

Reference number
ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012

TECHNICAL
REPORT

ISO/IEC
TR

13066-2

First edition
2012-10-15

Information technology — Interoperability
with Assistive Technology (AT) —

Part 2:
Windows accessibility application
programming interface (API)

Technologies de l'information — Interopérabilité avec les technologies
d'assistance —

Partie 2: Interface de programmation d'applications (API) d'accessibilité
Windows

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2012 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved iii

Contents Page

Foreword .. iv

Introduction ... v

1 Scope .. 1

2 Terms and definitions ... 1

3 General Description and Architecture of the Microsoft Windows Automation API 7
3.1 General Description .. 7
3.2 Architecture ... 10

4 Using the API ... 12
4.1 Using the Microsoft Active Accessibility API ... 12
4.2 Using the UI Automation API ... 15
4.3 Using the IAccessibleEx Interface ... 20

5 Exposing User Interface Element Information ... 24
5.1 Exposing UI Elements with Microsoft Active Accessibility .. 25
5.2 Exposing UI Elements with UI Automation ... 28

6 Exposing User Interface Element Actions .. 33
6.1 Exposing User Interface Element Actions in MSAA .. 33
6.2 Exposing User Interface Element Actions in UI Automation .. 33

7 Keyboard Focus .. 36
7.1 MSAA Keyboard Focus and Selection .. 36
7.2 UI Automation Keyboard Focus and Selection .. 38

8 Events ... 45
8.1 WinEvents .. 45
8.2 UI Automation Events ... 47

9 Programmatic Modifications of States, Properties, Values and Text .. 49
9.1 UI Automation Design Considerations .. 49

10 Design Considerations ... 52
10.1 UI Automation Design Considerations .. 52
10.2 IAccessibleEx Design Considerations .. 60

11 Further Information ... 66
11.1 Microsoft Active Accessibility and Extensibility .. 66
11.2 UI Automation Extensibility Features .. 66

Annex A (informative) Microsoft Active Accessibility to Automation Proxy .. 69

Annex B (informative) UI Automation to Microsoft Active Accessibility Bridge .. 78

Annex C (informative) UI Automation for W3C Accessible Rich Internet Applications (ARIA)
Specification .. 83

Annex D (informative) Other Useful APIs for Development and Support of Assistive Technologies 87

Bibliography .. 94

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

iv © ISO/IEC 2012 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide to
publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review
every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 13066-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 35, User interfaces.

ISO/IEC TR 13066 consists of the following parts, under the general title Information technology —
Interoperability with Assistive Technology (AT):

 Part 1: Requirements and recommendations for interoperability

 Part 2: Windows accessibility application programming interface (API) [Technical Report]

 Part 3: IAccessible2 accessibility application programming interface (API) [Technical Report]

 Part 4: Linux/UNIX graphical environments accessibility API [Technical Report]1

 Part 6: Java accessibility API [Technical Report]

1 To be published.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved v

Introduction

Individuals with a wide range of functional disabilities, impairments, and difficulties require specific technology
to enable computers and software to be accessible to them. This part of ISO/IEC TR 13066 provides
information about the Microsoft® Windows® Automation Frameworks, including Microsoft Active Accessibility,
User Interface (UI) Automation, and the common interfaces of these accessibility frameworks including the
IAccessibleEx interface specification.

The intent of this part of ISO/IEC TR 13066 is to provide information and application programming interfaces
(APIs) needed to use these frameworks. A primary goal of this part of ISO/IEC TR 13066 is to ensure that
accessible software applications can be written in such a way that they are fully compatible with the Microsoft
Accessibility APIs available on the Microsoft Windows operating system.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

TECHNICAL REPORT ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 1

Information technology — Interoperability with Assistive
Technology (AT) —

Part 2:
Windows accessibility application programming interface (API)

1 Scope

This part of ISO/IEC TR 13066 specifies services provided in the Microsoft Windows platform to enable
assistive technologies (AT) to interact with other software. One goal of this part of ISO/IEC TR 13066 is to
define a set of application programming interfaces (APIs) for allowing software applications to enable
accessible technologies on the Microsoft Windows platform. Another goal of this part of ISO/IEC TR 13066 is
to facilitate extensibility and interoperability by enabling implementations by multiple vendors on multiple
platforms.

This part of ISO/IEC TR 13066 is applicable to the broad range of ergonomics and how ergonomics apply to
human interaction with software systems.

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1
application programming interface
API
standard set of documented and supported routines that expose operating system programming interfaces
and services to applications

NOTE An API is usually a source code interface that an operating system, library, or service provides to support
requests made by computer programs.

EXAMPLE Examples of operating system services that are exposed by APIs include administration and
management, diagnostics, graphics and multimedia, networking, security, system services, user interfaces, and
accessibility.

2.2
accessibility
degree to which a computer system is easy to use by all people, including those with disabilities

2.3
accessible object
part of user interface object that is accessible by Microsoft Active Accessibility

NOTE An accessible object is represented by an IAccessible interface and a ChildId identifier.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

2 © ISO/IEC 2012 – All rights reserved

2.4
Accessible Rich Internet Applications
ARIA
accessibility framework from W3C that exposes web content to assistive technologies such as screen readers
and speech commanding programs

2.5
Assistive Technology
AT
technology designed to provide accessibility support to individuals with physical or cognitive impairments or
disabilities

NOTE Assistive Technology can be manifested through both hardware and software.

2.6
Accessibility Toolkit (Linux)
ATK
programming support accessibility features in their applications

2.7
automation
replacement of manual operations by computerized methods

NOTE With respect to this part of ISO/IEC 13066, automation is a way to manipulate an application's user interface
from outside the application.

2.8
automation element
object or element that is accessible by the UI Automation object model

NOTE Similar to accessible objects in Microsoft Active Accessibility, an automation element in UI Automation
represents a piece or a part of the user interface, such as button, window, or desktop.

2.9
Audio Video Interleaved
AVI
format that enables both audio and video data in a file container

2.10
C#
a programming language designed for building applications that run on the .NET Framework

NOTE 1 C#, which is an evolution of C and C++, is type safe and object oriented.

NOTE 2 Because it is compiled as managed code, it benefits from the services of the common language runtime, such
as language interoperability, security, and garbage collection.

2.11
callback function
function or procedure that third party or client code supplies to a component, often by passing a function
pointer through the component’s API

NOTE The component may then call this code at specific times. This technique is often used by components to
signal client code that some event has taken place, or to request client code to perform some specific task.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 3

2.12
clients
component that uses the services of another component

NOTE In this part of ISO/IEC 13066, client refers more specifically to a component that uses the services of Microsoft
Active Accessibility or UI Automation, or both, to access, identify, or manipulate the user interface (UI) elements of an
application.

2.13
Common Language Runtime
CLR
Microsoft’s commercial implementation of the Common Language Infrastructure (CLI) specification

NOTE 1 The CLI provides a specification for executable code and the execution environment in which it runs

NOTE 2 At the center of the CLI is a unified type system, a virtual execution system, and a specification for multiple
programming languages to share the type system and compile into a common intermediate language.

2.14
Component Object Model
COM
object-oriented programming model that defines how objects interact within a single process or between
processes

NOTE In COM, clients have access to an object through interfaces implemented on the object.

2.15
content view
subset of the control view of the UI Automation tree

NOTE The content view contains UI items that convey the actual information in a user interface, including UI items
that can receive keyboard focus and some text that is not a label on a UI item.

2.16
control pattern
<UI Automation> design implementation that describes a discrete piece of functionality for a control

NOTE This functionality can include the visual appearance of a control and the actions it can perform.

2.17
control view
subset of the raw view of the UI Automation tree

NOTE The control view includes the UI items that provide information to the user or enable the user to perform an
action.

2.18
enumerator
object that iterates through its associated collection

NOTE An enumerator can be thought of as a movable pointer to any element in the collection.

2.19
Global Unique Identifier
GUID
unique reference number used as an identifier in computer software

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

4 © ISO/IEC 2012 – All rights reserved

2.20
HWND
unique long integer value that is assigned by Microsoft Windows to the current window, where a window is a
primitive of Windows’ UI management

2.21
in-process
<UI Automation> Microsoft Accessibility code that is executed in a target application’s process

2.22
Java Accessibility Application Programming Interface
JAAPI
accessibility framework for the Java SE platform that exposes Java applications to assistive technologies such
as screen readers and speech commanding programs

2.23
Java Development Kit
JDK
collection of programming tools

2.24
Java Virtual Machine
JVM
environment in which Java bytecode can be executed

2.25
managed API
API that, when compiled and run, is under the control of an intermediary runtime infrastructure, like a virtual
machine

EXAMPLE Microsoft’s Common Language Runtime (CLR) and the Java Virtual Machine (JVM) are examples of
runtime infrastructures.

NOTE Managed code is compiled into an intermediate language construct (for example, byte code) and the runtime
infrastructure handles the compilation into machine code. The runtime infrastructure handles programming constructs like
memory management.

2.26
Microsoft Active Accessibility
COM-based technology that improves the way accessibility aids work with applications running on Microsoft
Windows

NOTE Microsoft Active Accessibility provides dynamic-link libraries (DLLs) that are incorporated into the operating
system, as well as a COM interface and application programming elements that provide reliable methods for exposing
information about user interface elements.

2.27
MSDN
Microsoft Developer Network, which is a technical information resource for developers who are using
Microsoft technologies

2.28
Multiple Document Interface
MDI
document interface that allows a window to reside under a parent window

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 5

2.29
native API
API that, when compiled and run, is not under the control of an intermediary runtime infrastructure such as a
virtual machine or CLR

NOTE Native code compiles directly to machine code, and the developer is responsible for most aspects of
programming constructs (for example, pointers, freeing memory, and so on). Also known as a native API.

2.30
out-of-process
<UI Automation> Microsoft Accessibility code that is executed in a different process from the target
application’s process

2.31
providers
<UI Automation> components that expose information about UI elements

EXAMPLE Such components can be applications, DLLs, and so on

NOTE These include any control, module, or application which implements UI Automation provider interfaces.

2.32
raw view
full tree of UI Automation element objects in the UI Automation tree for which the desktop is the root

NOTE The raw view closely follows the native programmatic structure of an application and, therefore, is the most
accurate view of the UI structure. It is also the base on which the other views of the tree are built

2.33
root element
element of the UI Automation tree that represents the current desktop and whose child elements represent
application windows

NOTE Each of these child elements can contain elements representing pieces of UI such as menus, buttons,
toolbars, and list boxes.

2.34
servers
components of Microsoft Active Accessibility that have UI elements and expose information about the UI
elements and/or allow them to be manipulated

EXAMPLE Such components can be applications, DLLs, and so on.

NOTE A Microsoft Active Accessibility server has the same role as a UI Automation provider.

2.35
simple element
<Microsoft Active Accessibility> element that shares an IAccessible object with other peer elements

NOTE A simple element relies on the shared IAccessible object (typically its parent in the object hierarchy) to
expose its properties.

2.36
Services Control Manager
SCM
system process that maintains a database of installed services and driver services, and provides a unified and
secure means of controlling them

NOTE The database includes information on how each service or driver service should be started. It also enables
system administrators to customize security requirements for each service and thereby control access to the service.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

6 © ISO/IEC 2012 – All rights reserved

2.37
system service
application conforming to the interface rules of the Service Control Manager (SCM)

NOTE 1 It can be started automatically at system boot, by a user through the Services control panel applet, or by an
application that uses the service functions

NOTE 2 Services can execute even when no user is logged on to the system. File services, indexing service, memory
management, power management, and remote desktop services are examples of services.

2.38
Text Services Framework
TSF
simple and scalable framework for the delivery of advanced text input and natural language technologies

NOTE 1 TSF can be enabled in applications, or as a TSF text service

NOTE 2 A TSF text service provides multilingual support and delivers text services such as keyboard processors,
handwriting recognition, and speech recognition.

2.39
user interface
UI
mechanisms by which a person interacts with a computer system

NOTE 1 The user interface provides input mechanisms, allowing users to manipulate a system

NOTE 2 It also provides output mechanisms, allowing the system to produce the effects of the users’ manipulation.

2.40
User Interface Automation
UI Automation
UIA
accessibility framework that exposes applications to software automation or to assistive technologies such as
screen readers and speech commanding programs

2.41
virtual machine
VM
computer within a computer, implemented in software

NOTE 1 A virtual machine emulates a complete hardware system, from processor to network card, in a self-contained,
isolated software environment, enabling the simultaneous operation of otherwise incompatible operating systems.

NOTE 2 Each operating system runs in its own isolated software partition.

2.42
Visual Basic
VB
generally visual programming environment from Microsoft based on the BASIC programming language

2.43
Web Accessibility Initiative
WAI
an effort to improve the accessibility of the World Wide Web

2.44
WinEvents
mechanism that allows servers and the Windows operating system to notify clients when an accessible object
changes

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 7

2.45
World Wide Web Consortium
W3C
standards organization for the World Wide Web

3 General Description and Architecture of the Microsoft Windows Automation API

3.1 General Description

The Microsoft® Windows® Automation API consists of two accessibility frameworks — Microsoft Active
Accessibility and User Interface Automation (UI Automation). The IAccessibleEx interface specification
integrates the two accessibility frameworks.

Although Microsoft Active Accessibility and UI Automation are two different frameworks, the basic design
principles are similar. The purpose of both is to expose rich information about the UI elements used in
Windows applications. Developers of accessibility tools can use this information to help make applications
more accessible to people with vision, hearing, or motion disabilities.

3.1.1 Microsoft Active Accessibility Overview

Microsoft Active Accessibility is based on the Component Object Model (COM), which defines a common way
for applications and operating systems to communicate. The goal of Microsoft Active Accessibility is to allow
custom controls to expose basic information, such as name, location on screen, or type of control, and state
information such as visibility, enabled, or selected.

The accessible object is the central object of Microsoft Active Accessibility and is represented by an
IAccessible COM interface and an integer ChildId. It allows applications to expose UI elements as a tree
structure that represents the structure of the UI. Each element of this tree exposes a set of properties and
methods that allow the corresponding UI element to be manipulated. Microsoft Active Accessibility clients can
access the programmatic UI information through a standard API. The following sections describe the main
parts of Microsoft Active Accessibility, including accessible objects, the WinEvents mechanism, the Microsoft
Active Accessibility runtime (Oleacc.dll), and Microsoft Active Accessibility clients and servers.

3.1.1.1 Microsoft Active Accessibility Components

Microsoft Active Accessibility contains the following main components:

 Accessible Object – A logical UI element (such as a button) that is represented by an IAccessible COM
interface and a ChildId value.

 The IAccessible interface has properties and methods for obtaining information about and
manipulating UI elements.

 ChildId is an identifier for an accessible object that is used together with an IAccessible instance
to refer to a specific UI element.

 WinEvents – An event system that allows servers to notify clients when an accessible object changes.
For more information, see Events.

 Oleacc.dll– A run-time dynamic-link library that provides the Microsoft Active Accessibility API and the
accessibility system framework. Oleacc.dll also provides proxy objects for the Windows operating
system standard controls.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

8 © ISO/IEC 2012 – All rights reserved

3.1.1.2 Oleacc.dll

The following APIs and functions are included in Oleacc.dll:

 Client APIs – APIs that clients use to request an IAccessible interface pointer (for example,
AccessibleObjectFromX).

 Server APIs– APIs that servers use to return an IAccessible interface pointer to a client (for example,
LresultFromObject).

 APIs for getting localized text for the role and state codes (for example, GetRoleText and
GetStateText).

 Helper APIs (for example, AccessibleChildren).

 Proxies– Code that provides the default implementation of an IAccessible interface for standard USER
and COMCTL controls. Because these controls implement the IAccessible interface on behalf of the
system controls, they are known as proxies.

3.1.1.3 Microsoft Active Accessibility Clients

Microsoft Active Accessibility helps accessibility aids, called clients, interact with standard and custom UI
elements of other applications and the operating system. Clients can use Microsoft Active Accessibility to
access, identify, and manipulate an application's UI elements. Clients include accessibility aids, automated
testing tools, and computer-based training applications.

Clients must know when the server's UI changes so that information can be conveyed to the user. They are
notified about changes in the server UI by registering to receive notifications of specific changes through a
mechanism called Window Events, or WinEvents. For more information, see Events.

To learn about and manipulate a particular UI element, clients use a pair consisting of an IAccessible
interface and a ChildId.

3.1.1.4 Microsoft Active Accessibility Servers

Applications that interact with and provide information to clients are called servers. Servers include any
control, module, or application that implements Microsoft Active Accessibility. A server uses Microsoft Active
Accessibility to provide information about its UI elements to clients.

3.1.2 UI Automation Overview

UI Automation provides programmatic access to UI elements on the desktop, enabling assistive technology
products such as screen readers to provide information about the UI to end users and to manipulate the UI by
means other than standard input. UI Automation also allows automated test scripts to interact with the UI. The
UI Automation Specification is designed so that it can be supported across platforms other than Microsoft
Windows.

UI Automation is broader in scope than just an interface definition. UI Automation provides:

 A set of classes that make it easy for client applications to receive events, retrieve property values, and
manipulate UI elements.

 A core infrastructure for doing fetch, find, and similar operations efficiently across process boundaries.

 A set of interfaces for providers to express the UI as a tree structure, along with some general properties.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 9

 A set of interfaces that providers use to express other properties and functionality specific to the control
type. These are the control pattern interfaces.

To improve on Microsoft Active Accessibility, UI Automation aims to address the following goals:

 Enable efficient out-of-process clients, while continuing to allow in-process access.

 Expose more information about the UI in a way that allows clients to be out-of-process.

 Co-exist with and use Microsoft Active Accessibility, but do not inherit problems that exist in Microsoft
Active Accessibility.

 Provide an alternative to IAccessible that is simple to implement.

The Microsoft Windows implementation of UI Automation features COM-based interfaces and managed
interfaces that are included with the Microsoft .NET Framework.

3.1.2.1 UI Automation Components

UI Automation has four main components, as shown in the following table.

Component Description

Provider API A set of COM interfaces that are implemented by UI Automation providers. UI Automation
providers are objects that provide information about UI elements and respond to programmatic
input.

Client API A set of COM interfaces that enable client applications to obtain information about the UI and to
send input to controls.

UiAutomationCore.dll The run-time library, sometimes called the UI Automation core, that handles communication
between providers and clients.

Oleacc.dll The run-time library for Microsoft Active Accessibility and the proxy objects. The library also
provides proxy objects used by the Microsoft Active Accessibility to UI Automation Proxy to
support Win32 controls.

UI Automation can be used to create support for custom controls by using the provider API, and to create
client applications that use the UI Automation core to communicate with UI elements.

3.1.2.2 UI Automation Model

UI Automation exposes every element of the UI to client applications as an object represented by the
IUIAutomationElement interface. Elements are contained in a tree structure, with the desktop as the root
element. Clients can filter the raw view of the tree as a control view or a content view. Applications can also
create custom views.

A UI Automation element exposes properties of the control or UI element that it represents. One of these
properties is the control type, which defines the basic appearance and functionality of the control or UI
element as a single recognizable entity, for example, a button or check box.

In addition, a UI Automation element exposes one or more control patterns. A control pattern provides a set of
properties that are specific to a particular control type. A control pattern also exposes methods that enable
client applications to get more information about the element and to provide input to the element.

UI Automation provides information to client applications through events. Unlike WinEvents, UI Automation
events are not based on a broadcast mechanism. UI Automation clients register for specific event notifications
and can request that specific properties and control pattern information be passed to their event handlers. In

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

10 © ISO/IEC 2012 – All rights reserved

addition, a UI Automation event contains a reference to the element that raised it. Providers can improve
performance by raising events selectively, depending on whether any clients are listening.

3.1.3 The IAccessibleEx Interface

Controls that do not have a Microsoft UI Automation provider, but that implement the Microsoft Active
Accessibility IAccessible interface, can easily be upgraded to provide some UI Automation functionality by
implementing the IAccessibleEx interface. This interface enables the control to expose UI Automation
properties and control patterns, without the need for a full implementation of UI Automation provider interfaces
such as IRawElementProviderFragment.

The IAccessibleEx interface enables existing applications or UI libraries to extend their Microsoft Active
Accessibility object model to support UI Automation without rewriting the implementation from scratch. With
IAccessibleEx, developers can implement only the additional UI Automation properties and control patterns
needed to fully describe the UI and its functionality.

Because the Microsoft Active Accessibility-to-UI Automation Proxy translates the object models of
IAccessibleEx-enabled Microsoft Active Accessibility servers as UI Automation object models, UI
Automation clients do not need to do any extra work. The IAccessibleEx interface can also enable in-
process Microsoft Active Accessibility clients to interact directly with UI Automation providers.

