires the user to have little or no knewledge of the unique characteristics of those units

[SQURCE: ISO/IEC 2381-1, definition, 10.01.47]

211
int¢r-process communication

(IPE)

a mechanism by which\\different software processes communicate with each other — acro
boyndaries, runtime_environments, and sometimes also computers and operating systems

21

opeérating system

(09)

soffware that controls the execution of programs and that may provide services such as resource
schleduling, input-output control, and data management

rface).

N @ manner

pS process

allocation,

Note 1 to entry Although operating systems are predominantly software, partial hardware implementations are possible.

[SOURCE: ISO/IEC 2381-1, definition 10.04.08]

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

213

package

<Java programming language> a collection of class and interface definitions that are related to one another,
and which are bundled together (into a package)

EXAMPLE The Java accessibility APl is collected together into the core Java platform package
javax.accessibility.* and the fully qualified name of each class or interface in this package begins with the
package name, e.g. javax.accessibility.AccessibleEditableText.

214

runtime environment
a software fenvironment that provides all of the resources necessary for software applications to run, yetiis|not
itself an opgrating system

EXAMPLE 1 The Java runtime environment.
EXAMPLE 2 Adobe Flash player.
EXAMPLE 3 Microsoft Silverlight's runtime.

Note 1 to enftry Virtual machines are type of runtime environment, which are explicitly emulating one or more specific sets
of hardware

215

software
all or part pf the programs, procedures, rules, and associated documentation of an information process
system

ng

Note 1 to enfry Software is an intellectual creation that is independent'af the medium on which it is recorded.
[SOURCE:|ISO/IEC 2381-1, definition 10.01.08]

2,16
user interface
(un
mechanisms by which a person interacts with-a computer system

Note 1 to enfry The user interface provides input mechanisms, allowing users to manipulate a system. It also prov|des
output mechanisms, allowing the system e produce the effects of the users’ manipulation.

217
user interfiace element

user interflace object

user interface component

entity of the user interface that is presented to the user by the software

[SOURCE:|1S0"'9241-171 definition 3.38]

Note 1 to entry User interface elements may or may not be interactive.

Note 2 to entryBoth entities relevant to the task and entities of the user interface are regarded as user interface elements.
Different user interface element types are text, graphics and controls. A user interface element may be a representation or
an interaction mechanism for a task object (such as a letter, a sales order, electronic parts, or a wiring diagram) or a
system object (such as a printer, hard disk, or network connection). It may be possible for the user to directly manipulate
some of these user interface elements.

4 © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

EXAMPLE 1 User interface elements in a graphical user interface include such things as basic objects (such as
window title bars, menu items, push buttons, image maps, and editable text fields) or containers (such as windows,
grouping boxes, menu bars, menus, groups of mutually-exclusive option buttons, and compound images that are made up

of several smaller images).

EXAMPLE 2
and action prompts.

EXAMPLE 3
knobs, and grips.

User interface elements in an audio user interface include such things as menus, menu items,

messages,

User interface elements in tactile interfaces include such things as tactile dots, tactile bars, surfaces,

3 [General Description

3.1 General Description
The
(ald
bed
and
shi
Jan

Java accessibility APl was developed by Sun Microsystems, Inc. as part of the Java Foundati
ng with the “Swing” user interface library), and was then folded into the Java Platform release

with review and design feedback from many of these stakeholders as it*'matured. The 1
pped with the Java Foundation Classes release 1.0, in 1997, and was folded into the Java SE
uary 1998. An initial implementation of the API in the “Swing” library was also part of that releag

The
Sys|
to

Java Accessibility APl was born out of necessity — the first.screen access techniques fo
fems of the Macintosh and Windows reverse-engineered and-hooked into the graphics renderi
uild off-screen models for screen readers (also known as ‘seréen scraping”) — techniques tha
work in the Java environment. The Java accessibility APl was the first comprehensive accessil]
“3rd generation accessibility API”). It provided support for'eéverything that a screen reader needed
propgenitor of the UNIX accessibility API (described imyISO/IEC 13066-4) and the UNO accessil]
Orgcle Open Office (which is the basis for IAccessible2; described in ISO/IEC 13066-3). It was al
for fhe WAI-ARIA specification (described in ISO/IEC:13066-5).

Beg¢ause the Java platform is commonly ruaning on top of some other, underlying operating s
Migrosoft Windows or Solaris or GNU/Linux or Macintosh), and users with significant disabilities

The¢ Java accessibility API is based on the Java object model. The API itself is contained in a Ja
(japax.accessibility.*), that is a core part of the Java platform. User interface componen
ssible mustdirectly implement the javax.accessibility.Accessible interface (and for the

bn Classes
1.2. Work

an in early 1997, based on requirements gathered from industry and assistive technology stakeholders,

.0 release
platform in
e.

r graphical
ng pipeline

I would not

ility API (a
and is the
ility API of
50 a model

stem (e.g.
are using
[of AT-IT
\P| outside

. | While it is

pated — it is

a package
ts that are
rest of this
cessible).
bnent must
Context()

archltecture means that |mplementat|on of the Java acceSS|b|I|ty API can either be |mplemented
that object, or be “delegated” to some other object or library.

In addition to this “delegation” model, the Java accessibility APl is implemented a

nent. This
directly by

S a core

AccessibleContext object — containing all of the information common to every user interface component —

and then a set of accessibility “sub-interfaces” or “specializations” which are implemented only as appropriate
for the user interface component in question. For example, components containing text would implement the
AccessibleText optional interface (and more specifically, the AccessibleEditableText optional interface if
that text were editable). Components which take on one of a range of values would implement the
AccessibleValue optional interface. etc.

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

The diagra

m below shows the Java Foundation Classes user interface component javax.swing.JSlider,
and those aspects of the Java Accessibility APl implemented for it:

JSlider
[@]

implements Accessible
getAccessibleContext ()

Figure 1

AN

Accessible Context
implements AccessibleComponent
implements AccessibleValue

String getAccessibleName ()
String getAccessibleDescription()

AccessibleValue AccessibleComponent
int getCurrentAccessibleValue() Color getBadkdround ()
int getMaximumAccessibleValue() Color getFdreground ()
int getMinimumAccessibleValue() 6.3

4 USi:I the API

4.1 Ove

The Java
core/taggin
containing
provide, an
below in th

Application

a) Theyd
as tho

b) They
existin
button
subclg

ew

accessibility APl is contained in the\ javax.accessibility.* package. It consists 0
g interface that all accessible user interface components must implement, a core accessibility cl
that portion of the Java accessibility API that all accessible user interface components mj
optional set of accessibility sub-interfaces, and then a set of helper classes. These are descri
b subclause

5 can implement the Java-Accessibility APl in one of three ways:

an use user interface components that have already implemented the Java accessibility API (s
be in the Java Foundation Classes or “Swing” library);

an create<ene or more custom user interface components that derive from (or “subclasses”)
j user interface component that already implements the Java accessibility API (such as a cusf
that-subclasses javax.swing.JButton, or a completely custom component that nonethel
55€s javax.swing.JComponent);

— lllustration of the accessibility interfaces implemented by the Swing JSlider component

f a
ASS
ust
bed

lich

an

eSS

c) They can create one or more custom user interface components “from scratch” and implement the

necessary interfaces and methods to respond to the AT requests.

These distinct ways of implementing the API are described below.

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

4.2

ISO/IEC TR 13066-

Package javax.accessibility*

This package contains the Java Accessibility API.

6:2014(E)

The external entry point into the APl is the interface Accessible, which contains the single method

getAccessibleContext().

Every accessible user interface component must implement this interface, and

must return a valid AccessibleContext when asked, which will implement the accessibility API on behalf of
that component.

4.2.

1 The AccessibleContext class

The
clag
use
me
sub

bas
13(

reld

eveg

AccessibleContext class contains the core implementation of the accessibility API. It is implen
5s with a minimal existing implementation, with the expectation that it will be subclassedcfor e

hods for traversing the Ul hierarchy (several of which support requirements_inOISO/IE(Q
clause 7.1.7(d)(1)):

getAccessibleParent()
getAccessibleIndexInParent()
getChild()
getChildrenCount()

ic information common to all user interface components (several of which support requirements
66-1, subclause 7.1.7(a)):

getAccessibleName()

getAccessibleDescription()

getAccessibleRole()

getAccessibleStateSet()

getLocale()

tionship information (which supports requirements in ISO/IEC 13066-1, subclause 7.1.7(d)(1)):
getAccessibleRedationSet()

nt trackingssupport (which support requirements in ISO/IEC 13066-1, subclause 7.1.10):

addPropertyChangelListener()

ented as a
hch type of

r interface component that uses it to implement the Java accessibility APl. This class contains the core

L 13066-1,

in ISO/IEC

removePropertyChangelListener()

firePropertyChange()

and several utility functions designed only to be called by implementations of the Java accessibility API:

setAccessibleName()
setAccessibleDescription()

setAccessibleParent()

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC T

R 13066-6:2014(E)

It also contains “getters” for the various optional interfaces that apply only to certain types of user interface

components.

