TECHNICAL ISO/IEC
REPORT TR

13066-2

First edition
2012-10-15

Information technology — Interoperability
with Assistive Technology (AT) —

Part 2:
Windows accessibility application
programming interface (API)

Technologies de l'information — Interopérabilité avec les technologies
d'assistance —

Partie 2: Interfacé de programmation d'applications (API) d'a¢cessibilité
Windows

Reference number
ISO/IEC TR 13066-2:2012(E)

©|SO/IEC 2012

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

COPYRIGHT PROTECTED DOCUNMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Contents Page
L oL =7 o o iv
Lo T 11T o) '
1 S o e s e e T e e e e e e e e e e e S s SO 1
2 Terms and definitioNsooo i ssnne et Pan e | s e 1
3 General Description and Architecture of the Microsoft Windows Automation API|............... 7
31 General DescCription ... e e e 7
3.2 N o 3T =Y o (F] - . Y (N 10
4 USIiNG the APl ... b e s e e 12
4.1 Using the Microsoft Active Accessibility API........cccccciinimiinniinnsmpe e o, 12
4.2 Using the Ul Automation API ... S e, 15
4.3 Using the IAccessibleEX INterface.........cocooiiiieeiirrsrccerersce e fetar e e s sne e sme e smee e e femeen s 20
5 Exposing User Interface Element Informationccccccccs8 8 e 24
5.1 Exposing Ul Elements with Microsoft Active Accessibility :.........ccccomiiiicmmincicnnnccccncc e, 25
5.2 Exposing Ul Elements with Ul Automation................cs i e 28
6 Exposing User Interface Element Actions............c..0 i isscccssecer e s ss s ssess s e e e ns s frnnene s s eenns 33
6.1 Exposing User Interface Element Actions in MSAA ... e 33
6.2 Exposing User Interface Element Actions in"ULAutomation...........ccccovriiiriccccccrnnnenncccdfeceeennen, 33
7 Keyboard FOCUS ... s e enr s s e s e nmn e s 36
71 MSAA Keyboard Focus and Selection ...i......cccccciminiimmminnnimessss s e, 36
7.2 Ul Automation Keyboard Focus and-Selectioncccoiicminininiinncsninsnnnnnnssssssessssns foseniniaenns 38
8 Y=Y 3 Y I 45
8.1 L AT LT =Y £ £ N 45
8.2 Ul Automation EVENES ... s e e 47
9 Programmatic Modifications of States, Properties, Values and Textcccccmvrcccnnnccevnniceennn. 49
9.1 Ul Automation DesignConsiderations............cccceriiiicmriinisennnnnrr e fere e 49
10 Design Considerationscccccciiiiiciiieceieriin s csssssrere s s ss s sssmssr s e s e s ss s s s ssssne e s e e sessssssnnnssenssnssssnennnennnnas 52
10.1 Ul Automation.Design Considerations............cccccvemrmriiiiiicsssemennns s ssssssseses e s s ssssssssssssssssss fesssssenseens 52
10.2 lAccessibleEx)Design Considerations.........cccccccccmiiiiinninninress s o, 60
1 Further INfOrMation ... e mnn e e e e s s e e e e e 66
111 Microsoft Active Accessibility and Extensibility............ccoooommiiiiiiccccscccereee e, 66
11.2 Ul Automation Extensibility Features...........ooo i e 66
Anhex A (informative) Microsoft Active Accessibility to Automation Proxy.......ccccccceecmvvrcccnnnec i, 69
Anhex-B (informative) Ul Automation to Microsoft Active Accessibility Bridge.........cccccceecvvnecfevrnnnnennn. 78
Annex C (informative) Ul Automation for W3C Accessible Rich Internet Applications (ARIA)

£ o XY o3 o 1 o o S 83
Annex D (informative) Other Useful APls for Development and Support of Assistive Technologies......87
=1 o 1o Yo =] 1 37/ 94

© ISO/IEC 2012 — All rights reserved iii

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Foreword

ISO (the

International Organization for Standardization) and IEC (the International Electrotechn

ical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC

technical ¢
and non-g
technology|

Internation

The main
Standards
an Internat

In exceptig
that which
publish a T|
every five

Attention ig

bmmittees collaborate in fields of mutual interest. Other international organizations, governme
pvernmental, in liaison with ISO and IEC, also take part in the work. In the field of informa
ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

bl Standards are drafted in accordance with the rules given in the ISO/IEC Directives,Part 2.

task of the joint technical committee is to prepare International Standards-Draft Internatig
adopted by the joint technical committee are circulated to national bodies for voting. Publicatior
onal Standard requires approval by at least 75 % of the national bodies gasting a vote.

nal circumstances, when the joint technical committee has collectéd data of a different kind f
s normally published as an International Standard (“state of the.art®, for example), it may decid
echnical Report. A Technical Report is entirely informative inmnatdre and shall be subject to rev
ears in the same manner as an International Standard.

drawn to the possibility that some of the elements of this document may be the subject of pa

ntal
ion

nal

as

om
P to
iew

ent

gy;

rights. ISOfand IEC shall not be held responsible for identifying-any or all such patent rights.

ISO/IEC TR 13066-2 was prepared by Joint Technical Gommittee ISO/IEC JTC 1, Information technold
Subcommiftee SC 35, User interfaces.

ISO/IEC TR 13066 consists of the following parts, under the general title Information technolog)
Interoperability with Assistive Technology (AT):

— Part 1) Requirements and recommendations for interoperability

— Part 2] Windows accessibility application programming interface (API) [Technical Report]

— Part 3] IAccessible2 accessibility application programming interface (API) [Technical Report]

— Part 4] Linux/UNIX graphical environments accessibility APl [Technical Report]"

— Part 6] Java accessibility API [Technical Report]

1 To be published.

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Introduction

Individuals with a wide range of functional disabilities, impairments, and difficulties require specific technology
to enable computers and software to be accessible to them. This part of ISO/IEC TR 13066 provides
information about the Microsoft® Windows® Automation Frameworks, including Microsoft Active Accessibility,
User Interface (Ul) Automation, and the common interfaces of these accessibility frameworks including the
IAccessibleEx interface specification.

The intent of this part of ISO/IEC TR 13066 is to provide information and application programming interfaces
(ARIs) needed to use these frameworks. A primary goal of this part of ISO/IEC TR 13066"is to ¢nsure that
acdessible software applications can be written in such a way that they are fully compatible with thie Microsoft
Acgessibility APIs available on the Microsoft Windows operating system.

© ISO/IEC 2012 — All rights reserved Vv

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

TECHNICAL REPORT

ISO/IEC TR 13066-2:2012(E)

Information technology — Interoperability with Assistive
Technology (AT) —

1

Thi
asy
def
acd
to

pla

Thi
hur

2
For

21

application programming interface

AP
sta
ang

NO

EX/

mamagement;~diagnostics, graphics and multimedia, networking, security, system services, user inte

acce

2.2

Scope

5 part of ISO/IEC TR 13066 specifies services provided in the Microsoft Windows platform
istive technologies (AT) to interact with other software. One goal of this ‘part of ISO/IEC TR
ne a set of application programming interfaces (APIs) for allowing software applications
essible technologies on the Microsoft Windows platform. Another geal of this part of ISO/IEC 7]

forms.

nan interaction with software systems.

Terms and definitions

the purposes of this document, the following terms and definitions apply.

ndard set of documented.and supported routines that expose operating system programming
services to applications

bssibility.

ac

essibitity

degree to which a computer system is easy to use by all people, including those with disabilities

23

accessible object
part of user interface object that is accessible by Microsoft Active Accessibility

NOTE An accessible object is represented by an IAccessible interface and a Childld identifier.

© ISO/IEC 2012 — All rights reserved

> (API)

to enable
3066 is to
to enable
R 13066 is

acilitate extensibility and interoperability by enabling implementations by multiple vendors pn multiple

5 part of ISO/IEC TR 13066 is applicable to the broad range of ergonomics and how ergonomics apply to

interfaces

r'E An APl is usually a source code interface that an operating system, library, or service provides to support
reqliests made by computer programs.

AMPLE Examples of operating system services that are exposed by APIs include adminigtration and

rfaces, and

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

24

Accessible Rich Internet Applications

ARIA

accessibility framework from W3C that exposes web content to assistive technologies such as screen readers
and speech commanding programs

25

Assistive Technology

AT

technology designed to provide accessibility support to individuals with physical or cognitive impairments or
disabilities

NOTE Assistive Technology can be manifested through both hardware and software.
2.6

Accessibility Toolkit (Linux)

ATK

programmipg support accessibility features in their applications

2.7

automation

replacement of manual operations by computerized methods

NOTE With respect to this part of ISO/IEC 13066, automation is a way to manipulate an application's user interface
from outside the application.

2.8
automation element
object or element that is accessible by the Ul Automation object model

NOTE Similar to accessible objects in Microsoft Active, Accessibility, an automation element in Ul Automgtion
represents g piece or a part of the user interface, such as button, window, or desktop.

2.9
Audio Vide¢o Interleaved
AVI
format that|enables both audio and videe'data in a file container

210
C#
a programmning language designed for building applications that run on the .NET Framework

NOTE 1 C#, which is an_gvolution of C and C++, is type safe and object oriented.

NOTE 2 Because, it is compiled as managed code, it benefits from the services of the common language runtime, Juch
as language interopé€rability, security, and garbage collection.

2.1
callback function

function or procedure that third party or client code supplies to a component, often by passing a function
pointer through the component’s API

NOTE The component may then call this code at specific times. This technique is often used by components to
signal client code that some event has taken place, or to request client code to perform some specific task.

2 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-

212
clients
component that uses the services of another component

NOTE In this part of ISO/IEC 13066, client refers more specifically to a component that uses the services

2:2012(E)

of Microsoft

Active Accessibility or Ul Automation, or both, to access, identify, or manipulate the user interface (Ul) elements of an

application.

213

Common Language Runtime

CLR

Midrosoft's commercial implementation of the Common Language Infrastructure (CLI) specification

NOTE 1 The CLI provides a specification for executable code and the execution environment in whieh_it run

NOTE 2 At the center of the CLI is a unified type system, a virtual execution system, and a.spécification
programming languages to share the type system and compile into a common intermediate language.

21

Component Object Model

CcOoM

object-oriented programming model that defines how objects interagt,'within a single process
processes

NOTE In COM, clients have access to an object through interfaces.implemented on the object.

2.1
content view
suldset of the control view of the Ul Automation tree

NOTE The content view contains Ul items that convey the actual information in a user interface, includ
thaf can receive keyboard focus and some text thatjs:not a label on a Ul item.

2.1p
control pattern
<U| Automation> design implementation that describes a discrete piece of functionality for a control

NOTE This functionality can-include the visual appearance of a control and the actions it can perform.

217
control view
subset of the raw view-of the Ul Automation tree

NOTE The eontrol view includes the Ul items that provide information to the user or enable the user tdg
actipn.

218

enyumerator

S

for multiple

br between

ng Ul items

perform an

object that iterates through Its associated collection

NOTE An enumerator can be thought of as a movable pointer to any element in the collection.
2.19

Global Unique Identifier

GUID

unique reference number used as an identifier in computer software

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

2.20
HWND

unique long integer value that is assigned by Microsoft Windows to the current window, where a window is a

primitive of

2.21

Windows’ Ul management

in-process
<UI Automation> Microsoft Accessibility code that is executed in a target application’s process

accessibilit
as screen

2.23
Java Deve
JDK
collection g

2.24
Java Virtu
JVM
environme

2.25
managed /4
API that, W
machine

EXAMPLE
runtime infrg

NOTE
infrastructur
memory ma

2.26
Microsoft
COM-base
Windows

NOTE
system, as
information

2.27
MSDN

framework for the Java SE platform that exposes Java applications to assistive technologies's
eaders and speech commanding programs
flopment Kit

f programming tools

al Machine

nt in which Java bytecode can be executed

A\PI
hen compiled and run, is under the control of an intermediary runtime infrastructure, like a virj

Microsoft's Common Language Runtime (CER) and the Java Virtual Machine (JVM) are example
structures.

b handles the compilation into machine code. The runtime infrastructure handles programming constructs
hagement.

Active Accessibility
(technology that improves the way accessibility aids work with applications running on Micro

Microsoft Active ‘Accessibility provides dynamic-link libraries (DLLs) that are incorporated into the operg
vell as a COM"interface and application programming elements that provide reliable methods for expo
hbout user interface elements.

Lch

ual

P

of

Managed code is compiled into an interingdiate language construct (for example, byte code) and the runfime

like

ting
bing

Microsoft Developer Network, which is a technical information resource for developers who are using
Microsoft technologies

2.28

Multiple Do

MDI
document i

cument Interface

nterface that allows a window to reside under a parent window

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

2.29

native API

API that, when compiled and run, is not under the control of an intermediary runtime infrastructure such as a
virtual machine or CLR

NOTE Native code compiles directly to machine code, and the developer is responsible for most aspects of
programming constructs (for example, pointers, freeing memory, and so on). Also known as a native API.

2.30

out-of-process
<Ul Automation> Microsoft Accessibility code that is executed in a different process from the target
application’s process

2.3(1
prgviders
<U| Automation> components that expose information about Ul elements

EXAMPLE Such components can be applications, DLLs, and so on

NOTE These include any control, module, or application which implements Ul Automation provider interfgces.
2.3p

raw view

fullftree of Ul Automation element objects in the Ul Automation tree‘for which the desktop is the roo

NOTE The raw view closely follows the native programmatic structure of an application and, therefore] is the most
acclrate view of the Ul structure. It is also the base on which the‘other views of the tree are built

2.3
rogt element
element of the Ul Automation tree that represents' the current desktop and whose child elements$ represent
application windows

NOTE Each of these child elements -cah contain elements representing pieces of Ul such as menus, buttons,
toolpars, and list boxes.