3.2 Architecture

The diagrams in this section show the architectures of Microsoft Active Accessibility, UI Automation, and other
related implementations. Applications such as word processing programs are called servers in Microsoft
Active Accessibility and providers in UI Automation because they serve or provide information about their user
interfaces (UI). Accessibility tools such as screen readers are called clients in both Microsoft Active
Accessibility and UI Automation because they consume and interact with application UI information. These
diagrams provide an overview of each technology and are not intended to present highly detailed views of the
architecture and scenarios of Microsoft Active Accessibility, UI Automation, and other implementations
discussed in this section.

The system component of the Microsoft Active Accessibility framework, Oleacc.dll, aids in the
communication between accessibility tools (clients) and applications (servers). The code boundary indicates
the programmatic boundaries between applications that provide UI accessibility information and accessibility
tools that interact with the UI on behalf of users. The boundary can also be a process boundary when
Microsoft Active Accessibility clients have their own process.

* Also process boundary in case of out of process MSAA Clients.

Figure 1 — Microsoft Active Accessibility

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 11

With UI Automation, the UI Automation Core component (UIAutomationCore.dll) is loaded into both the
accessibility tools’ and applications’ processes. This component manages cross-process communication, and
it also provides higher level services such as searching for elements by property values.

Figure 2 — UI Automation

Using the IAccessibleEx interface, applications can improve the accessibility of existing Microsoft Active
Accessibility server implementations. Microsoft Active Accessibility server implementations are exposed to
clients via the proxy just as regular UI Automation implementations are.

Figure 3 — MSAA-to-UIA Proxy enables UI Automation clients to access Microsoft Active Accessibility
servers

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

12 © ISO/IEC 2012 – All rights reserved

While the MSAA-to-UIA proxy enables UI Automation clients to access Microsoft Active Accessibility servers,
the UIA-to-MSAA bridge does the inverse. It enables Microsoft Active Accessibility clients to access UI
Automation providers.

* Also process boundary in case of out of process MSAA Clients.

Figure 4 — UIA-to-MSAA Bridge enables Microsoft Active Accessibility clients to access UI
Automation providers

4 Using the API

4.1 Using the Microsoft Active Accessibility API

In Microsoft Active Accessibility, every UI element is represented by an IAccessible interface paired with a
ChildID value. A UI element represented by such a pair is called an accessible object. An accessible object
exposes properties, including the object's name, screen location, and other information needed by
accessibility aids. The accessible object also provides methods that enable clients to perform an action on the
corresponding UI element.

An accessible object that has simple elements associated with it is also called a parent or container. The
parent is represented by a ChildId value of CHILDID_SELF (or 0 ‘zero’). The children are represented by a
non-zero value (usually a positive sequential number beginning with 1). Child objects that are represented by
a non-zero ChildId value are called simple elements. Simple elements share the same IAccessible
interface with their parent, but they are differentiated by the ChildId value. The ChildId assignment is done
on a per-instance-of-interface basis, so the IDs must be unique within that context.

For example, a system list box is represented by a proxy object as an accessible object for the overall list box,
and simple elements for each list box item. In this case, the accessible object with CHILDID_SELF is called a
parent or container of the list items. The individual objects with non-zero ChildId values are, on the other
hand, called children or list items (contained in the list box).

Simple elements cannot have children of their own. If a UI element has more than two levels of hierarchy, the
object representation should be structured in multiple levels of accessible objects instead of parent and simple
object pairs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 13

4.1.1 Types of Microsoft Active Accessibility Support

Microsoft Active Accessibility servers can have two types of support for accessible objects: native and proxied.
An application's UI elements determine which type of support is appropriate. Many servers being written today
take full advantage of the system provided proxies. They implement Microsoft Active Accessibility only for
those custom controls that the system does not proxy.

4.1.1.1 Native Microsoft Active Accessibility Implementation

UI elements that implement their own accessible objects are said to provide a native implementation. Although
the development cost for implementing custom accessible objects can be high, the benefit is complete control
over the information exposed to clients. By providing native support, an application is free to innovate in its UI
while remaining 100 percent accessible.

If an application uses custom controls or other controls that Oleacc.dll cannot proxy, a native
implementation will need to be provided.

4.1.1.2 Accessible Object Proxies

Accessible object proxies provide default accessibility information for standard UI elements: USER controls,
USER menus, and common controls from comctl32.dll. This default support is available from Oleacc.dll,
and it delivers standard Microsoft Active Accessibility support without additional server development work.
However, the application has little control over the information that is exposed.

4.1.2 Retrieving an Accessible Object

Retrieving an accessible object is the first step to establishing communication between accessibility tools and
the target application. Microsoft Active Accessibility clients can initiate this communication by using one of the
following AccessibleObjectFromX functions provided by Oleacc.dll:

Function Description

AccessibleObjectFromPoint Retrieves an accessible object from a screen
coordinate.

AccessibleObjectFromWindow Retrieves an accessible object from a window
handle (HWND).

AccessibleObjectFromEvent Retrieves an accessible object from a WinEvent.

4.1.3 The WM_GETOBJECT Message

Both Microsoft Active Accessibility and UI Automation send the WM_GETOBJECT message to obtain information
about an accessible UI object on the desktop. Applications (including accessibility tools or clients) never send
this message directly. It is sent only by the accessibility framework (Oleacc.dll for Microsoft Active
Accessibility or UIAutoamtionCore.dll for UI Automation) in response to calls such as
AccessibleObjectFromPoint, AccessibleObjectFromEvent, or AccessibleObjectFromWindow. UI
components that support either Microsoft Active Accessibility or UI Automation must handle the message
(WM_GETOBJECT) correctly.

The return value in response to WM_GETOBJECT depends on whether the window or control that receives the
message implements Microsoft Active Accessibility, UI Automation, or none of those.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

14 © ISO/IEC 2012 – All rights reserved

 If implementing Microsoft Active Accessibility for the object and also if the dwObjID (lParam) was
OBJID_CLIENT, return the result obtained from LresultFromObject function for the IAccessible
implementation.

 If implementing UI Automation for the object and also if the dwObjID (lParam) was UiaRootObjectId,
return an interface to the UI Automation provider using UiaReturnRawElementProvider function.

 If implementing neither Microsoft Active Accessibility nor UI Automation, allow the message to pass to
DefWindowProc. The accessibility framework will determine if a proxy is available to the particular UI
element.

 If dwObjID was neither OBJID_CLIENT nor UiaRootObjectId, allow the message to pass to
DefWindowProc. The accessibility framework then will process default providers for standard UI
elements.

Controls can also use custom values in dwObjID to return specific return values or objects to WM_GETOBJECT.
OBJID_NATIVEOM and OBJID_QUERYCLASSNAMEIDX can be used for returning a native object model interface
or for requesting a specific Oleacc.dll proxy.

Microsoft Active Accessibility server and UI Automation provider implementations (the first two
implementations in the preceding list) can coexist by handling both OBJID_CLIENT and UiaRootObjectId
accordingly.

Because most Windows common controls and USER controls do not implement either Microsoft Active
Accessibility or UI Automation, the UI elements generally don’t handle a WM_GETOBJECT message. Instead, the
accessibility framework (Microsoft Active Accessibility or UI Automation) checks if a proxy object is available
for a particular UI element. Otherwise, it will provide to the default proxy object for the host window object.

4.1.4 Special values of Object Identifier

4.1.4.1 Using the OBJID_NATIVEOM to expose a native object model interface

If the UI element supports native object models other than Microsoft Active Accessibility or UI Automation, it
can still expose the custom interface by responding to WM_GETOBJECT with OBJID_NATIVEOM parameter in
dwObjID (or lParam). Use LresultFromObject to wrap the interface. Clients can retrieve the interface by
calling AccessibleObjectFromWindow function with OBJID_NATIVEOM as the second parameter.

4.1.4.2 Using the OBJID_QUERYCLASSNAMEIDX to enable certain Oleacc proxy

When Microsoft Active Accessibility sends a WM_GETOBJECT message with the OBJIDQUERYCLASSNAMEIDX in
the object ID, many standard USER or common controls (COMCTL) return one of the following values.

USER or common control Return value

Listbox 65536+0

Button 65536+2

Static 65536+3

Edit 65536+4

Combobox 65536+5

Scrollbar 65536+10

Status 65536+11

Toolbar 65536+12

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 15

USER or common control Return value

Progress 65536+13

Animate 65536+14

Tab 65536+15

Hotkey 65536+16

Header 65536+17

Trackbar 65536+18

Listview 65536+19

Updown 65536+22

ToolTips 65536+24

Treeview 65536+25

RichEdit 65536+28

Generally, only USER and Windows common controls (comctl32.dll) return one of the values from the table.
If a window returns 0 in response to this message, the window may be one of the following:

 A custom control.

 A control other than one of the controls in the previous table.

 An old version of a system control that doesn't recognize the WM_GETOBJECT message.

However, it is possible for the custom control to return a specific return value to enable a USER or COMCTL
proxy object by Oleacc.dll. Such controls must support all native functions and APIs of the corresponding
system control.

4.2 Using the UI Automation API

There are two ways of using UI Automation: to create support for custom controls by using the provider API,
and to create client applications that use the UI Automation core to communicate with, and retrieve
information about, UI elements.

4.2.1 UI Automation Model

UI Automation exposes every element of the UI to client applications as an “automation element”; that is, an
object represented by the IUIAutomationElement interface. Elements are contained in a tree structure, with
the desktop as the root element. Clients can filter the raw view of the tree as a control view or a content view.
Applications can also create custom views.

A UI Automation element exposes properties of the control or UI element that it represents. One of these
properties is the control type, which defines the basic appearance and functionality of the control or UI
element as a single recognizable entity, for example, a button or check box.

In addition, a UI Automation element exposes one or more control patterns. A control pattern provides a set of
properties that are specific to a particular control type. A control pattern also exposes methods that enable
client applications to get more information about the element and to provide input to the element.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

16 © ISO/IEC 2012 – All rights reserved

NOTE There is no one-to-one correspondence between control types and control patterns. A control pattern may be
supported by multiple control types, and a control may support multiple control patterns, each of which exposes different
aspects of its behavior. For example, a combo box has at least two control patterns: one that represents its ability to
expand and collapse, and another that represents the selection mechanism. However, a control can exhibit only a single
control type.

UI Automation provides information to client applications through events. Unlike WinEvents, UI Automation
events are not based on a broadcast mechanism. UI Automation clients register for specific event notifications
and can request that specific properties and control pattern information be passed to their event handlers. In
addition, a UI Automation event contains a reference to the element that raised it. Providers can improve
performance by raising events selectively, depending on whether any clients are listening.

The UI Automation client API and the UI Automation core provide services such as tree traversal, searching
for elements within the tree, and fetching multiple properties from multiple objects. These services are
exposed by the client API, and implemented by the core UI Automation DLL, which runs in-process as
necessary to implement these services on behalf of the client.

4.2.2 UI Automation Tree

Within the UI Automation tree there is a root element (RootElement) that represents the current desktop and
whose child elements represent application windows. Each of these child elements can contain elements
representing components of the UI such as menus, buttons, toolbars, and list boxes. These elements in turn
can contain elements such as list items.

The UI Automation tree is not a fixed structure and is seldom seen in its totality because it might contain
thousands of elements. Parts of it are built as they are needed, and it can undergo changes as elements are
added, moved, or removed.

UI Automation providers support the UI Automation tree by implementing navigation among items within a
fragment, which consists of a root (usually hosted in a window) and a subtree. However, providers are not
concerned with navigation between these subtrees. This is managed by the UI Automation core, using
information from the default window providers.

UI Automation provides three default views of the UI tree. These views are defined by the type of filtering
performed; the scope of any view is defined by the application. In addition, the application can apply other
filters on properties; for example, to include only enabled controls in a control view.

 Raw View – The raw view of the UI Automation tree is the full tree of the AutomationElement objects for
which the desktop is the root. The raw view closely follows the native programmatic structure of an
application and therefore is the most detailed view available. It is also the base on which the other views
of the tree are built. Because this view depends on the underlying UI framework, the raw view of a WPF
button will have a different raw view from that of a Win32 button. The raw view is obtained by searching
for elements without specifying properties or by using RawViewWalker to navigate the tree.

 Control View – The control view of the UI Automation tree simplifies the assistive technology product's
task of describing the UI to the end user and helping that end user interact with the application because it
closely maps to the UI structure perceived by an end user. The control view is a subset of the raw view. It
includes all UI items from the raw view that an end user would understand as interactive or contributing to
the logical structure of the control in the UI. Examples of UI items that contribute to the logical structure of
the UI, but are not interactive themselves, are item containers such as list view headers, toolbars, menus,
and the status bar. Non-interactive items used simply for layout or decorative purposes will not be seen in
the control view. An example is a panel that was used only to lay out the controls in a dialog box but does
not itself contain any information. Non-interactive items that will be seen in the control view are graphics
with information and static text in a dialog box. Non-interactive items that are included in the control view
cannot receive keyboard focus. The control view is obtained by searching for elements that have the
IsControlElement property set to true, or by using ControlViewWalker to navigate the tree.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 17

 Content View – The content view of the UI Automation tree is a subset of the control view. It contains UI
items that convey the true information in a UI, including UI items that can receive keyboard focus and
some text that is not a label on a UI item. For example, the values in a drop-down combo box will appear
in the content view because they represent the information being used by an end user. In the content
view, a combo box and list box are both represented as a collection of UI items where one, or perhaps
more than one, item can be selected. That one is always open and one can expand and collapse is
irrelevant in the content view because it is designed to show the data, or content, that is being presented
to the user. The content view is obtained by searching for elements that have the IsContentElement
property set to true, or by using ContentViewWalker to navigate the tree.

4.2.3 UI Automation Control Patterns, Control Types, Properties, and Events

UI Automation support for control patterns, properties, and events goes beyond the support provided by the
MSAA IAccessible interface.

4.2.3.1 UI Automation Control Patterns

A control pattern describes UI attributes and functionality or features of a user interface element. It is an
interface with properties and methods.

Control patterns support the methods, properties, events, and relationships needed to define a discrete piece
of functionality available in a control.

 The methods allow UI Automation clients to manipulate the control.

 The properties and events provide information about the control pattern's functionality, as well as
information about the state of the control.

 Control pattern interfaces provide properties and methods for discovering more functionality about the
underlying control. Grouping them together through a special-purpose API (GetPatternProvider)
distinguishes them from other non-UI centric interfaces.

The UI Automation framework obtains a control pattern interface by using the GetPatternProvider function
of the IRawElementProviderSimple interface. Through the framework, clients can query a control for the
control patterns that it supports and then interact with the control through the properties, methods, events, and
structures exposed by the supported control patterns. For example, for a multiline edit box, UI Automation
providers implement IScrollProvider. When a client knows that an AutomationElement supports the
ScrollPattern control pattern, it can use the properties, methods, and events exposed by that control
pattern to manipulate the control, or access information about the control.

The following table provides examples of the functionality represented by different control patterns.

Functionality Control Pattern

Ability to be checked / unchecked Toggle

Ability to have numeric value set RangeValue

Ability to have text value set Value

Ability to be moved / resized Transform

Ability to show or hide information ExpandCollapse

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

18 © ISO/IEC 2012 – All rights reserved

The following table describes the UI Automation control patterns.

Control Pattern Description

Dock Used for controls that can be docked in a docking container. For example, toolbars or tool
palettes.

ExpandCollapse Used for controls that can be expanded or collapsed. For example, menu items in an
application such as the File menu.

Grid Used for controls that support grid functionality such as sizing and moving to a specified cell.
For example, the “large icon view” in Windows Explorer, or simple tables without headers in
Microsoft Word.

GridItem Used for controls those have cells within grids. The individual cells should support the
GridItem control pattern; for example, each cell in the “details” view in Microsoft Windows
Explorer.

Invoke Used for controls that can be invoked, such as a button.

ItemContainer Used for controls that hosts a number of children that may be virtualized.

LegacyIAccessible Used for controls that have legacy IAccessible implementations, which is supported by a
built-in proxy of the UIAutomationCore.dll

MultipleView Used for controls that can switch between multiple representations of the same set of
information, data, or children; for example, a list view control where data is available in
thumbnail, tile, icon, list, or detail views.

RangeValue Used for controls those have a range of values that can be applied to the control; for
example, a spinner control containing years might have a range of 1900 to 2010, while
another spinner control presenting months would have a range of 1 to 12.

Scroll Used for controls that can scroll; for example, a control that has scroll bars that are active
when there is more information than can be displayed in the viewable area of the control.

ScrollItem Used for controls those have individual items in a list that scrolls; for example, a list control
that has individual items in the scroll list such as a combo box control.

Selection Used for selection container controls; for example, list boxes and combo boxes.

SelectionItem Used for individual items in selection container controls, such as list boxes and combo
boxes.

SynchronizedInput Used for UI framework that supports synchronization of input (such as mouse or keyboard
input) simulation so that programs can direct the action to specific UI components accurately.

Table Used for controls that have a grid as well as header information; for example, Microsoft
Excel® worksheets.

TableItem Used for items in a table.

Text Used for edit controls and documents that expose textual information.

Toggle Used for controls whose state can be toggled; for example, check boxes and some menu
items that can be selected.

Transform Used for controls that can be resized, moved, and rotated. Typical uses for the Transform
control pattern are in designers, forms, graphical editors, and drawing applications.

Value Used for controls that sustains a data. Value control pattern allows clients to get or set a
value (data) on controls that do not support a range of values; for example, an edit control.

VirtualizedItem Used for a virtualized object in a container that supports the ItemContainer control pattern.

Window Used for controls that provide fundamental window-based functionality within a tradition
graphical UI. For example, a control that supports the Window control pattern can be moved
or maximized for the application's window concept.

UI Automation providers implement control patterns to expose the appropriate behavior for a specific function
supported by the control.

UI Automation clients access methods and properties of UI Automation control pattern classes and use them
to get information about the UI, or to manipulate the UI.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 19

4.2.3.2 UI Automation Control Types

The UI Automation control types are well-known identifiers that can be used to indicate what kind of control a
particular element represents, such as a combo box or a button. Each control type has a set of conditions that
a control must meet in order to use the ControlType property. The conditions include specific guidelines for
the UI Automation tree structure, UI Automation property values, control patterns, and UI Automation events.

Having a well-known identifier makes it easier for assistive technology devices to determine what types of
controls are available in the UI and how to interact with the controls. The control types included with UI
Automation provide a much more comprehensive set of identifiers for indicating controls than Microsoft Active
Accessibility accRole values.

While control type specifications define a set of requirements and recommendations, applications and controls
can add more control patterns or properties while they can still use predefined control types.

The LocalizedControlType property is a localized description of the control type, such as “button” for the
Button control type. The string can be used by the client application to report the UI information to the users in
combination with other UI Automation properties such as Name. For example, screen readers may say “OK
button,” which can be combination of “OK” from the Name property and “button” from the
LocalizedControlType property. Controls and applications should never include control type information in
the Name property. Otherwise, it will conflict with the control type information.

When LocalizedControlType is not specified, the UI Automation framework will provide the default localized
string according to the desktop UI language based on the control’s ControlType property. If a control
supplies a known ControlType (see the list below), then it does not need to separately implement
LocalizedControlType because UI Automation will supply the corresponding string automatically.

A custom control can supply unique localized values that may differentiate the element from other controls
while the control can still share the same ControlType value for the baseline expectations. Required,
recommended, or prohibited control patterns and properties are defined by each control type specification.

The current set of control types consists of the following:

 Button  Image  Spinner

 Calendar  List  Split Button

 Check Box  List Item  Status Bar

 Combo Box  Menu  Tab

 Data Grid  Menu Bar  Tab Item

 Data Item  Menu Item  Table

 Document  Pane  Text Thumb

 Edit  Progress Bar  Title Bar

 Group  Radio Button  ToolTip

 Header  Scroll Bar  Tree Item

 Header Item  Separator  Window

 Hyperlink  Slider

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

20 © ISO/IEC 2012 – All rights reserved

4.2.3.3 UI Automation Properties

UI Automation has two main types of properties:

 Automation element properties – properties that are applicable to most controls. Examples include Name,
Enabled, and LabeledBy. These properties are exposed through
IRawElementProviderSimple.GetPropertyValue and are of type AutomationProperty.

 Control pattern properties – properties that are specific to the functionality represented in the different
control patterns interfaces. Each control pattern interface exposes a corresponding set of control pattern
properties.

Every property is identified by a number and a name. The names of properties are used only for debugging
and diagnosis. Providers use the numeric IDs to identify incoming property requests. Client applications,
however, only use AutomationProperty, which encapsulates the number and name, to identify properties
they want to retrieve.

AutomationProperty objects representing particular properties are available as fields in various classes. For
security reasons, managed UI Automation providers obtain these objects from a separate set of classes that
are contained in UIAutomationTypes.dll.

4.2.3.4 UI Automation Events

UI Automation providers raise events to notify clients of important changes in the UI. Clients register for
relevant events and implement event handling methods to receive and process the events when they occur.
For more information, see Events.

4.2.3.5 UI Automation Provider Interfaces

UI Automation provider interfaces can be implemented by managed or nativeproviders. The interfaces expose
the same basic information as the Microsoft Active Accessibility IAccessible interface (locations, tree
structure, focus and hit testing support). Code that implements these interfaces is visible to UI Automation
clients, but is also made available as IAccessible implementations for in-process or out-of-process Microsoft
Active Accessibility clients.

