

Reference number
ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014

TECHNICAL
REPORT

ISO/IEC
TR

13066-6

First edition
2014-07-15

Information technology — Interoperability
with assistive technology (AT) —

Part 6:
Java accessibility application
programming interface (API)

Technologies de l'information — Interopérabilité avec les technologies
d'assistance —

Partie 6: Interface de programmation d'applications (API) d'accessibilité
Java

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2014 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved iii

Contents Page

Foreword ... v

Introduction .. vi
1 Scope .. 1

2 Terms and Definitions ... 1

3 General Description .. 5
3.1 General Description .. 5
3.2 Architecture ... 5

4 Using the API ... 6
4.1 Overview ... 6
4.2 Package javax.accessibility* .. 7
4.2.1 The AccessibleContext class ... 7
4.2.2 The AccessibleAction interface ... 8
4.2.3 The AccessibleComponent and AccessibleExtendedComponent interfaces 8
4.2.4 The AccessibleIcon interface ... 10
4.2.5 The AccessibleSelection interface .. 10
4.2.6 The AccessibleStreamable interface ... 10
4.2.7 The AccessibleTable and AccessibleExtendedTable interfaces .. 11
4.2.8 The AccessibleText, AccessibleEditableText, AccessibleExtendedText, and

AccessibleHypertextText interfaces .. 12
4.2.9 The AccessibleValue interface ... 13
4.3 Implementing the Java accessibility API .. 13
4.3.1 Using existing accessible user interface components ... 14
4.3.2 Subclassing existing accessible user interface components .. 16
4.3.3 Creating accessible user interface components “from scratch” ... 17

5 Exposing User Interface Element Information ... 18
5.1 Role, state(s), boundary, name, and description of the user interface element 18
5.1.1 Role information .. 19
5.1.2 State(s) information ... 19
5.1.3 Boundary information ... 20
5.1.4 Name information .. 21
5.1.5 Description information .. 21
5.2 Current value and any minimum or maximum values, if the user interface element

represents one of a range of values .. 22
5.2.1 Additional value information: setting values.. 23
5.3 Text contents, text attributes, and the boundary of text rendered to the screen 23
5.4 The relationship of the user interface element to other user interface elements......................... 24
5.4.1 in a single data value, whether this user interface element is a label for another user

interface element or is labelled by another user interface element ... 24
5.4.2 in a table, the row and column that it is in, including headers of the row and column if

present. ... 25
5.4.3 in a hierarchical relationship, any parent containing the user interface element, and any

children contained by the user interface element ... 26

6 Exposing User Interface Element Actions .. 27

7 Keyboard Focus .. 28
7.1 Tracking (and modifying) focus ... 28
7.2 Tracking (and modifying) text insertion point .. 29
7.2.1 Tracking (and modifying) selection attributes ... 30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

iv © ISO/IEC 2014 – All rights reserved

8 Events .. 31
8.1 changes in the user interface element value ... 31
8.2 changes in the name of the user interface element .. 31
8.3 changes in the description of the user interface element .. 31
8.4 changes in the boundary of the user interface element ... 31
8.5 changes in the hierarchy of the user interface element ... 32
8.6 changes in other accessibility aspects of user interface components .. 32

9 Programmatic Modifications of States, Properties, Values, and Text ... 33
9.1 Programmatic Modifications of States ... 33
9.2 Programmatic Modifications of Properties .. 34
9.3 Programmatic Modifications of Values .. 34
9.4 Programmatic Modifications of Text... 34

10 Design Considerations ... 35
10.1 Java Access Bridge for Windows ... 35
10.2 Java Access Bridge for Linux / UNIX graphical environments .. 36

11 Further Information... 38
11.1 Role extensibility .. 38
11.2 State extensibility ... 39
11.3 Relation extensibility .. 39
11.4 Interface extensibility ... 39

Bibliography ... 40

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on the ISO
list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT)
see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, Subcommittee
SC 35, User interfaces.

ISO/IEC 13066 consists of the following parts, under the general title Information technology —
Interoperability with assistive technology (AT):

 Part 1: Requirements and recommendations for interoperability

 Part 2: Windows accessibility application programming interface (API)

 Part 3: IAccessible2 accessibility application programming interface (API)

 Part 4: Linux/UNIX graphical environments accessibility application programming interface (API)

 Part 6: Java accessibility application programming interface (API)

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C TR 13

06
6-6

:20
14

http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

vi © ISO/IEC 2014 – All rights reserved

Introduction

Assistive technology (AT) is specialized information technology (IT) hardware or software that is added to or
incorporated within a system that increases accessibility for an individual. In other words, it is special purpose
IT that interoperates with another IT product enabling a person with a disability to use the IT product.

Interoperability involves the ability to add or replace Assistive Technology (AT) to existing components of
Information Technology (IT) systems. Interoperability between AT and IT is best facilitated via the use of
standardized, public interfaces for all IT components.

This part of ISO/IEC 13066 describes the Java accessibility API that can be used as a framework to support
software to software IT-AT interoperability on the multiple computing platforms. It also describes the Java
Access Bridge for Windows – for enabling AT on Windows to interoperate with accessible Java applications
on the Microsoft Windows platform – and the Java Access Bridge for GNOME – for enabling AT on UNIX and
GNU/Linux platforms running the GNOME graphical desktop to interoperate with accessible Java applications
on UNIX and GNU/Linux environments.

NOTE 1 GNOME is both a common and accessible graphical desktop for Linux / UNIX graphical environments, as well
as an open source project delivering a collection of software libraries and applications. It was formerly an acronym
meaning “GNU Network Object Model Environment”.

NOTE 2 The code examples contained in this document are illustrative in nature. With rare exception, they do not
include error checking or exception handling, and should be treated more like pseudo-code than as cookbook templates
that can use directly in applications or assistive technologies.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

TECHNICAL REPORT ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 1

Information technology — Interoperability with assistive
technology (AT) —

Part 6:
Java accessibility application programming interface (API)

1 Scope

This part of ISO/IEC 13066 provides an overview to the structure and terminology of the Java accessibility API

It will provide:

 A description of the overall architecture and terminology of the API;

 Further introductory explanations regarding the content and use of the API beyond those found in Annex
A of ISO/IEC 13066-1;

 An overview of the main properties, including of:

 user interface elements;

 how to get and set focus;

 of communication mechanisms in the API;

 a discussion of design considerations for the API (e.g. pointers to external sources of information on
accessibility guidance related to using the API);

 information on extending the API (and where this is appropriate);

 an introduction to the programming interface of the API (including pointers to external sources of
information).

 an introduction to the Java Access Bridge for Windows and the Java Access Bridge for GNOME

It will provide this information as an introduction to the Java API to assist:

 IT system level developers who create custom controls and/or interface to them;

 AT developers involved in programming "hardware to software" and "software to software" interactions

2 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

2.1
accessible object
a part of the user interface that is accessible by and exposes the Java accessibility API

Note 1 to entry An accessible object is represented by an object of the “AccessibleContext” Java class

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

2 © ISO/IEC 2014 – All rights reserved

2.2
application programming interface
API
collection of invocation methods and associated parameters used by one piece of software to request actions
from another piece of software

[SOURCE: ISO/IEC 18012-1 Information technology – Home electronic system – Guidelines for product
interoperability – Introduction, definition 3.1.1]

2.3
application software
software that is specific to the solution of an application problem

[SOURCE: ISO/IEC 2381-1, definition 10.04.01]

EXAMPLE A spreadsheet program is application software.

2.4
Assistive Technology
(AT)
hardware or software that is added to or incorporated within a system that increases accessibility for an
individual

EXAMPLE Braille displays, screen readers, screen magnification software and eye tracking devices are assistive
technologies.

[SOURCE: ISO 9241-171, definition 3.5]

Note 1 to entry Within this document, where Assistive Technology (and its abbreviation AT) is used, it is to be considered
as both singular and plural, without distinction. If it is to be used in the singular only, it will be preceded by the article "an"
(i.e. an Assistive Technology). If it is to be used in the plural only, it will be preceded by the adjective "multiple" (i.e.
multiple AT).

2.5
class
a term from object oriented programming, also used in the Java programming language, denoting the
definition/description of an object containing code (methods) and data (fields)

EXAMPLE All objects in object oriented programming belong to a class (e.g. a specific window object is an instance
of the window class).

Note 1 to entry Much of the Java accessibility API consists of these class definitions, and implementations of the Java
accessibility API are instances of these classes.

Note 2 to entry In objected oriented programming – and specifically in the Java programming language – classes can be
“subclassed” (e.g. a dialog box class is a subclass of the more generic window class), and portions of the Java
accessibility API are implemented as subclasses (e.g. AccessibleRole, AccessibleState, and AccessibleRelation are all
subclasses of the more generic AccessibleBundle class).