2.34
sernvers
components of Microsoft Active Accessibility that have Ul elements and expose information alyout the Ul
elements and/or allow them to be manipulated

EXAMPLE Such components can be applications, DLLs, and so on.
NOTE A Microsoft Active Accessibility server has the same role as a Ul Automation provider.
2.3p

simple element
<Mjcrosoft Active Accessibility> element that shares an IAccessible object with other peer elements

NOTE A simple element relies on the shared IAccessible object (typically its parent in the object hierarchy) to
expose its properties.

2.36

Services Control Manager

SCM

system process that maintains a database of installed services and driver services, and provides a unified and
secure means of controlling them

NOTE The database includes information on how each service or driver service should be started. It also enables
system administrators to customize security requirements for each service and thereby control access to the service.

© ISO/IEC 2012 — All rights reserved 5

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

2.37

system service

application

NOTE 1

conforming to the interface rules of the Service Control Manager (SCM)

application that uses the service functions

NOTE 2

management, power management, and remote desktop services are examples of services.

It can be started automatically at system boot, by a user through the Services control panel applet, or by an

Services can execute even when no user is logged on to the system. File services, indexing service, memory

ors,

as

2.38

Text Services Framework

TSF

simple and|scalable framework for the delivery of advanced text input and natural language technolpgies
NOTE 1 TSF can be enabled in applications, or as a TSF text service

NOTE 2 A TSF text service provides multilingual support and delivers text services such asrkeyboard process
handwriting fecognition, and speech recognition.

2.39

user interface

ul

mechanisms by which a person interacts with a computer system

NOTE 1 The user interface provides input mechanisms, allowing users to manipulate a system

NOTE 2 t also provides output mechanisms, allowing the system tolproduce the effects of the users’ manipulation.
240

User Interface Automation

Ul Automdtion

UIA

accessibility framework that exposes applications>to software automation or to assistive technologies such
screen reaglers and speech commanding programs

2.4

virtual magchine

VM

computer within a computer, implemented in software

NOTE 1 A virtual machine @mulates a complete hardware system, from processor to network card, in a self-contained,
isolated softjvare environment, €nabling the simultaneous operation of otherwise incompatible operating systems.
NOTE 2 Fach operating system runs in its own isolated software partition.

242

Visual Bagic

VB

generally visual programming environment from Microsoft based on the BASIC programming language
243

Web Accessibility Initiative

WAI

an effort to improve the accessibility of the World Wide Web

244

WinEvents

mechanism that allows servers and the Windows operating system to notify clients when an accessible object
changes

6 © ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-

2.45

World Wide Web Consortium

W3C

standards organization for the World Wide Web

General Description

Microsoft® Windows® Automation APl consists of two accessibility frameworks — Micrg
essibility and User Interface Automation (Ul Automation). The IAccessibleEx interface. 's
grates the two accessibility frameworks.

ciples are similar. The purpose of both is to expose rich information about-the Ul elemer
dows applications. Developers of accessibility tools can use this information™{o help make 4
e accessible to people with vision, hearing, or motion disabilities.

1 Microsoft Active Accessibility Overview
rosoft Active Accessibility is based on the Component Object Medel (COM), which defines a co
applications and operating systems to communicate. The goal.of Microsoft Active Accessibility
tom controls to expose basic information, such as name, location on screen, or type of contro
rmation such as visibility, enabled, or selected.

b accessible object is the central object of Microsoft Active Accessibility and is represer
cessible COM interface and an integer ChildId. It allows applications to expose Ul element
cture that represents the structure of the Ul.<Each element of this tree exposes a set of pro
hods that allow the corresponding Ul element,to be manipulated. Microsoft Active Accessibility
ess the programmatic Ul information threugh a standard API. The following sections describ
ts of Microsoft Active Accessibility, including accessible objects, the WinEvents mechanism, th
ve Accessibility runtime (Oleacc.dIl1Yy and Microsoft Active Accessibility clients and servers.

1.1 Microsoft Active Accessibility Components

rosoft Active Accessibility. contains the following main components:

Accessible Object-—A logical Ul element (such as a button) that is represented by an IAccess
interface and a'Chi1dId value.
— The (DAccessible interface has properties and methods for obtaining information
mdnipulating Ul elements.

€hildId is an identifier for an accessible object that is used together with an IAccessib

2:2012(E)

3 General Description and Architecture of the Microsoft Windows Automation API

soft Active
becification

ough Microsoft Active Accessibility and Ul Automation are two different frameworks, the basic design

ts used in
pplications

mmon way
is to allow
, and state

ted by an
S as a tree
berties and
clients can
e the main
e Microsoft

ible COM

about and

le instance

to refer to a specific Ul element.

WinEvents — An event system that allows servers to notify clients when an accessible object changes.

For more information, see Events.

Oleacc.dl1l- A run-time dynamic-link library that provides the Microsoft Active Accessibility API and the
accessibility system framework. Oleacc.dll also provides proxy objects for the Windows operating

system standard controls.

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

3.1.1.2 Oleacc.dll

The following APIs and functions are included in Oleacc.dll:

— Client APIs — APIs that clients use to request an IAccessible interface pointer (for example,

AccessibleObjectFromX).

— Server APIs— APIs that servers use to return an IAccessible interface pointer to a client (for example,

LresultFromObject).

API FYH 1 L ol PR 4 bl 1 al oy ol LE. 1 I - . B .
— S Ul gy 1ioialiZou 1ITAL TUI e TUIC 4dliu olalc CUUTS (TUI CAdITIVIC, UTLRULITTCTAL

GetStpteText).
— Helpen APlIs (for example, AccessibleChildren).

— Proxieg— Code that provides the default implementation of an IAccessible interface-fon standard U
and COMCTL controls. Because these controls implement the IAccessible interface-on behalf of
system controls, they are known as proxies.

3.1.1.3 Microsoft Active Accessibility Clients

Microsoft Active Accessibility helps accessibility aids, called clients, interact' with standard and custom
elements qf other applications and the operating system. Clients can @ise” Microsoft Active Accessibility
access, idgntify, and manipulate an application's Ul elements. Clients include accessibility aids, automs
testing tools, and computer-based training applications.

Clients mugt know when the server's Ul changes so that infoffnation can be conveyed to the user. They
notified abput changes in the server Ul by registering to receive notifications of specific changes throug
mechanism called Window Events, or WinEvents. For more.information, see Events.

To learn about and manipulate a particular Ul element, clients use a pair consisting of an IAccessi
interface apd a ChildId.

3114 icrosoft Active Accessibility.Servers

Applications that interact with and previde information to clients are called servers. Servers include
control, mqgdule, or application that implements Microsoft Active Accessibility. A server uses Microsoft Ac
Accessibility to provide information about its Ul elements to clients.

3.1.2 Ul Automation Overview

Ul Automation provides-programmatic access to Ul elements on the desktop, enabling assistive technol
products slich as s¢reen readers to provide information about the Ul to end users and to manipulate the U
means other than standard input. Ul Automation also allows automated test scripts to interact with the Ul.]
Ul Automatiofyr Specification is designed so that it can be supported across platforms other than Micro

nd

SER
the

ul
to
ted

are
h a

ble

any
tive

Pgy

lhe
50ft

Windows.

Ul Automation is broader in scope than just an interface definition. Ul Automation provides:

— A set of classes that make it easy for client applications to receive events, retrieve property values, and

manipulate Ul elements.

— A core infrastructure for doing fetch, find, and similar operations efficiently across process boundaries.

— A set of interfaces for providers to express the Ul as a tree structure, along with some general properties.

8 © ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

To

ISO/IEC TR 13066-2:2012(E)

A set of interfaces that providers use to express other properties and functionality specific to
type. These are the control pattern interfaces.

improve on Microsoft Active Accessibility, Ul Automation aims to address the following goals:
Enable efficient out-of-process clients, while continuing to allow in-process access.

Expose more information about the Ul in a way that allows clients to be out-of-process.

the control

Co-exist with and use Microsoft Active Accessibility, but do not inherit problems that exist in Microsoft

The
intd

3.1

u

Aot A HH H W]
r\ouve I_\UU\.'O\JIIJIIIL’ .
Provide an alternative to TAccessible that is simple to implement.

e Microsoft Windows implementation of Ul Automation features COM-based interfaces and
rfaces that are included with the Microsoft .NET Framework.

2.1 Ul Automation Components

Automation has four main components, as shown in the following table:

managed

N
Component Description O

P

pvider API A set of COM interfaces that are impleménted by Ul Automation providers. Ul
providers are objects that provide information about Ul elements and respond to prg
input.

Automation
grammatic

Cl

ent API A set of COM interfaces that enable client applications to obtain information about th
send input to controls.

e Ul and to

UiAutomationCore.dll | The run-time library, someétimes called the Ul Automation core, that handles com

between providers and clients.

munication

Ol

eacc.dll The run-time library for Microsoft Active Accessibility and the proxy objects. The
provides proxy..objects used by the Microsoft Active Accessibility to Ul Automatio
support Win32 controls.

ibrary also
n Proxy to

Ul
clig

3.1
ul

IUI
ele

Automation can be used 10 create support for custom controls by using the provider API, an
nt applications that use.the Ul Automation core to communicate with Ul elements.

2.2 Ul Automation Model

Automations exposes every element of the Ul to client applications as an object represen
AutomationElement interface. Elements are contained in a tree structure, with the desktop

d to create

ted by the
as the root

cre

ment. Clients can filter the raw view of the tree as a control view or a content view. ApplicatioTs can also

ptecustom views.

A Ul Automation element exposes properties of the control or Ul element that it represents. One of these
properties is the control type, which defines the basic appearance and functionality of the control or Ul
element as a single recognizable entity, for example, a button or check box.

In addition, a Ul Automation element exposes one or more control patterns. A control pattern provides a set of
properties that are specific to a particular control type. A control pattern also exposes methods that enable

clie

nt applications to get more information about the element and to provide input to the element.

Ul Automation provides information to client applications through events. Unlike WinEvents, Ul Automation
events are not based on a broadcast mechanism. Ul Automation clients register for specific event notifications
and can request that specific properties and control pattern information be passed to their event handlers. In

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

addition, a Ul Automation event contains a reference to the element that raised it. Providers can improve

performance by raising events selectively, depending on whether any clients are listening.

3.1.3 The lAccessibleEx Interface

Controls that do not have a Microsoft Ul Automation provider, but that implement the Microsoft Active

Accessibility IAccessible interface, can easily be upgraded to provide some Ul Automation functionality
implementing the IAccessibleEx interface. This interface enables the control to expose Ul Automat

by
ion

properties and control patterns, without the need for a full implementation of Ul Automation provider interfaces

such as IRawElementProviderFragment.

The IAccessibleEx interface enables existing applications or Ul libraries to extend their Microsoft ‘Active
Accessibility object model to support Ul Automation without rewriting the implementation from scratch. With

TIAccessibleEx, developers can implement only the additional Ul Automation properties and control pattg
needed to fully describe the Ul and its functionality.

Because the Microsoft Active Accessibility-to-Ul Automation Proxy translates the-ebject models
IAccessipleEx-enabled Microsoft Active Accessibility servers as Ul Automation\ object models,
Automatior) clients do not need to do any extra work. The IAccessibleEx interface can also enable
process Migrosoft Active Accessibility clients to interact directly with Ul Automation providers.

3.2 Architecture

The diagrams in this section show the architectures of Microsoft Active. AcCessibility, Ul Automation, and of

ms

of
Ul
in-

her

related implementations. Applications such as word processing ,programs are called servers in Micropoft

Active Accessibility and providers in Ul Automation because they-sérve or provide information about their u

ser

interfaces [(Ul). Accessibility tools such as screen readers)are called clients in both Microsoft Aclive
Accessibility and Ul Automation because they consume and interact with application Ul information. These

diagrams grovide an overview of each technology and aréenot intended to present highly detailed views of

the

architectur¢ and scenarios of Microsoft Active Accessibility, Ul Automation, and other implementatipns

discussed |n this section.

The system component of the Microsoft Ag¢tive Accessibility framework, Oleacc.dll, aids in
communication between accessibility tools (elients) and applications (servers). The code boundary indica
the programmatic boundaries between applications that provide Ul accessibility information and accessi

the
tes

ility

tools that |nteract with the Ul on behalf of users. The boundary can also be a process boundary when
Microsoft Active Accessibility clientshave their own process.
Accessibijlity Tools g Applications
3 ~
OLEACC.dII [ﬁcw oo MSAA Server
/
'S | N N)
L MSAA Proxies Control Speafic AP 4 USER32 / COMCTRL
|2 J
\

* Also process boundary in case of out of process MSAA Clients.

Figure 1 — Microsoft Active Accessibility

10 © ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

With Ul Automation, the Ul Automation Core component (UIAutomationCore.dll) is loaded into both the
accessibility tools’ and applications’ processes. This component manages cross-process communication, and
it also provides higher level services such as searching for elements by property values.

[
Accessibility Tools : Applications

| 4 N ™
I
| C?Jl:éCRT;;L/ MSAA Server ul

8 Ul Automation ' Automation

L Client Code : %’ ~ = - p Provider

F Y : g - W W — (L

| § Ul Automation Proxies Q'\
| §. - J o
I .

— h 4 | = ~ I {]/ N
| (C)b

Ul Automation Core Nored POS :> Ul Autoy@ion Core

| N

. 1 L. yo X >
| AD

Figure 2 — Ul Automatu@\
N
Usihg the IAccessibleEx interface, applications can im & the accessibility of existing Micrgsoft Active
Acgessibility server implementations. Microsoft Actlve SS|b|I|ty server implementations are ¢xposed to

clig

Accessibility Tools

(

Ul Automation
Cllent Code. (,

)

\

N

Ql

nts via the proxy just as regular Ul Automation i |m

\\\}
¥

Alepuncq 5sa10.4

ntations are.