IRawElementProviderSimple is the core interface that UI Automation providers use to represent a UI
element. It includes methods that expose whether the implementation is a proxy, and methods to expose
when an HWND is contained within an element. It also includes the GetPropertyValue and
GetPatternProvider methods that clients use to get property and control pattern values. Providers can also
implement the IRawElementProviderFragment and IRawElementProviderFragmentRoot interfaces to
provide additional functionality for complex controls.

4.2.3.6 Custom UI Automation Properties, Control Patterns, and Events

The UI Automation framework specification defines a comprehensive set of control patterns, properties, and
events. The Microsoft Windows implementation of UI Automation includes the complete set of items defined in
the framework specification, and also offers a way to extend the set by registering custom control patterns,
properties, and events. In the current implementation for native code, applications are required to register
custom UI Automation properties, control patterns, and events before they can be used. For more information,
see Further information.

4.3 Using the IAccessibleEx Interface

The IAccessibleEx interface allows existing Microsoft Active Accessibility implementations to add support for
UI Automation properties and control patterns. This is done by defining scenarios and specifications for the
IRawElementProviderSimple and IAccessibleEx interfaces that are specific to Microsoft Active
Accessibility servers. Existing Microsoft Active Accessibility implementations can take advantage of the work
they have already done in creating their existing implementation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 21

IRawElementProviderSimple provides access to UI Automation’s control patterns and properties and is
used as the interface that represents the UI Element. The IRawElementProviderSimple and
IAccessibleEx interfaces are implemented on the same object, and QueryInterface used to go from one to
the other.

IAccessibleEx handles IAccessible bridging issues, such as child IDs, and any other issues in allowing an
IAccessible element to be treated as an automation element of a UI Automation object.

In summary:

 Existing Microsoft Active Accessibility implementations add support for IRawElementProviderSimple (to
expose control patterns and properties) and IAccessibleEx (to deal with ChildIds)

 Existing Microsoft Active Accessibility clients can use the IRawElementProviderSimple and
IAccessibleEx interfaces to access UI Automation properties and control patterns.

 New WinEvents constants are defined to represent events from those implementations that are extended
by IAccessibleEx implementations.

4.3.1 The IAccessibleEx Interface Implementation

Implementing IAccessibleEx is a stepping stone for existing Microsoft Active Accessibility servers to support
UI Automation provider interfaces (for example, IRawElementProviderSimple). The advantage of this is that
existing accessible object implementations are reused, including IAccessible properties, the accessible
object tree structure, and WinEvents. New code is added only for newly exposed functionality or features.

4.3.1.1 Control Patterns: Overlap between Microsoft Active Accessibility and UI Automation

The following control patterns do not exist in Microsoft Active Accessibility, so they can be used in an
IAccessibleEx implementation:

 Dock control pattern

 Expand Collapse control pattern

 Grid control pattern

 Grid Item control pattern

 Multiple View control pattern

 Range Value control pattern

 Scroll control pattern

 Scroll Item control pattern

 Synchronized Input control pattern

 Table control pattern

 Table Item control pattern

 Transform control pattern

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

22 © ISO/IEC 2012 – All rights reserved

In the case of the RangeValue and Transform control patterns, some methods overlap between the UI
Automation (UIA) control pattern and Microsoft Active Accessibility methods. For example, both the
get_accValue and put_accValue methods in MSAA and the RangeValue control pattern Value and
SetValue methods in UIA must be implemented. Internally, an implementation can share code for these
Microsoft Active Accessibility and UI Automation methods. The requirement to implement both Microsoft
Active Accessibility and UI Automation implementations avoids having a partial implementation of a control
pattern interface while keeping the IAccessible interface usable by existing Microsoft Active Accessibility
clients.

The following UI Automation control patterns are not required when the control has one of the roles outlined
below. Otherwise, they should be explicitly supported if relevant.

UI Automation Control Pattern Microsoft Active Accessibility Role

InvokePattern ROLE_SYSTEM_PUSHBUTTON,
ROLE_SYSTEM_MENUITEM,
ROLE_SYSTEM_BUTTONDROPDOWN,
ROLE_SYSTEM_SPLITBUTTON,
and any other role where accDefaultAction is not null.

SelectionItemPattern ROLE_SYSTEM_LISTITEM,
ROLE_SYSTEM_RADIOBUTTON

SelectionPattern ROLE_SYSTEM_LIST

TogglePattern ROLE_SYSTEM_CHECKBUTTON

ValuePattern ROLE_SYSTEM_TEXT (when it is not read-only),
ROLE_SYSTEM_PROGRESSBAR,
ROLE_SYSTEM_COMBOBOX,
and any other role when accValue is not NULL.

WindowPattern Automatically supported on top-level Win32 HWNDs.

4.3.1.2 Properties: Overlap between Microsoft Active Accessibility and UI Automation

The following UI Automation properties do not have a corresponding property in Microsoft Active Accessibility.
These UI Automation properties can be used in an IAccessibleEx implementation:

 AutomationId

 AriaProperties

 AriaRole

 ClassName

 ClickablePoint

 ControllerFor

 Culture

 DescribedBy

 FlowsTo

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 23

 FrameworkId

 IsContentElement

 IsControlElement

 IsDataValidForForm

 IsRequiredForForm

 ItemStatus

 ItemType

 LabeledBy

 LocalizedControlType

 Orientation

The following UI Automation element properties have some overlap with Microsoft Active Accessibility
properties, so they can be used in an IAccessibleEx implementation, with the following exceptions:

 AcceleratorKey and AccessKey – These properties overlap with the Microsoft Active Accessibility
accKeyboardShortcut property, but can be provided if a control has both an access key and an
accelerator (a shortcut key).

 ControlType – This property overlaps with the Microsoft Active Accessibility accRole property, but it can
be used to provide more specific control type information.

The following table lists UIAutomation element properties that are already covered by Microsoft Active
Accessibility properties, so they do not need to be used in an IAccessibleEx implementation:

UI Automation Property Microsoft Active Accessibility Property

Rect BoundingRectangle accLocation

bool HasKeyboardFocus accState, STATE_SYSTEM_FOCUSED

bool IsEnabled accState, STATE_SYSTEM_UNAVAILABLE

bool IsKeyboardFocusable accState, STATE_SYSTEM_FOCUSABLE

bool IsPassword accState, STATE_SYSTEM_PROTECTED

string HelpText accHelp

string Name accName

int NativeWindowHandle WindowFromAccessibleObject

bool IsOffscreen accState, STATE_SYSTEM_INVISIBLE/OFFSCREEN

int ProcessId Provided by core UIA

int [] RuntimeId Provided by core UIA

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

24 © ISO/IEC 2012 – All rights reserved

4.3.1.3 Events and the WM_GETOBJECT Message

When extending a Microsoft Active Accessibility implementation with IAccessibleEx, raising and handling
events is done in the same way as with Microsoft Active Accessibility clients and servers. IAccessibleEx
clients handle WM_GETOBJECT messages, and servers use NotifyWinEvent to raise events.

In addition to the events defined for IAccessible, the following UI Automation event identifiers may be used
with an IAccessibleEx implementation.

UI Automation Events Microsoft Active Accessibility Events

IsEnabledPropertyChangedEvent EVENT_OBJECT_STATECHANGE

ItemStatusPropertyChangedEvent n/a

ExpandCollapseExpandCollapseStatePropertyChangedEvent EVENT_OBJECT_STATECHANGE

MultipleViewCurrentViewPropertyChangedEvent n/a

ScrollHorizontallyScrollablePropertyChangedEvent n/a

ScrollHorizontalViewSizePropertyChangedEvent n/a

ScrollVerticallyScrollablePropertyChangedEvent n/a

ScrollVerticalViewSizePropertyChangedEvent n/a

ToggleToggleStatePropertyChangedEvent EVENT_OBJECT_STATECHANGE

ScrollHorizontalScrollPercentPropertyChangedEvent EVENT_OBJECT_CONTENTSCROLLED

ScrollVerticalScrollPercentPropertyChangedEvent EVENT_OBJECT_CONTENTSCROLLED

For events that have a Microsoft Active Accessibility EVENT_OBJECT_<value> associated with them,
IAccessibleEx implementations should raise both the MSAA event and the listed UI Automation event. This
allows IAccessible clients to receive events, but it also communicates more detailed information to other
clients.

5 Exposing User Interface Element Information

Servers communicate with clients by sending event notifications (such as calling NotifyWinEvent) and
responding to client requests for access to UI elements (such as handling WM_GETOBJECT messages). Servers
expose information about a UI element through the IAccessible interface.

Using Microsoft Active Accessibility, a server application can:

 Provide information about its custom user interface objects and the contents of its client windows.

 Send notifications to clients when a change occurs in the user interface. Interested clients can then use
MSAA to find out the details of the changes.

For example, to enable a user to select commands verbally from a word processor custom toolbar, a speech
recognition program must have information about that toolbar. The word processor would therefore need to
make that information available. Microsoft Active Accessibility provides the means for the word processor to
expose information about its custom toolbar and for the speech recognition program to get that information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 25

A server’s implementation of the IAccessible interface exposes a set of properties and methods to clients,
including:

5.1 Exposing UI Elements with Microsoft Active Accessibility

In Microsoft Active Accessibility, information about UI elements is exposed by Active Accessibility servers. A
server uses Microsoft Active Accessibility to provide information about its UI elements to clients. Any control,
module, or application that uses Microsoft Active Accessibility to expose information about its user interface is
considered to be a Microsoft Active Accessibility server.

An application is considered to be a Microsoft Active Accessibility server if it does all of the following:

 Exposes relevant properties;

 Supports navigation among UI elements;

 Supports hit testing;

 Generates appropriate WinEvents.

Depending on the application's design and implementation, some of these requirements may be satisfied by
the Microsoft Active Accessibility default support.

5.1.1 How an MSAA Server Exposes Relevant Properties

The IAccessible interface offers a set of properties and methods that support UI features of, and information
about, the corresponding accessible object. Not all IAccessible interface properties and methods are
relevant for all UI elements. The properties supported by an object vary depending on the type of UI element
the object represents. If an object does not support a particular IAccessible property or method, it should
return the standard COM error DISP_E_MEMBERNOTFOUND.

5.1.1.1 Required Properties

Servers must support the following properties and methods for every object:

 Name (this may be blank if, for example, there is always one and only one instance of a UI object such as
a status bar or tool bar)

 Role

 State

 Location (and IAccessible::accHitTest)

 Parent (and IAccessible::accNavigate)

 ChildCount

The following properties must be supported if they are applicable to the object:

 KeyboardShortcut

 DefaultAction (and IAccessible::accDoDefaultAction)

 Value

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

26 © ISO/IEC 2012 – All rights reserved

The following properties must be supported if the object has children:

 Child

 Focus

 Selection (and IAccessible::accSelect), only if the object also supports the concept of selection.

5.1.1.2 Optional Properties

The following properties are optional, but they provide useful information about the object. In particular, the
Description property should be supported to describe bitmaps and other visual elements:

 Description

 Help or HelpTopic

5.1.1.3 The Accessible Object Role

Clients retrieve an object's role by calling IAccessible::get_accRole, which returns a pre-defined
accessible object role constant such as ROLE_SYSTEM_PUSHBUTTON for a button control. Clients call
GetRoleText retrieve a localized string that describes the object's role. All accessible object roles are
predefined.

5.1.2 Provide Support for the Accessible Object Structure

In Microsoft Active Accessibility, user interface elements are represented as a hierarchy of accessible objects.
The clients navigate from one accessible object to another using interfaces and methods available from an
accessible object.

The hierarchy of an accessible object is represented by accParent and accChild properties of the
IAccessible interface. The IEnumVARIANT interface of the accessible object can be also used. The optional
method accNavigate can offer additional navigation among accessible objects.

5.1.2.1 The accParent Property of the IAccessible Interface

The IAccessible interface exposes the hierarchical relationships between objects. Clients can navigate from
a child object to its parent object by calling IAccessible::get_accParent.

This applies only to elements that have fully implemented IAccessible interfaces. For child elements, those
that are represented by an IAccessible along with a non-zero ChildId value, the parent element is simply
the IAccessible used with a ChildId of CHILDID_SELF.

5.1.2.2 Exposing Children

Severs can expose children of an accessible object in one of two ways, using whichever technique the server
decides is most appropriate. Clients must be able to deal with any server, so while a server can chose how to
expose its children, any client must be able to deal with both approaches.

In the first option, a server can expose its children by implementing IEnumVARIANT on the same object that
implements IAccessible. This interface allows a client to request children using the IEnumVARIANT::Next
method. This returns a VARIANT for each child requested. This VARIANT may be either an integer (VT_I4) or
an IDispatch pointer (VT_DISPATCH). If an IDispatch pointer is returned, the client can use
QueryInterface to convert it to an IAccessible, and use it with CHILDID_SELF to represent the child UI
element. If an integer is returned, the client must call get_accChild with that VARIANT as a parameter to
determine whether the child has its own IAccessible implementation. If get_accChild returns a non-NULL

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 27

IDispatch pointer, the client can use QueryInterface to convert it to an IAccessible interface pointer;
otherwise, the integer value must be used with the original parent IAccessible to represent the object.

In the second option, a server can choose not to implement IEnumVARIANT. In this case, it must assign
ChildID values to its children starting at 1, and incrementing up to the value returned by the accChildCount
property. Because the object’s children can be either full IAccessibles or simple elements, a client must call
get_accChild with each possible ChildId value to check if a full IAccessible exists for a given ChildId.

Clients that need to enumerate the children of an accessible object must start by checking whether the object
implements IEnumVARIANT. If IEnumVARIANT is supported, the client should use the IEnumVARIANT::Clone
and IEnumVARIANT::Reset methods to ensure that they have a copy of the enumeration that is reset to the
initial state. The client should then call IEnumVARIANT::Next to retrieve VARIANTs representing the children
and, for each integer VARIANT returned, use get_accChild to check if the child has a corresponding full
IAccessible. If and only if IEnumVARIANT is not supported, the client can assume that ChildID values are
sequential starting at 1, and should call get_accChild with each value to check if the child has a
corresponding full IAccessible.

Note that if a server implements IEnumVARIANT and only returns IDispatch values, it is possible for a server
to expose children without ever using ChildID values (other than CHILDID_SELF). For some types of servers,
this may be the simplest approach to adopt.

5.1.2.3 The accNavigate Method of the IAccessible Interface

While it is optional, the accNavigate method can offer navigation relative to the on-screen location. That is,
clients can use accNavigate to navigate from an accessible object to its left, right, up, or down. In practice,
however, this form of navigation is rarely meaningful to an end user unless the UI elements are arranged in a
grid structure.

The accNavigate method also features logical navigation (first child, last child, next and previous); however,
the functionality is already addressed by the IEnumVARIANT interface, and accNavigate is optional for the
logical navigation as well. The system (Oleacc.dll) does not rely on accNavigate to support an accessible
object structure.

5.1.3 Support Hit Testing

Microsoft Active Accessibility uses hit testing to retrieve an IAccessible object for the UI element at a
specified screen location. The AccessibleObjectFromPoint function relies on proper support for
IAccessible::accHitTest to find the appropriate UI element. Therefore, all visual UI elements must support
hit testing through the accHitTest method.

5.1.4 Generate Appropriate WinEvents

Server developers need to ensure that appropriate WinEvents are generated for all UI elements, including
window-based UI elements, windowless UI elements, and UI elements with highly customized behavior.

The Windows USER component provides default WinEvent support for standard, HWND-based UI elements.
Because USER generates these events automatically, servers need to generate events only for custom
controls, windowless elements, or controls whose events are not already generated by USER.

To send an event, servers call NotifyWinEvent and pass the event constant, an identifier (object ID) for the
object, and the HWND of a window that can respond to client requests for more information. The events that
need to be raised vary according to the type of UI element.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

28 © ISO/IEC 2012 – All rights reserved

5.1.5 Object Identifier

Object identifiers are 32-bit values that identify a type of accessible object within an application. The
identification is also used by Microsoft Active Accessibility servers and UI Automation providers to switch
return values in response to a WM_GETOBJECT message.

Clients receive these values in their WinEventProc callback function and use them to identify parts of a
window. Servers also use these values to identify the corresponding parts of a window when calling
NotifyWinEvent or when responding to a WM_GETOBJECT message.

Servers can define custom object IDs to identify other categories of objects within their applications. Custom
object IDs must be assigned positive values because Microsoft Active Accessibility reserves zero and all
negative values to use for the standard object identifiers.

5.1.6 How MSAA Clients Access Exposed UI Elements

A Microsoft Active Accessibility client must be notified when the server UI has changed so that the client can
retrieve information about the changes and render the information to the user. To ensure that the client is
informed about UI changes, MSAA uses a mechanism called Window Events, or WinEvents, to pass
notifications from servers to clients. For more information, see WinEvents.

To learn about and manipulate a particular UI element, clients use the IAccessible interface. A client can
retrieve an IAccessible interface for a UI element in the following four ways:

 Call the AccessibleObjectFromWindow function and pass the UI element's window handle.

 Call the AccessibleObjectFromPoint and pass a screen location that lies within the UI element's
bounding rectangle.

 Set a WinEvent hook, receive a notification, and then call AccessibleObjectFromEvent to retrieve an
IAccessible interface pointer for the UI element that generated the event.

 Call an IAccessible method such as accNavigate or get_accParent to move to a different
IAccessibleobject.

5.2 Exposing UI Elements with UI Automation

In UI Automation, information about user interface elements is exposed by UI Automation providers. In
general, each control or other distinct element in a user interface is represented by a provider. The provider
exposes information about the element and optionally implements control patterns that enable the client
application to interact with the control.

5.2.1 Types of Providers

UI Automation providers fall into two categories: client-side (or proxy) providers and server-side providers.

Proxy providers are implemented by UI Automation clients to communicate with an application that does not
support, or does not fully support, UI Automation. Typically, proxy providers communicate with the server
across the process boundary by sending and receiving Windows messages.

Server-side providers are implemented by custom controls or by applications that are based on a UI
framework that does not support UI Automation natively. Server-side providers communicate with client
applications across the process boundary by exposing Component Object Model (COM) interfaces to the UI
Automation core, which services requests from clients.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 29

5.2.2 UI Automation Provider Concepts

This section provides brief explanations of some of the key concepts you need to understand in order to
implement UI Automation providers.

5.2.2.1 Elements

UI Automation elements are pieces of the UI that are visible to UI Automation clients. Examples include
application windows, panes, buttons, tooltips, list boxes, and list items.

5.2.2.2 Navigation

UI Automation elements are exposed to clients as a tree. UI Automation constructs the tree by navigating from
one element to another. Navigation is enabled by the providers for each element, each of which may point to a
parent, siblings, and first and last children.

5.2.2.3 Views

A client can see the UI Automation tree in three principal views. Raw view contains all elements, control view
contains elements that are controls, and content view contains elements that have content. It is the
responsibility of the provider implementation to define an element as a content element or a control element.
Control elements may or may not also be content elements, but all content elements are control elements.

5.2.2.4 Frameworks

A framework is a component that manages child controls, hit-testing, and rendering in an area of the screen.
For example, a window, often referred to as an HWND, can serve as a framework that contains multiple UI
Automation element such as a menu bar, a status bar, and buttons.

Container controls such as list boxes and tree views are considered to be frameworks, because they contain
their own code for rendering child items and performing hit-testing on them. By contrast, a Windows
Presentation Foundation list box is not a framework, because the rendering and hit-testing is being handled by
the containing window.

The UI in an application can be made up of different frameworks. For example, an HWND in an application
might contain Dynamic HTML (DHTML) which in turn can contain a component such as a combo box in an
HWND.

5.2.2.5 Fragments

A complete subtree of elements from a particular framework is called a fragment. The element at the root
node of the subtree is called a fragment root. A fragment root does not have a parent, but is hosted within
some other framework, usually a window (HWND).

5.2.2.6 Hosts

The root node of every fragment must be hosted in an element, usually a window (HWND). The exception is the
desktop, which is not hosted in any other element. The host of a custom control is the HWND of the control
itself, not the application window or any other window that might contain groups of top-level controls.

The host of a fragment plays an important role in providing UI Automation services. It enables navigation to
the fragment root, and supplies some default properties so that the custom provider does not have to
implement them.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

30 © ISO/IEC 2012 – All rights reserved

5.2.3 Provider Interfaces

A UI Automation provider exposes information about a UI element by implementing the
IRawElementProviderSimple interface for the element. The IRawElementProviderFragment and
IRawElementProviderFragmentRoot are optional interfaces that are implemented for elements in a complex
control to provide additional functionality.

Interface Description

IRawElementProviderSimple Exposes the basic functionality of an element hosted in a window.

IRawElementProviderFragment Exposes additional functionality for an element in a complex control,
including navigating in the fragment, setting focus, and returning the
bounding rectangle of the element.