2.6
compatibility
the capability of a functional unit to meet the requirements of a specified interface without appreciable
modification

[SOURCE: ISO/IEC 2381-1, definition 10.06.11]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 3

2.7
information/communication technology
(ICT)
technology for gathering, storing, retrieving, processing, analysing and transmitting information

[SOURCE: ISO 9241-20, definition 3.4]

EXAMPLE A computer system is a type of ICT.2.13

2.8
interface
<general software> a shared boundary between two functional units, defined by various characteristics
pertaining to the functions, physical interconnections, signal exchanges, and other characteristics, as
appropriate

[SOURCE: ISO/IEC 2381-1, definition 10.01.38]

2.9
interface
<Java programming language> in object oriented programming generally – and the Java language in
particular – an interface is a set of public methods (and potentially public fields) that all objects implementing
the interface must include

Note 1 to entry As with Java programming language classes that can be “subclassed”, interfaces can be “subclassed” as
well – and the result is called a “subinterface”.

Note 2 to entry Much of the Java accessibility API is implemented as Java interfaces, and some of these as subinterfaces
(e.g. the AccessibleEditableText interface is a subinterface of the more generic AccessibleText interface).

2.10
interoperability
the capability to communicate, execute programs, or transfer data among various functional units in a manner
that requires the user to have little or no knowledge of the unique characteristics of those units

[SOURCE: ISO/IEC 2381-1, definition 10.01.47]

2.11
inter-process communication
(IPC)
a mechanism by which different software processes communicate with each other – across process
boundaries, runtime environments, and sometimes also computers and operating systems

2.12
operating system
(OS)
software that controls the execution of programs and that may provide services such as resource allocation,
scheduling, input-output control, and data management

Note 1 to entry Although operating systems are predominantly software, partial hardware implementations are possible.

[SOURCE: ISO/IEC 2381-1, definition 10.04.08]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

4 © ISO/IEC 2014 – All rights reserved

2.13
package
<Java programming language> a collection of class and interface definitions that are related to one another,
and which are bundled together (into a package)

EXAMPLE The Java accessibility API is collected together into the core Java platform package
javax.accessibility.* and the fully qualified name of each class or interface in this package begins with the
package name, e.g. javax.accessibility.AccessibleEditableText.

2.14
runtime environment
a software environment that provides all of the resources necessary for software applications to run, yet is not
itself an operating system

EXAMPLE 1 The Java runtime environment.

EXAMPLE 2 Adobe Flash player.

EXAMPLE 3 Microsoft Silverlight's runtime.

Note 1 to entry Virtual machines are type of runtime environment, which are explicitly emulating one or more specific sets
of hardware.

2.15
software
all or part of the programs, procedures, rules, and associated documentation of an information processing
system

Note 1 to entry Software is an intellectual creation that is independent of the medium on which it is recorded.

[SOURCE: ISO/IEC 2381-1, definition 10.01.08]

2.16
user interface
(UI)
mechanisms by which a person interacts with a computer system

Note 1 to entry The user interface provides input mechanisms, allowing users to manipulate a system. It also provides
output mechanisms, allowing the system to produce the effects of the users’ manipulation.

2.17
user interface element
user interface object
user interface component
entity of the user interface that is presented to the user by the software

[SOURCE: ISO 9241-171 definition 3.38]

Note 1 to entry User interface elements may or may not be interactive.

Note 2 to entry Both entities relevant to the task and entities of the user interface are regarded as user interface elements.
Different user interface element types are text, graphics and controls. A user interface element may be a representation or
an interaction mechanism for a task object (such as a letter, a sales order, electronic parts, or a wiring diagram) or a
system object (such as a printer, hard disk, or network connection). It may be possible for the user to directly manipulate
some of these user interface elements.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 5

EXAMPLE 1 User interface elements in a graphical user interface include such things as basic objects (such as
window title bars, menu items, push buttons, image maps, and editable text fields) or containers (such as windows,
grouping boxes, menu bars, menus, groups of mutually-exclusive option buttons, and compound images that are made up
of several smaller images).

EXAMPLE 2 User interface elements in an audio user interface include such things as menus, menu items, messages,
and action prompts.

EXAMPLE 3 User interface elements in tactile interfaces include such things as tactile dots, tactile bars, surfaces,
knobs, and grips.

3 General Description

3.1 General Description

The Java accessibility API was developed by Sun Microsystems, Inc. as part of the Java Foundation Classes
(along with the “Swing” user interface library), and was then folded into the Java Platform release 1.2. Work
began in early 1997, based on requirements gathered from industry and assistive technology stakeholders,
and with review and design feedback from many of these stakeholders as it matured. The 1.0 release
shipped with the Java Foundation Classes release 1.0, in 1997, and was folded into the Java SE platform in
January 1998. An initial implementation of the API in the “Swing” library was also part of that release.

The Java Accessibility API was born out of necessity – the first screen access techniques for graphical
systems of the Macintosh and Windows reverse-engineered and hooked into the graphics rendering pipeline
to build off-screen models for screen readers (also known as “screen scraping”) – techniques that would not
work in the Java environment. The Java accessibility API was the first comprehensive accessibility API (a
“3rd generation accessibility API”). It provided support for everything that a screen reader needed, and is the
progenitor of the UNIX accessibility API (described in ISO/IEC 13066-4) and the UNO accessibility API of
Oracle Open Office (which is the basis for IAccessible2, described in ISO/IEC 13066-3). It was also a model
for the WAI-ARIA specification (described in ISO/IEC 13066-5).

Because the Java platform is commonly running on top of some other, underlying operating system (e.g.
Microsoft Windows or Solaris or GNU/Linux or Macintosh), and users with significant disabilities are using
assistive technologies designed to work with the underlying operating system, a key facet of AT-IT
interoperability on the Java platform is the use of a “bridge”, which exposes the Java accessibility API outside
of the Java platform, and to assistive technologies running on the underlying operating system. While it is
certainly possible to use AT directly within the Java platform – and such technologies have been created – it is
rarely used in this fashion.

3.2 Architecture

The Java accessibility API is based on the Java object model. The API itself is contained in a Java package
(javax.accessibility.*), that is a core part of the Java platform. User interface components that are
accessible must directly implement the javax.accessibility.Accessible interface (and for the rest of this
document we will drop the package name and simply use the class or interface names, e.g. Accessible).
When requested by an AT (or by a bridge on behalf of the AT), the accessible user interface component must
then return an object that implements the Java accessibility API (the Accessible.getAccessibleContext()
method). This object then handles all accessibility API calls on behalf of the user interface component. This
architecture means that implementation of the Java accessibility API can either be implemented directly by
that object, or be “delegated” to some other object or library.

In addition to this “delegation” model, the Java accessibility API is implemented as a core
AccessibleContext object – containing all of the information common to every user interface component –
and then a set of accessibility “sub-interfaces” or “specializations” which are implemented only as appropriate
for the user interface component in question. For example, components containing text would implement the
AccessibleText optional interface (and more specifically, the AccessibleEditableText optional interface if
that text were editable). Components which take on one of a range of values would implement the
AccessibleValue optional interface. etc.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

6 © ISO/IEC 2014 – All rights reserved

The diagram below shows the Java Foundation Classes user interface component javax.swing.JSlider,
and those aspects of the Java Accessibility API implemented for it:

Figure 1 – IIlustration of the accessibility interfaces implemented by the Swing JSlider component

4 Using the API

4.1 Overview

The Java accessibility API is contained in the javax.accessibility.* package. It consists of a
core/tagging interface that all accessible user interface components must implement, a core accessibility class
containing that portion of the Java accessibility API that all accessible user interface components must
provide, an optional set of accessibility sub-interfaces, and then a set of helper classes. These are described
below in the subclause

Applications can implement the Java Accessibility API in one of three ways:

a) They can use user interface components that have already implemented the Java accessibility API (such
as those in the Java Foundation Classes or “Swing” library);

b) They can create one or more custom user interface components that derive from (or “subclasses”) an
existing user interface component that already implements the Java accessibility API (such as a custom
button that subclasses javax.swing.JButton, or a completely custom component that nonetheless
subclasses javax.swing.JComponent);

c) They can create one or more custom user interface components “from scratch” and implement the
necessary interfaces and methods to respond to the AT requests.

These distinct ways of implementing the API are described below.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 7

4.2 Package javax.accessibility*

This package contains the Java Accessibility API.

The external entry point into the API is the interface Accessible, which contains the single method
getAccessibleContext(). Every accessible user interface component must implement this interface, and
must return a valid AccessibleContext when asked, which will implement the accessibility API on behalf of
that component.