Applications

MSAA Server

IAccessibleEx
Ul Automation
Provider Interfaces

[$

MSAA-to-UIA Proxy

!

Ul Automation Core

Named sice

Figure 3 — MSAA-to-UIA Proxy enables Ul Automation clients to access Microsoft Active Accessibility
servers

© ISO/IEC 2012 — All rights reserved

11

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

While the MSAA-to-UIA proxy enables Ul Automation clients to access Microsoft Active Accessibility servers,
the UlA-to-MSAA bridge does the inverse. It enables Microsoft Active Accessibility clients to access Ul
Automation providers.

|
Accessibility Tools : Applications
1 I g \
(MSAA Client) | § Ul Automation

| 2 Provider
[§ W,
3
| \ 4
|)

1

OLEACC.dIl COM 7 DCOM UIA-to-MSAA Bridge]

\l |
: Ul Automation Cqorgé
|

*

Also p

focess boundary in case of out of process MSAA Clients.

Figure 4 — UIA-to-MSAA Bridge enables Microsoft Active Accessibility clients to access Ul

4 Using

4.1 Usin

Automation providers

) the API

d the Microsoft Active Accessibility. APl

In Microsoft Active Accessibility, every Ul element’is represented by an IAccessible interface paired with a

ChildID v
exposes
accessibilit]
correspond

An access

hlue. A Ul element represented by such a pair is called an accessible object. An accessible ob|
roperties, including the object's) name, screen location, and other information needed
y aids. The accessible object also provides methods that enable clients to perform an action on
ing Ul element.

ble object that has_simple elements associated with it is also called a parent or container.]

parent is r¢presented by a ChildId value of CHILDID SELF (or O ‘zero’). The children are represented b

non-zero V.
a non-zerq
interface W
on a per-in

For examp

hlue (usually a positive sequential number beginning with 1). Child objects that are represented

ChildId value are called simple elements. Simple elements share the same IAccessi
th their patent, but they are differentiated by the ChildId value. The ChildId assignment is d
stance-of-interface basis, so the IDs must be unique within that context.

ea system list box is represented by a proxy object as an accessible object for the overall list 4

and simple

ect
by
the

he
y a

by
ble
bne

OX,

elements for each list box item. In this case, the accessible object with CHTI DTD SFEIF is calle

d a

parent or container of the list items. The individual objects with non-zero ChildId values are, on the other
hand, called children or list items (contained in the list box).

Simple elements cannot have children of their own. If a Ul element has more than two levels of hierarchy, the
object representation should be structured in multiple levels of accessible objects instead of parent and simple
object pairs.

12

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

4.1.1 Types of Microsoft Active Accessibility Support

Microsoft Active Accessibility servers can have two types of support for accessible objects: native and proxied.
An application's Ul elements determine which type of support is appropriate. Many servers being written today
take full advantage of the system provided proxies. They implement Microsoft Active Accessibility only for
those custom controls that the system does not proxy.

4111 Native Microsoft Active Accessibility Implementation

Ul elements that implement their own accessible objects are said to provide a native implementation. Although
the dcvc!.cpmcnt_ccst for :mplcmc;‘.t:r‘.g eustom :_:cpcss:b!_c objectsean-be h:gh, *thc _bc.".cf:t 15-6oR cte_ c<_)ntrol
over the information exposed to clients. By providing native support, an application is free to innovate in its Ul
whife remaining 100 percent accessible.

If an application uses custom controls or other controls that Oleacc.dll cannot proxy| a native
implementation will need to be provided.

4.1]11.2 Accessible Object Proxies

Acgessible object proxies provide default accessibility information for standard Ul elements: USHR controls,
USHR menus, and common controls from comct132.d11. This default¢Support is available from 0leacc.dl1l,
and it delivers standard Microsoft Active Accessibility support without“additional server developnent work.
Hoyvever, the application has little control over the information that is-exposed.

4.1(2 Retrieving an Accessible Object

Refrieving an accessible object is the first step to establishing communication between accessibiliy tools and
the|target application. Microsoft Active Accessibility €lients can initiate this communication by usingd one of the
follpwing AccessibleObjectFromX functions provided by Oleacc.dll:

~

Function @ Description
N4
AccessibleObjectFromPoint | Retrieves an accessible object from a screen
coordinate.

AccessibleObjectFromWindow | Retrieves an accessible object from a window
handle (HWND).

AccessibleObjectFromEvent Retrieves an accessible object from a WinEvent.

41|13 The-WM_GETOBJECT Message

Both*Microsoft Active Accessibility and Ul Automation send the WM_GETOBJECT message to obtain jnformation
about an accessible Ul object on the desktop. Applications (including accessibility tools or clients) never send
this message directly. It is sent only by the accessibility framework (Oleacc.dll for Microsoft Active
Accessibility or UIAutoamtionCore.dll for Ul Automation) in response to «calls such as
AccessibleObjectFromPoint, AccessibleObjectFromEvent, or AccessibleObjectFromWindow. Ul
components that support either Microsoft Active Accessibility or Ul Automation must handle the message
(WM_GETOBIJECT) correctly.

The return value in response to WM_GETOBJECT depends on whether the window or control that receives the
message implements Microsoft Active Accessibility, Ul Automation, or none of those.

© ISO/IEC 2012 — All rights reserved 13

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

If implementing Microsoft Active Accessibility for the object and also if the dwObjID (1Param) was
OBJID_CLIENT, return the result obtained from LresultFromObject function for the IAccessible
implementation.

If implementing Ul Automation for the object and also if the dwObjID (1Param) was UiaRootObjectId,
return an interface to the Ul Automation provider using UiaReturnRawElementProvider function.

If implementing neither Microsoft Active Accessibility nor Ul Automation, allow the message to pass to
DefWindowProc. The accessibility framework will determine if a proxy is available to the particular Ul

element.

— If dwg

DefWihdowProc. The accessibility framework then will process default providers for standard
elements.

Controls c4
OBJID_NAT

Microsoft

implementations in the preceding list) can coexist by handling both OBJID_CLIENT and UiaRootObjec
accordingly.

Because most Windows common controls and USER controls do not-implement either Microsoft Ac

Accessibilif

accessibility framework (Microsoft Active Accessibility or Ul Automation) checks if a proxy object is availa
for a particylar Ul element. Otherwise, it will provide to the defaultproxy object for the host window object.

4.1.4 Special values of Object Identifier

bjID was neither OBJID CLIENT nor UiaRootObjectId, allow the message to pass
n also use custom values in dwOb3jID to return specific return values or objects to(WM_GETOBJH
and Ul Automation provider

Active Accessibility server implementations

y or Ul Automation, the Ul elements generally don’t handle‘@ WM_GETOBJECT message. Instead,

to
ul

CT.

IVEOM and OBJID_QUERYCLASSNAMEIDX can be used for returning a native object-model interface
or for requgsting a specific 0leacc.dll proxy.

(the first fwo
LId

live
the
ble

41.41 Using the OBJID_NATIVEOM to expose.a native object model interface
If the Ul element supports native object models ©ther than Microsoft Active Accessibility or Ul Automatiop, it
can still expose the custom interface by responding to WM_GETOBJECT with OBJID_NATIVEOM parameter in
dwObjID (¢r 1Param). Use LresultFromObject to wrap the interface. Clients can retrieve the interfacqg by
calling AccgssibleObjectFromWindow function with OBJID_NATIVEOM as the second parameter.
4.1.4.2 Using the OBJID_QUERYCLASSNAMEIDX to enable certain Oleacc proxy
When Micrpsoft Active Accessibility sends a WM_GETOBJECT message with the OBJIDQUERYCLASSNAMEIDX in
the object ID, many standard’USER or common controls (COMCTL) return one of the following values.

USER or common control Return value

Listbox 65536+0

Button 65536+2

Static 65536+3

Edit 65536+4

Combobox 65536+5

Scrollbar 65536+10

Status 65536+11

Toolbar 65536+12

14

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

USER or common control Return value
Progress 65536+13
Animate 65536+14
Tab 65536+15
Hotkey 65536+16
Header 65536+17
Trackbar 65536+18
Listview 65536+19
Updown 65536+22
ToolTips 65536+24
Treeview 65536+25
RichEdit 65536+28

Genperally, only USER and Windows common controls (comct132.d11) return one of the values from the table.
If alwindow returns 0 in response to this message, the window-may be one of the following:

— | A custom control.

— | A control other than one of the controls in the¢previous table.

— | An old version of a system control that doesn't recognize the WM_GETOBJECT message.
Hoyvever, it is possible for the custom control to return a specific return value to enable a USER|or COMCTL

proky object by Oleacc.d1ll. Such eentrols must support all native functions and APIs of the corresponding
system control.

4.2 Using the Ul Automation API

There are two ways of-using Ul Automation: to create support for custom controls by using the prpvider API,
and to create client;applications that use the Ul Automation core to communicate with, and retrieve
infgrmation about)\Ul elements.

4.211 Ul Automation Model

Ul Autemation exposes every element of the UI to cllent appllcatlons as an automatlon element’] that is, an
objec cture, with
the desktop as the root element CI|ents can fllter the raw view of the tree as a control view or a content view.
Applications can also create custom views.

A Ul Automation element exposes properties of the control or Ul element that it represents. One of these
properties is the control type, which defines the basic appearance and functionality of the control or Ul
element as a single recognizable entity, for example, a button or check box.

In addition, a Ul Automation element exposes one or more control patterns. A control pattern provides a set of

properties that are specific to a particular control type. A control pattern also exposes methods that enable
client applications to get more information about the element and to provide input to the element.

© ISO/IEC 2012 — All rights reserved 15

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

NOTE There is no one-to-one correspondence between control types and control patterns. A control pattern may be
supported by multiple control types, and a control may support multiple control patterns, each of which exposes different
aspects of its behavior. For example, a combo box has at least two control patterns: one that represents its ability to
expand and collapse, and another that represents the selection mechanism. However, a control can exhibit only a single
control type.

Ul Automation provides information to client applications through events. Unlike WinEvents, Ul Automation
events are not based on a broadcast mechanism. Ul Automation clients register for specific event notifications
and can request that specific properties and control pattern information be passed to their event handlers. In
addition, a Ul Automation event contains a reference to the element that raised it. Providers can improve

performance by raising events selectively, depending on whether any clients are listening.

The Ul Aut
for elemen
exposed b
necessary

422 Ul

Within the
whose chil
representin
can contair

The Ul Au
thousands
added, mo

Ul Automa
fragment,

concerned
information

Ul Automa
performed;

Raw
which

omation client APl and the Ul Automation core provide services such as tree traversal, search
ts within the tree, and fetching multiple properties from multiple objects. These services
y the client API, and implemented by the core Ul Automation DLL, which runs in-process
fo implement these services on behalf of the client.

Automation Tree

Ul Automation tree there is a root element (RootElement) that represents‘the current desktop
d elements represent application windows. Each of these child elements can contain elems
g components of the Ul such as menus, buttons, toolbars, and list boxes. These elements in {
elements such as list items.

omation tree is not a fixed structure and is seldom seen.invits totality because it might con
of elements. Parts of it are built as they are needed, and () can undergo changes as elements
ed, or removed.

tion providers support the Ul Automation tree by, implementing navigation among items withi
vhich consists of a root (usually hosted in a window) and a subtree. However, providers are
with navigation between these subtrees. This is managed by the Ul Automation core, us
from the default window providers.

fion provides three default views of:{heé Ul tree. These views are defined by the type of filte

iew — The raw view of thé UI'Automation tree is the full tree of the AutomationElement objects
the desktop is the root, The raw view closely follows the native programmatic structure of|

ing
are
as

and
nts
urn

ain
are

n a
not
ing

fing

the scope of any view is defined, by the application. In addition, the application can apply other
filters on properties; for example, to include ‘enly enabled controls in a control view.

for
an

application and therefore is:the most detailed view available. It is also the base on which the other vigws

of the
button
for ele

Contrd
task of

tree are built. Because this view depends on the underlying Ul framework, the raw view of a W
will have a different raw view from that of a Win32 button. The raw view is obtained by search
ments without:specifying properties or by using RawViewWalker to navigate the tree.

/| View-=The control view of the Ul Automation tree simplifies the assistive technology prody
describing the Ul to the end user and helping that end user interact with the application becaus

closely
includ

maps to the Ul structure perceived by an end user. The control view is a subset of the raw viey

PF
ing

ct's
e it
v. It

S all Ul'ltems 1rom the raw view that an end user would undersiand as Interactive or contributin

to

the logical structure of the control in the Ul. Examples of Ul items that contribute to the logical structure of
the Ul, but are not interactive themselves, are item containers such as list view headers, toolbars, menus,
and the status bar. Non-interactive items used simply for layout or decorative purposes will not be seen in
the control view. An example is a panel that was used only to lay out the controls in a dialog box but does
not itself contain any information. Non-interactive items that will be seen in the control view are graphics
with information and static text in a dialog box. Non-interactive items that are included in the control view
cannot receive keyboard focus. The control view is obtained by searching for elements that have the
IsControlElement property set to true, or by using ControlViewWalker to navigate the tree.

16

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

Ul

MSJAA IAccessible interface.

4.2

A
intd

Co
of f

The

ISO/IEC TR 13066-2:2012(E)

Content View — The content view of the Ul Automation tree is a subset of the control view. It contains Ul

items that convey the true information in a Ul, including Ul items that can receive keyboard
some text that is not a label on a Ul item. For example, the values in a drop-down combo box

focus and
will appear

in the content view because they represent the information being used by an end user. In the content

view, a combo box and list box are both represented as a collection of Ul items where one,
more than one, item can be selected. That one is always open and one can expand and

or perhaps
collapse is

irrelevant in the content view because it is designed to show the data, or content, that is being presented

to the user. The content view is obtained by searching for elements that have the IsConte
property set to true, or by using ContentViewWalker to navigate the tree.