IRawElementProviderFragmentRoot Exposes additional functionality for the root element in a complex control,
including locating a child element at specified coordinates and setting the
focus state for the entire control.

Providers implement the following optional interfaces to provide added functionality.

Interface Description

IRawElementProviderAdviseEvents Enables the provider to track requests for events.

IRawElementProviderHwndOverride Enables repositioning of window-based elements in the UI Automation
tree of a fragment.

To communicate with UI Automation, providers implement the functionality described in the following table.

Functionality Implementation

Expose the provider to UI Automation. In response to a WM_GETOBJECT message sent to the control window,
providers return the object that implements
IRawElementProviderSimple. For fragments, this must be the provider
for the fragment root.

Provide property values. Implement IRawElementProviderSimple::GetPropertyValue to
provide or override values.

Enable the client to interact with the
control.

Implement interfaces that support each appropriate control pattern, such
as IInvokeProvider. Control pattern providers are returned by the
provider implementation of
IRawElementProviderSimple::GetPatternProvider.

Raise events. Implement UiaRaiseAutomationEvent, and the methods of
IProxyProviderWinEventSink.

Enable navigating and focusing in a
fragment.

Implement IRawElementProviderFragment for each element within a
fragment. Not necessary for elements that are not part of a fragment.

Enable focusing and locating child
elements in a fragment.

Implement IRawElementProviderFragmentRoot. Not necessary for
elements that are not fragment roots.

5.2.4 Property Values

A provider exposes information about a UI element as a set of property values. Providers expose two
types of property values: automation element properties, and control pattern properties. Automation
element properties are exposed through the provider’s implementation of the
IRawElementProviderSimple::GetPropertyValue method. Control pattern properties are exposed through
the provider’s implementation of the various control pattern interfaces (IXxxProvider).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 31

5.2.5 Provider Navigation

Providers for simple controls, such as a custom button hosted in a window, do not need to support
navigation in the UI Automation tree. Navigation to and from the element is handled by the default
provider for the host window, which is specified in the implementation of
IRawElementProviderSimple::HostRawElementProvider. A provider for a complex custom control
supports navigation between the root node of the fragment and its descendants, and between sibling nodes.

The structure of a fragment is determined by the provider’s implementation of
IRawElementProviderFragment::Navigate. For each possible direction from each fragment, this method
returns the provider object for the element in that direction.

The fragment root supports navigation only to child elements. For example, a list box returns the first item in
the list when the direction is NavigateDirection_FirstChild, and returns the last item when the direction is
NavigateDirection_LastChild. The fragment root does not support navigation to a parent or to siblings;
this is handled by the host window provider.

Elements of a fragment that are not the root must support navigation to the parent, and to any siblings and
children they have.

5.2.6 Provider Reparenting

Pop-up windows are actually top-level windows, and by default, appear in the UI Automation tree as children
of the desktop. In many cases, however, pop-up windows are logically children of some other control. For
example, the drop-down list of a combo box is logically a child of the combo box. Similarly, a menu pop-up
window is logically a child of the menu. UI Automation provides support to reparent pop-up windows so that
they appear to be children of the associated control.

A provider can reparent a pop-up window by:

 Implementing all properties and control patterns as usual for that pop-up, as though it were a control in its
own right.

 Implementing the IRawElementProviderSimple::HostRawElementProvider property so that it returns
the value obtained from UiaHostProviderFromHwnd, where the parameter is the window handle of the
pop-up window.

 Implementing the IRawElementProviderFragment::Navigate method for the pop-up window and its
parent so that navigation is handled properly from the logical parent to the logical children, and between
sibling children.

When UI Automation encounters the pop-up window, it recognizes that navigation is being overridden from the
default, and skips over the pop-up window when it is encountered as a child of the desktop. Instead, the node
is reachable only through the fragment.

Reparenting is not suitable for cases where a control can host a window of any class. For example, a rebar
can host any type of window in its bands. To handle these cases, UI Automation supports an alternative form
of window relocation, as described in the next section.

5.2.7 Provider Repositioning

UI Automation fragments may contain two or more elements that are each contained in a window. Because
each window has its own default provider that considers the window to be a child of a containing window, the
UI Automation tree, by default, will show the windows in the fragment as children of the parent window. In
most cases this is desirable behavior, but sometimes it can lead to confusion because it does not match the
logical structure of the UI.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

32 © ISO/IEC 2012 – All rights reserved

A good example of this is a rebar control. A rebar contains bands, each of which can contain a window-based
control, such as a toolbar, an edit box, or a combo box. The default window provider for the rebar window
sees the band control windows as children, and the rebar provider sees the bands as children. Because the
window provider and the rebar provider are working in tandem and combining their children, both the bands
and the window-based controls appear as children of the rebar. Logically, however, only the bands should
appear as children of the rebar, and each band provider should be coupled with the default window provider
for the control it contains.

To accomplish this, the fragment root provider for the rebar exposes a set of children representing the bands.
Each band has a single provider that may expose properties and control patterns. In its implementation of
IRawElementProviderSimple::HostRawElementProvider, the band provider returns the default
window provider for the control window, which it obtains by calling UiaHostProviderFromHwnd, passing
in the control's window handle (HWND). Finally, the fragment root provider for the rebar implements
the IRawElementProviderHwndOverride interface, and in its implementation of
IRawElementProviderHwndOverride::GetOverrideProviderForHwnd, it returns the appropriate band
provider for the control contained in the specified window.

5.2.8 How UI Automation Clients Access Exposed UI Elements

From a UI Automation client’s point of view, each UI element is represented by an object that implements the
IUIAutomationElement interface. To get information about a UI element, a client must first retrieve an
IUIAutomationElement interface for the element, and then use the various properties and methods exposed
by the interface to retrieve information about the element.

A UI Automation client application retrieves the IUIAutomationElement interface for a UI element by:

1) Creating an instance of the CUIAutomation object and retrieving a pointer to the IUIAutomation
interface on the object.

2) Calling the CreateTreeWalker, ContentViewWalker, ControlViewWalker, or RawViewWalker
method to retrieve an IUIAutomationElementTreeWalker interface, and then using the interface to
discover and retrieve elements from the tree that match the specified search conditions.

3) Calling one of the following methods of the IUIAutomation interface:

Method Description

ElementFromHandle Retrieves the element that has the specified window
handle.

ElementFromHandleBuildCache Retrieves the element for the specified window, prefetches
the specified properties and control patterns, and stores
the prefetched items in the cache.

ElementFromIAccessible Retrieves the element for the specified accessible object
from a Microsoft Active Accessibility server.

ElementFromIAccessibleBuildCache Retrieves the element for the specified accessible object
from a Microsoft Active Accessibility server, prefetches the
specified properties and control patterns, and stores the
prefetched items in the cache.

ElementFromPoint Retrieves the element at the specified point on the
desktop.

ElementFromPointBuildCache Retrieves the element at the specified point on the
desktop, prefetches the specified properties and control
patterns, and stores the prefetched items in the cache.

GetFocusedElement Retrieves the element that has the input focus.

GetFocusedElementBuildCache Retrieves the element that has the input focus, prefetches
the specified properties and control patterns, and stores
the prefetched items in the cache.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 33

Method Description

GetRootElement Retrieves the element that represents the desktop.

GetRootElementBuildCache Retrieves the element that represents the desktop,
prefetches the specified properties and control patterns,
and stores the prefetched items in the cache.

6 Exposing User Interface Element Actions

6.1 Exposing User Interface Element Actions in MSAA

In MSAA, a user interface element is represented by an accessible object; that is, an object that exposes the
IAccessible interface. This interface supports a number of properties, including the DefaultAction property
which describes the object's primary method of manipulation from the user's viewpoint.

The DefaultAction property is retrieved by calling the accessible object’s
IAccessible::get_accDefaultAction method. To perform an object's default action, clients call
IAccessible::accDoDefaultAction.

Not all accessible objects have a default action, and some objects have a default action that is related to its
Value property, such as in the following examples:

 A selected check box has a default action of "Uncheck" and a value of "Checked."

 A cleared check box has a default action of "Check" and a value of "Unchecked."

 A button labeled "Print" has a default action of "Press," with no value.

 A static text control or an edit control that shows "Printer" has no default action, but has a value of
"Printer."

The Value property is retrieved by calling the IAccessible::get_Value property.

6.2 Exposing User Interface Element Actions in UI Automation

In UI Automation, an automation element that represents a UI element exposes a number of UI Automaton
interfaces, including one or more control pattern interfaces. A control pattern is an interface implementation
that exposes a particular aspect of a control's functionality to Microsoft UI Automation client applications.
Clients use the properties and methods exposed through a control pattern to retrieve information about a
particular capability of the control, and to invoke the actions that the control can perform. For example, a
control that presents a tabular interface implements the Grid control pattern (IGridProvider interface) to
expose the number of rows and columns in the table (IGridProvider::ColumnCount and
IGridProvider::RowCount properties), and to enable a client to retrieve items from the table
(IGridProvider::GetItem method).

UI Automation uses control patterns to represent common control behaviors. For example, the Invoke control
pattern (IInvokeProvider interface) is used for controls that can be invoked, such as buttons, and the Scroll
control pattern (IScrollProvider interface) is used for controls that have scroll bars, such as list boxes, list
views, or combo boxes. Because each control pattern represents a separate area of functionality, control
patterns can be combined to describe the full set of functionality supported by a particular control.

NOTE An aggregate control is built with child controls that provide the user interface for functionality that is exposed
by the parent, and the parent should implement all control patterns that are typically associated with its child controls. In
turn, those same control patterns are not required to be implemented by the child controls.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

34 © ISO/IEC 2012 – All rights reserved

6.2.1 UI Automation Control Pattern Components

Control patterns support methods, properties, events, and relationships that are required to define a discrete
piece of functionality available in a control.

 The methods allow UI Automation clients to manipulate the control.

 The properties and events provide information about the functionality and state of the control.

 The relationship between a UI Automation element and its parent, children, and siblings describes the
element structure in the UI Automation tree.

Control patterns relate to controls similar to the way interfaces relate to Component Object Model (COM)
objects. In COM, you can query an object to ask what interfaces it supports, and then use those interfaces to
access functionality. In UI Automation, clients can ask a control which control patterns it supports, and then
interact with the control through the properties, methods, events, and structures exposed by the supported
control patterns.

6.2.2 Control Patterns in Providers and Clients

UI Automation providers implement control pattern interfaces to expose the appropriate behavior for a specific
piece of functionality that is supported by the control. These interfaces are not directly exposed to clients, but
are used by the UI Automation core to implement another set of client interfaces. For example, a provider
exposes scrolling functionality to UI Automation through IScrollProvider, and UI Automation exposes the
functionality to clients through IUIAutomationScrollPattern.

6.2.3 Dynamic Control Patterns

Some controls do not always support the same set of control patterns. For example, a multiline edit control
enables vertical scrolling only when it contains more lines of text than can be displayed in its viewable area.
Scrolling is disabled when enough text is removed so that scrolling is no longer required. For this example,
IScrollPattern is supported dynamically, depending on the how much text is in the edit box.

6.2.4 Control Patterns and Related Interfaces

The following table describes the UI Automation control patterns. The table also lists the provider interfaces
used to implement the control patterns, and the client interfaces used to access them.

Name Provider interface / Client interface Description

Dock IDockProvider
IUIAutomationDockPattern

Used for controls that can be docked
in a docking container, for example,
toolbars or tool palettes.

ExpandCollapse IExpandCollapseProvider
IUIAutomationExpandCollapsePattern

Used for controls that can be
expanded or collapsed, for example,
menu items in an application, such as
the File menu.

Grid IGridProvider
IUIAutomationGridPattern

Used for controls that support grid
functionality, such as sizing and
moving to a specified cell, for example,
the large icon view in Windows
Explorer or simple tables in Microsoft
Office Word.

GridItem IGridItemProvider
IUIAutomationGridItemPattern

Used for controls that have cells in
grids. The individual cells should
support the GridItem pattern, for
example, each cell in Windows
Explorer detail view.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 35

Name Provider interface / Client interface Description

Invoke IInvokeProvider
IUIAutomationInvokePattern

Used for controls that can be invoked,
such as buttons.

ItemContainer IItemContainerProvider
IUIAutomationItemContainerPattern

Used for controls that can contain
other items.

LegacyIAccessible ILegacyIAccessibleProvider
IUIAutomationLegacyIAccessiblePattern

Used to expose Microsoft Active
Accessibility properties and methods
to UI Automation clients.

MultipleView IMultipleViewProvider
IUIAutomationMultipleViewPattern

Used for controls that can switch
between multiple representations of
the same set of information, data, or
children, for example, a list view
control where data is available in
thumbnail, tile, icon, list, or detail
views.

RangeValue IRangeValueProvider
IUIAutomationRangeValuePattern

Used for controls that have a range of
values. For example, a spinner control
that displays years might have a range
of 1900—2010, while a spinner control
that displays months would have a
range of 1—12.

Scroll IScrollProvider
IUIAutomationScrollPattern

Used for controls that can scroll when
there is more information than can be
displayed in the viewable area of the
control.

ScrollItem IScrollItemProvider
IUIAutomationScrollItemPattern

Used for controls that have individual
items in a list that scrolls, for example,
a list control in a combo box control.

Selection ISelectionProvider
IUIAutomationSelectionPattern

Used for selection container controls,
for example, list boxes and combo
boxes.

SelectionItem ISelectionItemProvider
IUIAutomationSelectionItemPattern

Used for individual items in selection
container controls, such as list boxes
and combo boxes.

SynchronizedInput ISynchronizedInputProvider
IUIAutomationSynchronizedInputPattern

Used for controls that accept keyboard
or mouse input.

Table ITableProvider
IUIAutomationTablePattern

Used for controls that have a grid and
header information.

TableItem ITableItemProvider
IUIAutomationTableItemPattern

Used for items in a table.

Text ITextProvider
IUIAutomationTextPattern

Used for edit controls and documents
that expose textual information.

TextRange ITextRangeProvider
IUIAutomationRange

Used for retrieving textual content, text
attributes, and embedded objects from
text-based controls such as edit
controls and documents.

Toggle IToggleProvider
IUIAutomationTogglePattern

Used for controls where the state can
be toggled, for example, check boxes
and checkable menu items.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

36 © ISO/IEC 2012 – All rights reserved

Name Provider interface / Client interface Description

Transform ITransformProvider
IUIAutomationTransformPattern

Used for controls that can be resized,
moved, and rotated. Typical uses for
the Transform control pattern are in
designers, forms, graphical editors,
and drawing applications.

Value IValueProvider
IUIAutomationValuePattern

Used for controls that have a value
that does not lay within a specified
range, for example, a date-time picker.

VirtualizedItem IVirtualizedItemProvider
IUIAutomationVirtualizedItemPattern

Used for controls that work with items
in a virtual list.

Window IWindowProvider
IUIAutomationWindowPattern

Used for windows. Examples are top-
level application windows, multiple-
document interface (MDI) child
windows, and dialog boxes.

7 Keyboard Focus

7.1 MSAA Keyboard Focus and Selection

Accessible objects can be selected and can receive keyboard focus. The ability to be selected and receive
focus enables users to interact with application elements, change values, and otherwise manipulate them.
There are some key differences between object selection and object focus:

 A focused object is the one object in the entire operating system that receives keyboard input. The object
with the keyboard focus is either the active window or a child object of the active window.

 A selected object is marked to participate in some type of group operation.

For example, a user can select several items in a list view control, but the focus is given only to one object in
the system at a time. Note that focused items are from a selection of items.

7.1.1 Focus and Selection Properties and Methods

When an UI object receives the keyboard focus, either the operating system or a server raises an
EVENT_OBJECT_FOCUS WinEvent to notify clients of the change. The system sends this event for the following
user interface elements: list view control, menu bar, pop-up menu, switch window, tab control, tree view
control, and window object. Server applications must send this event for the accessible objects that they
support.

The system or servers can raise a number of events to notify clients when the selection changes, including
EVENT_OBJECT_SELECTION, EVENT_OBJECT_SELECTIONADD, EVENT_OBJECT_SELECTIONREMOVE,
EVENT_OBJECT_SELECTIONWITHIN.

Clients determine whether a particular accessible object or child element has the focus by calling
IAccessible::get_accFocus. Clients determine whether an object is selected, or which children within an
accessible object are selected, by calling IAccessible::get_accSelection. For objects such as list views
in which more than one child is selected, the parent object must support the IEnumVARIANT interface, which
allows clients to enumerate the selected children.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 37

Clients can also use the IAccessible::get_accState method to query the selection or focus state of an
object, by using the following flags:

Flag Description

STATE_SYSTEM_FOCUSABLE The object is on the active window and is ready to receive
keyboard focus.

STATE_SYSTEM_FOCUSED The object has the keyboard focus.

STATE_SYSTEM_SELECTABLE The object accepts selection.

STATE_SYSTEM_SELECTED The object is selected.

7.1.1.1 Selecting Child Objects

Clients can use the IAccessible::accSelect method to modify the selection or keyboard focus among the
children of the specified object. This method takes a flag from the SELFLAG enumeration which specifies how
the object is selected or takes the focus; that is, whether the object is added to the current selection, replaces
the current selection, is removed from the current selection, and so on. If IAccessible::accSelect is called
with the SELFLAG_TAKEFOCUS flag on a child object that has an HWND, the flag takes effect only if the object's
parent has the focus.

7.1.1.2 Performing Complex Selection Operations

The following describes which SELFLAG values to specify when calling IAccessible::accSelect to perform
complex selection operations.

To simulate a click:

 SELFLAG_TAKEFOCUS | SELFLAG_TAKESELECTION

To select a target item by simulating CTRL + click:

 SELFLAG_TAKEFOCUS | SELFLAG_ADDSELECTION

To cancel selection of a target item by simulating CTRL + click:

 SELFLAG_TAKEFOCUS | SELFLAG_REMOVESELECTION

To simulate SHIFT + click:

 SELFLAG_TAKEFOCUS | SELFLAG_EXTENDSELECTION

To select a range of objects and put focus on the last object:

1) Specify SELFLAG_TAKEFOCUS on the starting object to set the selection anchor.

2) Call IAccessible::accSelect again and specify SELFLAG_EXTENDSELECTION |
SELFLAG_TAKEFOCUS on the last object.

To deselect all objects:

1) Specify SELFLAG_TAKESELECTION on any object. This flag deselects all selected objects except the
one just selected.

2) Call IAccessible::accSelect again and specify SELFLAG_REMOVESELECTION on the remaining
object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

38 © ISO/IEC 2012 – All rights reserved

7.1.2 Events Triggered in Menus

Microsoft Active Accessibility exposes standard menus created with the Microsoft Win32 menu API and
resource files. To be consistent with standard menus, servers with custom menus trigger
EVENT_OBJECT_FOCUS, not EVENT_OBJECT_SELECTION, when a user highlights a menu item.

NOTE Microsoft Active Accessibility does not support the selection of the text contained in edit and rich edit controls
because the text is exposed as a single string in the Value property for these controls.

7.2 UI Automation Keyboard Focus and Selection

This section describes how keyboard focus and selection is handled in UI Automation.

7.2.1 Focus

Whenever the focus changes from one UI item to another, the UI Automation framework raises the
AutomationFocusChangedEvent. A client can receive these focus-changed events by implementing the
IUIAutomationFocusChangedEventHandler interface and registering the interface by calling the
IUIAutomation::AddFocusChangedEventHandler. The client receives the focus-changed event in its
IUIAutomationFocusChangedEventHandler::HandleFocusChangedEvent method. When the client
no longer needs to receive focus-changed events, it can call
IUIAutomation::RemoveFocusChangedEventHandler method to remove the handler.

Clients can use the IUIAutomation::GetFocusedElement method to retrieve the UI Automation element
that currently has the focus. Client can determine whether a given element has the keyboard focus by
querying the HasKeyboardFocus property, either by calling
IUIAutomationElement::CachedHasKeyboardFocus or
IUIAutomationElement::CurrentHasKeyboardFocus. To determine whether an element is able to receive
the keyboard focus, clients can query the element’s IsKeyboardFocusable property using either
IUIAutomationElement::CachedIsKeyboardFocusable or
IUIAutomationElement::CurrentIsKeyboardFocusable.

Clients call an element’s IUIAutomationElement::SetFocus method to sets the keyboard focus to the UI
Automation element.

A provider implements the IRawElementProviderFragment::GetFocus and
IRawElementProviderFragmentRoot::SetFocus methods to support retrieving and setting the focus for UI
elements that have a multi-level structure, such as list boxes and list view controls. The UI Automation
framework calls a provider’s IRawElementProviderFragmentRoot::SetFocus method to give the provider a
chance to update the state of the focused item. The framework calls the
IRawElementProviderFragment::GetFocus method to retrieve the provider for the element that has the
focus.

7.2.2 Selection

This section describes the UI Automation support for selecting items in controls that contain a collection of
selectable items, such as list views and tree views. It also describes the UI Automation support for selecting
text in a control that acts as a text container.