4.2.1 The AccessibleContext class

The AccessibleContext class contains the core implementation of the accessibility API. It is implemented as a
class with a minimal existing implementation, with the expectation that it will be subclassed for each type of
user interface component that uses it to implement the Java accessibility API. This class contains the core
methods for traversing the UI hierarchy (several of which support requirements in ISO/IEC 13066-1,
subclause 7.1.7(d)(1)):

 getAccessibleParent()

 getAccessibleIndexInParent()

 getChild()

 getChildrenCount()

basic information common to all user interface components (several of which support requirements in ISO/IEC
13066-1, subclause 7.1.7(a)):

 getAccessibleName()

 getAccessibleDescription()

 getAccessibleRole()

 getAccessibleStateSet()

 getLocale()

relationship information (which supports requirements in ISO/IEC 13066-1, subclause 7.1.7(d)(1)):

 getAccessibleRelationSet()

event tracking support (which support requirements in ISO/IEC 13066-1, subclause 7.1.10):

 addPropertyChangeListener()

 removePropertyChangeListener()

 firePropertyChange()

and several utility functions designed only to be called by implementations of the Java accessibility API:

 setAccessibleName()

 setAccessibleDescription()

 setAccessibleParent()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

8 © ISO/IEC 2014 – All rights reserved

It also contains “getters” for the various optional interfaces that apply only to certain types of user interface
components. These optional interfaces are described in the paragraphs below. Though it is a common
practice to simply implement the appropriate optional interfaces directly on the returned AccessibleContext
object, it is important for assistive technologies to use the getters to retrieve them, rather than using the
instanceOf() pattern.

4.2.2 The AccessibleAction interface

This optional interface must be implemented for all user interface components that can perform one or more
actions, and provides the standard mechanism for an assistive technology to determine what those actions
are as well as to tell the component to perform the action programmatically.

The interface has three methods, and also defines several string constants naming common actions (to be
returned in the getAccessibleActionDescription() call. The methods (which support requirements in
ISO/IEC 13066-1, subclause 7.1.8) are:

 doAccessibleAction()

 getAccessibleActionCount()

 getAccessibleActionDescription()

The defined action descriptions are: CLICK, DECREMENT, INCREMENT, TOGGLE_EXPAND, and TOGGLE_POPUP.
Additional action descriptions can be added by convention, and then folded into the platform.

4.2.3 The AccessibleComponent and AccessibleExtendedComponent interfaces

The AccessibleComponent optional interface roughly parallels the AWT Component interface from the Java
Foundation Classes. It should be implemented for all user interface components that are drawn onto the
screen. The AccessibleExtendedComponent interface is a subinterface of AccessibleComponent and adds
a few things that proved to be important to assistive technologies . It should be implemented by most user
interface components that are drawn on the screen (anything that has tooltip text, or a keyboard accelerator or
a titled border),

Presented in logical groups, these are the methods of the AccessibleComponent interface:

boundary-related methods (which support some of the requirements in ISO/IEC 13066-1, subclause 7.1.7(a)):

 getBounds()

 getLocation()

 getLocationOnScreen()

 getSize()

 setBounds()

 setLocation()

 setSize()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 9

visibility and visual appearance related methods (some of which support requirements in ISO/IEC 13066-1,
subclause 7.1.7(c) – specifically for simple text components that don't implement the optional
AccessibleText interface):

 getBackground()

 getCursor()

 getFont()

 getFontMetrics()

 getForeground()

 isShowing()

 isVisible()

 setBackground()

 setCursor()

 setFont()

 setForeground()

 setVisible()

focus-related methods (which support some of the requirements in ISO/IEC 13066-1, subclause 7.1.9):

 addFocusListener()

 isFocusTraversable()

 removeFocusListener()

 requestFocus()

parent-child location related methods (which support some of the requirements in ISO/IEC 13066-1,
subclause 7.1.7(d)(3)):

 contains()

 getAccessibleAt()

interactivity related methods (one of which supports some of the requirements in ISO/IEC 13066-1, subclause
7.1.7(a)):

 isEnabled()

 setEnabled()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

10 © ISO/IEC 2014 – All rights reserved

These are the methods of the AccessibleExtendedComponent interface:

 getAccessibleKeyBinding()

 getTitledBorderText()

 getToolTipText()

4.2.4 The AccessibleIcon interface

The AccessibleIcon optional interface should be implemented by those user interface components that are
an icon or include an icon within them (e.g. a toolbar button that is an image). These are the methods of the
AccessibleIcon interface:

 getAccessibleIconDescription()

 getAccessibleIconHeight()

 getAccessibleIconWidth()

 setAccessibleIconDescription()

4.2.5 The AccessibleSelection interface

The AccessibleSelection optional interface should be implemented by those user interface components
that have children user interface components inside them which can be selected (e.g. a list box or a menu).
These are the methods of the AccessibleSelection interface (which support some of the requirements in
ISO/IEC 13066-1, subclause 7.1.8):

 addAccessibleSelection()

 clearAccessibleSelection()

 getAccessibleSelection()

 getAccessibleSelectionCount()

 isAccessibleChildSelected()

 removeAllAccessibleSelection()

 selectAllAccessibleSelection()

4.2.6 The AccessibleStreamable interface

The AccessibleStreamable optional interface should be implemented by those user interface components
that provide a user interface to streaming media (e.g. to HTML or a bitmap impage or MathML). This allows
assistive technologies which are designed to directly parse certain types of streaming data to do so directly.
These are the methods of the AccessibleStreamable interface:

 getMIMETypes()

 getStream()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 11

4.2.7 The AccessibleTable and AccessibleExtendedTable interfaces

The AccessibleTable optional interface (and the AccessibleExtendedTable optional subinterface) should
be implemented by those user interface components that present two dimensional data (e.g. spreadsheets
and tables). AccessibleExtendedTable provides a few additional methods that are needed by most
accessibility uses of tables, and so should always be implemented by any user interface component that
implements AccessibleTable.

Presented in logical groups, these are the methods of the AccessibleTable and the
AccessibleExtendedTable interfaces:

row/column orientation methods (which support some of the requirements in ISO/IEC 13066-1, subclause
7.1.7(d)(2)):

 getAccessibleAt()

 getAccessibleColumn()

 getAccessibleColumnExtentAt()

 getAccessibleIndex()

 getAccessibleRow()

 getAccessibleRowExtentAt()

selection-related methods (which support some of the requirements in ISO/IEC 13066-1, subclause 7.1.7(a)):

 isAccessibleColumnSelected()

 isAccessibleRowSelected()

 isAccessibleSelected()

 getSelectedAccessibleColumns()

 getSelectedAccessibleRows()

row/column header related methods (which support some of the requirements in ISO/IEC 13066-1, subclause
7.1.7(d)(2)):

 getAccessibleColumnDescription()

 getAccessibleColumnHeader()

 getAccessibleRowDescription()

 getAccessibleRowHeader()

 setAccessibleColumnDescription()

 setAccessibleColumnHeader()

 setAccessibleRowDescription()

 setAccessibleRowHeader()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

12 © ISO/IEC 2014 – All rights reserved

general methods relating to the table overall:

 getAccessibleCaption()

 getAccessibleColumnCount()

 getAccessibleRowCount()

 getAccessibleSummary()

 setAccessibleCaption()

 setAccessibleSummary()

4.2.8 The AccessibleText, AccessibleEditableText, AccessibleExtendedText, and
AccessibleHypertextText interfaces

The AccessibleText and AccessibleExtendedText optional interfaces should be implemented by those
user interface components that present more than just a few words of text (a user interface component that is
a button with the text “OK” in it doesn't need to implement this interface). As with AccessibleExtendedTable
above, both interfaces should always be implemented together. Additionally, where the text is editable by the
user, the AccessibleEditableText optional interface should be implemented. Finally, where the text is
hypertext, the AccessibleHyperText optional interface should be implemented.

These are the methods of the AccessibleText and AccessibleExtendedText interfaces (several of which
support the requirements in ISO/IEC 13066-1, subclause 7.1.7(c)):

 getAfterIndex()

 getAtIndex()

 getBeforeIndex()

 getCaretPosition()

 getCharacterAttribute()

 getCharacterBounds()

 getCharCont()

 getIndexAtPoint()

 getSelectedText()

 getSelectionEnd()

 getSelectionStart()

 getTextBounds()

 getTextRange()

 getTextSequenceAfter()

 getTextSequenceAt()

 getTextSequenceBefore()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 13

These are the methods of the AccessibleEditableText interface, which enable programmatic editing of
text:

 cut()

 delete()

 getTextRange()

 insertTextAtIndex()

 paste()

 replaceText()

 selectText()

 setAttributes()

 setTextContents()

These are the methods of the AccessibleHyperText interface, which support hyperlinks in text:

 getLink()

 getLinkCount()

 getLinkIndex()

4.2.9 The AccessibleValue interface

The AccessibleValue optional interface should be implemented by those user interface components that
have an underlying numerical value that can be changed within a range (e.g. a scrollbar or slider). These are
the methods of the AccessibleValue interface (which support the requirements in ISO/IEC 13066-1,
subclause 7.1.7(b)):

 getCurrentAccessibleValue()

 getMaximumAccessibleValue()

 getMinimumAccessibleValue()

 setCurrentAccessibleValue()

4.3 Implementing the Java accessibility API

The three subclauses below describe what a developer must do to implement the Java accessibility API –
using user interface components that already implement the Java accessibility API, when developing custom
user interface components that subclass components that already implement the Java accessibility API, and
when creating user interface components “from scratch”. Everything in 4.3.1 must be done with any user
interface component – so it applies in all cases. Likewise, it is common when creating components “from
scratch”, that some of those will subclass others, so everything in 4.3.2 also applies to 4.3.3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

14 © ISO/IEC 2014 – All rights reserved

4.3.1 Using existing accessible user interface components

When using existing accessible user interface components, it is critical that correct accessibility metadata be
added where needed. The places for accessibility metadata are:

 the AccessibleName, and where appropriate, the AccessibleDescription of a user interface
component

 the descriptions of images/icons

 relationships between components

In addition to these metadata cases, there is also the exceedingly rare case where the developer needs to
alter the apparent user interface component hierarchy – explicitly setting the parent of of a user interface
element to something other than the default.