Automation support for control patterns, properties, and events goes beyond the support prov

3.1 Ul Automation Control Patterns

ontrol pattern describes Ul attributes and functionality or features of a user interface eleme
rface with properties and methods.

ntrol patterns support the methods, properties, events, and relationships needed to define a dis|
Linctionality available in a control.

The methods allow Ul Automation clients to manipulate the control.

The properties and events provide information abolt the control pattern's functionality,
information about the state of the control.

Control pattern interfaces provide properties<and methods for discovering more functionality
underlying control. Grouping them togéther through a special-purpose APl (GetPattg
distinguishes them from other non-Ul centric interfaces.

ntElement

ded by the

nt. It is an

crete piece

as well as

about the
brnProvider)

e Ul Automation framework obtains_a\control pattern interface by using the GetPatternProvider function
of {he IRawElementProviderSimple,interface. Through the framework, clients can query a con

trol for the

corjtrol patterns that it supports and then interact with the control through the properties, methods, ¢vents, and
stryctures exposed by the supported control patterns. For example, for a multiline edit box, Ul Automation
proyiders implement IScrollProvider. When a client knows that an AutomationElement supports the
ScrfollPattern control ;pattern, it can use the properties, methods, and events exposed by that control
patfern to manipulate the-control, or access information about the control.
The following table provides examples of the functionality represented by different control patterns.

Functiork@ Control Pattern

Ability/tobe checked / unchecked Toggle

Abilityto have numeric value set RangeValue

Ability to have text value set Value

Ability to be moved / resized Transform

Ability to show or hide information ExpandCollapse

© ISO/IEC 2012 — All rights reserved

17

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following table describes the Ul Automation control patterns.

Control Pattern

Description

Dock

Used for controls that can be docked in a docking container. For example, toolbars or tool
palettes.

ExpandCollapse

Used for controls that can be expanded or collapsed. For example, menu items in an
application such as the File menu.

Grid Used for controls that support grid functionality such as sizing and moving to a specified cell.
For example, the “large icon view” in Windows Explorer, or simple tables without headers in
Microsoft Word.

Gridltem Used for controls those have cells within grids. The individual cells should support) the
Gridltem control pattern; for example, each cell in the “details” view in Microsoft Windows
Explorer.

Invoke Used for controls that can be invoked, such as a button.

ItemContainer

Used for controls that hosts a number of children that may be virtualized.

LegacylAccgssible

Used for controls that have legacy |Accessible implementations, whichyis supported by a
built-in proxy of the UlAutomationCore.dll

MultipleVie Used for controls that can switch between multiple representations of the same set |of
information, data, or children; for example, a list view control where data is available|in
thumbnail, tile, icon, list, or detail views.

RangeValug Used for controls those have a range of values that~can be applied to the control; for
example, a spinner control containing years mightChave a range of 1900 to 2010, while
another spinner control presenting months would have a range of 1 to 12.

Scroll Used for controls that can scroll; for example, a-control that has scroll bars that are active
when there is more information than can be-displayed in the viewable area of the control.

Scrollltem Used for controls those have individual it€éms in a list that scrolls; for example, a list contfol
that has individual items in the scroll listk.such as a combo box control.

Selection Used for selection container controls; for example, list boxes and combo boxes.

Selectionltgm

Used for individual items in Selection container controls, such as list boxes and compo
boxes.

SynchronizgdInput

Used for Ul framework_that supports synchronization of input (such as mouse or keybogrd
input) simulation so that programs can direct the action to specific Ul components accurate]y.

Table Used for controls/that have a grid as well as header information; for example, Microspft
Excel® worksheets.

Tableltem Used for items’in a table.

Text Used for\edit controls and documents that expose textual information.

Toggle Used-for controls whose state can be toggled; for example, check boxes and some mehu
items that can be selected.

Transform Used for controls that can be resized, moved, and rotated. Typical uses for the Transfofm
control pattern are in designers, forms, graphical editors, and drawing applications.

Value Used for controls that sustains a data. Value control pattern allows clients to get or se{ a

value (data) on controls that do not support a range of values; for example, an edit control.

Virtualizeditem

L £ H™Y L A ol $ 3 $oi oot e tlao 14 Fa toi ooy | 44
USTUTUN a virtudallZTU UUJTLLITT a LUTTIan il uidt SUPpPUTLo T ICTmouriainict CUTNTurur patictit.

Window

Used for controls that provide fundamental window-based functionality within a tradition
graphical Ul. For example, a control that supports the Window control pattern can be moved
or maximized for the application's window concept.

Ul Automation providers
supported by the control.

implement control patterns to expose the appropriate behavior for a specific function

Ul Automation clients access methods and properties of Ul Automation control pattern classes and use them
to get information about the Ul, or to manipulate the Ul.

18

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

4.2.3.2 Ul Automation Control Types

The Ul Automation control types are well-known identifiers that can be used to indicate what kind of control a
particular element represents, such as a combo box or a button. Each control type has a set of conditions that
a control must meet in order to use the ControlType property. The conditions include specific guidelines for
the Ul Automation tree structure, Ul Automation property values, control patterns, and Ul Automation events.

Having a well-known identifier makes it easier for assistive technology devices to determine what types of
controls are available in the Ul and how to interact with the controls. The control types included with Ul
Automation provide a much more comprehensive set of identifiers for indicating controls than Microsoft Active
Accessibility accRole values

While control type specifications define a set of requirements and recommendations, applicatiens and controls
car] add more control patterns or properties while they can still use predefined control types!

The LocalizedControlType property is a localized description of the control type,-stch as “butfon” for the
Bufton control type. The string can be used by the client application to report the UKinformation to the users in

combination with other Ul Automation properties such as Name. For example, scréen readers may say “OK
butfon,” which can be combination of “OK” from the Name property and “button” | from the
LodalizedControlType property. Controls and applications should never‘include control type infprmation in
the|Name property. Otherwise, it will conflict with the control type information.

Whien LocalizedControlType is not specified, the Ul Automation framework will provide the defaylt localized
string according to the desktop Ul language based on the control’'s ControlType property. If a control
sugplies a known ControlType (see the list below), then. it does not need to separately [implement
LodalizedControlType because Ul Automation will supply the corresponding string automatically].

A dustom control can supply unique localized values‘that may differentiate the element from other controls
while the control can still share the same ControlType value for the baseline expectations| Required,
recommended, or prohibited control patterns and properties are defined by each control type specif|cation.
The current set of control types consists of thefollowing:

e | Button Image Spinner

e | Calendar List Split Button

e | Check Box List ltem Status Bar

e | Combo Box Menu Tab

o | Data Grid Menu Bar Tab ltem

e | Data ltem Menu Item Table

e | Document Pane Text Thumb

o [Edit Progress Bar Title Bar

e | Group Radio Button ToolTip

e Header Scroll Bar Tree ltem

e Header ltem Separator Window

e Hyperlink Slider

© ISO/IEC 2012 — All rights reserved 19

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

4233

Ul Automation Properties

Ul Automation has two main types of properties:

— Automation element properties — properties that are applicable to most controls. Examples include Name,

Enabled,

and LabeledBy. These properties are exposed

IRawElementProviderSimple.GetPropertyValue and are of type AutomationProperty.

through

Control pattern properties — properties that are specific to the functionality represented in the different

control patterns interfaces. Each control pattern interface exposes a corresponding set of control pattern

prope

Every prop
and diagn(
however, d
they want t

Automatio

s
1S5~

erty is identified by a number and a name. The names of properties are used only for debugd
sis. Providers use the numeric IDs to identify incoming property requests. Client_applicatig
nly use AutomationProperty, which encapsulates the number and name, to identify propern
D retrieve.

nProperty objects representing particular properties are available as fields ih. various classes.

security reasons, managed Ul Automation providers obtain these objects from a separate set of classes

are contain

4.2.3.4

ed in UTAutomationTypes.dll.

I Automation Events

Ul Automation providers raise events to notify clients of important changes in the Ul. Clients register

relevant eV
For more in

4.2.3.5

Ul Automa
the same

structure, f
clients, but
Active Accd

IRawElemg
element. I
when an
GetPatten
implement
provide ad

4.2.3.6

The Ul Aut

ents and implement event handling methods to receive and process the events when they oc
formation, see Events.

JI Automation Provider Interfaces

ion provider interfaces can be implemented. by managed or nativeproviders. The interfaces exp

ing
ns,
ties

For
hat

for
Cur.

pse

basic information as the Microsoft Actie Accessibility IAccessible interface (locations, {ree

pcus and hit testing support). Code that implements these interfaces is visible to Ul Automa
is also made available as IAccessible implementations for in-process or out-of-process Micro
essibility clients.

ntProviderSimple is the'.€ore interface that Ul Automation providers use to represent a
includes methods that éxpose whether the implementation is a proxy, and methods to exp
HWND is contained ‘within an element. It also includes the GetPropertyValue
nProvider methodS:that clients use to get property and control pattern values. Providers can 3
the IRawElementProviderFragment and IRawElementProviderFragmentRoot interfaces
litional functionality for complex controls.

Custom Ul Automation Properties, Control Patterns, and Events

omation framework specification defines a comprehensive set of control patterns, properties,

events. Th{

ion
50ft

Ul
Dse
and

Iso
to

and

p Microsoft Windows implementation of Ul Automation includes the complete set of items define

d in

the framework specification, and also offers a way to extend the set by registering custom control patterns,
properties, and events. In the current implementation for native code, applications are required to register
custom Ul Automation properties, control patterns, and events before they can be used. For more information,
see Further information.

4.3 Using the IAccessibleEx Interface

The IAccessibleEx interface allows existing Microsoft Active Accessibility implementations to add support for
Ul Automation properties and control patterns. This is done by defining scenarios and specifications for the
IRawElementProviderSimple and IAccessibleEx interfaces that are specific to Microsoft Active
Accessibility servers. Existing Microsoft Active Accessibility implementations can take advantage of the work
they have already done in creating their existing implementation.

20 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

IRawElementProviderSimple provides access to Ul Automation’s control patterns and properties and is
used as the interface that represents the Ul Element. The IRawElementProviderSimple and
IAccessibleEx interfaces are implemented on the same object, and QueryInterface used to go from one to
the other.

IAccessibleEx handles IAccessible bridging issues, such as child IDs, and any other issues in allowing an
IAccessible element to be treated as an automation element of a Ul Automation object.

In summary:

Simple (to

— | Existing Microsoft Active Accessibility clients can use the IRawElementProviderSimple and
IAccessibleEx interfaces to access Ul Automation properties and control patterns.

— | New WinEvents constants are defined to represent events from those implementations that are extended
by IAccessibleEx implementations.

43|11 The lIAccessibleEx Interface Implementation
Implementing IAccessibleEx is a stepping stone for existing Microsoft Active Accessibility serverg to support
Ul Automation provider interfaces (for example, IRawElementProviderSimple). The advantage of this is that

exigting accessible object implementations are reused, including IAccessible properties, the|accessible
object tree structure, and WinEvents. New code is added only.for newly exposed functionality or fegtures.

4.3|1.1 Control Patterns: Overlap between Microsoft Active Accessibility and Ul Automation

The following control patterns do not exist in_Microsoft Active Accessibility, so they can be ysed in an
IAdcessibleEx implementation:

— | Dock control pattern

— | Expand Collapse control pattern
— | Grid control pattern

— | Grid Item contrel:\pattern

— | Multiple View.control pattern
— | Range Malue control pattern

— | Sgroll control pattern

— Scroll Item control pattern

— Synchronized Input control pattern
— Table control pattern

— Table Item control pattern

— Transform control pattern

© ISO/IEC 2012 - All rights reserved 21

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

In the case of the RangeValue and Transform control patterns, some methods overlap between the Ul
Automation (UIA) control pattern and Microsoft Active Accessibility methods. For example, both the
get_accValue and put_accValue methods in MSAA and the RangeValue control pattern Value and
SetValue methods in UIA must be implemented. Internally, an implementation can share code for these
Microsoft Active Accessibility and Ul Automation methods. The requirement to implement both Microsoft
Active Accessibility and Ul Automation implementations avoids having a partial implementation of a control
pattern interface while keeping the IAccessible interface usable by existing Microsoft Active Accessibility
clients.

The following Ul Automation control patterns are not required when the control has one of the roles outlined

H . k. PN Laoitl ctadl if] %
belOW. Oth T VWIOT, lIIUy E=LILASAC LV I v i v] UI\HII\JIlIy SUPMUTICU T 11T varit.

N
Ul Automation Control Pattern Microsoft Active Accessibility Role q/Q

InvokePattern ROLE_SYSTEM_PUSHBUTTON,

ROLE_SYSTEM_MENUITEM,
ROLE_SYSTEM_BUTTONDROPDOWN,
ROLE_SYSTEM_SPLITBUTTON,

and any other role where accDefaultAction is nothull.

Selection|temPattern ROLE_SYSTEM_LISTITEM,
ROLE_SYSTEM_RADIOBUTTON

SelectionPattern ROLE_SYSTEM_LIST
TogglePattern ROLE_SYSTEM_CHECKBUTTON
ValuePatfern ROLE_SYSTEM_TEXT (wheniit is not read-only),

ROLE_SYSTEM_PROGRESSBAR,
ROLE_SYSTEM_COMBOBOX,
and any other role'when accValue is not NULL.

WindowPattern Automatically.supported on top-level Win32 HWNDs.