These optional interfaces are described in the paragraphs below. Though it is a common

practice to simply implement the appropriate optional interfaces directly on the returned AccessibleContext
object, it is important for assistive technologies to use the getters to retrieve them, rather than using the

instanceO

f() pattern.

4.2.2 The AccessibleAction interface

This optional interface must be implemented for all user interface components that can perform one or more
actions, and provides the standard mechanism for an assistive technology to determine what those actions

are as well

The interfa
returned in
ISO/IEC 13

doAcc

getAc

getAc

The define

Additional action descriptions can be added by convention, and then foldedinto the platform.

4.2.3 The AccessibleComponent and AccessibleExtendedComponent interfaces

The Acces
Foundation
screen. Th
a few thing
interface cq

a titled bordler),

Presented
boundary-r|
getBo
getlLo
getlLo

getSi

as to tell the compaonent to perform the action programmatically
ce has three methods, and also defines several string constants naming common actions (to

the getAccessibleActionDescription() call. The methods (which support requirements
066-1, subclause 7.1.8) are:

bssibleAction()
ressibleActionCount()
FessibleActionDescription()

] action descriptions are: CLICK, DECREMENT, INCREMENT, TOGGLE_EXPAND, and TOGGLE_POH

sibleComponent optional interface roughly parallels the AWT Component interface from the J
Classes. It should be implemented for all usét interface components that are drawn onto
e AccessibleExtendedComponent interface is\a subinterface of AccessibleComponent and a
s that proved to be important to assistive.teéhnologies . It should be implemented by most
mponents that are drawn on the screen (anything that has tooltip text, or a keyboard accelerato
n logical groups, these are the méthods of the AccessibleComponent interface:

blated methods (which support some of the requirements in ISO/IEC 13066-1, subclause 7.1.7(z

inds ()
Fation()
FationOnSCreen()

e ()

be
in

p

UP.

ava
the
dds
ser
I or

setBo

ihds()

setLocation()

setSize()

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

visibility and visual appearance related methods (some of which support requirements in ISO/IEC 13066-1,
subclause 7.1.7(c) — specifically for simple text components that don't implement the optional
AccessibleText interface):

— getBackground()

— getCursor()

— getFont()

— [getFomtMetrics()
— | getForeground()
— | isShowing()

— | isVisible()

— | setBackground()
— | setCursor()

— | setFont()

— | setForeground()
— | setVisible()
focpis-related methods (which support some of the requirements in ISO/IEC 13066-1, subclause 7.1.9):
— | addFocusListener()
— | isFocusTraversable()
— | removeFocusListener()
— | requestFocus()

parent-child location‘\related methods (which support some of the requirements in ISO/IEG 13066-1,
subjclause 7.1.7(d)(3)):

— | contains()

— | getAccessibleAt()

interactivity related methods (one of which supports some of the requirements in ISO/IEC 13066-1, subclause
7.1.7(a)):

— isEnabled()

— setEnabled()

© ISO/IEC 2014 — All rights reserved 9

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC T

R 13066-6:2014(E)

These are the methods of the AccessibleExtendedComponent interface:

getAccessibleKeyBinding()
getTitledBorderText()

getToolTipText()

4.2.4 The Accessiblelcon interface

The Acces
an icon or
Accessibl
getAc
getAc

getAc

setAc

4.2.5 Thg AccessibleSelection interface

The Acces
that have ¢
These are
ISO/IEC 13

addAc
clear
getAc
getAc
isAcc
remov

selec

4.2.6 The

TbieTcomoptiomatnterface shoutd-bemptermented-by those usermterface componentsthat
nclude an icon within them (e.g. a toolbar button that is an image). These are the methods_of
eIcon interface:

ressibleIconDescription()

ressibleIconHeight()

FessibleIconWidth()

ressibleIconDescription()

sibleSelection optional interface should be implemented by those user interface compong

the methods of the AccessibleSelection interface™(which support some of the requirement
066-1, subclause 7.1.8):

ressibleSelection()
\ccessibleSelection()
ressibleSelection()
ressibleSelectionCount()
bssibleChildSelected()
bAl11AccessibleSelection()
FAL11AccessibleSelection()

AccessibleStreamable interface

are
the

nts

hildren user interface components inside them which~Can be selected (e.g. a list box or a menu).

5 in

The Acces

TbTeStreamable optiomat-nterfaceshouldbemptementedby those user-mterface components

that provide a user interface to streaming media (e.g. to HTML or a bitmap impage or MathML). This allows
assistive technologies which are designed to directly parse certain types of streaming data to do so directly.
These are the methods of the AccessibleStreamable interface:

10

getMIMETypes()

getStream()

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

4.2.7 The AccessibleTable and AccessibleExtendedTable interfaces

The AccessibleTable optional interface (and the AccessibleExtendedTable optional subinterface) should
be implemented by those user interface components that present two dimensional data (e.g. spreadsheets
and tables). AccessibleExtendedTable provides a few additional methods that are needed by most
accessibility uses of tables, and so should always be implemented by any user interface component that
implements AccessibleTable.

Presented in logical groups, these are the methods of the AccessibleTable and the
AccessibleExtendedTable interfaces:

row/column orientation methods (which support some of the requirements in ISO/IEC 13066+%,| subclause
7.117(d)(2)):

— | getAccessibleAt()

— | getAccessibleColumn()

— | getAccessibleColumnExtentAt()
— | getAccessibleIndex()

— | getAccessibleRow()

— | getAccessibleRowExtentAt()
selgction-related methods (which support some of the réquirements in ISO/IEC 13066-1, subclause|7.1.7(a)):
— | isAccessibleColumnSelected()
— | isAccessibleRowSelected()

— | isAccessibleSelected()

— | getSelectedAccessibleColumns ()
— | getSelectedAccessibleRows ()

row/column header related methods (which support some of the requirements in ISO/IEC 13066-1] subclause
7.1{7(d)(2)):

— | getAccessibleColumnDescription()

— | getAccessibleColumnHeader()

— LgetAccessibleRowbeseriptiont)

— getAccessibleRowHeader()

— setAccessibleColumnDescription()
— setAccessibleColumnHeader()

— setAccessibleRowDescription()

— setAccessibleRowHeader()

© ISO/IEC 2014 — All rights reserved 11

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

general methods relating to the table overall:

— getAccessibleCaption()

— getAccessibleColumnCount()

— getAccessibleRowCount()

— getAccessibleSummary()

— setAc
— setAc

428 Th

The Acces
user interfd
a button wi
above, bot
user, the A

These are
support the

— getAf
— getAt
— getBe
— getCa
— getcCh
— getCh
— getCh
— getln
— getSe

— getSe

FessibleCaption()

ressibleSummary ()

LerIndex()

[ndex()
foreIndex()
retPosition()
bracterAttribute()
bracterBounds ()
hrCont ()
HexAtPoint ()
lectedText()

lectionEnd()

AccessibleText, AccessibleEditableText, AccessibleExtendedText, and
Accessibl¢HypertextText interfaces

sibleText and AccessibleExtendedText optional interfaces should be, implemented by thpse
ce components that present more than just a few words of text (a user jnterface component thgt is
h the text “OK” in it doesn't need to implement this interface). As with-AccessibleExtendedTaple
h interfaces should always be implemented together. Additionally, Wwhete the text is editable by|the
ccessibleEditableText optional interface should be implemented. Finally, where the text is
hypertext, the AccessibleHyperText optional interface should be implemented.

the methods of the AccessibleText and AccessiblefExtendedText interfaces (several of which
requirements in ISO/IEC 13066-1, subclause 7.1.7(c)):

— getSe

ectionStart()

— getTextBounds()

— getTextRange()

— getTextSequenceAfter()

— getTextSequenceAt()

— getTextSequenceBefore()

12

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

These are the methods of the AccessibleEditableText interface, which enable programmatic editing of
text:

— cut()
— delete()
— getTextRange()

— insertTextAtIndex()

— | paste()

— | replaceText()

— | selectText()

— | setAttributes()

— | setTextContents()

These are the methods of the AccessibleHyperText interface, which\support hyperlinks in text:
— | getLink()

— | getLinkCount()

— | getLinkIndex()

4.219 The AccessibleValue interface

The AccessibleValue optional interface’;should be implemented by those user interface compgnents that
haye an underlying numerical value that.can be changed within a range (e.g. a scrollbar or slider).| These are
the| methods of the AccessibleValue interface (which support the requirements in ISO/IEC 13066-1,
subclause 7.1.7(b)):

— | getCurrentAccessibleValue()
— | getMaximumAccéssibleValue()

— | getMinimumAccessibleValue()

— | setCukrrentAccessibleValue()

4.3 Implementing the Java accessibility API

The three subclauses below describe what a developer must do to implement the Java accessibility APl —
using user interface components that already implement the Java accessibility APl, when developing custom
user interface components that subclass components that already implement the Java accessibility API, and
when creating user interface components “from scratch”. Everything in 4.3.1 must be done with any user
interface component — so it applies in all cases. Likewise, it is common when creating components “from
scratch”, that some of those will subclass others, so everything in 4.3.2 also applies to 4.3.3.

© ISO/IEC 2014 — All rights reserved 13

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

4.31

Using existing accessible user interface components

When using existing accessible user interface components, it is critical that correct accessibility metadata be
added where needed. The places for accessibility metadata are:

component

the descriptions of images/icons

the AccessibleName, and where appropriate, the AccessibleDescription of a user interface

— relatiopships-between-components
In addition|to these metadata cases, there is also the exceedingly rare case where the developer(heeds to
alter the apparent user interface component hierarchy — explicitly setting the parent of of a user,interface
element to [something other than the default.
4311 Betting the AccessibleName and AccessibleDescription
It is criticdl that every user interface component that a user might in some way~interact with have|an
AccessiblleName. This is the text that a screen reader will speak or braille, or a_voice recognition commgnd-
and-contro| system would put into its recognition grammar, or an on-screen keyboard would display on its
dynamic kgyboard. Many user interface components (such as those in the javax.swing.* package) will ise
whatever gppropriate text they can as a default AccessibleName. For{ example, the text displayed op a
javax.swilng.JButton is returned as the default AccessibleName. ThUs, so long as the button has text, it
has a nam¢. Where there is no such text, it must be set explicitly by the application. This is done as follows:
// Examplle of setting the AccessibleName of a SWing component
myTextedButton = new javax.swing.JButton ("OK")Y
// no mofe need be done - "OK" used by default
myNonTexfButton = new javax.swing.JButten{); // no text set
myNonTexfButton.getAccessibleContext () SetAccessibleName

("Buttoh name") ;
For many WUiser interface components it is often useful to have an AccessibleDescription. This is the fext
that a screen reader will speak or braillenif-a user asks for more information about the user interface element.
It may also|be helpful for people with.caghitive impairments. Many user interface components (such as thpse
in the javgx.swing.* package) willuse the tooltip text as the AccessibleDescription. Where there i§ no
such text, it must be set explicitly:by the application. This is done as follows:
// Examplle of settin@G ;the AccessibleDescription of a Swing
// compohent
myToolTippedCompénent = new javax.swing.JComponent () ;
myToolTippedComppnent.setToolTipText ("Displays page preview");
// no mofe need be done - "Displays page preview" used by default
myPlainCpmpénent = new javax.swing.JComponent () ;
myPlainComponent.getAccessibleContext () .setAccessibleDescription

("Shows the page layout");

Because the AccessibleName and AccessibleDescription are “user visible” strings, they must be localized
to the language of the user interface.

14

© ISO/IEC 2014 — All rights rese

rved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

4.3.1.2 Setting Accessible Relationships

Many developers design applications where user interface components have visibly obvious relationships.
The canonical example is that of a set of labeled text fields, where the user navigates through the fields,
entering the information prompted for (name, address, phone number, etc.). However, unless the visibly
obvious relationship is formally encoded in some fashion, assistive technologies will have to either guess or
otherwise fail to convey this to the user. The screen reader would simply speak “Edit Text... Edit Text... Edit
Text” as the user Tabbed through the fields; the speech recognition control system couldn't put “Name” and
“Address” and “Phone” into its recognition grammar and have the ability to bring the focus to the associated
field.

And beyond labeling relationships such as the text entry field and its prompt or label, there are_ a variety of
other useful kinds of relationships that should be encoded for assistive technologies. Furthermore, in the Java
acdessibility APl most relationships are encoded in pairs — each of the two user interfacécompgnents in a
relgtionship generally reference the other(s) they are related to.

The most important relationships defined in the Java accessibility API are:

— | CONTROLLER_FOR / CONTROLLED_BY — used to denote when one user interface component manipulates
another, such as in a spreadsheet when the value of one cell controls“the value of another cgll (e.g. the
First Quarter Sales number is a CONTROLLER_FOR the First Quarter Net, Revenue number)

— | LABEL_FOR / LABELED_BY — used to denote when one user intesface component is the label for another,
such as text fields and their prompts or labels

— | MEMBER_OF — used to denote when one user interface component is a member of a group,| such as a
radio button that is part of a radio button group — but also useful in a spreadsheet where one c¢ll is part of
a group of cells (e.g. the First Quarter Sales number is a MEMBER_OF the text First Quarter field/column of
the table and also a MEMBER_OF the text Sales field/row of the table)

As felationship names are simply text keys in:a‘(key, target) pair in the AccessibleRelation clasg, new keys
car| be defined — and they will be provided to assistive technologies which request them. Carel should be
taken when doing this, however — unless*there is broad understanding of the meaning of anyl such new
relgtionship key text, assistive technologies won't know what to do with it and the meaning will be lost.

Setting up accessible relationships-between components is done as follows:

// |Example of setting\dp Accessible Relationships between
// |components
myfontrollerComponent = new javax.swing.JComponent () ;
myfontrolledCompohent = new javax.swing.JComponent () ;
myfontrollerCemponent .getAccessibleContext () .
etAccesgibleRelationSet () .add (newAccessibleRelation
(Javax.dcgessibility.AccessibleRelation.CONTROLLER FOR,
myfontredl edComponent.getAccessibleContext ()) ;
mnylontrolledComponent .getAccessibleContext () .
gethAecessibleRelationSet () .add (newAccessibleRelation
(Javax.accessibility.AccessibleRelation.CONTROLLED BY,
myControllerComponent.getAccessibleContext ()) ;

This is the same pattern for all relationships. Note however that the Swing library has a simpler convenience
method for the most common relationship: the label relationship. The javax.swing.JLabel includes the
method setLabelFor(). This method takes as its argument another javax.swing.JComponent and when
used in that fashion, will also set up the pair of accessible labeling relationships. This is done as follows:

© ISO/IEC 2014 — All rights reserved 15

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

// Example of setting up a labeling relationships using the

// Swing JLabel
myNameLabel = new javax.swing.JLabel ("Name:") ;
myNameTextEntry = new Jjavax.swing.JTextField()

myNameLabel .setLabelFor (myNameTextEntry) ;

4313

It is sometimes appropriate to set the description of images and icons in the user interface.

Setting the Description of an Image or Icon

These

descriptions are distinct from the AccessibleName and AccessibleDescription of the user interface

component

containing the image or icon (e.q. a button without any text but displaying the image of a tr.

can). The
use of the
play. A's
specifically,

// Examp
myImage
myImage.
getAcce
// the a

4.31.4

In certain r
what is der
are called
component
of fly-weig

implementation for the fly-weight tab (javax.swing.JTabbedPane$Tab.AccessibleTab) must formally se

Accessibl

Understang
the access
in this situg

4.3.2 Subclassing existing accessible'user interface components

image description is specifically that — a description of the image itself. The context and spe
image may differ, but the fact that the same image is used indicates that a similar congcept s
creen reader user may have the image/icon description spoken or brailled to them ahen t
ask for more information from their screen reader. This is done as follows:

le of setting up the image description of an image

new javax.swing.ImageIcon (new java.net.URL("file:///trashygif");
betAccessibleContext () .getAccessibleIcon () [0] .
5sibleIconDescription ("Trash can with 1id beside it")s

bove assumes only one image for the ImagelIcon...