4.3.1.1 Setting the AccessibleName and AccessibleDescription

It is critical that every user interface component that a user might in some way interact with have an
AccessibleName. This is the text that a screen reader will speak or braille, or a voice recognition command-
and-control system would put into its recognition grammar, or an on-screen keyboard would display on its
dynamic keyboard. Many user interface components (such as those in the javax.swing.* package) will use
whatever appropriate text they can as a default AccessibleName. For example, the text displayed on a
javax.swing.JButton is returned as the default AccessibleName. Thus, so long as the button has text, it
has a name. Where there is no such text, it must be set explicitly by the application. This is done as follows:

// Example of setting the AccessibleName of a Swing component

myTextedButton = new javax.swing.JButton("OK");

// no more need be done – "OK" used by default

...

myNonTextButton = new javax.swing.JButton(); // no text set

myNonTextButton.getAccessibleContext().setAccessibleName

 ("Button name");

For many user interface components it is often useful to have an AccessibleDescription. This is the text
that a screen reader will speak or braille if a user asks for more information about the user interface element.
It may also be helpful for people with cognitive impairments. Many user interface components (such as those
in the javax.swing.* package) will use the tooltip text as the AccessibleDescription. Where there is no
such text, it must be set explicitly by the application. This is done as follows:

// Example of setting the AccessibleDescription of a Swing

// component

myToolTippedComponent = new javax.swing.JComponent();

myToolTippedComponent.setToolTipText("Displays page preview");

// no more need be done – "Displays page preview" used by default

...

myPlainComponent = new javax.swing.JComponent();

myPlainComponent.getAccessibleContext().setAccessibleDescription

 ("Shows the page layout");

Because the AccessibleName and AccessibleDescription are “user visible” strings, they must be localized
to the language of the user interface.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 15

4.3.1.2 Setting Accessible Relationships

Many developers design applications where user interface components have visibly obvious relationships.
The canonical example is that of a set of labeled text fields, where the user navigates through the fields,
entering the information prompted for (name, address, phone number, etc.). However, unless the visibly
obvious relationship is formally encoded in some fashion, assistive technologies will have to either guess or
otherwise fail to convey this to the user. The screen reader would simply speak “Edit Text... Edit Text... Edit
Text” as the user Tabbed through the fields; the speech recognition control system couldn't put “Name” and
“Address” and “Phone” into its recognition grammar and have the ability to bring the focus to the associated
field.

And beyond labeling relationships such as the text entry field and its prompt or label, there are a variety of
other useful kinds of relationships that should be encoded for assistive technologies. Furthermore, in the Java
accessibility API most relationships are encoded in pairs – each of the two user interface components in a
relationship generally reference the other(s) they are related to.

The most important relationships defined in the Java accessibility API are:

 CONTROLLER_FOR / CONTROLLED_BY – used to denote when one user interface component manipulates
another, such as in a spreadsheet when the value of one cell controls the value of another cell (e.g. the
First Quarter Sales number is a CONTROLLER_FOR the First Quarter Net Revenue number)

 LABEL_FOR / LABELED_BY – used to denote when one user interface component is the label for another,
such as text fields and their prompts or labels

 MEMBER_OF – used to denote when one user interface component is a member of a group, such as a
radio button that is part of a radio button group – but also useful in a spreadsheet where one cell is part of
a group of cells (e.g. the First Quarter Sales number is a MEMBER_OF the text First Quarter field/column of
the table and also a MEMBER_OF the text Sales field/row of the table)

As relationship names are simply text keys in a (key, target) pair in the AccessibleRelation class, new keys
can be defined – and they will be provided to assistive technologies which request them. Care should be
taken when doing this, however – unless there is broad understanding of the meaning of any such new
relationship key text, assistive technologies won't know what to do with it and the meaning will be lost.

Setting up accessible relationships between components is done as follows:

// Example of setting up Accessible Relationships between

// components

myControllerComponent = new javax.swing.JComponent();

myControlledComponent = new javax.swing.JComponent();

myControllerComponent.getAccessibleContext().

 getAccessibleRelationSet().add(newAccessibleRelation

 (javax.accessibility.AccessibleRelation.CONTROLLER_FOR,

myControlledComponent.getAccessibleContext());

myControlledComponent.getAccessibleContext().

 getAccessibleRelationSet().add(newAccessibleRelation

 (javax.accessibility.AccessibleRelation.CONTROLLED_BY,

myControllerComponent.getAccessibleContext());

This is the same pattern for all relationships. Note however that the Swing library has a simpler convenience
method for the most common relationship: the label relationship. The javax.swing.JLabel includes the
method setLabelFor(). This method takes as its argument another javax.swing.JComponent and when
used in that fashion, will also set up the pair of accessible labeling relationships. This is done as follows:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

16 © ISO/IEC 2014 – All rights reserved

// Example of setting up a labeling relationships using the

// Swing JLabel

myNameLabel = new javax.swing.JLabel("Name:");

myNameTextEntry = new javax.swing.JTextField();

myNameLabel.setLabelFor(myNameTextEntry);

4.3.1.3 Setting the Description of an Image or Icon

It is sometimes appropriate to set the description of images and icons in the user interface. These
descriptions are distinct from the AccessibleName and AccessibleDescription of the user interface
component containing the image or icon (e.g. a button without any text but displaying the image of a trash
can). The image description is specifically that – a description of the image itself. The context and specific
use of the image may differ, but the fact that the same image is used indicates that a similar concept is at
play. A screen reader user may have the image/icon description spoken or brailled to them when they
specifically ask for more information from their screen reader. This is done as follows:

// Example of setting up the image description of an image

myImage = new javax.swing.ImageIcon(new java.net.URL("file:///trash.gif");

myImage.getAccessibleContext().getAccessibleIcon()[0].

 getAccessibleIconDescription("Trash can with lid beside it");

// the above assumes only one image for the ImageIcon...

4.3.1.4 Setting the AccessibleParent

In certain rare cases it is necessary to formally set a user interface component hierarchy that is different from
what is derived from the base component tree. The most common of this unlikely case is when creating what
are called fly-weight components – components that don't have the full machinery of the base user interface
component class of the library. For example, the javax.swing.JTabbedPane component contains a number
of fly-weight tabs. These tabs don't extend javax.swing.JComponent. Therefore the accessibility API
implementation for the fly-weight tab (javax.swing.JTabbedPane$Tab.AccessibleTab) must formally set its
AccessibleParent.

Understanding precisely when this should be done is beyond the scope of this document. A careful study of
the accessibility API implementation of the Swing JTabbedPane is recommended for developers who may be
in this situation.

4.3.2 Subclassing existing accessible user interface components

To create a custom accessible user interface component using an existing accessible component (e.g. from
the javax.swing.* package), choose the existing component that most closely matches the custom
component (“subclassing high”). For example, to create a custom button, start with javax.swing.JButton.
If the accessibility API implementation is the same (nothing unusual is occurring in the custom component),
then this is sufficient:

// Example of "subclassing high" – with unchanged accessibility

class CustomButton extends javax.swing.JButton {

 // custom code here

}

If the custom button will have – for example – a different AccessibleRole, then additional code is required:
the call getAccessibleRole() will need to return the correct role. This is accomplished by overriding that
method call in the AccessibleContext returned by CustomButton.getAccessibleContext():

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 17

// Example of "subclassing high" – with custom accessibility

class CustomButton extends javax.swing.JButton {

 // custom code here

 public AccessibleContext getAccessibleContext() {

 if (accessibleContext == null) {

 accessibleContext = new AccessibleCustomButton();

 }

 }

 return accessibleContext;

 class AccessibleCustomButton extends AccessibleJButton {

 public AccessibleRole getAccessibleRole() {

 return "CustomRole";

 }

 }

}

If more customization is done, relatively more work will need to be done in the subclass.

On the other hand, if the custom component is completely unlike an existing Swing component – but still
otherwise leverages the Swing framework – then that component would subclass javax.swing.JComponent
(“subclassing low”):

// Example of "subclassing low" – will need to implement

// accessibility

class CustomComponent extends javax.swing.JComponent {

 // custom code here

}

In such a case, the CustomComponent must create an AccessibleContext class, and implement all of the
accessibility API as appropriate to that custom component.

In either case (“high” or “low”), the use of this custom component must also follow the guidance in subclause
14.