4.3.1.2 Properties: Overlap between Microsoft Active Accessibility and Ul Automation

The following Ul Automation properties do not have a corresponding property in Microsoft Active Accessibllity.
These Ul Automation propertiesican be used in an IAccessibleEx implementation:

— AutomptionId
— AriaPfoperties

— AriaRple

— ClassName

— ClickablePoint
— ControllerFor
— Culture

— DescribedBy

— FlowsTo

22 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

FrameworkId
IsContentElement
IsControlElement
IsDataValidForForm

IsRequiredForForm

Thd
pro

ItemStatus

ItemType

LabeledBy
LocalizedControlType
Orientation

following Ul Automation element properties have some overlap’ with Microsoft Active A

perties, so they can be used in an IAccessibleEx implementation; with the following exceptions:

AcceleratorKey and AccessKey — These properties overlap with the Microsoft Active A
accKeyboardShortcut property, but can be provided*if a control has both an access k
accelerator (a shortcut key).

ccessibility

D.

ccessibility
ey and an

— | ControlType — This property overlaps with thesMicrosoft Active Accessibility accRole property, but it can
be used to provide more specific control type information.
The following table lists UIAutomation element properties that are already covered by Micrgsoft Active
Acgessibility properties, so they do not need to be used in an IAccessibleEx implementation:
Ul Automation Property \E\Q Microsoft Active Accessibility Property
Rect BoundingRectangle acclLocation
Hool HasKeyboardFaecus accState, STATE_SYSTEM_FOCUSED
Hool IsEnabled accState, STATE_SYSTEM_UNAVAILABLE
Hool IsKeyboardFocusable accState, STATE_SYSTEM_FOCUSABLE
Hool IsPassword accState, STATE_SYSTEM_PROTECTED
tring HelpText accHelp
string Name accName
int NativeWindowHandle WindowFromAccessibleObject
bool IsOffscreen accState, STATE_SYSTEM_INVISIBLE/OFFSCREEN
int ProcesslId Provided by core UIA
int [] RuntimeId Provided by core UIA
© ISO/IEC 2012 — All rights reserved 23

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

4.3.1.3 Events and the WM_GETOBJECT Message

When extending a Microsoft Active Accessibility implementation with TAccessibleEx, raising and handling
events is done in the same way as with Microsoft Active Accessibility clients and servers. TAccessibleEx
clients handle WM_GETOBJECT messages, and servers use NotifyWinEvent to raise events.

In addition to the events defined for IAccessible, the following Ul Automation event identifiers may be used
with an IAccessibleEx implementation.

Ul Automation Events Microsoft Active Accessibility Events
IsEnabledPropertyChangedEvent EVENT_OBJECT_STATECHANGE
ItemStatusPropertyChangedEvent n/a
Expand@ollapseExpandCollapseStatePropertyChangedEvent | EVENT_OBJECT_STATECHANGE
MultipleViewCurrentViewPropertyChangedEvent n/a
ScrollHorizontallyScrollablePropertyChangedEvent n/a
ScrollHorizontalViewSizePropertyChangedEvent n/a
ScrollVYerticallyScrollablePropertyChangedEvent nfa
ScrollVYerticalViewSizePropertyChangedEvent n/a
ToggleToggleStatePropertyChangedEvent EVENT_OBJECT_STATECHANGE
ScrollKlorizontalScrollPercentPropertyChangedEvent EVENT_OBJECT_CONTENTSCROLLED
ScrollVYerticalScrollPercentPropertyChangedEvent EVENT_OBJECT_CONTENTSCROLLED

For events that have a Microsoft Active~Accessibility EVENT_OBJECT_<value> associated with them,
IAccessibleEx implementations should raise both the MSAA event and the listed Ul Automation event. This
allows IAccessible clients to receive @vents, but it also communicates more detailed information to other
clients.

5 Exposing User Interface Element Information
Servers cgmmunicate€ with clients by sending event notifications (such as calling NotifyWinEvent) and

responding to client.requests for access to Ul elements (such as handling WM_GETOBJECT messages). Seryers
expose information about a Ul element through the IAccessible interface.

Using Microsoft Active Accessibility, a server application can:

— Provide information about its custom user interface objects and the contents of its client windows.

— Send notifications to clients when a change occurs in the user interface. Interested clients can then use
MSAA to find out the details of the changes.

For example, to enable a user to select commands verbally from a word processor custom toolbar, a speech
recognition program must have information about that toolbar. The word processor would therefore need to
make that information available. Microsoft Active Accessibility provides the means for the word processor to
expose information about its custom toolbar and for the speech recognition program to get that information.

24 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

A server’'s implementation of the IAccessible interface exposes a set of properties and methods to clients,
including:

5.1 Exposing Ul Elements with Microsoft Active Accessibility

In Microsoft Active Accessibility, information about Ul elements is exposed by Active Accessibility servers. A
server uses Microsoft Active Accessibility to provide information about its Ul elements to clients. Any control,
module, or application that uses Microsoft Active Accessibility to expose information about its user interface is
considered to be a Microsoft Active Accessibility server.

— | Exposes relevant properties;

— | Supports navigation among Ul elements;
— | Supports hit testing;

— | Generates appropriate WinEvents.

Depending on the application's design and implementation, some of these requirements may be $atisfied by
the|Microsoft Active Accessibility default support.

5.111 How an MSAA Server Exposes Relevant Properties
The IAccessible interface offers a set of properties and-methods that support Ul features of, and jnformation
abqut, the corresponding accessible object. Not alk IAccessible interface properties and mgthods are
relgvant for all Ul elements. The properties supported.by an object vary depending on the type of |Ul element

the| object represents. If an object does not suppéert a particular IAccessible property or methog, it should
retyrn the standard COM error DISP_E_MEMBERNOTFOUND.

5.111.1 Required Properties
Sefvers must support the following properties and methods for every object:

— | Name (this may be blank-if,.for example, there is always one and only one instance of a Ul object such as
a status bar or tool bar)

— | Role
— | State
— | Location (and IAccessible::accHitTest)

— | Rdpent (and IAccessible: :accNavigate)

— ChildCount

The following properties must be supported if they are applicable to the object:
— KeyboardShortcut

— DefaultAction (and IAccessible: :accDoDefaultAction)

— Value

© ISO/IEC 2012 — All rights reserved 25

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following properties must be supported if the object has children:

Child

Focus

Selection (and IAccessible::accSelect), only if the object also supports the concept of selection.

5.1.1.2 Optional Properties

The following properiies are optional, but they provide useful informafion about the object. In particular, [the
Descriptilon property should be supported to describe bitmaps and other visual elements:

— Descrijiption

— Help gqrHelpTopic

5.1.1.3 The Accessible Object Role

Clients refrieve an object's role by calling IAccessible::get_accRole, Wwhich returns a pre-defiped
accessible| object role constant such as ROLE_SYSTEM_PUSHBUTTON forsa~button control. Clients [call
GetRoleTgxt retrieve a localized string that describes the object's role.)All accessible object roles |are
predefined

5.1.2 Prgvide Support for the Accessible Object Structure

In Microsoft Active Accessibility, user interface elements are.represented as a hierarchy of accessible obje[ts.
The clienty navigate from one accessible object to another using interfaces and methods available from an
accessible jobject.

The hieranchy of an accessible object is represented by accParent and accChild properties of [the
IAccessible interface. The IEnumVARIANT intefface of the accessible object can be also used. The optignal
method acgNavigate can offer additional navigation among accessible objects.

5.1.2.1 The accParent Property of the IAccessible Interface

The IAccepsible interface exposes the hierarchical relationships between objects. Clients can navigate flom
a child objgct to its parent objeCt-by calling IAccessible: :get_accParent.

This applies only to elements that have fully implemented IAccessible interfaces. For child elements, thpse
that are represented by'an IAccessible along with a non-zero ChildId value, the parent element is simply
the IAccegqsible used'with a ChildId of CHILDID SELF.

51.2.2 Exposing Children

Severs can expose children of an accessible object in one of two ways, using whichever technique the server
decides is most appropriate. Clients must be able to deal with any server, so while a server can chose how to
expose its children, any client must be able to deal with both approaches.

In the first option, a server can expose its children by implementing IEnumVARIANT on the same object that
implements IAccessible. This interface allows a client to request children using the TEnumVARIANT: :Next
method. This returns a VARIANT for each child requested. This VARIANT may be either an integer (VT_I4) or
an IDispatch pointer (VT_DISPATCH). If an IDispatch pointer is returned, the client can use
QueryInterface to convert it to an IAccessible, and use it with CHILDID_SELF to represent the child Ul
element. If an integer is returned, the client must call get_accChild with that VARIANT as a parameter to
determine whether the child has its own IAccessible implementation. If get_accChild returns a non-NULL

26 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

IDispatch pointer, the client can use QueryInterface to convert it to an IAccessible interface pointer;
otherwise, the integer value must be used with the original parent TAccessible to represent the object.

In the second option, a server can choose not to implement TEnumVARIANT. In this case, it must assign
ChildID values to its children starting at 1, and incrementing up to the value returned by the accChildCount
property. Because the object’s children can be either full IAccessibles or simple elements, a client must call
get_accChild with each possible ChildId value to check if a full IAccessible exists for a given ChildId.

Clients that need to enumerate the children of an accessible object must start by checking whether the object

initi
and,
IAq
sed
cor|

al state The cllent should then caII IEnumVARIANT Next to retneve VARIANTs representlng i

for each integer VARIANT returned, use get_accChild to check if the child has a corresy
cessible. If and only if IEnumVARIANT is not supported, the client can assume that ChildID
uential starting at 1, and should call get_accChild with each value to check lif the ¢
responding full IAccessible.

Nofe that if a server implements IEnumVARIANT and only returns IDispatch values, it is possible 1

to 4
this

5.1

Wh
clig]
hov
grig

The
the

log
obj

51
Mig

spHg
IAq

xpose children without ever using ChildID values (other than CHILDID SEiF). For some types
may be the simplest approach to adopt.

2.3 The accNavigate Method of the IAccessible Interface

ile it is optional, the accNavigate method can offer navigatien' relative to the on-screen locati
nts can use accNavigate to navigate from an accessible_object to its left, right, up, or down.
vever, this form of navigation is rarely meaningful to anénd user unless the Ul elements are ar
structure.

functionality is already addressed by the IEnumVARIANT interface, and accNavigate is optid
cal navigation as well. The system (Oleacc.d11l) does not rely on accNavigate to support an
pct structure.

3 Support Hit Testing

rosoft Active Accessibilitysuses hit testing to retrieve an IAccessible object for the Ul el
cified screen location. \The AccessibleObjectFromPoint function relies on proper
cessible: :accHitTest to find the appropriate Ul element. Therefore, all visual Ul elements m

q

3

hit festing through theaccHitTest method.

5.1

Self
win|

4 Generate Appropriate WinEvents

ver developers need to ensure that appropriate WinEvents are generated for all Ul element
dowg¢based Ul elements, windowless Ul elements, and Ul elements with highly customized behg

Thé—indows—tSER-component-providesdefautt-WinEvent-stupport-for-standard,Hnkp-based-t1

b accNavigate method also features logical navigation (first child, last child, next and previous);

|mplements IEnumVARIANT. If IEnumVARIANT is supported the client should use the IEnumVARIANT :Clone

eset to the
e children
onding full
values are
hild has a

or a server
of servers,

bn. That is,
n practice,
anged in a

however,
nal for the
accessible

ement at a
upport for
ust support

5, including
vior.

elements.

Because USER generates these events automatically, servers need to generate events only for custom
controls, windowless elements, or controls whose events are not already generated by USER.

To send an event, servers call NotifyWinEvent and pass the event constant, an identifier (object ID) for the
object, and the HWND of a window that can respond to client requests for more information. The events that
need to be raised vary according to the type of Ul element.

© ISO/IEC 2012 — All rights reserved

27

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

5.1.5 Object Identifier

Object identifiers are 32-bit values that identify a type of accessible object within an application. The
identification is also used by Microsoft Active Accessibility servers and Ul Automation providers to switch
return values in response to a WM_GETOBJECT message.

Clients receive these values in their WinEventProc callback function and use them to identify parts of a
window. Servers also use these values to identify the corresponding parts of a window when calling

NotifyWinEvent or when responding to a WM_GETOBJECT message.

Servers capndefine custom ahject IDs to idnntif\/ ather categaries of objects within their applications Custom

object IDs must be assigned positive values because Microsoft Active Accessibility reserves zero and all

negative vdlues to use for the standard object identifiers.

5.1.6 How MSAA Clients Access Exposed Ul Elements

A Microsoff Active Accessibility client must be notified when the server Ul has changed so:that the client pan

retrieve information about the changes and render the information to the user. To ensure that the client is

informed gbout Ul changes, MSAA uses a mechanism called Window Events;{or WinEvents, to pgss

notificationg from servers to clients. For more information, see WinEvents.

To learn about and manipulate a particular Ul element, clients use the IAccessible interface. A client fan

retrieve an|IAccessible interface for a Ul element in the following four ways!

— Call the AccessibleObjectFromWindow function and pass the Ukelement's window handle.

— Call the AccessibleObjectFromPoint and pass a screen’ location that lies within the Ul elemept's
bound|ng rectangle.

— Set a WinEvent hook, receive a notification, and then call AccessibleObjectFromEvent to retrievel an
IAccepsible interface pointer for the Ul element that generated the event.

— Call gn IAccessible method such as\“accNavigate or get_accParent to move to a diffefent
TAccepsibleobject.

5.2 Exppsing Ul Elements with-tUl’Automation

In Ul Autdmation, information_about user interface elements is exposed by Ul Automation providers| In

general, each control or other-distinct element in a user interface is represented by a provider. The provider

exposes information about the element and optionally implements control patterns that enable the cllent

application|to interact with.the control.

5.2.1 Types of Providers

Ul Automatiom providers fall into two categories: client-side (or proxy) providers and server-side providers.