7.2.2.1 Item Selection

In UI Automation, providers support the Selection control pattern (ISelectionProvider interface) for control
types that act as containers for a collection of selectable child items. Clients use the Selection control pattern
(through the IUIAutomationSelectionPattern interface) to interact with containers of selectable child
items. The Selection control pattern includes the following properties, methods, and events:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 39

Member Description

CanSelectMultiple Specifies whether the provider allows more than one child element
to be selected concurrently.

IsSelectionRequired Specifies whether the provider requires at least one child element
to be selected.

GetSelection Retrieves a collection of provider interfaces
(IRawElementProviderSimple) for each selected item.

UIA_Selection_InvalidatedEventId Raised when a selection in a container has changed significantly.

For each selectable child item in a container, the UI Automation provider implements the SelectionItem control
pattern (ISelectionItemProvider interface), while clients use the SelectionItem control pattern (through the
IUIAutomationSelectionItemPattern interface) to manipulate the selection of items. The SelectionItem
control patter includes the following properties, methods, and events:

Member Description

AddToSelection Adds the current element to the collection
of selected items.

IsSelected Gets a value that indicates whether an item
is selected.

RemoveFromSelection Removes the current element from the
collection of selected items.

Select Deselects any selected items and then
selects the current element.

SelectionContainer Gets the provider that implements
ISelectionProvider and acts as the
container for the calling object.

UIA_SelectionItem_ElementAddedToSelectionEventId Raised when an item is added to a
collection of selected items.

UIA_SelectionItem_ElementRemovedFromSelectionEventId Raised when an item is removed from a
collection of selected items.

UIA_SelectionItem_ElementSelectedEventId Raised when a call to the Select,
AddToSelection, or
RemoveFromSelection method results
in a single item being selected.

7.2.2.2 Text Selection

The UI Automation Text control pattern enables applications and controls to expose a simple text object
model, enabling clients to retrieve textual content, text attributes, and embedded objects from text-based
controls. To support the Text control pattern, controls implement the ITextProvider interface. Control types
that should support the Text control pattern include the Edit and Document control types, and any other
control type that enables the user to enter text or select read-only text.

The Text control pattern can be used with other Microsoft UI Automation control patterns to support several
types of embedded objects in the text, including tables, hyperlinks, and command buttons.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

40 © ISO/IEC 2012 – All rights reserved

The ITextProvider interface includes a number of methods for acquiring text ranges. A text range is an
object that represents a contiguous span of text or multiple, disjoint spans of text in a text container. One
ITextProvider method acquires a text range that represents the entire document, while others acquire text
ranges that represent some portion of the document, such as the selected text, the visible text, or an object
embedded in the text.

A text range object is represented by the TextRange control pattern, which is implemented through the
ITextProvider interface. The TextRange control pattern provides methods and properties used to expose
information about the text in the range, move the endpoints of the range, select or deselect text, scroll the
range into view, and so on.

7.2.2.2.1 UI Automation Text Pattern Overview

The Text pattern is one of many predefined control patterns specifically designed for access to rich-text
information. The Text pattern interface offers a few key methods and properties useful to basic interactions
with rich text object models, such as SupportedTextSelection property and GetSelection method. While a
Text pattern represents the entire unit of text (for example, all the text in an edit field), accessing the text is
done through TextRange object claimed from the Text pattern. A TextRange object represents a contiguous
portion of the text by a pair of endpoints. Multiple instances of TextRange objects can be created from one
Text pattern, which enables handling of non-contiguous or more complex rich text operations.

A TextRange can be obtained from a Text pattern using one of the following methods:

Text Pattern Method A Text Pattern Ranges Acquired

DocumentRange A TextRange of the entire document available the Text pattern supported.

RangeFromPoint A degenerate (empty) TextRange nearest to the specified screen coordinate.

RangeFromChild A TextRange enclosing a child element such as an image, hyperlink,
spreadsheet, or other embedded object.

GetVisibleRanges An array of disjoint TextRanges from a text container where each TextRange
begins with the first partially visible line through to the end of the last partially
visible line.

7.2.2.2.1.1 Manipulating Text Using the TextRange Object

A TextRange object represents a span of text within the rich text document material by holding logical ‘text
pointers’ by a pair of Start and End Endpoints. TextRange can be manipulated for navigating through the text,
retrieving the text as a string, selecting text, or searching text.

Type of functions TextRange Methods Description

Range
manipulation

Clone Retrieves a new TextRange identical to the original. This
new range has its own Start and End pointers, which are
initially set to the same values as the source range.

Compare Determines whether the pair of Endpoints of this
TextRange is the same as those of another TextRange.

CompareEndpoints Determines whether the start or end Endpoint of this
TextRange is the same as an Endpoint of another
TextRange.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 41

Type of functions TextRange Methods Description

Search FindAttribute Retrieves a TextRange subset that has the specified
attribute value such as IsItalic and IsReadOnly.

FindText Retrieves a TextRange subset that contains the specified
text.

Acquiring text
information

GetAttributeValue Retrieves the value of the specified attribute across the
entire TextRange.

GetBoundingRectangles Retrieves a collection of bounding rectangles for each fully
or partially visible line of text in a TextRange.

GetChildren Retrieves a collection of all embedded objects that fall
within the TextRange.

GetEnclosingElement Retrieves the innermost UI Automation element that
encloses the TextRange.

GetText Retrieves the plain text of the TextRange.

Logical
TextRange
navigations

Move Moves the TextRange the specified number of text units.

MoveEndpointByRange Moves one endpoint of a TextRange to the specified
endpoint of a second TextRange.

MoveEndpointByUnit Moves one endpoint of the TextRange the specified number
of Text Units.

ExpandToEnclosingUnit Expands (normalizes) the TextRange to the specified text
unit.

Control / Text
Manipulation

Select Creates a selection in the control that corresponds to the
TextRange.

AddToSelection Adds the TextRange to the collection of selected text in a
text container that supports multiple, disjoint selections.

RemoveFromSelection Removes the TextRange from an existing collection of
selected text in a text container that supports multiple,
disjoint selections.

ScrollIntoView Causes the text control to scroll until the TextRange is
visible in the viewport.

While most TextRange methods are not expected to cause changes to the text in the control, the Select,
AddToSelection, RemoveFromSelection, and ScrollIntoView methods manipulate the text selection or
view of the control where these operations are supported. Other TextRange methods are mostly for navigation
of the logical document structure by the Start and End Endpoints. If clients need to manipulate (edit, place,
move, and so on) actual text in the control, they should use the Text Services Framework (in the Windows
operating system) instead of UI Automation.

With the Text pattern, many potential text attributes are defined. Providers can choose which attributes (for
example, IsItalic, IsReadOnly, UnderlineStyle, and so on) are applicable to the available rich text styles.
Clients can retrieve or search for text attributes where it is supported. See the API reference specification for
available Text Attributes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

42 © ISO/IEC 2012 – All rights reserved

7.2.2.2.1.2 Manipulations of TextRange

Move, ExpandToEnclosingUnit and other TextRange methods are useful for logical navigation of text within
a Text pattern, such as reading a document line by line. Because specific behaviors and expectations are set
for each TextRange logical navigation method, clients and providers should carefully follow the specification
remarks. Some logical navigation can be limited by availability of text in the control viewport.

7.2.2.2.1.3 Text Pattern, TextRange, and Embedded Objects

Many documents today support embedded objects such as hyperlinks, images, tables, or other interactive
elements. With UI Automation and the Text pattern, those embedded objects are represented as children of a
document object that supports the Text pattern. Some embedded object (such as hyperlink or table) may span
across a range of text, and so that clients can choose to interact with the text without interruption of embedded
object boundaries or otherwise change the interaction mode by type of embedded objects.

Example 1 — A portion of document that is inserted with a hyperlink

The example document element can be outlined as a simple pair of automation elements; an automation
element for the control that hosts the entire text (ControlType.Document), and a child of the text control
(ControlType.Hyperlink):

The text contents should be accessible though the Text pattern of the Document element, including the
hyperlink text “www.contso.com” along with the special text attribute. UI Automation Clients can acquire the
embedded object or associated TextRange by using GetChildren, RangeFromChild or other functions. While
automation elements represent physical UI elements on screen, TextRange represents logical ranges among
text streams.

A creation or manipulation of TextRange or the Endpoints will not affect the control or the text (except for
making selection or scroll actions using the TextRange functions). Moving endpoint by TextRange methods
only move the logical pointer but it doesn’t move actual text in the control. For examples, see the reference
section for Move and other methods of the IUIAutomationTextRange interface.

The Text pattern allows hosting an embedded object without a span of text. For example, an image can be
hosted among text, and the physical location (screen coordinate) of the image can be acquired as a bounding
rectangle of the child object. The TextRange’s GetText function will not acquire text information from those
embedded objects; the function is expected to return the plain text of the contents within the range.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 43

Many modern productivity applications support inline annotations. These can also be treated as spanned or
non-spanned embedded objects. An inserted annotation object can be a separate annotation text field
(ControlType.Document if it is multiline text), an image (ControlType.Image; for example, ink annotation by
stylus devices), or something else.

7.2.2.2.1.4 Text Pattern and Embedded Table Example

Similar to hyperlink text in a document, a table is typically realized as child object of the automation element
that supports the Text pattern. Following is an example of a piece of document that is inserted with a table in
four columns in four rows including the header row.

…
Table:

Header 0 Header1 Header 2 Header 3

1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2

0, 3 1, 3 2, 3 3, 3

…

Example 2 — A portion of document that is inserted with a table and a picture

The example document object can be outlined as follows in the automation element tree:

The Text pattern is supported by the root document element. With this example, the inner text in each table
cell is part of text stream in the Text pattern of the root document element; “… Table: Header 0 Header 1
Header 2 Header 3 0, 1 1, 1…” By calling GetChildren from the TextRange that holds the entire document,
clients can acquire an automation element for the table (ControlType.Table). To drill down to each inner
cell, the Grid pattern and/or Table pattern of each table/cell automation element is useful. The
RangeFromChild method of the root document element obtains the range of inner text within a cell or a table
element. IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C TR 13

06
6-2

:20
12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

44 © ISO/IEC 2012 – All rights reserved

On the other hand, for any given TextRange object within a document, the GetEnclosingElement method
should acquire the next smallest automation element that covers the range. If the range is not among an
embedded object such as a table cell or link, the function should return the document object that supports the
Text pattern.

If the entire table is treated as a separate object (independent from the text stream exposed though the Text
pattern), the table element can be treated as a complex embedded object without a range of text (similar to an
image embedded among text without a range but with location information relative to the rest of the
document).

7.2.2.2.1.5 Text Pattern and Virtualized Embedded Objects

Where possible, it is recommended that the entire text of the document be supported by the Text pattern or
TextRange (including any text outside the viewport); however, that is not always possible for performance and
other reasons. When the off-screen text or embedded objects are ‘virtualized,’ providers should consider
supporting the VirtualizedItem pattern for virtualized embedded objects. (NOTE: The VirtualizedItem
control pattern cannot be associated with a TextRange because a TextRange is only a logical object that
representing a portion of text by a pair of endpoints. In other words, TextRange is not an automation element.)
The ItemContainer pattern can be also supported by the document object in order to support the basic
programmatic search capabilities besides end-user search features for the document context. The types of
virtualization can vary depending on the document presentation.

For example, if the document presentation is virtualized while the entire text stream is still available, the
DocumentRange method of the Text control pattern may still create a TextRange object with two Endpoints
that covers the document end to end. However, the outcome of the GetChildren function on the TextRange
may be limited by series of placeholder objects. To interact with those virtualized embedded objects, clients
would need to call the Realize function `on the VirtualizedItem control pattern. A similar practice could
be applied to a table / grid element that is embedded in a document while a portion of the table is off-screen
and virtualized.

7.2.2.2.1.6 Leveraging ControlType.Custom in Text Pattern

While the Text pattern offers support for variations of text attributes and embedded objects, not all document
elements and presentations can be defined in advance. For types of elements that are not supported in
attributes or standard control types, providers can leverage the extensibility of UI Automation by use the
ControlType.Custom.

For example, no Text Attributes are defined for document structure “headers,” which are typically represented
as “header 1”, “header 2”, and so on in HTML or other text markup languages. Instead of exposing the
information, a provider can allocate custom child objects defined with LocalizedControlType that have the
heading information. Because the LocalizedControlType property is a human readable string, it can be
used directly for reading or interactions by end-users.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 45

For applications and user interfaces that are based on page presentations, the boundary and layout
presentation of “page” can also be expressed as an embedded object with ControlType.Custom
(LocalizedControlType “page”). That way, the embedded object can host other page elements that cannot
easily be part of the document text stream, such as the header and footer fields of each page. These can be
hosted as child objects of the “page” embedded object. (Alternatively, independent Text control patterns can
be supported by each “page” object. This model can work well for applications such as authoring tools for
slideshow presentations, or page-based desktop publishing environments.)

7.2.2.2.1.7 Lifetime of TextRange Claimed

It is not always guaranteed for TextRange be sustained when the document structure is changed by deleting,
inserting, or moving the portion of the text. While it is encouraged that Text pattern providers accommodate
the changes be reflected to associated TextRange, a new range may need to be re-claimed when the host
text is changed (Text_TextChangedEvent is raised).

8 Events

8.1 WinEvents

The Microsoft Windows operating system includes a feature called WinEvents that enables processes and
applications running on the Windows desktop to exchange certain types of information. Accessibility tools that
use Microsoft Active Accessibility and UI Automation are among the primary users of the WinEvents.

In the context of accessibility, Microsoft Active Accessibility servers and UI Automation providers use
WinEvents to notify clients of changes in an application UI, such as when a UI element has been created or
destroyed, or when an element name, state, or value has changed.

8.1.1 USER's Role in WinEvents

WinEvent support is provided by USER, a fundamental part of the Windows operating system. USER
provides:

 A simple way for clients to register for event notifications;

 A mechanism for injecting client code into servers;

 Routing of events from servers to interested clients;

 Automatic event generation for most HWND-based controls.

Event generation for window (HWND)-based controls is especially important for server developers. As
discussed earlier, Oleacc.dll provides IAccessible proxies for standard UI elements. Similarly, USER
provides automatic WinEvent support for these same UI elements. Because USER is involved in creating,
destroying, moving, resizing, and other actions on all HWND-based controls, it generates the appropriate
WinEvents.

Some WinEvents, including general HWND events, are supported by USER automatically. Other types of
WinEvents are supported by controls (Microsoft Active Accessibility servers), which include state change or
selection events specific to the control behaviors.

8.1.2 Receiving Event Notifications

Clients register one or more callback functions (with USER) to receive event notifications. To do this, the client
calls SetWinEventHook and specifies which events to receive and how to receive them. The client may
choose to:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

46 © ISO/IEC 2012 – All rights reserved

 Receive all events or a specific set of events;

 Receive events from all threads or from a specific thread;

 Receive events from all processes or from a specific process;

 Handle events in process or out of process (discussed below).

When an event is generated that matches the specified criteria, USER calls the client's callback function (or
"hook procedure").

8.1.3 Sending Events

To broadcast an event notification to all interested clients, servers call NotifyWinEvent and pass information
that identifies the type of event and the UI element to which the event applies. Clients can use this information
to retrieve an IAccessible object for the UI element and collect more information.

For example, to notify clients that a control's name has changed, a server calls NotifyWinEvent and passes
EVENT_OBJECT_NAMECHANGE in the event parameter.

When a server calls NotifyWinEvent, USER determines which clients are interested in that particular event
and calls their registered callback functions. If no clients have registered for that event, the server's call to
NotifyWinEvent is comparable to a "no operation" and the performance impact is negligible.

8.1.4 The Allocation of WinEvent IDs

The WinEvent ID must be registered in advance. Any irregular usage outside of the pre-registered event ID is
not supported. At worst, it can cause system crashes or totally unexpected behaviors of applications and the
operating system. At best, irregular usage can cause serious confusion among processes as WinEvents are
also used by the operating system internally. Even with this limitation, WinEvents serve a key role in Microsoft
Active Accessibility and other communication mechanisms.

A pool of WinEvent ID ranges is reserved for specific uses. This reserve can be used and shared as long as
the usage meets the criteria of the reserve. Creators of WinEvents still need to collaborate to avoid collisions
amongst themselves, but the reserve helps reduce the risks of unexpected collisions and conflicts of future
WinEvent usages.

Type Reservation Currently in use Comments

Microsoft Active
Accessibility / UI
Automation Events
(System Reserved)

0x0001-0x00FF 0x0001-0x0020 EVENT_SYSTEM_*

0x4001-0x40FF 0x4001-0x4007 EVENT_CONSOLE_*

0x4E00-0x4EFF 0x4E20-0x4E33 UIA Event IDs

0x7500-0x75FF 0x7530-0x759B UIA Property Changed Event IDs

0x8000-0x80FF 0x8000-0x8015 EVENT_OBJECT_*

OEM Reserved 0x0101-0x01FF 0x0101-0x0122 IAccessible2 Events

Community Reserved 0xA000-0xAFFF None Reserved for new advanced event space
leveraged by Accessibility Interoperability
Alliance (AIA) specifications

ATOM 0xC000-0xFFFF 0xC000-0xFFFF

Reserved for general extensibility purpose for
runtime event allocations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 47

8.1.4.1.1 Microsoft Active Accessibility / UI Automation Events (System Reserved Events)

Five ranges of WinEvent IDs are reserved. The first range (0x0001-0x00FF) is reserved for system-level
events, typically used for describing situations affecting all applications in the system. The second range
(0x4001-0x40FF) is reserved for Windows console specific events. The third (0x4E00-0x4EFF) and fourth
ranges (0x7500-0x75FF) are for the reflection of UI Automation events. Lastly, the fifth range (0x8000-
0x80FF) is for object-level events that pertain to situations specific to objects within one application.

All Microsoft Active Accessibility and UI Automation events are pre-defined in header files, which can be found
in the upcoming Windows 7 SDK (for example, WINUSER.h and UIAutomationClient.h).

8.1.4.1.2 OEM Reserved Events

The IAccessible2 specification already uses part of this range. The OEM reserved range is open to anyone
who would like to use WinEvents as a communication mechanism. Developers should define and publish
event definitions along with their parameters (or also with associated object types) for event processing so
that accidental collisions of event IDs can be avoided.

8.1.4.1.3 Community Reserved Events

The previous two ranges are reserved based on current mainstream usage of WinEvents for accessibility and
software automation. The Accessibility Interoperability Alliance (AIA) Extensions are reserved for any future
usage of WinEvent ranges across the industry. Due to the nature of WinEvent architecture, it is highly
recommended that developers publish and define a standard specification before any official usage.

8.1.4.1.4 ATOM (Runtime Reserved Events)

The ATOM range is reserved for general extensibility purposes for runtime event allocations. No static usage of
this range is allowed. Using GlobalAllocAtom with a string GUID is recommended as a preferred method of
allocating WinEvents in ATOM.

8.1.4.2 The Use of Reserves

According to the WinEvent specification, the system reserved area and any other non-defined areas cannot
be consumed without SDK revision. For any new events, applications should use OEM Reserved or AIA
Reserved ranges. When a new event is defined, it is highly recommended that developers share the
specification openly and widely prior to actual usage of the events. The Accessibility Interoperability Alliance
(AIA, http://www.accessinteropalliance.com/) is expected to organize new specifications among the AIA
Reserved WinEvent ID Range.

ATOM range is kept reserved for general extensibility purpose for runtime event allocations. Do not use the
range for any static / public consumption.

8.2 UI Automation Events

UI Automation event notification is a key feature for assistive technologies such as screen readers and screen
magnifiers. These UI Automation clients track events that are raised by UI Automation providers when
something happens in the UI and use the information to notify end users.

Efficiency is improved by allowing provider applications to raise events selectively, depending on whether any
clients are subscribed to those events, or not to raise event, if no clients are listening for any events.

UI Automation events fall into the following categories.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

48 © ISO/IEC 2012 – All rights reserved

Event Description

Property change Raised by a provider when a property on a UI Automation element or control pattern changes.
For example, if a client needs to monitor an application's check box control, it can register to
listen for a property change event on the ToggleState property. When the check box control is
checked or unchecked, the provider raises the event and the client can act as necessary.

Element action Raised by a provider when a change in the UI results from end user or programmatic activity; for
example, when a button is clicked or invoked through InvokePattern.

Structure change Raised by a provider when the structure of the UI Automation tree changes. The structure
changes when new UI items become visible, hidden, or removed on the desktop.

General event Raised by a provider when actions of global interest to the client occur, such as when the focus
shifts from one element to another, or when a window closes.

Some events do not necessarily mean that the state of the UI has changed. For example, if the user tabs to a
text-entry field and then clicks a button to update the field, the provider raises a TextChangedEvent even if
the user did not actually change the text. When processing an event, it may be necessary for a client
application to check whether anything has actually changed before taking action.

Provider may raise the following events when the state of the UI has not changed.