Betting the AccessibleParent

ved from the base component tree. The most common of this unlikely case is when creating W
ly-weight components — components that don't have-the full machinery of the base user interf]
class of the library. For example, the javax.swing.JdTabbedPane component contains a num
nt tabs. These tabs don't extend javax.swing.JComponent. Therefore the accessibility

eParent.
ing precisely when this should be donetis beyond the scope of this document. A careful stud

bility API implementation of the Swig~ JTabbedPane is recommended for developers who may
tion.

ash
ific
5 at
hey

pre cases it is necessary to formally set a user interface component hierarchy that is different fom

hat
ace
ber
AP
[its

of
be

To create a custom accessible user interface component using an existing accessible component (e.g. flom

the javax
component
If the acce
then this is

// Examp
class Cu

L swing.* package);-‘choose the existing component that most closely matches the cus
(“subclassing high?). For example, to create a custom button, start with javax.swing. JButt
5sibility AP implementation is the same (nothing unusual is occurring in the custom compone
sufficient:

e ofi¥8ubclassing high" - with unchanged accessibility
stomButton extends javax.swing.JButton {

om
on.
nt),

// cu

€@ code here

}

If the custom button will have — for example — a different AccessibleRole, then additional code is required:
the call getAccessibleRole() will need to return the correct role. This is accomplished by overriding that

method cal

16

[in the AccessibleContext returned by CustomButton.getAccessibleContext():

© ISO/IEC 2014 — All rights rese

rved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

//

ISO/IEC TR 13066-

Example of "subclassing high" - with custom accessibility

class CustomButton extends javax.swing.JButton ({

// custom code here
public AccessibleContext getAccessibleContext ()
if (accessibleContext == null) {
accessibleContext new AccessibleCustomButton () ;

{

}

}

return accessibleContext;

class AccessibleCustomButton extends AccessibleJButton {
public AccessibleRole getAccessibleRole () {

6:2014(E)

If m

On
oth
(“su

//

cld

In g
acd

In 4
14.

4.3

Thd
are
cre
acd
“ap
orig
inte
gog
aid
LG

return "CustomRole";

}

ore customization is done, relatively more work will need to be done in the subclass.

the other hand, if the custom component is completely unlike an existing Swing componen
prwise leverages the Swing framework — then that component would subclass javax.swing.3J
bclassing low”):

Example of "subclassing low" - will need to implemént
accessibility

bss CustomComponent extends javax.swing.JCompopent {
// custom code here

essibility API as appropriate to that custom component.

ither case (“high” or “low”), the use of this'custom component must also follow the guidance in

3 Creating accessible user interface components “from scratch”

Java accessibility API supports use with user interface components created “from scratch”

N't subclassing one or mare;accessible components such as those in the javax.swing.* packag
ating accessibility support from scratch, the developer will need to implement the entid
essibility API for eachvuser interface component — as appropriate for that component (what
pbropriate” is the bulk” of this document). The recommended way of doing this is to leverage|
nted user interface component system, implementing base accessibility APl support on a
rface component class, and the overriding and additional support where appropriate in the sub,
d example©f this is the implementation in the Swing classes — whose source code may be stu
of suchlan implementation (and further, may be outright copied directly by code that either
PL license of the OpenJDK, or obtains a commercial license from Oracle).

— but still

IComponent

uch a case, the CustomComponent must createsan AccessibleContext class, and implement all of the

subclause

e.g. which
ge.) When
ety of the
constitutes
an object-
base user
classes. A
died in the
follows the

4.3

2% Usina Swi ol —i |

For the sake of code maintenance, the accessibility APl implementation in Swing is done through the use of

inner classes.

This keeps the implementation code in the same source file of the component

cluttering the component's public API.

© ISO/IEC 2014 — All rights reserved

, While not

17

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

The core of the implementation for Swing is in the javax.swing.$AccessibleJComponent class.
AccessibleJComponent is a subclass of AccessibleContext, and implements the AccessibleComponent,
and AccessibleExtendedComponent interfaces. This base implementation not only provides default
implementations of all of the AccessibleContext, AccessibleComponent, and
AccessibleExtendedComponent methods; it also implements comment event tracking for accessibility
PropertyChange events. However, since the javax.swing.JComponent class should never be instantiated
directly, javax.swing.JComponent$AccessibleJComponent is abstract - it needs to be subclassed in order
to be used. Specifically, any subclass should at a minimum implement
javax.accessibility.getAccessibleRole().

Then eagh—3Compenent—subelass oV contains—a e 3 A—td
JComponent$Accessible]Component. And, where appropriate, adds additional API functionality.|x[For
example, the javax.swing.AbstractButton class is the superclass of not only the javax.swing.JButton ‘class,
but also [javax.swing.JMenuItem and javax.swing.JToggleButton. As all of these|,can |be
programmatically “pressed”, the inner class javax.swing.AbstractButton$AccessibleAbstractButton
class not|only subclasses JComponent$AccessibleJComponent, it also implements'-the interface
javax.acdessibility.AccessibleAction. This shared inner class implementationjsothen re-used| by
JButton, JMenuItem and JToggleButton.

As noted gbove, Swing has flyweight components — specifically javax.accessibility.JTabbedPane$Tab.
Since it is @ flyweight, it doesn't extend JComponent and so a full (and essentially duplicate) implementation
of JComponent$AccessiblelComponent, must be contained within JTabbedRaneTabAccessibleTab.

5 Exposing User Interface Element Information
In ISO/IEC|13066-1, subclause 7.1.7 requires that applications

provide AT with information about user interface elemeénts, including but not limited to:
a) role, sfate(s), boundary, name, and description of thé user interface element

b) currenf value and any minimum or maximum?tvalues, if the user interface element represents one ¢f a
range pf values

c) text contents, text attributes, and the boundary of text rendered to the screen.
d) the relationship of the user interface element to other user interface elements

1) in]a single data value;swhether this user interface element is a label for another user interface
element or is labelled by another user interface element

2) inja table, thesréw and column that it is in, including headers of the row and column if present

3) in|a hierarchical relationship, any parent containing the user interface element, and any children
cgntained by the user interface element

Subclauses 5.7 through 5.4 describe how the Java accessibility APT supporis each of the requirements in
subclause 7.1.7.

5.1 Role, state(s), boundary, name, and description of the user interface element
Accessible role and state(s) information, as well as the accessible name and description of a user interface
component, is part of the AccessibleContext class, required of every accessible user interface component.

Boundary information of a user interface component is part of the AccessibleComponent optional interface,
which must be implemented by every user interface component that is drawn to the screen.

18 © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-

Specifically:

5.1

A

Role information

6:2014(E)

Assistive technologies obtain the role of a user interface component by first obtaining that component's
AccessibleContext, and from that, the AccessibleRole. For purposes of presenting this role to a user (e.g.
to speak the role name via a speech synthesizer), an assistive technology may obtain a text String from the
AccessibleRole (which by default will be in the Locale of the application, though other Locales may be
explicitly obtained — e.g. to obtain a French human-readable role String from an application that is otherwise
localized to German):

//
Ac
my
Sty
Sty

For
Acd
exiy
suj
clag
acd
Acd
(e.g
cla

//

clg

}
5.1
AsS

Acd
Acd

stales via a speech synthesizer), an assistive technology may obtain a text String from each

Acd

Examples of getting the AccessibleRole - default and French
essibleRole r
FComponent .getAccessibleContext () .getAccessibleRole () ;
ring defaultRoleText r.toDisplayString() ;

ring frenchRoleText r.toDisplayString (Locale.FR) ;

applications that are creating custom components, it will generally be necessary to explic
essibleRole for that custom component. This is typically done by subclassing — either sub
ting specific accessible user interface component (e.g. creating a Specialized button con
classing the Swing javax.swing.JButton component), or creating a custom component fr
s like Swing javax.swing.JComponent), or creating it entirely from scratch. In the subclassin
essibility implementation must be subclassed, with the implementation subclass providing the

essibleRole: This is only necessary if the subclass is a différent kind of object than the subclg
. creating something that isn't a button when subclassing“Swing JButton), or when subclasg
s like JComponent:

Example of setting the AccessibleRole{6f a custom component
bss CustomButton extends javax.swing,JComponent {
class AccesibleCustomButton extends
Jjavax.swing.JComponent.AccessibleJComponent {
protected AccessibleRole getAccessibleRole ()
return AccessibleRoi}e'. PUSH BUTTON;