Proxy providers are implemented by Ul Automation clients to communicate with an application that does not
support, or does not fully support, Ul Automation. Typically, proxy providers communicate with the server
across the process boundary by sending and receiving Windows messages.

Server-side providers are implemented by custom controls or by applications that are based on a Ul
framework that does not support Ul Automation natively. Server-side providers communicate with client
applications across the process boundary by exposing Component Object Model (COM) interfaces to the Ul
Automation core, which services requests from clients.

28 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

5.2.

ISO/IEC TR 13066-2:2012(E)

2 Ul Automation Provider Concepts

This section provides brief explanations of some of the key concepts you need to understand in order to
implement Ul Automation providers.

5.2.

2.1 Elements

Ul Automation elements are pieces of the Ul that are visible to Ul Automation clients. Examples include
application windows, panes, buttons, tooltips, list boxes, and list items.

5.2

ul
ong
pari

5.2

Ac
con
res
Co

5.2

A f
For
Aut

Co
the
Pre
the

Thd
mig

HWND.

5.2
A d

noqg
son

5.2

2.2~ Navigation

Automation elements are exposed to clients as a tree. Ul Automation constructs the tree by havi
element to another. Navigation is enabled by the providers for each element, each ofwhich ma

ent, siblings, and first and last children.

2.3 Views

ient can see the Ul Automation tree in three principal views. Raw view.€ontains all elements, d

bonsibility of the provider implementation to define an element as. a.content element or a contr
htrol elements may or may not also be content elements, but all eentent elements are control ele

24 Frameworks

amework is a component that manages child controls;hit-testing, and rendering in an area of
example, a window, often referred to as an HWND{ can serve as a framework that contains
omation element such as a menu bar, a status bar;and buttons.

ntainer controls such as list boxes and tree-~views are considered to be frameworks, because t
r own code for rendering child items, and performing hit-testing on them. By contrast,
sentation Foundation list box is not a framework, because the rendering and hit-testing is being
containing window.

2 Ul in an application can be.made up of different frameworks. For example, an HWND in an
ht contain Dynamic HTML{BHTML) which in turn can contain a component such as a comb

2.5 Fragments

omplete subtree of elements from a particular framework is called a fragment. The element
e of the subtree is called a fragment root. A fragment root does not have a parent, but is hg
ne other framework, usually a window (HWND).

2.6 Hosts

tains elements that are controls, and content view contains elements that have content.

gating from
y pointto a

ontrol view
It is the
pl element.
ments.

he screen.
multiple Ul

ey contain
Windows
handled by

application

b box in an

at the root
sted within

The root node of every fragment must be hosted in an element, usually a window (HWND). The exception is the
desktop, which is not hosted in any other element. The host of a custom control is the HWND of the control
itself, not the application window or any other window that might contain groups of top-level controls.

The host of a fragment plays an important role in providing Ul Automation services. It enables navigation to
the fragment root, and supplies some default properties so that the custom provider does not have to
implement them.

© ISO/IEC 2012 — All rights reserved 29

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

5.2.3 Provider Interfaces

A Ul Automation provider exposes information about a Ul element by implementing the
IRawElementProviderSimple interface for the element. The IRawElementProviderFragment and
IRawElementProviderFragmentRoot are optional interfaces that are implemented for elements in a complex
control to provide additional functionality.

Interface Description

IRawElementProviderSimple Exposes the basic functionality of an element hosted in a window.

IRawElemepERroviderrragmrent—————

including navigating in the fragment, setting focus, and returnijng the
bounding rectangle of the element.

IRawElemeptProviderFragmentRoot Exposes additional functionality for the root element in a complex contfol,
including locating a child element at specified coordinates. and’ setting the
focus state for the entire control.

Providers implement the following optional interfaces to provide added functionality.

o S
Interface Description) (')

IRawElementProviderAdviseEvents | Enables the provider to track requests forévents.

IRawElemehtProviderHwndOverride Enables repositioning of window-based elements in the Ul Automat|on
tree of a fragment.

To communicate with Ul Automation, providers implement the funetionality described in the following table.

. [. N
Functionality Implementatlonc\\}
Expose the|provider to Ul Automation. In response tora WM_GETOBJECT message sent to the control windgw,
providers return the object that implemepts

IRawElementProviderSimple. For fragments, this must be the proviger
for the fragment root.

Provide prgperty values. Implement IRawElementProviderSimple: :GetPropertyValue to
provide or override values.

Enable thé¢ client to interact with the{ Implement interfaces that support each appropriate control pattern, sych
control. as IInvokeProvider. Control pattern providers are returned by the
provider implementation of
IRawElementProviderSimple: :GetPatternProvider.

Raise events. Implement UiaRaiseAutomationEvent, and the methods |of
IProxyProviderWinEventSink.

Enable ngvigating cand focusing in a | Implement IRawElementProviderFragment for each element within a
fragment. fragment. Not necessary for elements that are not part of a fragment.

Enable fgcuSing’ and locating child | Implement IRawElementProviderFragmentRoot. Not necessary |for
elements in a\fragment. elements that are not fragment roots.

5.2.4 Property Values

A provider exposes information about a Ul element as a set of property values. Providers expose two
types of property values: automation element properties, and control pattern properties. Automation
element properties are exposed through the provider's implementation of the
IRawElementProviderSimple: :GetPropertyValue method. Control pattern properties are exposed through
the provider’s implementation of the various control pattern interfaces (IXxxProvider).

30 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

5.2.5 Provider Navigation

Providers for simple controls, such as a custom button hosted in a window, do not need to support
navigation in the Ul Automation tree. Navigation to and from the element is handled by the default
provider for the host window, which is specified in the implementation of
IRawElementProviderSimple: :HostRawElementProvider. A provider for a complex custom control
supports navigation between the root node of the fragment and its descendants, and between sibling nodes.

The structure of a fragment is determined by the providers implementation of
IRawElementProviderFragment: :Navigate. For each possible direction from each fragment, this method

rett

Thd
the
Nay
thig

Ele
chil

5.2

Po
of

exd
win
the

AP

ns the provider object for the element in that direction

fragment root supports navigation only to child elements. For example, a list box returns.the
list when the direction is NavigateDirection_FirstChild, and returns the last item when'the
igateDirection_LastChild. The fragment root does not support navigation to a parent or
is handled by the host window provider.

ments of a fragment that are not the root must support navigation to the parent, and to any s
dren they have.

6 Provider Reparenting

-up windows are actually top-level windows, and by default, appear in the Ul Automation tree
he desktop. In many cases, however, pop-up windows are\logically children of some other ¢
mple, the drop-down list of a combo box is logically a child of the combo box. Similarly, a m¢
dow is logically a child of the menu. Ul Automation provides support to reparent pop-up windgq
y appear to be children of the associated control.

rovider can reparent a pop-up window by:

Implementing all properties and control patterns as usual for that pop-up, as though it were a @
own right.

first item in
direction is
to siblings;

iblings and

as children

ontrol. For

ENU pop-up
ws so that

ontrol in its

Implementing the TRawElementPrioviderSimple: :HostRawElementProvider property so that it returns

the value obtained from UiaHostProviderFromHwnd, where the parameter is the window handle of the
pop-up window.
— | Implementing the IRawElementProviderFragment::Navigate method for the pop-up windqow and its

Wh
def
isr

Re

sibling children,

en Ul Automation encounters the pop-up window, it recognizes that navigation is being overridd
hult, and skips over the pop-up window when it is encountered as a child of the desktop. Instea
pachable only through the fragment.

bafenting is not suitable for cases where a control can host a window of any class. For examf

haondae TA haond hoca cacne L Attt alia

parent so that navigation is handled properly from the logical parent to the logical children, and between

en from the
H, the node

le, a rebar

can

hact anv e ~f Ay n e lat mationcrunnorce an x
oSty ty PO wWirtGOw i to oo ao o TmarntariC e ot CasT o O 7 ©otormat O Su P poTrtoarartcr

of window relocation, as described in the next section.

5.2.

7 Provider Repositioning

ative form

Ul Automation fragments may contain two or more elements that are each contained in a window. Because
each window has its own default provider that considers the window to be a child of a containing window, the
Ul Automation tree, by default, will show the windows in the fragment as children of the parent window. In
most cases this is desirable behavior, but sometimes it can lead to confusion because it does not match the
logical structure of the UI.

© ISO/IEC 2012 — All rights reserved 31

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

A good example of this is a rebar control. A rebar contains bands, each of which can contain a window-based
control, such as a toolbar, an edit box, or a combo box. The default window provider for the rebar window
sees the band control windows as children, and the rebar provider sees the bands as children. Because the
window provider and the rebar provider are working in tandem and combining their children, both the bands
and the window-based controls appear as children of the rebar. Logically, however, only the bands should
appear as children of the rebar, and each band provider should be coupled with the default window provider
for the control it contains.

To accomplish this, the fragment root provider for the rebar exposes a set of children representing the bands.
Each band has a single provider that may expose properties and control patterns. In its implementation of

IRawElementProviderSimple: :HostRawElementProvider. the band provider returns the def

ault

window prpvider for the control window, which it obtains by calling UiaHostProviderFromHwnd, pasging
in the comtrol's window handle (HWND). Finally, the fragment root provider for the rebar implémgnts
the IRawElementProviderHwndOverride interface, and in its implementation of
IRawElemgntProviderHwndOverride: :GetOverrideProviderForHwnd, it returns the appropriate band
provider for the control contained in the specified window.

5.2.8 Howw Ul Automation Clients Access Exposed Ul Elements

From a Ul Automation client’s point of view, each Ul element is represented by an object that implements|the
IUIAutomgtionElement interface. To get information about a Ul element, a.client must first retrieve| an
IUIAutomationElement interface for the element, and then use the various proeperties and methods expoged

by the interfface to retrieve information about the element.

A Ul Auton

ation client application retrieves the TUTAutomationElement interface for a Ul element by:

1) Cryeating an instance of the CUIAutomation object and)retrieving a pointer to the IUIAutomatfion
inferface on the object.

2) Calling the CreateTreeWalker, ContentViewWalker, ControlViewWalker, or RawViewWalker
method to retrieve an IUIAutomationElementTreeWalker interface, and then using the interface to
discover and retrieve elements from the tree that match the specified search conditions.

3) Calling one of the following methods of'the TUTAutomation interface:

Method \\(\)b Description

ElementFromHandle Retrieves the element that has the specified window
handle.

ElementFromHandleBuildCache Retrieves the element for the specified window, prefetches
the specified properties and control patterns, and stdres
the prefetched items in the cache.

ElementFromIAccessible Retrieves the element for the specified accessible oblect
from a Microsoft Active Accessibility server.

ElementFromIAccessibleBuildCache Retrieves the element for the specified accessible oblect
from a Microsoft Active Accessibility server, prefetches |the
specified properties and control patterns, and stores the
prefetched items in the cache.

ElementFromPoint Retrieves the element at the specified point on the
desktop.

ElementFromPointBuildCache Retrieves the element at the specified point on the
desktop, prefetches the specified properties and control
patterns, and stores the prefetched items in the cache.

GetFocusedElement Retrieves the element that has the input focus.

GetFocusedElementBuildCache Retrieves the element that has the input focus, prefetches
the specified properties and control patterns, and stores
the prefetched items in the cache.

32

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Method Description
GetRootElement Retrieves the element that represents the desktop.
GetRootElementBuildCache Retrieves the element that represents the desktop,

prefetches the specified properties and control patterns,
and stores the prefetched items in the cache.

6 Exposing User Interface Element Actions

6.1l Exposing User Interface Element Actions in MSAA

In MSAA, a user interface element is represented by an accessible object; that is, an object‘that exposes the
IAdcessible interface. This interface supports a number of properties, including the DefadltActipn property
which describes the object's primary method of manipulation from the user's viewpoinit:

The DefaultAction property is retrieved by calling the accessible object’s
IAqcessible: :get_accDefaultAction method. To perform an object's™ default action, ¢lients call
IAdcessible: :accDoDefaultAction.

Nof all accessible objects have a default action, and some objects-have a default action that is related to its
Value property, such as in the following examples:

— | A selected check box has a default action of "Uncheck" and a value of "Checked."
— | A cleared check box has a default action of "Check'! 'and a value of "Unchecked."
— | A button labeled "Print" has a default action of"Press," with no value.

— | A static text control or an edit control that shows "Printer" has no default action, but has|a value of
"Printer."

The Value property is retrieved by calling the TAccessible: :get_Value property.

6.2 Exposing User Interface Element Actions in Ul Automation

In Ul Automation, an auteniation element that represents a Ul element exposes a number of Ul [Automaton
intgrfaces, including ene-or more control pattern interfaces. A control pattern is an interface implementation
that exposes a paftticular aspect of a control's functionality to Microsoft Ul Automation client applications.
Clignts use the_properties and methods exposed through a control pattern to retrieve informatipn about a
particular capability of the control, and to invoke the actions that the control can perform. For gxample, a
cortrol that\presents a tabular interface implements the Grid control pattern (IGridProvider interface) to
exgose ~the number of rows and columns in the table (IGridProvider::ColumnCount and
IGnidProvider: :RowCount properties), and to enable a client to retrieve items from |the table
(IGkidProvider: :GetTtem methad)

Ul Automation uses control patterns to represent common control behaviors. For example, the Invoke control
pattern (IInvokeProvider interface) is used for controls that can be invoked, such as buttons, and the Scroll
control pattern (IScrollProvider interface) is used for controls that have scroll bars, such as list boxes, list
views, or combo boxes. Because each control pattern represents a separate area of functionality, control
patterns can be combined to describe the full set of functionality supported by a particular control.