 AutomationPropertyChangedEvent (depending on the property that has changed);

 ElementSelectedEvent ;

 InvalidatedEvent ;

 TextChangedEvent ;

8.2.1 How Providers Raise Events

Providers raise an event regardless of whether a change in the UI was triggered by user input or by a client
application using UI Automation. UI Automation providers use the following functions to raise events:

Function Description

UiaRaiseAutomationEvent Raises various events, including events triggered by control
patterns.

UiaRaiseAutomationPropertyChangedEvent Raises an event when a UI Automation property has changed

UiaRaiseStructureChangedEvent Raises an event when the structure of the UI Automation tree has
changed, for example, by removing or adding an element.

To optimize performance, a provider can selectively raise events, or raise no events at all if no client
application is registered to receive them. The following API elements are used for optimization.

API Element Description

UiaClientsAreListening This function ascertains whether any client applications have
subscribed to UI Automation events.

IRawElementProviderAdviseEvents Implementing this interface on a fragment root enables the
provider to be advised when clients register and unregister event
handlers for events on the fragment.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 49

8.2.2 How Clients Register for and Process Events

Client applications subscribe to events of a particular kind by registering an event handler. To receive and
handle events, a client implements an event-handling object that exposes a callback interface, and registers
the object by calling one of the following methods. The callback interface has a single method; UI Automation
calls this method when the event is processed.

Method Description

AddFocusChangedEventHandler Subscribes to events that are raised when the focus changes from
on UI element to another.

AddPropertyChangedEventHandler Subscribes to events that are raised when the value of a property
changes.

AddStructureChangedEventHandler Subscribes to events that are raised when the structure of the UI
changes.

AddAutomationEventHandler Subscribes to other types of events.

On shutdown, or when UI Automation events are no longer of interest to the application, UI Automation clients
should call one or more of the following IUIAutomation methods.

Method Description

RemoveAutomationEventHandler Unregisters an event handler that was registered by using
AddAutomationEventHandler.

RemoveFocusChangedEventHandler Unregisters an event handler that was registered by using
AddFocusChangedEventHandler.

RemovePropertyChangedEventHandler Unregisters an event handler that was registered by using
AddPropertyChangedEventHandler or
AddPropertyChangedEventHandlerNativeArray.

RemoveStructureChangedEventHandler Unregisters an event handler that was registered by using
AddStructureChangedEventHandler.

RemoveAllEventHandlers Unregisters all registered event handlers

9 Programmatic Modifications of States, Properties, Values and Text

9.1 UI Automation Design Considerations

This section provides information about how to work with UI Automation which is necessary to design and use
the features of UI Automation to programmatically modify states, properties, values, text and introduces the
concepts of control patterns and control types.

9.1.1 Introduction

The UI Automation Specification provides flexible programmatic access to UI elements on the Windows
desktop, enabling assistive technology products such as screen readers to provide information about the UI to
end users and to manipulate the UI by means other than standard input.

UI Automation is broader in scope than just an interface definition. It provides:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

50 © ISO/IEC 2012 – All rights reserved

 An object model and functions that make it easy for client applications to receive events, retrieve property
values, and manipulate UI elements.

 A core infrastructure for finding and fetching across process boundaries.

 A set of interfaces for providers to express the tree structure, general properties, and functionality of UI
elements.

 A "control type" property that allows clients and providers to clearly indicate the common properties,
functionality, and structure of a UI object.

UI Automation improves on Microsoft Active Accessibility by:

 Enabling efficient out-of-process clients, while continuing to allow in-process access.

 Exposing more information about the UI in a way that allows clients to be out-of-process.

 Coexisting with and leveraging Microsoft Active Accessibility without inheriting its limitations.

 Providing an alternative to IAccessible that is simple to implement.

The implementation of the UI Automation Specification in Windows features Component Object Model (COM)-
based interfaces and managed interfaces.

9.1.2 UI Automation Elements

UI Automation exposes every piece of the UI to client applications as an automation element. Providers supply
property values for each element. Elements are exposed as a tree structure, with the desktop as the root
element.

Automation elements expose common properties of the UI elements they represent. One of these properties
is the control type, which describes its basic appearance and functionality (for example, a button or a check
box).

9.1.3 UI Automation Tree

The UI Automation tree represents the entire UI: the root element is the current desktop, and child elements
are application windows. Each of these child elements can contain elements representing menus, buttons,
toolbars, and so on. These elements in turn can contain elements like list items, as the following illustration
shows.

Figure 5 — Screen Shot Showing UI Automation Tree

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

http://msdn.microsoft.com/en-us/library/dd318466(v=VS.85).aspx
https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 51

Be aware that the order of the siblings in the UI Automation tree is quite important. Objects that are next to
each other visually should also be next to each other in the UI Automation tree.

UI Automation providers for a particular control support navigation among the child elements of that control.
However, providers are not concerned with navigation between these control sub-trees. This is managed by
the UI Automation core, using information from the default window providers.

To help clients process UI information more effectively, the framework supports alternative views of the
automation tree: raw view, control view, and content view. As the following table shows, the type of filtering
determines the views, and the client defines the scope of a view.

Automation
Tree

Description

Raw view The full tree of automation element objects for which the desktop is the root.

Control view A subset of the raw view that closely maps to the UI structure as the user perceives it.

Content view A subset of the control view that contains content most relevant to the user, like the values in a
drop-down combo box.

9.1.4 UI Automation Properties

The UI Automation Specification defines two kinds of properties: automation element properties and control
pattern properties. Automation element properties apply to most controls, providing fundamental information
about the element, such as its name. Control pattern properties apply to control patterns, which are described
next.

Unlike with Microsoft Active Accessibility, every UI Automation property is identified by a GUID and a
programmatic name, which makes new properties easier to introduce.

9.1.5 UI Automation Control Patterns

A control pattern describes a particular aspect of the functionality of an automation element. For example, a
simple "click-able" control like a button or hyperlink should support the Invoke control pattern to represent the
"click" action.

Each control pattern is a canonical representation of possible UI features and functions. The current
implementation of UI Automation defines 22 control patterns. The Windows Automation API can also support
custom control patterns. Unlike Microsoft Active Accessibility role or state properties, one automation element
can support multiple UI Automation control patterns.

9.1.6 UI Automation Control Types

A control type is an automation element property that specifies a well-known control that the element
represents. Currently, UI Automation defines thirty-eight control types, including Button, CheckBox,
ComboBox, DataGrid, Document, Hyperlink, Image, ToolTip, Tree, and Window.

Before you can assign a control type to an element, the element needs to meet certain conditions, including a
particular automation tree structure, property values, control patterns, and events. However, you are not
limited to these. You can extend a control with custom patterns and properties, as well as with the pre-defined
ones.

The total number of pre-defined control types is significantly lower than Microsoft Active Accessibility object
roles, because UI Automation control types can be combined to express a larger set of features while
Microsoft Active Accessibility roles cannot.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

http://msdn.microsoft.com/en-us/library/dd373608(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd373608(v=VS.85).aspx
https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

52 © ISO/IEC 2012 – All rights reserved

9.1.7 UI Automation Events

UI Automation events notify applications of changes to, and actions taken with automation elements. There
are four different types of UI Automation events, and they do not necessarily mean that the visual state of the
UI has changed. The UI Automation event model is independent of the WinEvent framework in Windows,
although the Windows Automation API makes UI Automation events interoperable with the Microsoft Active
Accessibility framework.

For details, see UI Automation Specification and Windows Automation API Overview.

10 Design Considerations

10.1 UI Automation Design Considerations

This section provides information about how to work with UI Automation. Information and examples are
provided for both UI Automation clients and UI Automation providers. Interoperability between Microsoft Active
Accessibility and UI Automation is also addressed.

10.1.1 UI Automation Clients

There are many different actions that UI Automation clients can perform. This section summarizes some
common procedures performed by clients.

10.1.1.1 Find UI Automation Elements Based on a Property Condition

This section contains example code that shows how to locate elements within the UI Automation tree based
on a specific property or properties. In the following example, a set of property conditions are specified that
identify a certain element (or elements) of interest. A search for all matching elements is then performed with
the FindAll.

/// <summary>
/// Finds all enabled buttons in the specified window element.
/// </summary>
/// <param name="elementWindowElement">An application or dialog box window.</param>
/// <returns>A collection of elements that meet the conditions.</returns>
AutomationElementCollection FindByMultipleConditions(AutomationElement
elementWindowElement)
{
 Condition conditions = new AndCondition(
 new PropertyCondition(AutomationElement.IsEnabledProperty, true),
 new PropertyCondition(AutomationElement.ControlTypeProperty, ControlType.Button)
);

 // Find all children that match the specified conditions (for example, buttons
 // that are immediate children of the automation element).
 AutomationElementCollection elementCollection =
 elementWindowElement.FindAll(TreeScope.Children, conditions);
 return elementCollection;
}

10.1.1.2 Navigate Among UI Automation Elements with TreeWalker

This section contains example code that shows how to navigate among UI Automation elements by using the
TreeWalker class. The following example uses GetParent to walk up the UI Automation tree until it finds the
root element, or desktop. The element just below that is the parent window of the specified element.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

http://msdn.microsoft.com/en-us/library/dd373889(v=VS.85).aspx
http://go.microsoft.com/fwlink/?LinkId=198404
http://msdn.microsoft.com/en-us/library/dd561932(v=VS.85).aspx
https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 53

/// <summary>
/// Retrieves the top-level window that contains the specified UI Automation element.
/// </summary>
/// <param name="element">The contained element.</param>
/// <returns>The containing top-level window element.</returns>
private AutomationElement GetTopLevelWindow(AutomationElement element)
{
 TreeWalker walker = TreeWalker.ControlViewWalker;
 AutomationElement elementParent;
 AutomationElement node = element;
 if (node == AutomationElement.RootElement)
 {
 return node;
 }
 do
 {
 elementParent = walker.GetParent(node);
 if (elementParent == AutomationElement.RootElement)
 {
 break;
 }
 node = elementParent;
 }
 while (true);
 return node;
}

10.1.1.3 Get UI Automation Element Properties

This section describes how to retrieve properties of a UI Automation element.

void PropertyCallsExample(AutomationElement elementList)
{
 // The following two calls are equivalent.
 string name = elementList.Current.Name;
 name = elementList.GetCurrentPropertyValue(AutomationElement.NameProperty) as
string;

 // The following shows how to ignore the default property, which
 // would probably be an empty string if the property is not supported.
 // Passing "false" as the second parameter is equivalent to using the overload
 // that does not have this parameter.
 object help =
elementList.GetCurrentPropertyValue(AutomationElement.HelpTextProperty, true);
 if (help == AutomationElement.NotSupported)
 {
 help = "No help available";
 }
 else
 {
 string helpText = (string)help;
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

54 © ISO/IEC 2012 – All rights reserved

10.1.1.4 Subscribe to UI Automation Events

This section describes how to subscribe UI Automation events. The following example code registers an event
handler for the event that is raised when a control such as a button is invoked, and removes it when the
application form closes. The event is identified by an AutomationEvent passed as a parameter to
AddAutomationEventHandler.

// Member variables.
AutomationElement ElementSubscribeButton;
AutomationEventHandler UIAeventHandler;

/// <summary>
/// Register an event handler for InvokedEvent on the specified element.
/// </summary>
/// <param name="elementButton">The automation element.</param>
public void SubscribeToInvoke(AutomationElement elementButton)
{
 if (elementButton != null)
 {
 Automation.AddAutomationEventHandler(InvokePattern.InvokedEvent,
 elementButton, TreeScope.Element,
 UIAeventHandler = new AutomationEventHandler(OnUIAutomationEvent));
 ElementSubscribeButton = elementButton;
 }
}

/// <summary>
/// AutomationEventHandler delegate.
/// </summary>
/// <param name="src">Object that raised the event.</param>
/// <param name="e">Event arguments.</param>
private void OnUIAutomationEvent(object src, AutomationEventArgs e)
{
 // Make sure the element still exists. Elements such as tooltips
 // can disappear before the event is processed.
 AutomationElement sourceElement = src as AutomationElement;
 if (e.EventId == InvokePattern.InvokedEvent)
 {
 // TODO Add handling code.
 }
 else
 {
 // TODO Handle any other events that have been subscribed to.
 }
}

private void ShutdownUIA()
{
 if (UIAeventHandler != null)
 {
 Automation.RemoveAutomationEventHandler(InvokePattern.InvokedEvent,
 ElementSubscribeButton, UIAeventHandler);
 }
}

10.1.1.5 Manipulate a Control by UI Automation

This section describes how to retrieve control pattern objects from UI Automation elements.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 55

It is strongly recommended that a client not use GetSupportedPatterns (a managed client API) or
PollForPotentialSupportedPatterns (an native client API). A client should call GetCurrentPattern for
the key patterns of interest.

Obtain a Specific Control Pattern

1) Get the AutomationElement whose control patterns you are interested in.

2) Call GetCurrentPattern or TryGetCurrentPattern to query for a specific pattern. These methods
are similar, but if the pattern is not found, GetCurrentPattern raises an exception, and
TryGetCurrentPattern returns false.

The following example retrieves an AutomationElement for a list item and obtains a SelectionItemPattern
from that element.

/// <summary>
/// Sets the focus to a list and selects a string item in that list.
/// </summary>
/// <param name="listElement">The list element.</param>
/// <param name="itemText">The text to select.</param>
/// <remarks>
/// This deselects any currently selected items. To add the item to the current
selection
/// in a multiselect list, use AddToSelection instead of Select.
/// </remarks>
public void SelectListItem(AutomationElement listElement, String itemText)
{
 if ((listElement == null) || (itemText == ""))
 {
 throw new ArgumentException("Argument cannot be null or empty.");
 }
 listElement.SetFocus();
 Condition cond = new PropertyCondition(
 AutomationElement.NameProperty, itemText, PropertyConditionFlags.IgnoreCase);
 AutomationElement elementItem = listElement.FindFirst(TreeScope.Children, cond);
 if (elementItem != null)
 {
 SelectionItemPattern pattern;
 try
 {
 pattern = elementItem.GetCurrentPattern(SelectionItemPattern.Pattern) as
SelectionItemPattern;
 }
 catch (InvalidOperationException ex)
 {
 Console.WriteLine(ex.Message); // Most likely "Pattern not supported."
 return;
 }
 pattern.Select();
 }
}

10.1.2 UI Automation Providers

Most of the standard controls in applications that use the Win32, Windows Forms, or Windows Presentation
Foundation (WPF) frameworks are automatically exposed to the UI Automation system. Applications that
implement custom controls may also implement UI Automation providers for those controls, and client
applications do not have to take any special steps to gain access to them. This section demonstrates tasks for
writing UI Automation providers for UI elements.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

56 © ISO/IEC 2012 – All rights reserved

10.1.2.1 Implement Core Provider Interfaces

Every UI Automation provider must implement one of the following interfaces.

Interface Description

IRawElementProviderSimple This interface represents an instance of a UI element, and it has methods
that expose property values and pattern interfaces. All elements exposed
to UI Automation must implement this interface at minimum.

IRawElementProviderFragment Adds functionality for an element in a complex control, including
navigation within the fragment, setting focus, and returning the bounding
rectangle of the element.

IRawElementProviderFragmentRoot Adds functionality for the root element in a complex control, including
locating a child element at specified coordinates and setting the focus
state for the entire control.

The following interfaces provide added functionality but are not required to be implemented.

Interface Description

IRawElementProviderAdviseEvents Enables the provider to track requests for events.

IRawElementProviderHwndOverride Enables repositioning of HWND-based elements within the UI Automation
tree of a fragment.

10.1.2.2 Expose a Server-side UI Automation Provider

The example code in this section shows how to expose a server-side UI Automation provider that is hosted in
a System.Windows.Forms.Control window. The example overrides the window procedure to handle
WM_GETOBJECT, which is the message sent by the UI Automation core service when a client application
requests information about the window.

/// <summary>
/// Handles WM_GETOBJECT message; others are passed to base handler.
/// </summary>
/// <param name="m">Windows message.</param>
/// <remarks>
/// This method enables UI Automation to find the control.
/// In this example, the implementation of IRawElementProvider is in the same class
/// as this method.
/// </remarks>
protected override void WndProc(ref Message m)
{
 const int WM_GETOBJECT = 0x003D;

 if ((m.Msg == WM_GETOBJECT) && (m.LParam.ToInt32() ==
 AutomationInteropProvider.RootObjectId))
 {
 m.Result = AutomationInteropProvider.ReturnRawElementProvider(
 this.Handle, m.WParam, m.LParam,
 (IRawElementProviderSimple)this);
 return;
 }
 base.WndProc(ref m);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 57

10.1.2.3 Return Properties from a UI Automation Provider

The example code in this section demonstrates how a UI Automation provider can return properties of an
element to client applications. For any property it does not explicitly support, the provider must return null.
This ensures that UI Automation attempts to obtain the property from another source, such as the host
window provider.

/// <summary>
/// Gets provider property values.
/// </summary>
/// <param name="propId">Property identifier.</param>
/// <returns>The value of the property.</returns>
object IRawElementProviderSimple.GetPropertyValue(int propId)
{
 if (propId == AutomationElementIdentifiers.NameProperty.Id)
 {
 return "Custom list control";
 }
 else if (propId == AutomationElementIdentifiers.ControlTypeProperty.Id)
 {
 return ControlType.List.Id;
 }
 else if (propId == AutomationElementIdentifiers.IsContentElementProperty.Id)
 {
 return true;
 }
 else if (propId == AutomationElementIdentifiers.IsControlElementProperty.Id)
 {
 return true;
 }
 else
 {
 return null;
 }
}

10.1.2.4 Raise Events from a UI Automation Provider

The example code in this section demonstrates how a UI Automation event is raised in the implementation of
a custom button control. The implementation enables a UI Automation client application to simulate a button
click. To avoid unnecessary processing, the example checks ClientsAreListening to see whether events
should be raised.

/// <summary>
/// Responds to a button click, regardless of whether it was caused by a mouse or
/// keyboard click or by InvokePattern.Invoke.
/// </summary>
private void OnCustomButtonClicked()
{
 // TODO Perform program actions invoked by the control.

 // Raise an event.
 if (AutomationInteropProvider.ClientsAreListening)
 {
 AutomationEventArgs args = new
AutomationEventArgs(InvokePatternIdentifiers.InvokedEvent);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

58 © ISO/IEC 2012 – All rights reserved

AutomationInteropProvider.RaiseAutomationEvent(InvokePatternIdentifiers.InvokedEvent,
this, args);
 }
}

10.1.2.5 Enable Navigation in a UI Automation Provider

The example code in this section demonstrates how to implement Navigate for a list item within a list. The
parent element is the list box element and the sibling elements are other items in the list collection. The
method returns null for directions that are not valid; in this case, FirstChild and LastChild, because the
element has no children.

/// <summary>
/// Navigate to adjacent elements in the automation tree.
/// </summary>
/// <param name="direction">Direction to navigate.</param>
/// <returns>The element in that direction, or null.</returns>
/// <remarks>
/// parentControl is the provider for the list box.
/// parentItems is the collection of list item providers.
/// </remarks>
public IRawElementProviderFragment Navigate(NavigateDirection direction)
{
 int myIndex = parentItems.IndexOf(this);
 if (direction == NavigateDirection.Parent)
 {
 return (IRawElementProviderFragment)parentControl;
 }
 else if (direction == NavigateDirection.NextSibling)
 {
 if (myIndex < parentItems.Count - 1)
 {
 return (IRawElementProviderFragment)parentItems[myIndex + 1];
 }
 }
 else if (direction == NavigateDirection.PreviousSibling)
 {
 if (myIndex > 0)
 {
 return (IRawElementProviderFragment)parentItems[myIndex - 1];
 }
 }
 return null;
}

10.1.2.6 Support Control Patterns in a UI Automation Provider

This section shows how to implement one or more control patterns on a UI Automation provider so that client
applications can manipulate controls and get data from them.

To support control patterns:

1) Implement the appropriate interfaces for the control patterns that the element should support, such
as IInvokeProvider for InvokePattern.

2) Return the object containing your implementation of each control interface in your implementation of
GetPatternProvider().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 59

The following example shows an implementation of ISelectionProvider for a single-selection custom list
box. It returns three properties and gets the currently selected item.