4.3.3 Creating accessible user interface components “from scratch”

The Java accessibility API supports use with user interface components created “from scratch” (e.g. which
aren't subclassing one or more accessible components such as those in the javax.swing.* package.) When
creating accessibility support from scratch, the developer will need to implement the entirety of the
accessibility API for each user interface component – as appropriate for that component (what constitutes
“appropriate” is the bulk of this document). The recommended way of doing this is to leverage an object-
oriented user interface component system, implementing base accessibility API support on a base user
interface component class, and the overriding and additional support where appropriate in the subclasses. A
good example of this is the implementation in the Swing classes – whose source code may be studied in the
aid of such an implementation (and further, may be outright copied directly by code that either follows the
LGPL license of the OpenJDK, or obtains a commercial license from Oracle).

4.3.3.1 Using Swing as a model – inner classes

For the sake of code maintenance, the accessibility API implementation in Swing is done through the use of
inner classes. This keeps the implementation code in the same source file of the component, while not
cluttering the component's public API.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

18 © ISO/IEC 2014 – All rights reserved

The core of the implementation for Swing is in the javax.swing.$AccessibleJComponent class.
AccessibleJComponent is a subclass of AccessibleContext, and implements the AccessibleComponent,
and AccessibleExtendedComponent interfaces. This base implementation not only provides default
implementations of all of the AccessibleContext, AccessibleComponent, and
AccessibleExtendedComponent methods; it also implements comment event tracking for accessibility
PropertyChange events. However, since the javax.swing.JComponent class should never be instantiated
directly, javax.swing.JComponent$AccessibleJComponent is abstract - it needs to be subclassed in order
to be used. Specifically, any subclass should at a minimum implement
javax.accessibility.getAccessibleRole().

Then each JComponent subclass likewise contains an inner class that in turn subclasses
JComponent$AccessibleJComponent. And, where appropriate, adds additional API functionality. For
example, the javax.swing.AbstractButton class is the superclass of not only the javax.swing.JButton class,
but also javax.swing.JMenuItem and javax.swing.JToggleButton. As all of these can be
programmatically “pressed”, the inner class javax.swing.AbstractButton$AccessibleAbstractButton
class not only subclasses JComponent$AccessibleJComponent, it also implements the interface
javax.accessibility.AccessibleAction. This shared inner class implementation is then re-used by
JButton, JMenuItem and JToggleButton.

As noted above, Swing has flyweight components – specifically javax.accessibility.JTabbedPane$Tab.
Since it is a flyweight, it doesn't extend JComponent and so a full (and essentially duplicate) implementation
of JComponent$AccessibleJComponent, must be contained within JTabbedPaneTabAccessibleTab.

5 Exposing User Interface Element Information

In ISO/IEC 13066-1, subclause 7.1.7 requires that applications

provide AT with information about user interface elements, including but not limited to:

a) role, state(s), boundary, name, and description of the user interface element

b) current value and any minimum or maximum values, if the user interface element represents one of a
range of values

c) text contents, text attributes, and the boundary of text rendered to the screen.

d) the relationship of the user interface element to other user interface elements

1) in a single data value, whether this user interface element is a label for another user interface
element or is labelled by another user interface element

2) in a table, the row and column that it is in, including headers of the row and column if present

3) in a hierarchical relationship, any parent containing the user interface element, and any children
contained by the user interface element

Subclauses 5.1 through 5.4 describe how the Java accessibility API supports each of the requirements in
subclause 7.1.7.

5.1 Role, state(s), boundary, name, and description of the user interface element

Accessible role and state(s) information, as well as the accessible name and description of a user interface
component, is part of the AccessibleContext class, required of every accessible user interface component.
Boundary information of a user interface component is part of the AccessibleComponent optional interface,
which must be implemented by every user interface component that is drawn to the screen.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 19

Specifically:

5.1.1 Role information

Assistive technologies obtain the role of a user interface component by first obtaining that component's
AccessibleContext, and from that, the AccessibleRole. For purposes of presenting this role to a user (e.g.
to speak the role name via a speech synthesizer), an assistive technology may obtain a text String from the
AccessibleRole (which by default will be in the Locale of the application, though other Locales may be
explicitly obtained – e.g. to obtain a French human-readable role String from an application that is otherwise
localized to German):

// Examples of getting the AccessibleRole – default and French

AccessibleRole r =

 myComponent.getAccessibleContext().getAccessibleRole();

String defaultRoleText = r.toDisplayString();

String frenchRoleText = r.toDisplayString(Locale.FR);

For applications that are creating custom components, it will generally be necessary to explicitly set the
AccessibleRole for that custom component. This is typically done by subclassing – either subclassing an
existing specific accessible user interface component (e.g. creating a specialized button component by
subclassing the Swing javax.swing.JButton component), or creating a custom component from a base
class like Swing javax.swing.JComponent), or creating it entirely from scratch. In the subclassing case, the
accessibility implementation must be subclassed, with the implementation subclass providing the appropriate
AccessibleRole: This is only necessary if the subclass is a different kind of object than the subclassed class
(e.g. creating something that isn't a button when subclassing Swing JButton), or when subclassing a base
class like JComponent:

// Example of setting the AccessibleRole of a custom component

class CustomButton extends javax.swing.JComponent {

 class AccesibleCustomButton extends

 javax.swing.JComponent.AccessibleJComponent {

 protected AccessibleRole getAccessibleRole() {

 return AccessibleRole.PUSH_BUTTON;

 }

 }

}

5.1.2 State(s) information

Assistive technologies obtain the state(s) of a user interface component by first obtaining that component's
AccessibleContext, and from that, the AccessibleStateSet which contains one or more specific
AccessibleStates. For purposes of presenting these states to a user (e.g. to speak the names of the
states via a speech synthesizer), an assistive technology may obtain a text String from each of the the
AccessibleStates (which by default will be in the Locale of the application, though other Locales may be
explicitly obtained – e.g. to obtain a French human-readable role String from an application that is otherwise
localized to German):

// Example of getting the AccessibleStates – default and French

AccessibleStateSet states =

 myComponent.getAccessibleContext().getAccessibleStateSet();

String defaultStatesText = states.toDisplayString();

AccessibleState statesArray[] = states.toArray();

String defaultFirstStateText = statesArray[0].toDisplayString();

String frenchFirstStateText =

 statesArray[0].toDisplayString(Locale.FR);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

20 © ISO/IEC 2014 – All rights reserved

If an assistive technology wants to check explicitly for a specific state, it can do so:

// Example of getting a specific AccessibleState

AccessibleStateSet states =

 myComponent.getAccessibleContext().getAccessibleStateSet();

if (states.contains(AccessibleState.CHECKED) {

 // AT logic for handling a component that is checked

}

For applications that are creating custom components, it will generally be necessary to explicitly set the
AccessibleStates for that custom component. This is typically done by setting the states as through the
listener pattern on the component being made accessible, or within the component's or application's code:

// Example of updating a specific AccessibleState based on the

// listener pattern

class CustomButton extends javax.swing.JComponent {

 class AccessibleCustomButton extends

 javax.swing.JComponent.AccessibleJComponent {

 protected class AccesibleCustomButton() {

 super();

 protected class StateHandler implements

 PropertyChangeListener {

 public void propertyChange

 (ProptertyChangeEvent evt) {

 if (evt.getPropertyName() == "some name" &&

 evt.getNewValue() == "some value") {

 AccesibleCustomButton.this.states.add

 ("some state");

 }

 }

 }

 public AccessibleStateSet getAccesibleStateSet() {

 AccessibleStateSet states =

 super.getAccessibleStateSet();

 // state explicitly added below

 states.add(AccessibleStateSet.OPAQUE);

 }

 }

}

5.1.3 Boundary information

Assistive technologies obtain the bounding rectangle of a user interface component by first obtaining that
component's AccessibleContext, and from that, the AccessibleComponent, and finally from that the
boundary information. An assistive technology can obtain this in a variety of ways – it can obtain just the
position of the user interface component (in local or screen coordinates), or just its size, or its bounding
rectangle (in both local coordinates):

// Example of getting the boundary of a component

AccessibleComponent myAccessibleComponent =

 myComponent.getAccessibleContext().getAccessibleComponent();

Point localLocation = myAccessibleComponent.getLocation();

Point screenLocation = myAccessibleComponent.getLocationOnScreen();

Dimension size = myAccessibleComponent.getSize();

Rectangle localRectangle = myAccessibleComponent.getBounds();

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 21

5.1.4 Name information

Assistive technologies obtain the name of a user interface component by first obtaining that component's
AccessibleContext, and from that, the name. The name is always a human-readable string, which may be
presented directly to a user via the assistive technology (e.g. to speak the name via a speech synthesizer). It
is always in the Locale of the application:

// Example of getting the AccessibleName of a component

String name =

 myComponent.getAccessibleContext().getAccessibleName();

For applications that are creating custom components, it will generally be necessary to explicitly set the
accessible name for that custom component. This is typically done either in the subclass itself, or simply by
explicitly setting the accessible name from within the application:

// Example #1 of setting the AccessibleName of a component

class CustomButton extends javax.swing.JComponent {

 class AccessibleCustomButton extends

 javax.swing.JComponent.AccessibleJComponent {

 protected String getAccessibleName() {

 // assumes such a method below

 return CustomButton.this.getButtonText();