NOTE An aggregate control is built with child controls that provide the user interface for functionality that is exposed
by the parent, and the parent should implement all control patterns that are typically associated with its child controls. In
turn, those same control patterns are not required to be implemented by the child controls.

© ISO/IEC 2012 — All rights reserved 33

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

6.2.1 Ul Automation Control Pattern Components

Control patterns support methods, properties, events, and relationships that are required to define a discrete

piece of functionality available in a control.
— The methods allow Ul Automation clients to manipulate the control.
— The properties and events provide information about the functionality and state of the control.

— The relationship between a Ul Automation element and its parent, children, and siblings describes

elema Nt ctriicotuira in tha Ll Autamation traa
€ t-Straetutre-HtHe— o ehtOHHator—tee-

the

Control pajterns relate to controls similar to the way interfaces relate to Component Object Model (CdQ
objects. In|[COM, you can query an object to ask what interfaces it supports, and then use those interface
access fungtionality. In Ul Automation, clients can ask a control which control patterns it supports, and t
interact wiﬂh the control through the properties, methods, events, and structures exposed by.the suppo
control patferns.

6.2.2 Control Patterns in Providers and Clients

Ul Automation providers implement control pattern interfaces to expose the approepriate behavior for a spe
piece of fupctionality that is supported by the control. These interfaces are not.directly exposed to clients,
are used Qy the Ul Automation core to implement another set of client.interfaces. For example, a prov
exposes s¢rolling functionality to Ul Automation through IScrollProyider, and Ul Automation exposes
functionality to clients through TUTAutomationScrollPattern.

6.2.3 Dynamic Control Patterns

Some confrols do not always support the same set of cénirol patterns. For example, a multiline edit corn
enables vertical scrolling only when it contains more lines of text than can be displayed in its viewable a
Scrolling iy disabled when enough text is removed so. that scrolling is no longer required. For this exam
IScrollPattern is supported dynamically, depending on the how much text is in the edit box.

6.2.4 Control Patterns and Related Interfaces

The following table describes the Ul Automation control patterns. The table also lists the provider interfa
used to implement the control patterns) and the client interfaces used to access them.

DM)
5 to
hen
ted

Cific
but
der
the

trol
ea.
Dle,

ces

Name Provider-interface / Client interface Description
Dock IDockProvider Used for controls that can be docKed
IUIAutomationDockPattern in a docking container, for examgple,
toolbars or tool palettes.
ExpandCollapse IExpandCollapseProvider Used for controls that can [be
IUIAutomationExpandCollapsePattern expanded or collapsed, for example,
menu items in an application, such|as

the File menu.

Grid

IGridProvider
IUIAutomationGridPattern

Used for controls that support grid
functionality, such as sizing and
moving to a specified cell, for example,
the large icon view in Windows
Explorer or simple tables in Microsoft
Office Word.

Gridltem

IGridItemProvider
IUIAutomationGridItemPattern

Used for controls that have cells in
grids. The individual cells should
support the Gridltem pattern, for
example, each cell in Windows
Explorer detail view.

34

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Na

me

Provider interface / Client interface

Description

Invoke

IInvokeProvider
IUIAutomationInvokePattern

Used for controls that can be invoked,
such as buttons.

ItemContainer

IItemContainerProvider
IUIAutomationItemContainerPattern

Used for controls that can contain
other items.

LegacylAccessible

ILegacyIAccessibleProvider
IUIAutomationLegacyIAccessiblePattern

Used to expose Microsoft Active
Accessibility properties and methods
to Ul Automation clients.

Muyttiptevew I."iultiplc‘v’ichu ovidet Ysed—for—controts—that—¢an switch
IUTAutomationMultipleViewPattern between multiple représeptations of
the same set of infermatign, data, or
children, for example, & list view
control where data is available in
thumbnail, tile;y icon, list] or detail
views.
RamgeValue IRangeValueProvider Used for_controls that have| a range of
IUIAutomationRangeValuePattern valyes, For example, a spinner control
that displays years might hgve a range
of 1900—2010, while a spi?lnner control
that displays months woldld have a
range of 1—12.
Scrpll IScrollProvider Used for controls that can pcroll when
IUIAutomationScrollPattern there is more information than can be
displayed in the viewable grea of the
control.
Scrpllitem IScrollItemProvider Used for controls that have individual
IUTAutomationScrollItemPattern items in a list that scrolls, for example,
a list control in a combo box control.
Selpction ISelectionProvider Used for selection containgr controls,
IUTAutomationSelectionPattern for example, list boxes gnd combo
boxes.
Selpctionltem ISelectionitemProvider Used for individual items in selection
IUIAutomationSelectionItemPattern container controls, such ag list boxes
and combo boxes.
Synchronizedinput ISynchronizedInputProvider Used for controls that accept keyboard

IUTIAutomationSynchronizedInputPattern

or mouse input.

Table ITableProvider Used for controls that havel a grid and
IUIAutomationTablePattern header information.
Tableltem ITableItemProvider Used for items in a table.
IUIAutomationTableItemPattern
Tejt ITextProvider Used for edit controls and [documents
IUTAutomationTextPattern that expose textual informatjon.
TextRange ITextRangeProvider Used for retrieving textual content, text
IUIAutomationRange attributes, and embedded objects from
text-based controls such as edit
controls and documents.
Toggle IToggleProvider Used for controls where the state can

IUIAutomationTogglePattern

be toggled, for example, check boxes
and checkable menu items.

© ISO/IEC 2012 — All rights reserved

35

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Name Provider interface / Client interface Description
Transform ITransformProvider Used for controls that can be resized,
IUIAutomationTransformPattern moved, and rotated. Typical uses for
the Transform control pattern are in
designers, forms, graphical editors,
and drawing applications.
Value IValueProvider Used for controls that have a value

IUIAutomationValuePattern that does not lay within a specified

range, for example, a date-time picker.

VirtualizedItfm IViTtoaItzedItemProvIider OSed 10T CONtrors that work witim Items

IUIAutomationVirtualizedItemPattern in a virtual list.

Window

IWindowProvider
IUIAutomationWindowPattern

Used for windows. Examples are t
level application windows, multig
document interface(~(MDI) ch
windows, and dialog boxes.

bp-
le-
ild

7 Keyboard Focus

7.1 MSA
Accessible
focus enal
There are 4

A focu
with th

— Asele
For examp
the system

711 Fod
When an
EVENT_OBJ
user interf
control, an
support.

\A Keyboard Focus and Selection

objects can be selected and can receive keyboard focus.<The ability to be selected and recs
les users to interact with application elements, change values, and otherwise manipulate th
ome key differences between object selection and objject focus:

sed object is the one object in the entire operating'system that receives keyboard input. The ob)|
e keyboard focus is either the active window or'a“child object of the active window.

Cted object is marked to participate in some type of group operation.

e, a user can select several items inva list view control, but the focus is given only to one objeg
at a time. Note that focused items_are from a selection of items.

us and Selection Properties and Methods

Ul object receives«the keyboard focus, either the operating system or a server raises
ECT_FOCUS WinEvent to notify clients of the change. The system sends this event for the follow
ce elements;, list/view control, menu bar, pop-up menu, switch window, tab control, tree v
d window object. Server applications must send this event for the accessible objects that t

The systen
EVENT_OBJ
EVENT_OBJ

|ECT_SELECTION,

N or(Servers can raise a number of events to notify clients when the selection changes, includg

bive
Em.

ect

tin

an
ing
iew
ney

ing
VE,

EVENT_OBJECT_SELECTIONADD, EVENT_OBJECT_SELECTIONREM(

Clients determine whether a particular accessible object or child element has the focus by calling
IAccessible::get_accFocus. Clients determine whether an object is selected, or which children within an
accessible object are selected, by calling IAccessible: :get_accSelection. For objects such as list views
in which more than one child is selected, the parent object must support the TEnumVARIANT interface, which
allows clients to enumerate the selected children.

36

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Clients can also use the IAccessible::get_accState method to query the selection or focus state of an
object, by using the following flags:

Flag Description
STATE_SYSTEM_FOCUSABLE The object is on the active window and is ready to receive
keyboard focus.

STATE_SYSTEM_FOCUSED The object has the keyboard focus.

STATE _SYSTEM SEILECTABILE The object accepts selection.

STATE_SYSTEM_SELECTED The object is selected.
7111 Selecting Child Objects
Clignts can use the IAccessible: :accSelect method to modify the selection lor-keyboard focus|among the
children of the specified object. This method takes a flag from the SELFLAG,€pumeration which spgcifies how
the|object is selected or takes the focus; that is, whether the object is added\to the current selection, replaces
the[current selection, is removed from the current selection, and so on,If TAccessible: :accSelett is called
with the SELFLAG_TAKEFOCUS flag on a child object that has an HWND)\the flag takes effect only if the object's
pargnt has the focus.
7.111.2 Performing Complex Selection Operations
The following describes which SELFLAG values to spegify when calling IAccessible: :accSelect|to perform
complex selection operations.

To

To

To

To

To

simulate a click:

SELFLAG_TAKEFOCUS | SELFLAG_TAKESELECTION

Select a target item by simulating CTRL + click:
SELFLAG_TAKEFOCUS | SELFLAG_ADDSELECTION

cancel selection of a target item by simulating CTRL + click:
SELFLAG_TAKEFOCUS | SELFLAG_REMOVESELECTION

simulate SHIET + click:

SELFLAG”TAKEFOCUS | SELFLAG_EXTENDSELECTION

5elect a range of objects and put focus on the last object:

To

1) Specify SELFLAG_TAKEFOCUS on the starting object to set the selection anchor.

2) Call TIAccessible::accSelect again and specify SELFLAG_EXTENDSELECTION |

SELFLAG_TAKEFOCUS on the last object.

deselect all objects:

1) Specify SELFLAG_TAKESELECTION on any object. This flag deselects all selected objects
one just selected.

2) Call IAccessible::accSelect again and specify SELFLAG_REMOVESELECTION on the
object.

© ISO/IEC 2012 — All rights reserved

except the

remaining

37

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

7.1.2 Events Triggered in Menus

Microsoft Active Accessibility exposes standard menus created with the Microsoft Win32 menu APl and

resource
EVENT_OBJ

NOTE
because the

files. To be consistent with standard menus, servers with custom menus
ECT_FOCUS, not EVENT_OBJECT_SELECTION, when a user highlights a menu item.

trig

text is exposed as a single string in the Value property for these controls.

ger

Microsoft Active Accessibility does not support the selection of the text contained in edit and rich edit controls

7.2 Ul Automation Keyboard Focus and Selection

This section describes how keyboard focus and selection is handled in Ul Automation.

7.21 Fogus

Whenever |the focus changes from one Ul item to another, the Ul Automation framéwork raises [the
AutomatignFocusChangedEvent. A client can receive these focus-changed events by.implementing [the
IUTAutomgtionFocusChangedEventHandler interface and registering the interface by calling [the
IUIAutomgtion: :AddFocusChangedEventHandler. The client receives the focuS=changed event in| its
IUIAutomgtionFocusChangedEventHandler: :HandleFocusChangedEvent method. When the cllent
no lomger needs to receive focus-changed events, it can call
IUIAutomgtion: :RemoveFocusChangedEventHandler method to remove the\handler.

Clients can use the IUIAutomation: :GetFocusedElement method to.retrieve the Ul Automation element
that currently has the focus. Client can determine whether a given'element has the keyboard focus| by
querying the HasKeyboardFocus property, either by calling
IUTAutomdtionElement: :CachedHasKeyboardFocus or
IUTAutomgtionElement: :CurrentHasKeyboardFocus. Tordetermine whether an element is able to recgive
the keybgard focus, clients can query the element’s’ IsKeyboardFocusable property using either
IUIAutomdtionElement: :CachedIsKeyboardFocusab}e or
IUTAutomgtionElement: :CurrentIsKeyboardFocusable.

Clients call an element’'s TUIAutomationElement: :SetFocus method to sets the keyboard focus to thg Ul
Automation element.

A provider implements the IRawElementProviderFragment: :GetFocus and
IRawElemgntProviderFragmentRo0t):: SetFocus methods to support retrieving and setting the focus fof Ul
elements that have a multi-level ‘structure, such as list boxes and list view controls. The Ul Automation
framework |calls a provider's IRawElementProviderFragmentRoot: :SetFocus method to give the providéer a
chance [to update ,the’ state of the focused item. The framework calls [the
IRawElemgntProviderFragment: :GetFocus method to retrieve the provider for the element that has [the
focus.

7.2.2 Selpction

This section“describes the Ul Automation support for selecting items in controls that contain a collection of

selectable items, such as list views and tree views. It also describes the Ul Automation support for selecting

text in a co

7.2.2.1

ntrol that acts as a text container.

Item Selection

In Ul Automation, providers support the Selection control pattern (ISelectionProvider interface) for control
types that act as containers for a collection of selectable child items. Clients use the Selection control pattern
(through the IUIAutomationSelectionPattern interface) to interact with containers of selectable child

items. The

38

Selection control pattern includes the following properties, methods, and events:

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Member Description

CanSelectMultiple

Specifies whether the provider allows more than one child element
to be selected concurrently.

IsSelectionRequired Specifies whether the provider requires at least one child element
to be selected.
GetSelection Retrieves a collection of provider interfaces
(IRawElementProviderSimple) for each selected item.
UJA_Selection_InvalidatedEventId Raised when a selection In a container has changed sighificantly.
Forn each selectable child item in a container, the Ul Automation provider implements the Sélectionltem control
patiern (ISelectionItemProvider interface), while clients use the Selectionltem control pattern (through the
IUJAutomationSelectionItemPattern interface) to manipulate the selection of-items. The Selectionltem

con

trol patter includes the following properties, methods, and events:

Member Descnﬂl'gn
7

AddToSelection Adds the current element to theg collection
of selected items.