{
}

2 State(s) information
istive technologies-obtain the state(s) of a user interface component by first obtaining that cq
essibleContext,~and from that, the AccessibleStateSet which contains one or mo
essibleStates:~ For purposes of presenting these states to a user (e.g. to speak the na

essibleStates (which by default will be in the Locale of the application, though other Loca

exp
loc

licitly ebtained — e.g. to obtain a French human-readable role String from an application that i
lized to German):

tly set the
Classing an
ponent by
bm a base
j case, the
hppropriate
ssed class
ing a base

mponent's
re specific
mes of the
of the the
es may be
5 otherwise

//

AccessibleStateSet states

Example of getting the AccessibleStates - default and French

myComponent.getAccessibleContext () .getAccessibleStateSet () ;

String defaultStatesText
AccessibleState statesArrayl]
String defaultFirstStateText
String frenchFirstStateText

states.toDisplayString () ;
states.toArray () ;
statesArray[0] .toDisplayString() ;

statesArray[0] .toDisplayString (Locale.FR) ;

© ISO/IEC 2014 — All rights reserved

19

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

If an assistive technology wants to check explicitly for a specific state, it can do so:

// Example of getting a specific AccessibleState
AccessibleStateSet states =
myComponent .getAccessibleContext () .getAccessibleStateSet () ;
if (states.contains (AccessibleState.CHECKED) ({

// AT logic for handling a component that is checked

For applications that are creating custom components, it will generally be necessary to explicitly set the
AccessibleStates for that custom component. This is typically done by setting the states as through the
listener patiern on the component being made accessible, or within the component's or application's code:

// Examplle of updating a specific AccessibleState based on the
// listeher pattern
class CuptomButton extends javax.swing.JComponent {
clasp AccessibleCustomButton extends
jafpax.swing.JComponent.AccessibleJComponent ({
brotected class AccesibleCustomButton () {
super () ;
protected class StateHandler implements
PropertyChangeListener ({
public void propertyChange
(ProptertyChangeEvent evt) ({
if (evt.getPropertyName () == "sqome~hame" &&
evt.getNewValue () == "some @alue") {
AccesibleCustomButton.thifs.states.add
("some state");

}
}
pbublic AccessibleStateSet getAcgésibleStateSet () {
AccessibleStateSet states .=
super.getAccessibleStatesSet () ;
// state explicitly add&d below
states.add (AccessibhkeStateSet.OPAQUE) ;

5.1.3 Boundary information

Assistive tgchnologies obtain the bounding rectangle of a user interface component by first obtaining that
componenf's AccessibleContext, and from that, the AccessibleComponent, and finally from that [the
boundary ipformation) " An assistive technology can obtain this in a variety of ways — it can obtain just|the
position of|the uSer interface component (in local or screen coordinates), or just its size, or its bounding
rectangle (in both’local coordinates):

// Example of getting the boundary of a component
AccessibleComponent myAccessibleComponent =

myComponent .getAccessibleContext () .getAccessibleComponent () ;

Point locallocation = myAccessibleComponent.getLocation () ;

Point screenlLocation = myAccessibleComponent.getLocationOnScreen () ;
Dimension size = myAccessibleComponent.getSize () ;

Rectangle localRectangle = myAccessibleComponent.getBounds () ;

20 © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

5.1.4 Name information

Assistive technologies obtain the name of a user interface component by first obtaining that component's
AccessibleContext, and from that, the name. The name is always a human-readable string, which may be
presented directly to a user via the assistive technology (e.g. to speak the name via a speech synthesizer). It
is always in the Locale of the application:

// Example of getting the AccessibleName of a component
String name =
myComponent .getAccessibleContext () .getAccessibleName () ;

Forl applications that are creating custom components, it will generally be necessary to explicjtly set the
acdessible name for that custom component. This is typically done either in the subclass itself, gr simply by
exglicitly setting the accessible name from within the application:

//|Example #1 of setting the AccessibleName of a component
clgss CustomButton extends javax.swing.JComponent {
class AccessibleCustomButton extends
Jjavax.swing.JComponent.AccessibleJComponent
protected String getAccessibleName () {
// assumes such a method below
return CustomButton.this.getButtonText ()4

or

// |Example #2 of setting the AccessibleName of a component
Act¢essibleContext getAccessibleContext() {
AccessibleContext ac = new AccegsibleCustomButton () ;
ac.setAccessibleName ("some butkton name") ;

return ac;

}
5.1(5 Description information

Asgistive technologies obtainthe description of a user interface component by first obtaining that component's
AcdessibleContext, and-from that, the description. The description is always a human-readgble string,
which may be presented.directly to a user via the assistive technology (e.g. to speak the name via a speech
synthesizer). Itis always in the Locale of the application:

// |Example JSf\getting the AccessibleDescription of a component
String description =
myComponent .getAccessibleContext () .getAccessibleDescription () ;

For applications that are creating custom components, it may be appropriate to explicitly set the|accessible
de\.ul;pt;un fUI that UUOtUIII UUIII'JUIIGIIt (IIUt UVUIy UoTl ;lltcrfauc \/UIII}JUI 1C1T It IIUCCIID [=} dcaulipﬁull). ThIS |S
typically done either in the subclass itself, or simply by explicitly setting the accessible description from within
the application:

© ISO/IEC 2014 — All rights reserved 21

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

// Example #1 of setting the AccessibleDescription of a component
class CustomButton extends javax.swing.JComponent {
class AccessibleCustomButton extends
javax.swing.JComponent.AccessibleJComponent {

protected String getAccessibleDescription ()

{
// assumes such a method below
return CustomButton.this.getButtonToolTip () ;

or

// Examp
Accessib
Acce
ac.s
retu

5.2 Curre
represent

Accessible
interface A
a range of

Assistive tg
information
listener for
component

// Examp
// of a
Accessib
myCompo
if (myVa
Numb
Numb
Numb

and/or
// Examp

// compo
protecte

le #2 of setting the AccessibleDescription of a component
leContext getAccessibleContext ()
EsibleContext ac
btAccessibleDescriptoin ("some button description");
'n ac;

nt value and any minimum or maximum values, if the user interface element

{

new AccessibleCustomButton () ;

s one of a range of values

value information — including the minimum & maximum values, are contained in the optig
cessibleValue. This must be implemented by all user interface components that take on ong
alues.

chnologies obtain value information by first verifying ‘that the user interface component has vg
to provide, and then by querying that information. Assistive technologies can also registe
value changes, and thus be automatically“nformed any time the value of a user interf]
changes:

e of getting the current, midy) and max AccessibleValues
Component

leValue myValue =

hent .getAccessibleContext() .getAccessibleValue() ;

lue != null) {

br minimum = myValu€,getMinimumAccessibleValue () ;

Ebr maximum = myValu€.getMaximumAccessibleValue ()
er current mydalue.getCurrentAccessibletValue (

r

)

le of \bwacking changes in the AccessibleValue of a
hent
N <¢lass ValueHandler implements PropertyChangelListener {

nal
e of

ue
ra
Ace

publ

if

22

hovszo1d nrovertvsChange (ProntortvuChaonogolvzant oszt) [
g z = A} g z = T

{

== "AccessibleValueProperty")
eve.getNewValue () ;

(evt.getPropertyName ()
Number newValue (Number)

© ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

5.2.1 Additional value information: setting values

As noted below in subclause 34, the Java Accessibility API also supports programmatic setting of values of
user interface components. This is supported not only for applications which may utilize this functionality for
custom components, but also for assistive technologies. With this support, assistive technologies such as
voice recognition command-and-control applications, as well as sophisticated on-screen keyboards — can
explicitly set the values of sliders and scroll bars, and any other user interface component that takes on one of
a range of values. This is done as follows:

// Example of setting the AccessibleValue of a component
AccessibleValue myValue
myCompnent .getAccessibleContext ()

.getAccesibleValue () ;

if| (myValue != null) {
myValue.setCurrentAccessibleValue (5) ; // sets new value to 5
}
5.3 Text contents, text attributes, and the boundary of text rendered to the screen
Acgessible text information — whether for static text or editable text — is contained in the AccesjsibleText
optlonal interface. Accessible information about editable text is contained“in‘the AccessibleEdiftableText
optlonal interface (a formal sub-interface of AccessibleText). Someé additional information is available
thrqugh the AccessibleExtendedText optional interface (the other fofmal sub-interface of AccessfibleText).
Text contents can be obtained a variety of ways:
— | the character/word/sentence that is located at/beforefafter a particular text offset or index f using the
AccessibleText.getAfterIndex(), AccessibleText.getAtIndex(), and