 }

 }

}

or

// Example #2 of setting the AccessibleName of a component

AccessibleContext getAccessibleContext() {

 AccessibleContext ac = new AccessibleCustomButton();

 ac.setAccessibleName("some button name");

 return ac;

}

5.1.5 Description information

Assistive technologies obtain the description of a user interface component by first obtaining that component's
AccessibleContext, and from that, the description. The description is always a human-readable string,
which may be presented directly to a user via the assistive technology (e.g. to speak the name via a speech
synthesizer). It is always in the Locale of the application:

// Example of getting the AccessibleDescription of a component

String description =

 myComponent.getAccessibleContext().getAccessibleDescription();

For applications that are creating custom components, it may be appropriate to explicitly set the accessible
description for that custom component (not every user interface component needs a description). This is
typically done either in the subclass itself, or simply by explicitly setting the accessible description from within
the application:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

22 © ISO/IEC 2014 – All rights reserved

// Example #1 of setting the AccessibleDescription of a component

class CustomButton extends javax.swing.JComponent {

 class AccessibleCustomButton extends

 javax.swing.JComponent.AccessibleJComponent {

 protected String getAccessibleDescription() {

 // assumes such a method below

 return CustomButton.this.getButtonToolTip();

 }

 }

}

or

// Example #2 of setting the AccessibleDescription of a component

AccessibleContext getAccessibleContext() {

 AccessibleContext ac = new AccessibleCustomButton();

 ac.setAccessibleDescriptoin("some button description");

 return ac;

}

5.2 Current value and any minimum or maximum values, if the user interface element
represents one of a range of values

Accessible value information – including the minimum & maximum values, are contained in the optional
interface AccessibleValue. This must be implemented by all user interface components that take on one of
a range of values.

Assistive technologies obtain value information by first verifying that the user interface component has value
information to provide, and then by querying that information. Assistive technologies can also register a
listener for value changes, and thus be automatically informed any time the value of a user interface
component changes:

// Example of getting the current, min, and max AccessibleValues

// of a component

AccessibleValue myValue =

 myComponent.getAccessibleContext().getAccessibleValue();

if (myValue != null) {

 Number minimum = myValue.getMinimumAccessibleValue();

 Number maximum = myValue.getMaximumAccessibleValue();

 Number current = myValue.getCurrentAccessibletValue();

}

and/or

// Example of tracking changes in the AccessibleValue of a

// component

protected class ValueHandler implements PropertyChangeListener {

 public void propertyChange (ProptertyChangeEvent evt) {

 if (evt.getPropertyName() == "AccessibleValueProperty") {

 Number newValue = (Number) eve.getNewValue();

 }

 }

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 23

5.2.1 Additional value information: setting values

As noted below in subclause 34, the Java Accessibility API also supports programmatic setting of values of
user interface components. This is supported not only for applications which may utilize this functionality for
custom components, but also for assistive technologies. With this support, assistive technologies such as
voice recognition command-and-control applications, as well as sophisticated on-screen keyboards – can
explicitly set the values of sliders and scroll bars, and any other user interface component that takes on one of
a range of values. This is done as follows:

// Example of setting the AccessibleValue of a component

AccessibleValue myValue =

 myCompnent.getAccessibleContext().getAccesibleValue();

if (myValue != null) {

 myValue.setCurrentAccessibleValue(5); // sets new value to 5

}

5.3 Text contents, text attributes, and the boundary of text rendered to the screen

Accessible text information – whether for static text or editable text – is contained in the AccessibleText
optional interface. Accessible information about editable text is contained in the AccessibleEditableText
optional interface (a formal sub-interface of AccessibleText). Some additional information is available
through the AccessibleExtendedText optional interface (the other formal sub-interface of AccessibleText).

Text contents can be obtained a variety of ways:

 the character/word/sentence that is located at/before/after a particular text offset or index - using the
AccessibleText.getAfterIndex(), AccessibleText.getAtIndex(), and
AccessibleText.getBeforeIndex() methods

 the text that is currently selected - using the AccessibleText.getSelectionStart(),
AccessibleText.getSelectionEnd(), and AccessibleText.setSelectedText() methods

 the range of text between two indicies - using either the AccessibleEditableText.getTextRange(),
or AccessibleExtendedText.getTextRange() methods

 the line of text containing a given index (as that line is displayed/broken on the screen, including any
word-wrap used to break the line to fit in an adjustable width rectangle) – or line prior or after the line
containing the given index - using the
AccessibleExtendedText.getTextSequenceAfter(AccessibleExtendedText.LINE),
AccessibleExtendedText.getTextSequenceAt(AccessibleExtendedText.LINE), and
AccessibleExtendedText.getTextSequenceBefore(AccessibleExtendedText.LINE) methods

 the text containing a contiguous run of attributes (allowing an assistive technology to rapidly iterate
through runs of text attributes, typically to efficiently display attributes on a refreshible braille display or for
attribute-based searches) - using the
AccessibleExtendedText.getTextSequenceAfter(AccessibleExtendedText.ATTRIBUTE_RUN),
AccessibleExtendedText.getTextSequenceAt(AccessibleExtendedText.ATTRIBUTE_RUN), and
AccessibleExtendedText.getTextSequenceBefore(AccessibleExtendedText.ATTRIBUTE_RUN)
methods

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

24 © ISO/IEC 2014 – All rights reserved

Text attribute information can be obtained in two different ways:

 the character attributes for the single character at a particular text offset or index - using the
AccessibleText.getCharacterAttribute() method

 the character attributes for the characters in a contiguous run of characters sharing the same set of
attributes at a particular text offset or index - using the
AccessibleExtendedText.getTextSequenceAfter(AccessibleExtendedText.ATTRIBUTE_RUN),
AccessibleExtendedText.getTextSequenceAt(AccessibleExtendedText.ATTRIBUTE_RUN), and
AccessibleExtendedText.getTextSequenceBefore(AccessibleExtendedText.ATTRIBUTE_RUN)
methods

Text boundary information can be obtained in two different ways:

 the bounding rectangle of the single character at a particular text offset or index - using the
AccessibleText.getCharacterBounds() method

 the bounding rectangle for the range of characters in a contiguous run - using the
AccessibleExtendedText.getTextBounds() method

As described below in subclause 34, the Java accessibility API provides several API calls for making
modifications to text contents.

Finally, there is another method in these accessible text interfaces, which provide functionality going beyond
what is required in ISO/IEC 13066-1: an API call to count of the number of characters in a text user interface
component.

There is also a fourth accessible text interface in the Java accessibility API - AccessibleHypertext - which
provides a way for assistive technologies to locate and use hyperlinks that may be embedded in hypertext.

5.4 The relationship of the user interface element to other user interface elements

Information about the pixel location of user interface elements is part of the AccessibleComponent optional
interface, required of every accessible user interface component showing on the screen. This has already
been described in subclause 20, earlier in this clause.

Other information about the relationship of one user interface element to others is described below, in support
of the requirements in subclause 7.1.7, item d.

5.4.1 in a single data value, whether this user interface element is a label for another user interface
element or is labelled by another user interface element

Information about whether a user interface component is a label or not is contained in the AccessibleRole,
and retrieval of that information is described in subclause 19 above. Labels generally have the
AccessibleRole of AccessibleRole.LABEL. However, more important than any role is whether in fact the
user interface component is in a labeling relationship with another user interface component. To ascertain
this, an assistive technology must obtain the set of AccessibleRelations for a given user interface
component, and see if one of those is the AccessibleRelation.Label_For relation (and which user
interface component is being labeled). Conversely, any labeled user interface component should have a
AccessibleRelation.Labeled_By relation, referencing the label in question. As with AccessibleStates, a
user interface component can have multiple of them, and they are returned in an an AccessibleStateSet.
The following code illustrates this:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 25

// Example #1 of ascertaining whether a labeling relationship

// exists

AccessibleRelationSet relations =

 myComponent.getAccessibleContext().getAccessibleRelationSet();

if (relations.contans(AccessibleRelation.LABEL_FOR)) {

 // myComponent is a label!

 AccessibleRelation labelRelation =

 relations.get(AccessibleRelation.LABEL_FOR);

 AccessibleContext labeledAccesible =

 (AccessibleContext) labelRelation.getTarget();

}

and conversely

// Example #2 of ascertaining whether a labeling relationship

// exists

AccessibleRelationSet relations =

 myComponent.getAccessibleContext().getAccessibleRelationSet();

if (relations.contans(AccessibleRelation.LABELED_BY)) {

 // myComponent is a label!

 AccessibleRelation labelerRelation =

 relations.get(AccessibleRelation.LABEL_FOR);

 AccessibleContext labelerAccesible =

 (AccessibleContext) labelRelation.getTarget();

}

5.4.2 in a table, the row and column that it is in, including headers of the row and column if present.