#region ISelectionProvider Members

/// <summary>
/// Specifies whether selection of more than one item at a time is supported.
/// </summary>
public bool CanSelectMultiple
{
 get
 {
 return false;
 }
}

/// <summary>
/// Specifies whether the list has to have an item selected at all times.
/// </summary>
public bool IsSelectionRequired
{
 get
 {
 return true;
 }
}

/// <summary>
/// Returns the automation provider for the selected list item.
/// </summary>
/// <returns>The selected item.</returns>
/// <remarks>
/// MyList is an ArrayList collection of providers for items in the list box.
/// SelectedIndex is the index of the selected item.
/// </remarks>
public IRawElementProviderSimple[] GetSelection()
{
 if (SelectedIndex >= 0)
 {
 IRawElementProviderSimple itemProvider =
(IRawElementProviderSimple)MyList[SelectedIndex];
 IRawElementProviderSimple[] providers = { itemProvider };
 return providers;
 }
 Else
 {
 return null;
 }
}
#endregion ISelectionProvider Members

10.1.3 Co-existence and Interoperability with Microsoft Active Accessibility

UI Automation provider interfaces are not derived from the Microsoft Active Accessibility IAccessible COM
interface. However, the UI Automation Core does take advantage of existing Microsoft Active Accessibility
implementations.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

60 © ISO/IEC 2012 – All rights reserved

To coexist with and take advantage of existing Microsoft Active Accessibility implementations and clients, UI
Automation translates between Microsoft Active Accessibility and UI Automation as appropriate. Clients using
the UI Automation client API can use its services to search over existing IAccessible implementations. Code
that writes to the UI automation provider interfaces will still be visible to existing IAccessible client code.

Also, a Microsoft Active Accessibility implementation can add specific UI Automation properties and control
patterns in addition to the base accessibility implementations using IAccessibleEx interface.

 Two main ways that information is shared between UI Automation and Microsoft Active Accessibility are the
“MSAA -to-UI-Automation Proxy” and “UI-Automation-to-MSAA Bridge.”

10.1.3.1 MSAA-to-UI-Automation Proxy

The MSAA proxy is a component that consumes Microsoft Active Accessibility information and makes it
available through the UI Automation Client API, mapping the programmatic information and features such as
the IAccessible interface to the corresponding UI Automation features. If a Microsoft Active Accessibility
server is extended with UI Automation properties and patterns using the IAccessibleEx interface, these too are
visible to UI Automation and clients just as they are to an implementation that uses UI Automation provider
interfaces.

10.1.3.2 UI-Automation-to-MSAA Bridge

The MSAA Bridge enables client applications that use Microsoft Active Accessibility to access applications
that implement UI Automation. By bridging Microsoft Active Accessibility and UI Automation together,
Microsoft Active Accessibility-based clients, such as a screen reader designed for Windows XP, can still
programmatically interact with UI Automation-based providers of UI information, such as a Windows
Presentation Foundation (WPF) application. It is part of the UI Automation Core component
(UIAutomationCore.dll). See Annex B – Microsoft Active Accessibility Bridge to UI Automation – for more
information.

10.2 IAccessibleEx Design Considerations

This section provides information about how to work with IAccessibleEx. In addition, it supplies information
and examples on using IAccessibleEx from both client and provider side and it addresses interoperability
between Microsoft Active Accessibility and UI Automation.

10.2.1 Design Consideration for Providers before Implementing the IAccessibleEx Interface

While IAccessibleEx is very cost-effective way of supporting UI Automation when an application already has
good Microsoft Active Accessibility server practice, a few technical concerns should be taken into
consideration before implementing the IAccessibleEx and UI Automation Provider interfaces.

 The baseline Microsoft Active Accessibility accessible object hierarchy must be clean

IAccessibleEx cannot correct problems with existing accessible object hierarchies. If there is an issue with
object model structure, you must fix it in Microsoft Active Accessibility prior to implementing the
IAccessibleEx interface.

 IAccessibleEx implementation should be compliant with both Microsoft Active Accessibility and UI
Automation specifications

When it is implemented, the resulting object model should be compliant with both Microsoft Active
Accessibility and UI Automation. Tools are available to confirm under both specifications.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 61

10.2.2 The IAccessibleEx Interface for Providers

This section provides information about how Microsoft Active Accessibility implementations can expose UI
Automation information by using IAccessibleEx and IRawElementProviderSimple.

10.2.2.1 Implement the IServiceProvider interface

The first step for a provider is to implement IServiceProvider on the existing IAccessible object. Incoming
calls to QueryService for a service id of __uuidof(IAccessibleEx) should return a reference to the object
implementing IAccessibleEx.

10.2.2.2 Implement the ChildId

In Microsoft Active Accessibility, a UI element is always identified by the pair of IAccessible COM interface
and a ChildId object identifier. This means that a single IAccessible COM object can represent multiple UI
elements.

An IAccessibleEx instance represents a single UI element, so it must map from the IAccessible and
ChildId pair to a corresponding IAccessibleEx. IAccessibleEx includes two methods to handle this
mapping:

 GetObjectForChild – Returns the IAccessibleEx element for the specified child. Returns S_OK/NULL if
this implementation does not use ChildId, does not have an IAccessibleEx for the specified child, or
already represents a child element.

 GetIAccessiblePair – Returns an IAccessible and ChildId pair for the IAccessibleEx element. For
IAccessible implementations that do not use ChildId, the method returns the corresponding
IAccessible object and CHILDID_SELF.

If an accessible object implementation does not use ChildId, the methods can still be implemented as shown
in the following code snippet.

// This sample implements IAccessibleEx on the same object; it could use a tear-off
// or inner object instead.
class MyAccessibleImpl: public IAccessible,
 public IAccessibleEx,
 public IRawElementProviderSimple
{
public:
...
 HRESULT STDMETHODCALLTYPE GetObjectForChild(long idChild, IAccessibleEx ** pRetVal
)
 {
 // This implementation doesn't support child IDs...
 *pRetVal = NULL;
 return S_OK;
 }

 HRESULT STDMETHODCALLTYPE GetIAccessiblePair(IAccessible ** ppAcc, long * pidChild
)
 {
 // Assuming that IAccessibleEx is implemented on same object as
 // IAccessible...
 *ppAcc = static_cast<IAccessible *>(this);
 (*ppAcc)->AddRef();
 *pidChild = CHILDID_SELF;
 return S_OK;
 }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

62 © ISO/IEC 2012 – All rights reserved

10.2.2.3 Implement the IRawElementProviderSimple Interface

Servers use IRawElementProviderSimple to expose information about UI Automation properties and control
patterns. IRawElementProviderSimple includes the following methods:

 ProviderOptions – This method is not used with IAccessibleEx implementations.

 GetPatternProvider – This method is used to expose control pattern interfaces. It returns an object that
supports the specified control pattern, or NULL if the control pattern is not supported.

 GetPropertyValue – This method is used to expose UI Automation property values.

 HostRawElementProvider – This method is not used with IAccessibleEx implementations.

An IAccessibleEx server exposes control patterns by implementing
IRawElementProviderSimple::GetPatternProvider. This method takes an integer parameter that
specifies the control pattern. The server returns NULL if the pattern is not supported. If the control pattern
interface is supported, servers return an IUnknown and the client then calls QueryInterface to get the
appropriate control pattern.

An IAccessibleEx server can support UI Automation properties (such as LabeledBy, and
IsRequiredForForm) by implementing IRawElementProviderSimple::GetPropertyValue and supplying
an integer PROPERTYID identifying the property as a parameter. This technique applies only to UI Automation
properties that are not included in a control pattern interface. Properties associated with a control
pattern interface are exposed through the control pattern interface method. For example, the IsSelected
property from the SelectionItem control pattern would be exposed with
ISelectionItemProvider::get_IsSelected.

10.2.3 The IAccessibleEx Interface for Clients

The procedures and samples provided in this section assume an IAccessible client that is already in
process and an existing Microsoft Active Accessibility server. They also assume that the client has already
obtained an IAccessible object by using one of the accessibility framework APIs such as
AccessibleObjectFromEvent, AccessibleObjectFromPoint, or AccessibleObjectFromWindow.

10.2.3.1 Obtain an IAccessibleEx Interface from the IAccessible Interface

1) Call QueryInterface on the original IAccessible object with an IID of
__uuidof(IServiceProvider).

2) Call IServiceProvider::QueryService to get the IAccessibleEx.

10.2.3.2 Handle the ChildId

Clients must be prepared for servers with a ChildId value other than CHILDID_SELF. After obtaining an
IAccessibleEx from an IAccessible, clients must call GetObjectForChild if the ChildId value is not
CHILDID_SELF (indicating a parent object).

The following code snippet shows how to an IAccessibleEx for an IAccessible object and ChildId pair.

HRESULT GetIAccessibleExFromIAccessible(IAccessible * pAcc, long idChild,
 IAccessibleEx ** ppaex)
{
 *ppaex = NULL;

 // First, get IServiceProvider from the IAccessible...
 IServiceProvider * pSp = NULL;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 63

 HRESULT hr = pAcc->QueryInterface(IID_IServiceProvider, (void **) & pSp);
 if(FAILED(hr))
 return hr;
 if(pSp == NULL)
 return E_NOINTERFACE;

 // Next, get the IAccessibleEx for the parent object...
 IAccessibleEx * paex = NULL;
 hr = pSp->QueryService(__uuidof(IAccessibleEx), __uuidof(IAccessibleEx),
 (void **)&paex);
 pSp->Release();
 if(FAILED(hr))
 return hr;
 if(paex == NULL)
 return E_NOINTERFACE;

 // If this is for CHILDID_SELF, we're done. Otherwise, we've got a child ID,
 // so ask for the object for that.
 if(idChild == CHILDID_SELF)
 {
 *ppaex = paex;
 return S_OK;
 }
 else
 {
 // Get the IAccessibleEx for the specified idChild...
 IAccessibleEx * paexChild = NULL;
 hr = paex->GetObjectForChild(idChild, &paexChild);
 paex->Release();
 if(FAILED(hr))
 return hr;
 if(paexChild == NULL)
 return E_NOINTERFACE;
 *ppaex = paexChild;
 return S_OK;
 }
}

10.2.3.3 Obtain the IRawElementProviderSimple Interface

The following code snippet demonstrates how, when a client has an IAccessibleEx, it can use
QueryInterface to get to the IRawElementProviderSimple interface.

HRESULT GetIRawElementProviderFromIAccessible(IAccessible * pAcc, long idChild,
 IRawElementProviderSimple ** ppEl)
{
 * ppEl = NULL;

 // First, get the IAccessibleEx for the IAccessible/idChild pair...
 IAccessibleEx * paex;
 HRESULT hr = GetIAccessibleExFromIAccessible(pAcc, idChild, &paex);
 if(FAILED(hr))
 return hr;

 // Next, use QueryInterface.
 hr = paex->QueryInterface(__uuidof(IRawElementProviderSimple), (void **)ppEl);
 paex->Release();
 return hr;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

64 © ISO/IEC 2012 – All rights reserved

10.2.3.3.1 Use Control Patterns

The following code snippet demonstrates how, when a client has access to IRawElementProviderSimple, it
can obtain control pattern interfaces that have been implemented by providers. Clients can call methods on
those interfaces.

// Helper to get a pattern interface from an IAccessible/idChild pair. Gets the
// IAccessibleEx, then calls GetPatternObject and QueryInterface.
HRESULT GetPatternFromIAccessible(IAccessible * pAcc, long idChild,
 PATTERNID patternId, REFIID iid, void ** ppv)
{
 // First, get the IAccesibleEx for this IAccessible/idChild pair...
 IRawElementProviderSimple * pel;
 HRESULT hr = GetIRawElementProviderSimpleFromIAccessible(pAcc, idChild, &pel);
 if(FAILED(hr))
 return hr;
 if(paex == NULL)
 return E_NOINTERFACE;

 // Now get the pattern object...
 IUnknown * pPatternObject = NULL;
 hr = pel->GetPatternProvider(patternId, &pPatternObject);
 pel->Release();
 if(FAILED(hr))
 return hr;
 if(pPatternObject == NULL)
 return E_NOINTERFACE;

 // Finally, QueryInterface to the correct interface type...
 hr = pPatternObject->QueryInterface(iid, ppv);
 pPatternObject->Release();
 if(*ppv == NULL)
 return E_NOINTERFACE;
 return hr;
}

HRESULT CallInvokePatternMethod(IAccessible * pAcc, long idChild)
{
 IInvokeProvider * pPattern;
 HRESULT hr = GetPatternFromIAccessible(pAcc, varChild,
 UIA_InvokePatternId,
__uuidof(IInvokeProvider),
 (void **)&pPattern);
 if(FAILED(hr))
 return hr;

 hr = pPattern->Invoke();
 pPattern->Release();
 return hr;
}

10.2.3.4 Obtain Property Values

Similar to control patterns, after a client has gained access to IRawElementProviderSimple, it can access
property values. The following code sample shows getting values for the UI Automation properties
AutomationId (a string), and LabeledBy (a reference to another element).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 65

#include <initguid.h>
#include <uiautomationcoreapi.h> // Includes the UI Automation property GUID
definitions.
#include <uiautomationcoreids.h> // Includes definitions of pattern/property IDs.

// Assume we already have a IRawElementProviderSimple * pEl:

VARIANT varValue;

// Get AutomationId property:
varValue.vt = VT_EMPTY;
HRESULT hr = pEl->GetPropertyValue(UIA_AutomationIdPropertyId, &varValue);
if(SUCCEEDED(hr))
{
 if(varValue.vt == VT_BSTR)
 {
 // AutomationId is varValue.bstrVal
 }
 VariantClear(&varValue);
}

// Get LabeledBy property:
varValue.vt = VT_EMPTY;
hr = pEl->GetPropertyValue(UIA_LabeledByPropertyId, &varValue);
if(SUCCEEDED(hr))
{
 if(varValue.vt == VT_UNKNOWN || varValue.punkVal != NULL)
 {
 // QueryInterface to IRawElementProviderSimple...
 IRawElementProviderSimple * pElLabel = NULL;
 hr = varValue.punkVal->QueryInterface(__uuidof(IRawElementProviderSimple),
 (void**)& pElLabel);
 if(pElLabel != NULL)
 {
 // Use pElLabel here...
 pElLabel ->Release();
 }
 }
 VariantClear(&varValue);
}

The code sample in this section applies to properties that are not associated with a control pattern. For control
pattern properties, after the client has gained access to the control pattern interface, they can call for property
values there.

10.2.3.5 Convert from the IRawElementProviderSimple Interface back to an IAccessible Interface

If a client obtains an IRawElementProviderSimple as a property value (for example, calling
GetPropertyValue with UIA_LabeledByPropertyId) or returned by a method (for example,
ISelectionProvider::GetSelection, which returns a SAFEARRAY of IRawElementProviderSimple), a
client can obtain a corresponding IAccessible (allowing it to obtain IAccessible properties) as follows:

 First, attempt to QueryInterface to IAccessibleEx.

 If QueryInterface fails, use the ConvertReturnedElement on the IAccessibleEx instance that the
property was originally obtained from.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

66 © ISO/IEC 2012 – All rights reserved

 Then use the GetIAccessiblePair method on this new IAccessibleEx to obtain an IAccessible and
ChildId value.

// IRawElementProviderSimple * pVal – an element returned by a property or method
// from another IRawElementProviderSimple.

IAccessible * pAcc = NULL;
long idChild;

// First, try to QI to IAccessibleEx...
IAccessibleEx * pAccEx = pVal->QueryInterface(__uuidof(IAccessibleEx));
if(!pAccEx)
{
 // If QI fails, and the IRawElementProviderSimple was obtained as a property
 // or return value from another IRawElementProviderSimple, then pass it
 // to that originating element’s IAccessibleEx.ConvertReturnedValue:
 pAccExOrig->ConvertReturnedElement(pVal, &pAccEx);
}

if(pAccEx)
{
 // Call GetIAccessiblePair to get an {IAccessible, idChild}...
 pAccEx->GetIAccessiblePair(&pAcc, &idChild);
}

// Finally, use the IAccessible,idChild
if(pAcc)
{
 // Use IAccessible methods to get further information about this UI element,
 // or pass it to existing code that works in terms of IAccessible.
 ...
}

11 Further Information

11.1 Microsoft Active Accessibility and Extensibility

Microsoft Active Accessibility properties and functions cannot be extended without breaking or changing the
IAccessible COM interface specification. The result is that new control behavior cannot be exposed through
the object model; it tends to be static.

With UI Automation, as new UI elements are created, application developers can introduce custom properties,
control patterns, and events to describe the new elements.

11.2 UI Automation Extensibility Features

The Microsoft UI Automation API specifies a predefined core set of properties, control patterns, and events.
However, applications are not limited to using these predefined specifications. The UI Automation extensibility
features enable third parties to introduce custom, mutually agreed-upon properties, events, and control
patterns to support new UI elements and application scenarios. UI Automation providers and clients can begin
using the custom properties, events, and control patterns immediately without requiring the core UI
Automation framework to be updated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 67

11.2.1 The Registration of Custom UI Automation Properties, Events, and Control Patterns

A custom property, event, or pattern is specified by filling out a UIAutomationPropertyInfo,
UIAutomationEventInfo or UIAutomationPatternInfo structure as appropriate, and then calling the
appropriate Register… method on the IUIAutomationRegistrar object. This returns an integer property,
event or pattern identifier that can then be used in any UI Automation API that uses such an identifier.
For example, the PropertyId returned by RegisterProperty can then be used in
IUIAutomationElement::GetCurrentPropertyValue or in IUIAutomation::CreatePropertyCondition.

The following must be specified (in the appropriate structure) for a custom item:

 A GUID that uniquely identifies the property, event, or pattern. Note that this GUID is the real identifier of
the item; two properties or events or patterns are considered equivalent if they have the same GUID. The
integer identifier that is returned by the Register…() method is temporary and only valid within and for
the remainder of the lifetime of the UI Automation client that called it. It may return different integer values
for the same GUID when called over different runtime instances of the client.

 A string that represents the programmatic name for the item. This is used only for debugging purposes.

Custom properties also require the following to be specified:

 A value identifying the type of the property; for example, whether it is a integer or a string.

Custom patterns also require the following to be specified:

 An array of events associated with the pattern;

 An array of properties associated with the pattern;

 IIDs of the pattern’s corresponding provider interface and client interface;

 An array of methods associated with the pattern, for each of which the count of arguments and argument
type must also be specified;

 Code to create a client interface object;

 Code to perform marshalling for the pattern’s properties and methods.

11.2.2 How Clients and Providers Support Custom Control Patterns

In order to take advantage of newly registered control pattern, both clients and providers are required to
supply a small amount of support code.

 Clients use a client interface object (for example, an IUIAutomationCustomPattern interface) that
has getters for cached and current properties, as well as methods;

 Providers implement a provider interface (for example, an ICustomProviderinterface) that has getters
for each property, as well as methods.

To support the client API object, the code that registers a pattern must supply a factory for creating instances
of a Client Wrapper. This wrapper implements the client API as a COM interface, and forwards all the property
getter requests and methods calls to an IUIAutomationPatternInstance that is provided by UI Automation.
The UI Automation framework then takes care of marshalling the call.

On the provider side, the code that registers a pattern must also supply a “pattern handler” object that
performs the reverse function of the Client Wrapper. The UI Automation Framework forwards the property and
method requests to the pattern handler object. The pattern handler then calls the appropriate method on the
target object’s provider interface.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

68 © ISO/IEC 2012 – All rights reserved

The UI Automation framework takes care of all communication between the client and provider, both of which
register corresponding control pattern interfaces. The Client Wrapper and Pattern Handler need to map only
between C++ interface methods calls with positional arguments and parameters. The following diagram
illustrates this mechanism.

Figure 6 — Client and Provider Communication Process Diagram

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 69

Annex A
(informative)

Microsoft Active Accessibility to Automation Proxy

Microsoft® Active Accessibility® was the earlier solution for making applications accessible. Microsoft UI
Automation is the new accessibility model for Microsoft® Windows® and is intended to address the needs of
assistive technology products and automated testing tools. UI Automation offers many improvements over
Microsoft Active Accessibility.

This annex includes the main features of UI Automation and explains how these features differ from Microsoft
Active Accessibility.

Microsoft® Active Accessibility® was the earlier solution for making applications accessible. Microsoft UI
Automation is the new accessibility model for Microsoft® Windows® and is intended to address the needs of
assistive technology products and automated testing tools. UI Automation offers many improvements over
Microsoft Active Accessibility.

This annex includes the main features of UI Automation and explains how these features differ from Microsoft
Active Accessibility.

A.1 Servers and Clients

In Microsoft Active Accessibility, server and client applications communicate directly, largely through the
server's implementation of the IAccessible interface.

In UI Automation, a core service lies between the server (called a provider) and the client. The core service
makes calls to the interfaces implemented by providers and provides additional services such as generating
unique run-time identifiers for elements. Client applications use library functions to call the UI Automation
service.

UI Automation providers can provide information to Microsoft Active Accessibility clients, and Microsoft Active
Accessibility servers can provide information to UI Automation client applications. However, because Microsoft
Active Accessibility does not expose as much information as UI Automation, the two models are not fully
compatible.

A.2 UI Elements

Microsoft Active Accessibility presents UI elements either as an IAccessible interface or as a child identifier.
It is difficult to compare two IAccessible pointers to determine if they refer to the same element.

In UI Automation, every element is represented as an AutomationElement object. Comparison is done by
using the equality operator or the Equals method, both of which compare the unique run-time identifiers of the
elements.