AccessibleText.getBeforeIndex() methods

the text that is currently selected using the AccessibleText.getSelectignStart(),
AccessibleText.getSelectionEnd(),and’AccessibleText.setSelectedText () methods|

the range of text between two indicies" - using either the AccessibleEditableText.getTextRange(),

or AccessibleExtendedText.getTextRange() methods

the line of text containing @‘given index (as that line is displayed/broken on the screen, in¢luding any
word-wrap used to break'the line to fit in an adjustable width rectangle) — or line prior or after the line

containing the given index using the
AccessibleExtendedText. getTextSequenceAfter(Acce551b1eExtendedText LINE),
AccessibleExténdedText.getTextSequenceAt(AccessibleExtendedText.LINE), and
AccessibleExtendedText.getTextSequenceBefore(AccessibleExtendedText.LINE) methods

— | the text-containing a contiguous run of attributes (allowing an assistive technology to ragidly iterate
throughruns of text attributes, typically to efficiently display attributes on a refreshible braille display or for
attribute-based searches) - using the
AccessibleExtendedText. getTextSequenceA-Fter‘(AccessibleExtendedText ATTRIBUTE RUN),
AccessibleExtendedText. getTextSequenceBeFore(Acce551b1eExtendedText ATTRIBUTE_RUN)
methods

© ISO/IEC 2014 — All rights reserved 23

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

Text attribu

the character attributes for the single character at a particular text offset or index

te information can be obtained in two different ways:

- using

AccessibleText.getCharacterAttribute() method

at a particular text offset or index - using

AccessibleExtendedText.getTextSequenceAfter(AccessibleExtendedText.ATTRIBUTE_RUN),

AccessibleExtendedText.getTextSequenceAt(AccessibleExtendedText.ATTRIBUTE_RUN),

AccessibleExtendedText.getTextSequenceBefore(AccessibleExtendedText .ATTRIBUTE_RUN)

the

the character attributes for the characters in a contiguous run of characters sharing the same set of
attributes

the

and

metho

Text bound

the bd
Acces

the b
Acces

As describ
modificatio

Finally, the]
what is req

component].

There is al
provides a

5.4 The r¢

Information
interface, T

been descilibed in subclause 20, earlier in this'clause.

Other infor
of the requ

541 in4d
element ol

Information
and retrie
Accessibl
user interfs

ds
ary information can be obtained in two different ways:

unding rectangle of the single character at a particular text offset or index
EibleText.getCharacterBounds () method

- using

ounding rectangle for the range of characters
5ibleExtendedText.getTextBounds () method

in a contiguous™. run

using
ed below in subclause 34, the Java accessibility APl provides/several API calls for mak
ns to text contents.

re is another method in these accessible text interfaces, which/provide functionality going bey
uired in ISO/IEC 13066-1: an API call to count of the number of characters in a text user interf
50 a fourth accessible text interface in the Java accessibility APl - AccessibleHypertext - wh
way for assistive technologies to locate and use hyperlinks that may be embedded in hypertext.
lationship of the user interface element to other user interface elements

about the pixel location of user interface elements is part of the AccessibleComponent optid

bquired of every accessible user_interface component showing on the screen. This has alre

mation about the relationship*of one user interface element to others is described below, in supj
rements in subclause 7.1.7, item d.

is labelled by another user interface element
about whether a user interface component is a label or not is contained in the AccessibleRd

al of that information is described in subclause 19 above. Labels generally have
eRole,of AccessibleRole.LABEL. However, more important than any role is whether in fact

céccomponent is in a labeling relationship with another user interface component. To ascer]

single data value, whether this user interface element is a label for another user interface

the

the

ng

bnd
hce

ich
nal
ady

bort

le,
the
the
ain

this, an a

PP YW $ hnalacr—aHat bioia—th et £ A thlahDal o4 = for—o—aoivan oo iato ofl
SOV ICUNMTTUTOgy MToStT outalT o SCT U ACT TS STUITTRNTIOTIVUITS U a yivoeT USCT1TtoTT

ce

component, and see if one of those is the AccessibleRelation.Label_For relation (and which user

interface component is being labeled).

Conversely, any labeled user interface component should have a

AccessibleRelation.Labeled_By relation, referencing the label in question. As with AccessibleStates, a
user interface component can have multiple of them, and they are returned in an an AccessibleStateSet.
The following code illustrates this:

24

© ISO/IEC 2014 — All rights rese

rved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

// Example #1 of ascertaining whether a labeling relationship
// exists
AccessibleRelationSet relations =
myComponent .getAccessibleContext () .getAccessibleRelationSet () ;
if (relations.contans (AccessibleRelation.LABEL FOR)) {
// myComponent is a label!
AccessibleRelation labelRelation =
relations.get (AccessibleRelation.LABEL FOR) ;
AccessibleContext labeledAccesible =
(AccessibleContext) labelRelation.getTarget () ;
}
and conversely
// |Example #2 of ascertaining whether a labeling relationship
//|exists
Acg¢essibleRelationSet relations =
myComponent .getAccessibleContext () .getAccessibleRelationSet (7

}

5.4

Infq
useg
Acd
intg

(relations.contans (AccessibleRelation.LABELED BY)) {
// myComponent is a label!
AccessibleRelation labelerRelation =
relations.get (AccessibleRelation.LABEL FOR) ;
AccessibleContext labelerAccesible =
(AccessibleContext) labelRelation.getTarget(h;

2 in atable, the row and column that it is in, including headers of the row and column if

rmation about whether a user interface component is a data element within a data table is conta
r interface hierarchy of the component — whether the parent user interface component implg
essibleTable interface. In some cases thesuser interface component may be part of a hierar
rface components, in which case it won't bethe immediate parent, but a grandparent. The foll

present.

ined in the
ements the
chy of user
bwing code

shgws how to determine whether a user interface component is directly a child of a table. Moie common

wollld be to traverse down a user intefface component hierarchy, and into a data element t

Acq
intd
if p

essibleTable interface. Once ‘an assistive technology has a reference to the Access
rface, it is a simple matter to obtain the row & column information, and the headers of the row 4
esent. These too are illustrated-in the code sample below:

hrough the
ibleTable
nd column

© ISO/IEC 2014 — All rights reserved

25

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

// Example of ascertaining whether a component is in a table,

// and where

AccessibleContext parent =

myComponent .getAccessibleContext () .getAccessibleParent () ;

if ((AccessibleTable table = parent.getAccessibleTable()) != null

&& table instanceof AccessibleExtendedTable) ({

// we know that myComponent is part of the AccessibleTable
// 'table' and we get the extended table info for row/column
// calculations
int index =
myComponent .getAccessibleContext () .
getRAccessibleIndexInParent () ;

int fow = ((AccessibleExtendedTable) table).
getRAccessibleRow (index) ;
int polumn = ((AccessibleExtendedTable) table).

getRAccessibleColumn (index) ;
AccepsibleTable rowHeaders = table.getAccessibleRowHeader () ;
// apsumes one header per row & column - could have multiple
// lkvels
AccepsibleContext rowHeader =
rowHeaders.getAccessibleAt (row, 0);
AccepsibleContext columnHeader =
rowHeaders.getAccessibleAt (0, column) ;

}

5.4.3 in g hierarchical relationship, any parent containing the user interface element, and any
children copntained by the user interface element

Parent/childl hierarchical relationship information is part of the{core AccessibleContext class implemented
by all accessible user interface components. The following code example illustrates this:

// Examplle of getting the parent of a cdfpyonent
AccessiblleContext parent =
myCompohent .getAccessibleContext ()..getAccessibleParent () ;

and conversely

// Examplle of getting the chW¥dren of a component
int chilpren count =
myCompohent .getAccessibleContext () .getAccessibleChildrenCount () ;
AccessiblleContext childy
while (ipt n=0; n < €hfldren count; n++) {
chilfg =
myCpmponent/ getAccessibleContext () .getAccessibleChild (n) ;

In addition{ in’certain very rare and special circumstances this “default” or “Ul hierarchy” information can| be
overridden|using the AccessibleRelation interface. This very rare situation arises when the underlying User
interface toolkit has an illogical heirarchy that otherwise cannot be changed (which is something that can
usually be done explicitly by applications which can formally change the accessibility Ul heirarchy as distinct
from the component heirarchy — see Setting the Accessible Parent in subclause 4.3.1.4). In that case, the
parent user interface component will have an AccessibleRelation.PARENT_WINDOW_OF relation with each of
is children, and conversely each child will have an AccessibleRelation.SUBWINDOW_OF with each of its
parents. The usual relation calls (shown in the code sample above in subclause 24) are used to obtain this
information.