Information about whether a user interface component is a data element within a data table is contained in the
user interface hierarchy of the component – whether the parent user interface component implements the
AccessibleTable interface. In some cases the user interface component may be part of a hierarchy of user
interface components, in which case it won't be the immediate parent, but a grandparent. The following code
shows how to determine whether a user interface component is directly a child of a table. More common
would be to traverse down a user interface component hierarchy, and into a data element through the
AccessibleTable interface. Once an assistive technology has a reference to the AccessibleTable
interface, it is a simple matter to obtain the row & column information, and the headers of the row and column
if present. These too are illustrated in the code sample below:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

26 © ISO/IEC 2014 – All rights reserved

// Example of ascertaining whether a component is in a table,

// and where

AccessibleContext parent =

 myComponent.getAccessibleContext().getAccessibleParent();

if ((AccessibleTable table = parent.getAccessibleTable()) != null

 && table instanceof AccessibleExtendedTable) {

 // we know that myComponent is part of the AccessibleTable

 // 'table' and we get the extended table info for row/column

 // calculations

 int index =

 myComponent.getAccessibleContext().

 getAccessibleIndexInParent();

 int row = ((AccessibleExtendedTable) table).

 getAccessibleRow(index);

 int column = ((AccessibleExtendedTable) table).

 getAccessibleColumn(index);

 AccessibleTable rowHeaders = table.getAccessibleRowHeader();

 // assumes one header per row & column – could have multiple

 // levels

 AccessibleContext rowHeader =

 rowHeaders.getAccessibleAt(row, 0);

 AccessibleContext columnHeader =

 rowHeaders.getAccessibleAt(0, column);

}

5.4.3 in a hierarchical relationship, any parent containing the user interface element, and any
children contained by the user interface element

Parent/child hierarchical relationship information is part of the core AccessibleContext class implemented
by all accessible user interface components. The following code example illustrates this:

// Example of getting the parent of a component

AccessibleContext parent =

 myComponent.getAccessibleContext().getAccessibleParent();

and conversely

// Example of getting the children of a component

int children_count =

 myComponent.getAccessibleContext().getAccessibleChildrenCount();

AccessibleContext child;

while (int n=0; n < children_count; n++) {

 child =

 myComponent.getAccessibleContext().getAccessibleChild(n);

}

In addition, in certain very rare and special circumstances this “default” or “UI hierarchy” information can be
overridden using the AccessibleRelation interface. This very rare situation arises when the underlying user
interface toolkit has an illogical heirarchy that otherwise cannot be changed (which is something that can
usually be done explicitly by applications which can formally change the accessibility UI heirarchy as distinct
from the component heirarchy – see Setting the Accessible Parent in subclause 4.3.1.4). In that case, the
parent user interface component will have an AccessibleRelation.PARENT_WINDOW_OF relation with each of
is children, and conversely each child will have an AccessibleRelation.SUBWINDOW_OF with each of its
parents. The usual relation calls (shown in the code sample above in subclause 24) are used to obtain this
information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 27

5.4.3.1 in other, more generalized relationships

The Java accessibility API provides a very rich and flexible means of encoding all kinds of relationships
between user interface components, going beyond what is required by ISO/IEC 13066-1. The full set of pre-
defined relations is documented in the AccessibleRelation javadoc. These relations include:

 a set of text-flow relations, allowing assistive technologies to follow the flow of text broken up among
multiple user interface components – and across multiple columns or skipping over headers/footers as
displayed in a typical word processor

 a set of embedding relations, allowing assistive technologies to recognize when a “subworld” is
embedded within a frame (such as is common with technologies like Object Linking and Embedding)

 a set of grouping relations, indicating when one or more user interface components are a member of a
common group (and what the grouping user interface component is)

 a set of controlling/controlled relations, indicating when one or more user interface components impact or
control the result of another – such as in the case of a spreadsheet when one cell is the result of a
formula of other cells

 an overriding the typical UI hierarchy, to note that one object is really the child of another (used in certain
UI components displaying trees, where the immediate UI hierarchy is only one level deep – a flat set of
children – but is displayed as a tree hierarchy).

Beyond the pre-defined set of relations, arbitrary new relations can be created. However, great care must be
taken when doing so, as assistive technologies will not understand the semantics of any such new relations,
unless they are well documented and support for using them is implemented in assistive technologies.

6 Exposing User Interface Element Actions

In ISO/IEC 13066-1, subclause 7.1.8 requires software to:

programmatically expose a list of available actions on a user interface element and allow assistive
technology to programmatically execute any of those actions.

The AccessibleAction interface provides a method for determining the number of actions exposed by a user
interface component, the description of each action, and a way to programmatically perform each of these
actions. The API calls are described above in subclause 4.2.2.

Actions are used to support a variety of assistive technologies that provide user input alternatives. This
includes things like on-screen keyboards and voice command and control systems. By enumerating the
actions available on the user interface components in the hierarchy of a running application (whether or not
they are visible), an assistive technology can re-present those components on an on screen keyboard, or can
build a dynamic voice recognition grammar of the nouns of the user interface (the AccessibleNames of the
buttons and checkboxes and so on) and the verbs (the AccessibleActionDescriptions); potentially adding
adjectives to the grammar if needed (the AccessibleRoles).

Common actions are CLICK (the equivalent of clicking the mouse), INCREMENTing or DECREMENTing a value,
TOGGLEing a POPUP. And TOGGLEing an EXPANDable object (such as a tree node).

The following sample code illustrates how an assistive technology would discover and then perform the CLICK
action on a user interface component such as a button (equivalent to the user actually moving the mouse over
the component and then pressing and releasing the left mouse button):

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

28 © ISO/IEC 2014 – All rights reserved

// Example of performing the CLICK action on a component

AccessibleAction action =

 myComponent.getAccessibleContext().getAccessibleAction();

if (action != null) {

 int count = action.getAccessibleActionCount();

 while (n = 0; n < count; n++) {

 if (action.getAccessibleActionDescription(n) ==

 AccessibleAction.CLICK) {

 action.doAccessibleAction(n);

 }

 }

}

In addition, the AccessibleSelection optional interface provides a method for programmatically
adding/removing items from a container in which one or more user interface components may be selected –
such as a list box or a menu. In other accessibility APIs, selection addition/removal might be part of their
action interface. The API calls for the AccessibleSelection optional interface are described above in
subclause 10.

As with actions, assistive technologies can enumerate the user interface components which provide the
AccessibleSelection interface in the hierarchy of a running application (whether or not they are visible),
and then re-present those on an on-screen keyboard or use them in a dynamic voice recognition grammar.

The following sample code illustrates how an assistive technology would select the third item (and ensure that
only the third item is selected) among the children of a user interface component that supported the
AccessibleSelection interface – such as a ListBox.

// Example of selecting an item in a component

AccessibleSelection selection =

 myComponent.getAccessibleContext().getAccessibleSelection();

if (selection != null) {

 selection.clearAccessibleSelection();

 selection.addAccessibleSelection(2); // 0 is the first item

}

7 Keyboard Focus

In ISO/IEC 13066-1, subclause 7.1.9 requires software to:

programmatically expose information necessary to track and modify: focus, text insertion point (where
applicable), and selection attributes of user interface elements.

Tracking keyboard focus – whether the formal “focus” on a user interface component like a button, the “soft
focus” of the choice of a menu item within a menu, the text insertion “focus”, or selection focus (whether it is
selected text in an editable text field or selected items in a list box) – is simply a subset of the more general
event mechanism provided by the Java accessibility API. The general event mechanism is described below in
Clause 31. This clause focuses on the broader set of focus-related events.

7.1 Tracking (and modifying) focus

In the Java accessibility parlance, focus is an AccessibleState - specifically AccessibleState.FOCUSED.
To determine whether a user interface component is focused, an assistive technology would examine the
AccessibleStateSet of the component to see whether it included AccessibleState.FOCUSED. A code
example of showing how to obtain these states is in subclause 19 above.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 29

To track the focus, the assistive technology should add a listener to AccessibleState PropertyChange
events, filtering those events for the state AccessibleState.FOCUSED. The following code example
illustrates this:

// Example of tracking focus events from a component

protected class StateHandler implements PropertyChangeListener {

 public void propertyChange (ProptertyChangeEvent evt) {

 if (evt.getPropertyName() == AccessibleState.FOCUSED &&

 (Object newValue = event.getNewValue()) != null) {

 AccessibleContext focusedAccessible =

 (AccessibleContext) newValue;

 // 'focusedAccessible' now has focus

 // additional calls here, such as to get the

 // AccessibleName of the focusedAccessible, and

 // speak it & its role via text-to-speech

 }

 }

}

...

myComponent.getAccessibleContext().addPropertyChangeListener

 (new StateHandler());

Beyond tracking focus, assistive technologies can explicitly focus onto a user interface component. This is
done with the requestFocus() call, as follows:

// Example of setting the focus to a component

myComponent.getAccessibleContext().requestFocus();

NOTE this only works for user interface components that have a “hard focus” - where the user interface explicitly
defines a “focus” state or property for the component. For “soft focus” components like menu items in Swing, the
AccessibleSelection interface must be used instead, as illustrated in the code example in Clause 27.