When an accessible object implements UI Automation using the IAccessibleEx interface, the Microsoft
Active Accessibility to UI Automation Proxy treats the enhanced accessible object as an automation element
of the UI Automation object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

70 © ISO/IEC 2012 – All rights reserved

A.3 Tree Views and Navigation

The user interface (UI) elements on the screen can be seen as a tree structure with the desktop as the root,
application windows as immediate children, and elements within applications as further descendants.

In Microsoft Active Accessibility, many automation elements that are irrelevant to end users are exposed in
the tree. Client applications have to look at all the elements to determine which are meaningful.

UI Automation client applications see the UI through a filtered view. The view contains only elements of
interest: those that give information to the user or enable interaction. Predefined views of only control
elements and only content elements are available; in addition, applications can define custom views. UI
Automation simplifies the task of describing the UI to the user and helping the user interact with the
application.

Navigation between elements, in Microsoft Active Accessibility, is either spatial (for example, moving to the
element that lies to the left on the screen), logical (for example, moving to the next menu item, or the next item
in the tab order within a dialog box), or hierarchical (for example, moving the first child in a container, or from
the child to its parent). Hierarchical navigation is complicated by the fact that child elements are not always
objects that implement IAccessible.

In UI Automation, all UI elements are AutomationElement objects that support the same basic functionality.
(From the standpoint of the provider, they are objects that implement an interface inherited from
IRawElementProviderSimple.) Navigation is mainly hierarchical: from parents to children, and from one
sibling to the next. (Navigation between siblings has a logical element, as it may follow the tab order.) One can
navigate from any starting-point, using any filtered view of the tree, by using the TreeWalker class. One can
also navigate to particular children or descendants by using FindFirst and FindAll methods; for example, it
is very easy to retrieve all elements within a dialog box that support a specified control pattern.

Navigation in UI Automation is more consistent than in Microsoft Active Accessibility. Some elements such as
drop-down lists and pop-up windows appear twice in the Microsoft Active Accessibility tree, and navigation
from them may have unexpected results. It is actually impossible to properly implement Microsoft Active
Accessibility for a rebar control. UI Automation enables re-parenting and repositioning, so that an element can
be placed anywhere in the tree despite the hierarchy imposed by ownership of windows.

A.4 Roles and Control Types

Microsoft Active Accessibility uses the accRole property (IAccessible::get_accRole) to retrieve a
description of the element's role in the UI, such as ROLE_SYSTEM_SLIDER or ROLE_SYSTEM_MENUITEM. The
role of an element is the main clue to its available functionality. Interaction with a control is achieved by using
fixed methods such as IAccessible::accSelect and IAccessible::accDoDefaultAction. The
interaction between the client application and the UI is limited to what can be done through IAccessible.

In contrast, UI Automation largely decouples the control type of the element (described by the ControlType
property) from its expected functionality. Functionality is determined by the control patterns that are supported
by the provider through its implementation of specialized interfaces. Control patterns can be combined to
describe the full set of functionality supported by a particular UI element. Some providers are required to
support a particular control pattern; for example, the provider for a check box must support the Toggle control
pattern. Other providers are required to support one or more of a set of control patterns; for example, a button
must support either Toggle or Invoke. Still others support no control patterns at all; for example, a pane that
cannot be moved, resized, or docked does not have any control patterns.

UI Automation supports custom controls, which are identified by the Custom property and can be described by
the LocalizedControlTypeProperty property.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 71

The following table shows the mapping of Microsoft Active Accessibility roles to UI Automation control types.

Microsoft Active Accessibility role UI Automation control type

ROLE_SYSTEM_PUSHBUTTON Button

ROLE_SYSTEM_CLIENT Pane

ROLE_SYSTEM_CHECKBUTTON CheckBox

ROLE_SYSTEM_COMBOBOX ComboBox

ROLE_SYSTEM_CLIENT Custom

ROLE_SYSTEM_LIST DataGrid

ROLE_SYSTEM_LISTITEM DataItem

ROLE_SYSTEM_DOCUMENT Document

ROLE_SYSTEM_TEXT Edit

ROLE_SYSTEM_GROUPING Group

ROLE_SYSTEM_LIST Header

ROLE_SYSTEM_COLUMNHEADER HeaderItem

ROLE_SYSTEM_LINK Hyperlink

ROLE_SYSTEM_GRAPHIC Image

ROLE_SYSTEM_LIST List

ROLE_SYSTEM_LISTITEM ListItem

ROLE_SYSTEM_MENUPOPUP Menu

ROLE_SYSTEM_MENUBAR MenuBar

ROLE_SYSTEM_MENUITEM MenuItem

ROLE_SYSTEM_PANE Pane

ROLE_SYSTEM_PROGRESSBAR ProgressBar

ROLE_SYSTEM_RADIOBUTTON RadioButton

ROLE_SYSTEM_SCROLLBAR ScrollBar

ROLE_SYSTEM_SEPARATOR Separator

ROLE_SYSTEM_SLIDER Slider

ROLE_SYSTEM_SPINBUTTON Spinner

ROLE_SYSTEM_SPLITBUTTON SplitButton

ROLE_SYSTEM_STATUSBAR StatusBar

ROLE_SYSTEM_PAGETABLIST Tab

ROLE_SYSTEM_PAGETAB TabItem

ROLE_SYSTEM_TABLE Table

ROLE_SYSTEM_STATICTEXT Text

ROLE_SYSTEM_INDICATOR Thumb

ROLE_SYSTEM_TITLEBAR TitleBar

ROLE_SYSTEM_TOOLBAR ToolBar

ROLE_SYSTEM_TOOLTIP ToolTip

ROLE_SYSTEM_OUTLINE Tree

ROLE_SYSTEM_OUTLINEITEM TreeItem

ROLE_SYSTEM_WINDOW Window

For more information about the different control types, see UI Automation Control Types.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

72 © ISO/IEC 2012 – All rights reserved

A.5 States and Properties

In Microsoft Active Accessibility, elements support a common set of properties, and some properties (such as
accState) must describe very different things, depending on the element's role. Servers must implement all
methods of IAccessible that return a property, even those that are not relevant to the element.

UI Automation defines many more properties, some of which correspond to states in Microsoft Active
Accessibility. Some are common to all elements, but others are specific to control types and control patterns.
Properties are distinguished by unique identifiers, and most properties can be retrieved by using a single
method, either GetCurrentPropertyValue or GetCachedPropertyValue. Many properties are also easily
retrievable from the Current and Cached property accessor methods.

A UI Automation provider does not have to implement irrelevant properties, but can simply return a null value
for any properties it does not support. Also, the UI Automation core service can obtain some properties from
the default window provider, and these are amalgamated with properties explicitly implemented by the
provider.

As well as supporting many more properties, UI Automation supplies better performance by allowing multiple
properties to be retrieved with a single cross-process call.

The following table shows the correspondence between properties in the two models.

Microsoft Active Accessibility
property accessor

UI Automation property ID Remarks

get_accKeyboardShortcut AccessKeyProperty or
AcceleratorKeyProperty

AccessKeyProperty takes precedence if both are
present.

get_accName NameProperty

get_accRole ControlTypeProperty See the previous table for mapping of roles to
control types.

get_accValue ValuePattern.ValueProperty

RangeValuePattern.
ValueProperty

Valid only for control types that support
ValuePattern or RangeValuePattern. RangeValue
values are normalized to 0-100, to be consistent
with Microsoft Active Accessibility behavior. Value
items use a string.

get_accHelp HelpTextProperty

accLocation BoundingRectangleProperty

get_accDescription Not supported in UI
Automation

accDescription did not have a clear specification
within Microsoft Active Accessibility, which
resulted in providers placing different pieces of
information in this property.

get_accHelpTopic Not supported in UI
Automation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 73

The following table shows which UI Automation properties correspond to Microsoft Active Accessibility state
constants.

Microsoft Active Accessibility
state

UI Automation property Triggers State
Change?

STATE_SYSTEM_CHECKED For check box, ToggleStateProperty

For radio button, IsSelectedProperty

Y

STATE_SYSTEM_COLLAPSED ExpandCollapseState = Collapsed Y

STATE_SYSTEM_EXPANDED ExpandCollapseState = Expanded or PartiallyExpanded Y

STATE_SYSTEM_FOCUSABLE IsKeyboardFocusableProperty N

STATE_SYSTEM_FOCUSED HasKeyboardFocusProperty N

STATE_SYSTEM_HASPOPUP ExpandCollapsePattern for menu items N

STATE_SYSTEM_INVISIBLE IsOffscreenProperty = True and GetClickablePoint causes
NoClickablePointException

N

STATE_SYSTEM_LINKED ControlTypeProperty = Hyperlink N

STATE_SYSTEM_MIXED ToggleState = Indeterminate N

STATE_SYSTEM_MOVEABLE CanMoveProperty N

STATE_SYSTEM_MUTLISELECTABLE CanSelectMultipleProperty N

STATE_SYSTEM_OFFSCREEN IsOffscreenProperty = True N

STATE_SYSTEM_PROTECTED IsPasswordProperty N

STATE_SYSTEM_READONLY RangeValuePattern.IsReadOnlyProperty and
ValuePattern.IsReadOnlyProperty

N

STATE_SYSTEM_SELECTABLE SelectionItemPattern is supported N

STATE_SYSTEM_SELECTED IsSelectedProperty N

STATE_SYSTEM_SIZEABLE CanResize N

STATE_SYSTEM_UNAVAILABLE IsEnabledProperty Y

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

74 © ISO/IEC 2012 – All rights reserved

The following states either were not implemented by most Microsoft Active Accessibility control servers or
have no equivalent in UI Automation.

Microsoft Active Accessibility state Remarks

STATE_SYSTEM_BUSY Not available in UI Automation

STATE_SYSTEM_DEFAULT Not available in UI Automation

STATE_SYSTEM_ANIMATED Not available in UI Automation

STATE_SYSTEM_EXTSELECTABLE Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_MARQUEED Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_SELFVOICING Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_TRAVERSED Not available in UI Automation

STATE_SYSTEM_ALERT_HIGH Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_ALERT_MEDIUM Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_ALERT_LOW Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_FLOATING Not widely implemented by Microsoft Active Accessibility servers

STATE_SYSTEM_HOTTRACKED Not available in UI Automation

STATE_SYSTEM_PRESSED Not available in UI Automation

For a complete list of UI Automation property identifiers, see UI Automation Properties Overview.

A.6 Events

The event mechanism in UI Automation, unlike that in Microsoft Active Accessibility, does not rely on Windows
event routing (which is closely tied in with window handles) and does not require the client application to set
up hooks. Subscriptions to events can be fine-tuned not just to particular events but to particular parts of the
tree. Providers can also fine-tune their raising of events by keeping track of what events are being listened for.

It is also easier for clients to retrieve the elements that raise events, as these are passed directly to the event
callback. Properties of the element are automatically prefetched if a cache request was active when the client
subscribed to the event.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

© ISO/IEC 2012 – All rights reserved 75

The following table shows the correspondence of Microsoft Active Accessibility WinEvents and UI Automation
events.

WinEvent UI Automation event identifier

EVENT_OBJECT_ACCELERATORCHANGE AcceleratorKeyProperty property change

EVENT_OBJECT_CONTENTSCROLLED VerticalScrollPercentProperty or HorizontalScrollPercentProperty property
change on the associated scroll bars

EVENT_OBJECT_CREATE StructureChangedEvent

EVENT_OBJECT_DEFACTIONCHANGE No equivalent

EVENT_OBJECT_DESCRIPTIONCHANGE No exact equivalent; perhaps HelpTextProperty or
LocalizedControlTypeProperty property change

EVENT_OBJECT_DESTROY StructureChangedEvent

EVENT_OBJECT_FOCUS AutomationFocusChangedEvent

EVENT_OBJECT_HELPCHANGE HelpTextProperty change

EVENT_OBJECT_HIDE StructureChangedEvent

EVENT_OBJECT_LOCATIONCHANGE BoundingRectangleProperty property change

EVENT_OBJECT_NAMECHANGE NameProperty property change

EVENT_OBJECT_PARENTCHANGE StructureChangedEvent

EVENT_OBJECT_REORDER Not consistently used in Microsoft Active Accessibility. No directly
corresponding event is defined in UI Automation.

EVENT_OBJECT_SELECTION ElementSelectedEvent

EVENT_OBJECT_SELECTIONADD ElementAddedToSelectionEvent

EVENT_OBJECT_SELECTIONREMOVE ElementRemovedFromSelectionEvent

EVENT_OBJECT_SELECTIONWITHIN No equivalent

EVENT_OBJECT_SHOW StructureChangedEvent

EVENT_OBJECT_STATECHANGE Various property-changed events

EVENT_OBJECT_VALUECHANGE RangeValuePattern.ValueProperty and ValuePattern.ValueProperty changed

EVENT_SYSTEM_ALERT No equivalent

EVENT_SYSTEM_CAPTUREEND No equivalent

EVENT_SYSTEM_CAPTURESTART No equivalent

EVENT_SYSTEM_CONTEXTHELPEND No equivalent

EVENT_SYSTEM_CONTEXTHELPSTART No equivalent

EVENT_SYSTEM_DIALOGEND WindowClosedEvent

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 13
06

6-2
:20

12

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

	1 Scope
	2 Terms and definitions
	3 General Description and Architecture of the Microsoft Windows Automation API
	3.1 General Description
	3.1.1 Microsoft Active Accessibility Overview
	3.1.1.1 Microsoft Active Accessibility Components
	3.1.1.2 Oleacc.dll
	3.1.1.3 Microsoft Active Accessibility Clients
	3.1.1.4 Microsoft Active Accessibility Servers

	3.1.2 UI Automation Overview
	3.1.2.1 UI Automation Components
	3.1.2.2 UI Automation Model

	3.1.3 The IAccessibleEx Interface

	3.2 Architecture

	4 Using the API
	4.1 Using the Microsoft Active Accessibility API
	4.1.1 Types of Microsoft Active Accessibility Support
	4.1.1.1 Native Microsoft Active Accessibility Implementation
	4.1.1.2 Accessible Object Proxies

	4.1.2 Retrieving an Accessible Object
	4.1.3 The WM_GETOBJECT Message
	4.1.4 Special values of Object Identifier
	4.1.4.1 Using the OBJID_NATIVEOM to expose a native object model interface
	4.1.4.2 Using the OBJID_QUERYCLASSNAMEIDX to enable certain Oleacc proxy

	4.2 Using the UI Automation API
	4.2.1 UI Automation Model
	4.2.2 UI Automation Tree
	4.2.3 UI Automation Control Patterns, Control Types, Properties, and Events
	4.2.3.1 UI Automation Control Patterns
	4.2.3.2 UI Automation Control Types
	4.2.3.3 UI Automation Properties
	4.2.3.4 UI Automation Events
	4.2.3.5 UI Automation Provider Interfaces
	4.2.3.6 Custom UI Automation Properties, Control Patterns, and Events

	4.3 Using the IAccessibleEx Interface
	4.3.1 The IAccessibleEx Interface Implementation
	4.3.1.1 Control Patterns: Overlap between Microsoft Active Accessibility and UI Automation
	4.3.1.2 Properties: Overlap between Microsoft Active Accessibility and UI Automation
	4.3.1.3 Events and the WM_GETOBJECT Message

	5 Exposing User Interface Element Information
	5.1 Exposing UI Elements with Microsoft Active Accessibility
	5.1.1 How an MSAA Server Exposes Relevant Properties
	5.1.1.1 Required Properties
	5.1.1.2 Optional Properties
	5.1.1.3 The Accessible Object Role

	5.1.2 Provide Support for the Accessible Object Structure
	5.1.2.1 The accParent Property of the IAccessible Interface
	5.1.2.2 Exposing Children
	5.1.2.3 The accNavigate Method of the IAccessible Interface

	5.1.3 Support Hit Testing
	5.1.4 Generate Appropriate WinEvents
	5.1.5 Object Identifier
	5.1.6 How MSAA Clients Access Exposed UI Elements

	5.2 Exposing UI Elements with UI Automation
	5.2.1 Types of Providers
	5.2.2 UI Automation Provider Concepts
	5.2.2.1 Elements
	5.2.2.2 Navigation
	5.2.2.3 Views
	5.2.2.4 Frameworks
	5.2.2.5 Fragments
	5.2.2.6 Hosts

	5.2.3 Provider Interfaces
	5.2.4 Property Values
	5.2.5 Provider Navigation
	5.2.6 Provider Reparenting
	5.2.7 Provider Repositioning
	5.2.8 How UI Automation Clients Access Exposed UI Elements

	6 Exposing User Interface Element Actions
	6.1 Exposing User Interface Element Actions in MSAA
	6.2 Exposing User Interface Element Actions in UI Automation
	6.2.1 UI Automation Control Pattern Components
	6.2.2 Control Patterns in Providers and Clients
	6.2.3 Dynamic Control Patterns
	6.2.4 Control Patterns and Related Interfaces

	7 Keyboard Focus
	7.1 MSAA Keyboard Focus and Selection
	7.1.1 Focus and Selection Properties and Methods
	7.1.1.1 Selecting Child Objects
	7.1.1.2 Performing Complex Selection Operations

	7.1.2 Events Triggered in Menus

	7.2 UI Automation Keyboard Focus and Selection
	7.2.1 Focus
	7.2.2 Selection
	7.2.2.1 Item Selection
	7.2.2.2 Text Selection
	7.2.2.2.1 UI Automation Text Pattern Overview
	7.2.2.2.1.1 Manipulating Text Using the TextRange Object
	7.2.2.2.1.2 Manipulations of TextRange
	7.2.2.2.1.3 Text Pattern, TextRange, and Embedded Objects
	7.2.2.2.1.4 Text Pattern and Embedded Table Example
	7.2.2.2.1.5 Text Pattern and Virtualized Embedded Objects
	7.2.2.2.1.6 Leveraging ControlType.Custom in Text Pattern
	7.2.2.2.1.7 Lifetime of TextRange Claimed

	8 Events
	8.1 WinEvents
	8.1.1 USER's Role in WinEvents
	8.1.2 Receiving Event Notifications
	8.1.3 Sending Events
	8.1.4 The Allocation of WinEvent IDs
	8.1.4.1.1 Microsoft Active Accessibility / UI Automation Events (System Reserved Events)
	8.1.4.1.2 OEM Reserved Events
	8.1.4.1.3 Community Reserved Events
	8.1.4.1.4 ATOM (Runtime Reserved Events)
	8.1.4.2 The Use of Reserves

	8.2 UI Automation Events
	8.2.1 How Providers Raise Events
	8.2.2 How Clients Register for and Process Events

	9 Programmatic Modifications of States, Properties, Values and Text
	9.1 UI Automation Design Considerations
	9.1.1 Introduction
	9.1.2 UI Automation Elements
	9.1.3 UI Automation Tree
	9.1.4 UI Automation Properties
	9.1.5 UI Automation Control Patterns
	9.1.6 UI Automation Control Types
	9.1.7 UI Automation Events

	10 Design Considerations
	10.1 UI Automation Design Considerations
	10.1.1 UI Automation Clients
	10.1.1.1 Find UI Automation Elements Based on a Property Condition
	10.1.1.2 Navigate Among UI Automation Elements with TreeWalker
	10.1.1.3 Get UI Automation Element Properties
	10.1.1.4 Subscribe to UI Automation Events
	10.1.1.5 Manipulate a Control by UI Automation

	10.1.2 UI Automation Providers
	10.1.2.1 Implement Core Provider Interfaces
	10.1.2.2 Expose a Server-side UI Automation Provider
	10.1.2.3 Return Properties from a UI Automation Provider
	10.1.2.4 Raise Events from a UI Automation Provider
	10.1.2.5 Enable Navigation in a UI Automation Provider
	10.1.2.6 Support Control Patterns in a UI Automation Provider

	10.1.3 Co-existence and Interoperability with Microsoft Active Accessibility
	10.1.3.1 MSAA-to-UI-Automation Proxy
	10.1.3.2 UI-Automation-to-MSAA Bridge

	10.2 IAccessibleEx Design Considerations
	10.2.1 Design Consideration for Providers before Implementing the IAccessibleEx Interface
	10.2.2 The IAccessibleEx Interface for Providers
	10.2.2.1 Implement the IServiceProvider interface
	10.2.2.2 Implement the ChildId
	10.2.2.3 Implement the IRawElementProviderSimple Interface

	10.2.3 The IAccessibleEx Interface for Clients
	10.2.3.1 Obtain an IAccessibleEx Interface from the IAccessible Interface
	10.2.3.2 Handle the ChildId
	10.2.3.3 Obtain the IRawElementProviderSimple Interface
	10.2.3.3.1 Use Control Patterns

	10.2.3.4 Obtain Property Values
	10.2.3.5 Convert from the IRawElementProviderSimple Interface back to an IAccessible Interface

	11 Further Information
	11.1 Microsoft Active Accessibility and Extensibility
	11.2 UI Automation Extensibility Features
	11.2.1 The Registration of Custom UI Automation Properties, Events, and Control Patterns
	11.2.2 How Clients and Providers Support Custom Control Patterns