26 © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

5.4.3.1 in other, more generalized relationships

The Java accessibility API provides a very rich and flexible means of encoding all kinds of relationships
between user interface components, going beyond what is required by ISO/IEC 13066-1. The full set of pre-
defined relations is documented in the AccessibleRelation javadoc. These relations include:

a set of text-flow relations, allowing assistive technologies to follow the flow of text broken

up among

multiple user interface components — and across multiple columns or skipping over headers/footers as

displayed in a typical word processor

ibworld” is

Bey
tak
unl

Inl

The
intg
act

Act
incl
act
the
bui
but

a set of omhndr’ling relations alln\uing assistive fnr\hnnlngine to rar\ngni7n when a3 “si
k

embedded within a frame (such as is common with technologies like Object Linking and Embegd

a set of grouping relations, indicating when one or more user interface components are a m
common group (and what the grouping user interface component is)

a set of controlling/controlled relations, indicating when one or more user interfface component
control the result of another — such as in the case of a spreadsheet when-one cell is the
formula of other cells

an overriding the typical Ul hierarchy, to note that one object is really.the child of another (use
Ul components displaying trees, where the immediate Ul hierarchy/is only one level deep —
children — but is displayed as a tree hierarchy).

ond the pre-defined set of relations, arbitrary new relations'can be created. However, great c3
en when doing so, as assistive technologies will not understand the semantics of any such ne
pss they are well documented and support for using them is implemented in assistive technologi

Exposing User Interface Element Actions
SO/IEC 13066-1, subclause 7.1.8 requirescsoftware to:

programmatically expose a list of\available actions on a user interface element and allo
technology to programmatically execute any of those actions.

AccessibleAction interfage provides a method for determining the number of actions expose
rface component, the description of each action, and a way to programmatically perform ea
ons. The API calls are described above in subclause 4.2.2.

udes things like.on-screen keyboards and voice command and control systems. By enum
ons available-on the user interface components in the hierarchy of a running application (whe
y are visiblg),"an assistive technology can re-present those components on an on screen keybo
d a dynamic voice recognition grammar of the nouns of the user interface (the AccessibleN
ons(and checkboxes and so on) and the verbs (the AccessibleActionDescriptions); potent

ons are used to.‘support a variety of assistive technologies that provide user input alternafjves.

iding)

ember of a

5 impact or
result of a

d in certain
h flat set of

re must be
v relations,
BS.

v assistive

d by a user
th of these

This
erating the
ther or not
ard, or can
hmes of the
ally adding

adj

bclives to the grammar if needed (the AccessibleRoles).

Common actions are CLICK (the equivalent of clicking the mouse), INCREMENTing or DECREMENTing a value,
TOGGLEing a POPUP. And TOGGLEing an EXPANDable object (such as a tree node).

The following sample code illustrates how an assistive technology would discover and then perform the CLICK
action on a user interface component such as a button (equivalent to the user actually moving the mouse over

the

component and then pressing and releasing the left mouse button):

© ISO/IEC 2014 — All rights reserved

27

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

// Example of performing the CLICK action on a component

AccessibleAction action

myComponent .getAccessibleContext () .getAccessibleAction () ;
if (action != null) {
int count = action.getAccessibleActionCount () ;

while
if

(n = 0; n < count; n++) {

(action.getAccessibleActionDescription (n)

AccessibleAction.CLICK) {
action.doAccessibleAction (n) ;

}

In addition,

adding/rem
such as a
action inte
subclause

As with ad
Accessibl
and then re

The followi

only the third item is selected) among the children of a user interface component that supported

Accessibl

// Examp
Accessib
myCompo
if (sele
sele
sele

7 Keyboard Focus

In ISO/IEC

the AccessibleSelection optional interface provides a method for programmatic
oving items from a container in which one or more user interface components may be, selecte
list box or a menu. In other accessibility APIs, selection addition/removal might (e part of t
face. The API calls for the AccessibleSelection optional interface are described abovg
10.

tions, assistive technologies can enumerate the user interface components which provide
eSelection interface in the hierarchy of a running application (whether or not they are visig
-present those on an on-screen keyboard or use them in a dynamiglvoiCe recognition grammar.

ng sample code illustrates how an assistive technology wouldcselect the third item (and ensure {
eSelection interface — such as a ListBox.

le of selecting an item in a component
leSelection selection
hent .getAccessibleContext () .getAccéssibleSelection () ;
ction != null) {

ction.clearAccessibleSelection ()%
Ction.addAccessibleSelection (2);

// 0 is the first item

13066-1, subclause 7.1.9 requires software to:

pra
ap,

Tracking keyboard foeus:* whether the formal “focus” on a user interface component like a button, the “
focus” of the choiceofva menu item within a menu, the text insertion “focus”, or selection focus (whether

selected t

event mechanism provided by the Java accessibility API. The general event mechanism is described belov
Clause 31.] This clause focuses on the broader set of focus-related events.

grammatically expoSe‘information necessary to track and modify: focus, text insertion point (wh
licable), and selection attributes of user interface elements.

t in an-editable text field or selected items in a list box) — is simply a subset of the more gen

7.1 Tracking (and modifying) focus

ally
4 —
heir

In

the
le),

hat
the

ere

Jolit
tis
eral
vV in

In the Java accessibility parlance, focus is an AccessibleState - specifically AccessibleState.FOCUSED.
To determine whether a user interface component is focused, an assistive technology would examine the
AccessibleStateSet of the component to see whether it included AccessibleState.FOCUSED. A code
example of showing how to obtain these states is in subclause 19 above.

28

© ISO/IEC 2014 — All rights rese

rved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

To track the focus, the assistive technology should add a listener to AccessibleState PropertyChange
events, filtering those events for the state AccessibleState.FOCUSED. The following code example
illustrates this:

// Example of tracking focus events from a component
protected class StateHandler implements PropertyChangelListener {
public void propertyChange (ProptertyChangeEvent evt) {
if (evt.getPropertyName () == AccessibleState.FOCUSED &&
(Object newValue = event.getNewValue()) !'= null) {
AccessibleContext focusedAccessible =
(AccessibleContext) newValue;
// 'focusedAccessible' now has focus
// additional calls here, such as to get the
// AccessibleName of the focusedAccessible, and
// speak it & its role via text-to-speech

my$omponent.getAccessibleContext () .addPropertyChangelListerer
new StateHandler()):;

—

Beyond tracking focus, assistive technologies can explicitly focus onte“a user interface component. This is
dorle with the requestFocus() call, as follows:

// |Example of setting the focus to a component
mylomponent .getAccessibleContext () . requestEetus () ;

NOTE this only works for user interface components, that have a “hard focus” - where the user interface explicitly
defines a “focus” state or property for the component,\For “soft focus” components like menu items in Swing, the
AccessibleSelection interface must be used instead, as illustrated in the code example in Clause 27.

7.2 Tracking (and modifying) text insertion point

As [mentioned above in subclause 12; all user interface components that provide for editabld text must
imglement the AccessibleEditableText interface. This interface contains methods for obtaining the text
cargt location (or insertion point)-'and for modifying it. Also methods for selecting a region of text —|which may
be fonsidered a special case-ofsan insertion point, as any text entered will take the place of the selected text.
Thg following code sample.illustrates these methods:

//|Example of sgtting the focus to a component

//|for all text

text = myCompoOrient.getAccessibleContext () .getAccessibleText () ;
int caretP@sation = text.getCaretPosition();

int selegtionStart = text.getSelectionStart():;

int sedectionkEnd = text.getSelectionEnd() ;

Strirfdg-selectedText = text.getSelectedText () ;

// for editable text:

if (text instanceof AccessibleEditableText) {
// sets caret location to 4, with an “empty” selection range
((AccessibleEditableText) text).selectText (4, 4);

}

To track the text insertion point, the assistive technology should add a listener to AccessibleState
PropertyChange events, filtering those events for ACCESSIBLE_CARET_PROPERTY events. The following code
example illustrates this:

© ISO/IEC 2014 — All rights reserved 29

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

// Example of tracking property change events, filtering for caret

// changes

protected class CaretHandler implements PropertyChangelListener {
public void propertyChange (ProptertyChangeEvent evt) {

if (evt.getPropertyName () == ACCESSIBLE CARET PROPERTY) ({
int caretlLocation = (int) evt.getNewValue();
}
}
}
myComponent .getAccessibleContext () .addPropertyChangelistener (new CaretHandler());

7.21 TraLking (and modifying) selection attributes

There are fwo different notions of selection in the Java accessibility APl parlance — user interface;eompongnts
that are selected (like items in a list box or a menu), and selected text. User interface compprient selection
has already been discussed in Clause 27.