7.2 Tracking (and modifying) text insertion point

As mentioned above in subclause 12, all user interface components that provide for editable text must
implement the AccessibleEditableText interface. This interface contains methods for obtaining the text
caret location (or insertion point), and for modifying it. Also methods for selecting a region of text – which may
be considered a special case of an insertion point, as any text entered will take the place of the selected text.
The following code sample illustrates these methods:

// Example of setting the focus to a component

// for all text

text = myComponent.getAccessibleContext().getAccessibleText();

int caretPosition = text.getCaretPosition();

int selectionStart = text.getSelectionStart();

int selectionEnd = text.getSelectionEnd();

String selectedText = text.getSelectedText();

// for editable text:

if (text instanceof AccessibleEditableText) {

 // sets caret location to 4, with an “empty” selection range

 ((AccessibleEditableText) text).selectText(4, 4);

}

To track the text insertion point, the assistive technology should add a listener to AccessibleState
PropertyChange events, filtering those events for ACCESSIBLE_CARET_PROPERTY events. The following code
example illustrates this:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

30 © ISO/IEC 2014 – All rights reserved

// Example of tracking property change events, filtering for caret

// changes

protected class CaretHandler implements PropertyChangeListener {

 public void propertyChange (ProptertyChangeEvent evt) {

 if (evt.getPropertyName() == ACCESSIBLE_CARET_PROPERTY) {

 int caretLocation = (int) evt.getNewValue();

 }

 }

}

...

myComponent.getAccessibleContext().addPropertyChangeListener(new CaretHandler());

7.2.1 Tracking (and modifying) selection attributes

There are two different notions of selection in the Java accessibility API parlance – user interface components
that are selected (like items in a list box or a menu), and selected text. User interface component selection
has already been discussed in Clause 27.

Text selection is part of the AccessibleEditableText interface, and many of the methods were already
discussed above in subclause 29. Determining what text is selected is done via the
AccessibleText.getSelectionStart() and AccessibleText.getSelectionEnd() methods, while
obtaining the selected text itself is done with the AccessibleText.getSelectedText() call.
Setting/modifying the selection is done with the AccessibleEditableText.selectText() method. Once
text is selected, any text typed on the keyboard will replace the selection, or it can be replaced explicitly with
the AccessibleEditableText.replaceText() method.

Tracking selection changes is done with event listeners, using the same pattern as other listeners in the Java
accessibility API – and very much the same as tracking the caret / insertion point, as described in subclause
29 above, but by listening for ACCESSIBLE_SELECTION_PROPERTY changes:

// Example of tracking property change events, filtering for caret

// changes

protected class SelectionHandler implements PropertyChangeListener {

 public void propertyChange (ProptertyChangeEvent evt) {

 if (evt.getPropertyName() == ACCESSIBLE_SELECTION_PROPERTY) {

 // selection has changed, query for the new selection

 AccessibleText text = (AccessibleText) evt.getSource();

 int selectionStart = text.getSelectionStart();

 int selectionEnd = text.getSelectionEnd();

 }

 }

}

...

myComponent.getAccessibleContext().addPropertyChangeListener(new

SelectionHandler());

Beyond selection attributes, other text attributes are available via the AccessibleText and
AccessibleEditableText interfaces, as described in subclause 23. In addition to obtaining those attributes,
changes in those attributes can also be tracked via assistive technologies – again going beyond the minimum
required by ISO/IEC 13066-1. The same event listener pattern is used for text attribute changes as was
described above in subclause 29 and also earlier in this subclause: for text caret / insert point and selection.
This is done by listening for property change events of property type:
ACCESSIBLE_TEXT_ATTRIBUTES_CHANGED.

Also, in addition to caret and selection changes, assistive technologies can track the insertion and deletion of
text – by listening for property change events of property type: ACCESSIBLE_TEXT_PROPERTY.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

© ISO/IEC 2014 – All rights reserved 31

8 Events

In ISO/IEC 13066-1, subclause 7.1.10 requires software to:

programmatically expose notification of events relevant to user interactions, including but not limited to:

a) changes in the user interface element value;

b) changes in the name of the user interface element;

c) changes in the description of the user interface element;

d) changes in the boundary of the user interface element;

e) changes in the hierarchy of the user interface element.

The Java accessibility API uses one primary event mechanism – based on the Java Beans pattern – to signal
changes in most aspects of the user interface needed by AT. This is a PropertyChange notification fired from
the AccessibleContext associated with the user interface component. In a few cases other (e.g.
AccessibleTable), specialized events may also be fired.

AT – typically via a bridge – registers a listener for events from the AccessibleContext, and receives events
with a propertyName, and an oldValue, and a newValue. With this information the AT can determine what
happened, or at least determine that it needs more information (for which it will then make more API calls).

8.1 changes in the user interface element value

Those user interface elements which represent one of a range of changeable values will have an
AccessibleContext that provides the AccessibleValue optional interface. AT that registers for
PropertyChange event notification from that AccessibleContext will receive events whose propertyName
is ACCESSIBLE_VALUE_PROPERTY and whose oldValue is the old value and whose newValue is the new
value.

8.2 changes in the name of the user interface element

As all user interface components must have an AccessibleName, all AccessibleContext will fire
PropertyChange events for a change in the accessible name. AT that registers for PropertyChange event
notification from that AccessibleContext will receive events whose propertyName is
ACCESSIBLE_NAME_PROPERTY and whose oldValue is the old name and whose newValue is the new name.

8.3 changes in the description of the user interface element

As all user interface components must have an AccessibleDescription, all AccessibleContext will fire
PropertyChange events for a change in the accessible name. AT that registers for PropertyChange event
notification from that AccessibleContext will receive events whose propertyName is
ACCESSIBLE_DESCRIPTION_PROPERTY and whose oldValue is the old description and whose newValue is the
new description.

8.4 changes in the boundary of the user interface element

Those user interface elements which are drawn to the screen (even only at some potential time in the future
such as an undisplayed menu item) will have an AccessibleContext that provide an AccessibleComponent
optional interface. AT that registers for PropertyChange event notification from that AccessibleContext
will receive events whose propertyName is ACCESSIBLE_COMPONENT_BOUNDS_PROPERTY and whose
oldValue is the old bounding rectangle and whose newValue is the new bounding rectangle.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

ISO/IEC TR 13066-6:2014(E)

32 © ISO/IEC 2014 – All rights reserved

8.5 changes in the hierarchy of the user interface element

MSAA events are used to notify ATs of changes in the hierarchy of a user interface element.

8.6 changes in other accessibility aspects of user interface components

Much of the information available via the Java accessibility API can be “listened” for, and any time that
information changes, a listening assistive technology will receive notification of the change. The set of
properties that for which changes trigger events is documented in the javadoc for AccessibleContext:

 A change in the number of actions available to a user interface component that implements the
AccessibleAction interface (expressed via ACCESSIBLE_ACTION_PROPERTY change events)

 A change in the “active descendant” of a user interface component that has the
AccessibleState.MANAGES_DESCENDANTS – used in cases where the number of children may be
unbounded or simply very large, where it is not practical to enumerate all of the children (expressed via
ACCESSIBLE_ACTIVE_DESCENDANT_PROPERTY change events)

 A change in the caret location available to a user interface component that implements the
AccessibleText interface (expressed via ACCESSIBLE_CARET_PROPERTY change events)

 The addition or removal of a child user interface component from its parent (expressed via
ACCESSIBLE_CHILD_PROPERTY change events)

 A change in which portion of hypertext has focus for a user interface component that implements the
AccessibleHypertext interface (expressed via ACCESSIBLE_HYPERTEXT_OFFSET change events)

 A change indicating that a significant change has occurred to the children of a user interface component –
typically a list or tree or text – and indicating that assistive technology should re-build any model it has of
those children (expressed via ACCESSIBLE_INVALIDATE_CHILDREN change events)

 A change in the accessible selection of a user interface component that implements the
AccessibleSelection interface (expressed via ACCESSIBLE_SELECTION_PROPERTY change events)

 A change in the accessible states of a user interface component – e.g. a component becoming focused,
or checked (expressed via ACCESSIBLE_STATE_PROPERTY change events)

 A change in the caption of a user interface component that implements the AccessibleTable interface
(expressed via ACCESSIBLE_TABLE_CAPTION_CHANGED change events)

 A change in the description of a table column of a user interface component that implements the
AccessibleTable interface (expressed via ACCESSIBLE_TABLE_COLUMN_DESCRIPTION_CHANGED change
events)

 A change in the column header of a user interface component that implements the AccessibleTable
interface (expressed via ACCESSIBLE_TABLE_COLUMN_HEADER_CHANGED change events)

 A change in the underlying data model of a user interface component that implements the
AccessibleTable interface – indicating that a significant content change has occurred to the children of
this table and that assistive technology should re-build any model it has of this information (expressed via
ACCESSIBLE_TABLE_MODEL_CHANGED change events)

 A change in the description of a table row of a user interface component that implements the
AccessibleTable interface (expressed via ACCESSIBLE_TABLE_ROW_DESCRIPTION_CHANGED change
events)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-6
:20

14

https://iecnorm.com/api/?name=648000eff9b7a020368afdb9648de037

	Blank Page