Text selection is part of the AccessibleEditableText interface, and many of the,methods were alrepdy
discussed | above in subclause 29. Determining what text is selected is done via |the
AccessiblleText.getSelectionStart() and AccessibleText.getSelectionEnd() methods, while
obtaining |the selected text itself is done with the AccessibleTéxt.getSelectedText() ¢all.
Setting/moglifying the selection is done with the AccessibleEditableText\.selectText() method. Opce
text is selefted, any text typed on the keyboard will replace the selection,-or it can be replaced explicitly yith
the AccesdibleEditableText.replaceText() method.

Tracking s¢lection changes is done with event listeners, using the/same pattern as other listeners in the Java

accessibili{} API — and very much the same as tracking the caret’/ insertion point, as described in subclalise

29 above, but by listening for ACCESSIBLE_SELECTION_PROPERTY changes:

// Exampfle of tracking property change ey@nts, filtering for caret

// changks

protectefd class SelectionHandler impléments PropertyChangelistener {
publifp void propertyChange (PropgértyChangeEvent evt) ({

if| (evt.getPropertyName () == ACCESSIBLE SELECTION PROPERTY) ({
// selection has chang®d, query for the new selection
AccessibleText text (= (AccessibleText) evt.getSource()

int selectionStart,& text.getSelectionStart();
int selectionEnd = text.getSelectionEnd() ;

}

myComponent .getAecessibleContext () .addPropertyChangelListener (new
SelectiohHandlexr/()) ;

Beyond gelection attributes, other text attributes are available via the AccessibleText and
AccessiblleEditableText interfaces—as-described-insubclause23—Inadditiontoobtaining those 3
changes in those attributes can also be tracked via assistive technologies — again going beyond the minimum
required by ISO/IEC 13066-1. The same event listener pattern is used for text attribute changes as was
described above in subclause 29 and also earlier in this subclause: for text caret / insert point and selection.
This is done by listening for property change events of property type:
ACCESSIBLE_TEXT_ATTRIBUTES_CHANGED.

Also, in addition to caret and selection changes, assistive technologies can track the insertion and deletion of
text — by listening for property change events of property type: ACCESSIBLE_TEXT_PROPERTY.

30 © ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

8

ISO/IEC TR 13066-

Events

In ISO/IEC 13066-1, subclause 7.1.10 requires software to:

programmatically expose notification of events relevant to user interactions, including but not
changes in the user interface element value;

changes in the name of the user interface element;

dacerintian

6:2014(E)

limited to:

AT

(] aftha
CCSCTrpPtoTT O triic—o

changes in the boundary of the user interface element;

changes in the hierarchy of the user interface element.

Java accessibility APl uses one primary event mechanism — based on the Java Beans pattern
nges in most aspects of the user interface needed by AT. This is a PropertyChange notificatio
AccessibleContext associated with the user interface component{/~In a few cases

essibleTable), specialized events may also be fired.

— typically via a bridge — registers a listener for events from the AcecesSsibleContext, and rece

with a propertyName, and an oldValue, and a newValue. With-this information the AT can dete

hag
8.1

Thd
Acq
Prd
is /

pened, or at least determine that it needs more information, (forwhich it will then make more AP
changes in the user interface element value

se user interface elements which represent..one of a range of changeable values wil
essibleContext that provides the AccessibleValue optional interface. AT that re
pertyChange event notification from that AgcessibleContext will receive events whose pro
CCESSIBLE_VALUE_PROPERTY and whose‘oldValue is the old value and whose newValue

vallie.

8.2

As

Prg
not
ACq

8.3
As

Prg
not

changes in the name of the user interface element

all user interface components must have an AccessibleName, all AccessibleConteX
pertyChange events for(a,change in the accessible name. AT that registers for PropertyCh
fication from that * AccessibleContext will receive events whose propert
ESSIBLE_NAME_PROPERTY and whose oldValue is the old name and whose newValue is the ne

changes inithe description of the user interface element
all user interface components must have an AccessibleDescription, all AccessibleConte

perty€hange events for a change in the accessible name. AT that registers for PropertyCh
fication from that AccessibleContext will receive events whose propert

ACq

— to signal
h fired from
pther (e.g.

ves events
rmine what
calls).

| have an
gisters for
pertyName
is the new

t will fire
pnge event
yName is
W name.

xt will fire
pnge event
yName is

ESSIBLE_DESCRIPTION_PROPERTY and whose oldValue is the old description and whose new\f

alue is the

new description.

8.4 changes in the boundary of the user interface element

Those user interface elements which are drawn to the screen (even only at some potential time in the future
such as an undisplayed menu item) will have an AccessibleContext that provide an AccessibleComponent

optional interface.

will

AT that registers for PropertyChange event notification from that Accessib
receive events whose propertyName

oldValue is the old bounding rectangle and whose newValue is the new bounding rectangle.

© ISO/IEC 2014 — All rights reserved

leContext

is ACCESSIBLE_COMPONENT_BOUNDS_PROPERTY and whose

31

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

8.5 changes in the hierarchy of the user interface element

MSAA events are used to notify ATs of changes in the hierarchy of a user interface element.

8.6 changes in other accessibility aspects of user interface components

Much of the information available via the Java accessibility APl can be “listened” for, and any time that

information changes, a listening assistive technology will receive notification of the change.

properties that for which changes trigger events is documented in the javadoc for AccessibleContext:

32

The set of

A h:— H +lo I £ 43 Habl 4 HEE o 3 + ot] ES
C ariycc nr uic Tiarouct Ul aLlivulico avdaiiduic U a UotTl meTrTavt CUITTTPUTICTIU Uldt TITTYICTTICTIS

Acces

EibleAction interface (expressed via ACCESSIBLE_ACTION_PROPERTY change events)

A change in the “active descendant” of a user interfface component that- lhas

Acces
unbou
ACCES

5ibleState.MANAGES_DESCENDANTS — used in cases where the number of children may
nded or simply very large, where it is not practical to enumerate all of the children;(expressed
SIBLE_ACTIVE_DESCENDANT_PROPERTY change events)

A chgnge in the caret location available to a user interface component—that implements

Acces

5ibleText interface (expressed via ACCESSIBLE_CARET_PROPERTY change events)

The gddition or removal of a child user interface component fromi its parent (expressed

ACCES

A cha
Acces

SIBLE_CHILD_PROPERTY change events)

nge in which portion of hypertext has focus for a user interface component that implements
5ibleHypertext interface (expressed via ACCESSIBLEMHYPERTEXT_OFFSET change events)

A change indicating that a significant change has occurred to the children of a user interface compone
typically a list or tree or text — and indicating that assistive technology should re-build any model it ha

those

Children (expressed via ACCESSIBLE_INVALIDATE_CHILDREN change events)

A change in the accessible selection of* a user interface component that implements

Acces

EibleSelection interface (expressed-via ACCESSIBLE_SELECTION_PROPERTY change events)

A change in the accessible states of @ user interface component — e.g. a component becoming focus
or chegked (expressed via ACCESSIBLE_STATE_PROPERTY change events)

A chamge in the caption of a user interface component that implements the AccessibleTable interf
(exprepsed via ACCESSIBLE_TABLE_CAPTION_CHANGED change events)

A chapge in the déscription of a table column of a user interface component that implements

Acces

events)

A cha
interfa

EibleTablelinterface (expressed via ACCESSIBLE_TABLE_COLUMN_DESCRIPTION_CHANGED cha

the

the
be
via

the

via

the

ht —
5 of

the

ed,

ace

the
hge

ble

ﬂge in“the column header of a user interface component that implements the AccessibleTa

A change in the underlying data model of a user interface component that implements the
AccessibleTable interface — indicating that a significant content change has occurred to the children of
this table and that assistive technology should re-build any model it has of this information (expressed via

ACCES

SIBLE_TABLE_MODEL_CHANGED change events)

A change in the description of a table row of a user interface component that implements the
AccessibleTable interface (expressed via ACCESSIBLE_TABLE_ROW_DESCRIPTION_CHANGED change
events)

© ISO/IEC 2014 — All rights rese

rved

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

	Blank Page