I4Selected Gets a value that indicates whether an item
is selected.

RgmoveFromSelection Removes the current element] from the
collection of selected items.

Select Deselects any selected items| and then
selects the current element.

SdlectionContainer Gets the provider that implements
ISelectionProvider and apts as the
container for the calling object.

UJA SelectionItem_ElementAddedToSelectionEventId Raised when an item is added to a
collection of selected items.

UIA_SelectionItem_ElementRemovedFromSelectionEventId | Raised when an item is remoyed from a
collection of selected items.

UJA SelectionItem_ElementSelectedEventId Raised when a call to thel Select,
AddToSelection, or
RemoveFromSelection method results
in a single item being selected.

7.2.2.2 Text Selection

The Ul Automation Text control pattern enables applications and controls to expose a simple text object
model, enabling clients to retrieve textual content, text attributes, and embedded objects from text-based
controls. To support the Text control pattern, controls implement the ITextProvider interface. Control types
that should support the Text control pattern include the Edit and Document control types, and any other
control type that enables the user to enter text or select read-only text.

The Text control pattern can be used with other Microsoft Ul Automation control patterns to support several
types of embedded objects in the text, including tables, hyperlinks, and command buttons.

© ISO/IEC 2012 — All rights reserved

39

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The ITextProvider interface includes a number of methods for acquiring text ranges. A text range is an
object that represents a contiguous span of text or multiple, disjoint spans of text in a text container. One
ITextProvider method acquires a text range that represents the entire document, while others acquire text
ranges that represent some portion of the document, such as the selected text, the visible text, or an object

embedded

in the text.

A text range object is represented by the TextRange control pattern, which is implemented through the
ITextProvider interface. The TextRange control pattern provides methods and properties used to expose
information about the text in the range, move the endpoints of the range, select or deselect text, scroll the
range into view, and so on.

7.2.2.21

The Text |
information
with rich te
Text patten
done throu
portion of {
Text patter,

Ul Automation Text Pattern Overview

pattern is one of many predefined control patterns specifically designed for access -to rich-
. The Text pattern interface offers a few key methods and properties useful to basiclinteractipns
xt object models, such as SupportedTextSelection property and GetSelectionmethod. Whi
h represents the entire unit of text (for example, all the text in an edit field), accessing the text is
gh TextRange object claimed from the Text pattern. A TextRange object represents a contigupus
he text by a pair of endpoints. Multiple instances of TextRange objects<an be created from
n, which enables handling of non-contiguous or more complex rich text.operations.

ext

ea

bne

A TextRange can be obtained from a Text pattern using one of the following methods:
- 2
Text Rattern Method A Text Pattern Ranges Acquired g\
e

DocumentRange A TextRange of the entire document.available the Text pattern supported.

RangeFromPoint A degenerate (empty) TextRange hearest to the specified screen coordinate.

RanggFromChild A TextRange enclosing~a child element such as an image, hyperlink,
spreadsheet, or other embedded object.

GetVlsibleRanges An array of disjoint PextRanges from a text container where each TextRange
begins with the first partially visible line through to the end of the last partially
visible line.

722211 Manipulating Text Using the TextRange Object
A TextRanjge object represents-a span of text within the rich text document material by holding logical

ext

pointers’ by a pair of Start and End Endpoints. TextRange can be manipulated for navigating through the text,
retrieving the text as a string, selecting text, or searching text.
Type of{functi TextRange Methods Description
~
Range Clone Retrieves a new TextRange identical to the original. This
manipul tion new range has its own Start and En_d_pgl_nt_eps’_“‘h,lgh_ape_
initially set to the same values as the source range.
Compare Determines whether the pair of Endpoints of this
TextRange is the same as those of another TextRange.
CompareEndpoints Determines whether the start or end Endpoint of this
TextRange is the same as an Endpoint of another
TextRange.

40

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Type of functions | TextRange Methods Description
Search FindAttribute Retrieves a TextRange subset that has the specified
attribute value such as Isltalic and IsReadOnly.
FindText Retrieves a TextRange subset that contains the specified
text.
Acquiring text | GetAttributeValue Retrieves the value of the specified attribute across the
information entire TextRange.
GetBotndingRectangtesRetrieves-a—collectionef-beundingreetangies~fereach fully
or partially visible line of text in a TextRange.
GetChildren Retrieves a collection of all embedded (objects [that fall
within the TextRange.
GetEnclosingElement Retrieves the innermost Ul Awutémation element that
encloses the TextRange.
GetText Retrieves the plain text of the-TextRange.
Logical Move Moves the TextRange the specified number of text units.
TextRange
navigations MoveEndpointByRange Moves one endpoint of a TextRange to the gpecified
endpoint of a‘second TextRange.
MoveEndpointByUnit Moves,one’endpoint of the TextRange the specified number
of TextUnits.
ExpandToEnclosingUnit |:Expands (normalizes) the TextRange to the specified text
unit.
Control / Text | Select Creates a selection in the control that corresponds to the
Manipulation TextRange.
AddToSelectiagn Adds the TextRange to the collection of selected fext in a
text container that supports multiple, disjoint selectipns.
RemoveFriomSelection Removes the TextRange from an existing collgction of
selected text in a text container that supports multiple,
disjoint selections.
ScrollIntoView Causes the text control to scroll until the TextRange is
visible in the viewport.
While maost.FextRange methods are not expected to cause changes to the text in the control, the Select,
AddToSélection, RemoveFromSelection, and ScrollIntoView methods manipulate the text gelection or
viey.0f the control where these operations are supported. Other TextRange methods are mostly fof navigation

of {

he fogicat docurment structure by theStartand-End—Endpoints i tlients eedto maniputate tedit, place,

move, and so on) actual text in the control, they should use the Text Services Framework (in the Windows
operating system) instead of Ul Automation.

With the Text pattern, many potential text attributes are defined. Providers can choose which attributes (for
example, IsItalic, IsReadOnly, UnderlineStyle, and so on) are applicable to the available rich text styles.
Clients can retrieve or search for text attributes where it is supported. See the API reference specification for
available Text Attributes.

© ISO/IEC 2012 — All rights reserved

41

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

7.22.21.2 Manipulations of TextRange

Move, ExpandToEnclosingUnit and other TextRange methods are useful for logical navigation of text within
a Text pattern, such as reading a document line by line. Because specific behaviors and expectations are set
for each TextRange logical navigation method, clients and providers should carefully follow the specification
remarks. Some logical navigation can be limited by availability of text in the control viewport.

7.22.21.3 Text Pattern, TextRange, and Embedded Objects

Many documents today support embedded objects such as hyperlinks, images, tables, or other interactive
elements, Amwamwave G“:G‘:‘G A€ e Patter oS moeatea GG“‘:‘ EpfreSerRtet :“‘ e)fa
document ¢bject that supports the Text pattern. Some embedded object (such as hyperlink or table) may span
across a rgnge of text, and so that clients can choose to interact with the text without interruption of embedged
object boundaries or otherwise change the interaction mode by type of embedded objects.

For more information go to www.contso.com.

Example 1 — A portion of document that is inserted with‘a hyperlink

The example document element can be outlined as a simple pair of.attomation elements; an automation
element for the control that hosts the entire text (ControlType.Doctiment), and a child of the text conjtrol
(ControlType.Hyperlink):

Control Type\Document
_ -7 www\TextPattern, ...

Centrol Type Hyperlink
www\InvokPattern and
<8 ValuePattern, ...

The text cpntents should be accessible;'though the Text pattern of the Document element, including [the
hyperlink tgxt “www.contso.com” aleng with the special text attribute. Ul Automation Clients can acquire the
embedded|object or associated TextRange by using GetChildren, RangeFromChild or other functions. While
automation elements representphysical Ul elements on screen, TextRange represents logical ranges ampng
text streams.

- For more,information, go to www.contso.com.

Y

(... continued stream of
text in Text Pattern)

»

A text Range from « Hyperlin»_ _ _ ¥ A
Automation element 7N

A creation or manipulation of TextRange or the Endpoints will not affect the control or the text (except for
making selection or scroll actions using the TextRange functions). Moving endpoint by TextRange methods
only move the logical pointer but it doesn’t move actual text in the control. For examples, see the reference
section for Move and other methods of the IUIAutomationTextRange interface.

The Text pattern allows hosting an embedded object without a span of text. For example, an image can be
hosted among text, and the physical location (screen coordinate) of the image can be acquired as a bounding
rectangle of the child object. The TextRange’s GetText function will not acquire text information from those
embedded objects; the function is expected to return the plain text of the contents within the range.

42 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2

:2012(E)

Many modern productivity applications support inline annotations. These can also be treated as spanned or
non-spanned embedded objects. An inserted annotation object can be a separate annotation text field
(ControlType.Document if it is multiline text), an image (ControlType.Image; for example, ink annotation by

stylus devices), or something else.

7.2.2.21.4

Text Pattern and Embedded Table Example

Similar to hyperlink text in a document, a table is typically realized as child object of the automation element
that supports the Text pattern. Following is an example of a piece of document that is inserted with a table in
four columns in four rows including the header row.

The

Thd
cell
Hed
clig]
cell
Rar

Table:

Header O Headerl Header 2 Header 3
B 11 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 313

b example document object can be outlined as follows in the;automation element tree:

Text pattern is(supported by the root document element. With this example, the inner text in
is part of textistream in the Text pattern of the root document element; .. Table: Header @
der 2 Header 3 0, 1 1, 1..” By calling GetChildren from the TextRange that holds the entire
nts can, ‘acquire an automation element for the table (ControlType.Table). To drill down to
, the \Grid pattern and/or Table pattern of each table/cell automation element is u
gebromChild method of the root document element obtains the range of inner text within a ce

ele

ment

Example 2 — A portion of document that is inserted\with a table and a picture

ControlType Decument

— — — — \w/TextPattern,...
»
ControlType Table
— — —.— ‘LocalizedControlTypeProperty = « row »,
- w/GridPattern, TablePattern, ...
ControlType Header f ControlType Custom
w/GridltemPattern, ... = === == T T = LocalizedControlTypeProperty = « row »,

w/GridltemPattern, ...

Y
ControlType.Custom
LocalizedControl TypeProperty « row header « or « cell »
w/GridltemPattern, ...

ControlType Headerltem
w/GridltemPattérn, ..

ControlType Image

© ISO/IEC 2012 — All rights reserved

each table
Header 1
document,

each inner
seful.

The
| or a table

43

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Text Range from « Image »

Text Range from « Table »

Y

Table 1 Header 0 Header 1 Header2 Header 3 .
7
L)L)
Y Y
Text Ranges from Text Ranges from « Cell »
« Headerltem »
On the other hand, for any given TextRange object within a document, the GetEnclosingElement method

should acq
embedded
Text patter|

If the entird

pattern), the

image em
document)

7.2.2.21.5

Where pos
TextRangqg
other reas
supporting
control pat
representin
The ItemC
programmg
virtualizatig

For examp
DocumentR
that covers
may be lin
would neeq
be applied
and virtuali

uire the next smallest automation element that covers the range. If the range is not among
object such as a table cell or link, the function should return the documerit/object that supports
.

table is treated as a separate object (independent from the text'stréam exposed though the T
table element can be treated as a complex embedded object-without a range of text (similar tg
bedded among text without a range but with location information relative to the rest of

Text Pattern and Virtualized Embedded Objects

(including any text outside the viewport); however, that is not always possible for performance
bns. When the off-screen text or embedded objects are ‘virtualized,” providers should cons
the VirtualizedItem pattern for virtialized embedded objects. (NOTE: The VirtualizedI
ern cannot be associated with a TextRange because a TextRange is only a logical object
g a portion of text by a pair of endpoints. In other words, TextRange is not an automation eleme

tic search capabilities besides end-user search features for the document context. The type
n can vary depending on(the document presentation.

le, if the documentspresentation is virtualized while the entire text stream is still available,
ange method of the/Text control pattern may still create a TextRange object with two Endpoi
the document end to end. However, the outcome of the GetChildren function on the TextRa
ited by series-of placeholder objects. To interact with those virtualized embedded objects, clig
to call the'Realize function “on the VirtualizedItem control pattern. A similar practice cq
to a table/ grid element that is embedded in a document while a portion of the table is off-scr
red.

an
the

ext
an
the

sible, it is recommended that the entire text of'the document be supported by the Text patterp or

and
der
Lem
hat
nt.)

ontainer pattern can be also~Supported by the document object in order to support the basic

5 of

the
hts
hge
nts
uld
ben

7.2.2.2.1.6

Leveraging ControlType.Custom in Text Pattern

While the Text pattern offers support for variations of text attributes and embedded objects, not all document
elements and presentations can be defined in advance. For types of elements that are not supported in
attributes or standard control types, providers can leverage the extensibility of Ul Automation by use the
ControlType.Custom.

For example, no Text Attributes are defined for document structure “headers,” which are typically represented
as “header 1", “header 2”, and so on in HTML or other text markup languages. Instead of exposing the
information, a provider can allocate custom child objects defined with LocalizedControlType that have the
heading information. Because the LocalizedControlType property is a human readable string, it can be
used directly for reading or interactions by end-users.

44 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

For applications and user interfaces that are based on page presentations, the boundary and layout
presentation of “page” can also be expressed as an embedded object with ControlType.Custom
(LocalizedControlType “page”). That way, the embedded object can host other page elements that cannot
easily be part of the document text stream, such as the header and footer fields of each page. These can be
hosted as child objects of the “page” embedded object. (Alternatively, independent Text control patterns can
be supported by each “page” object. This model can work well for applications such as authoring tools for
slideshow presentations, or page-based desktop publishing environments.)

7.22.21.7 Lifetime of TextRange Claimed

Itig
iNsg
the
tex

ret-atways-guaranteed-forFextRange—be-sustained-when-the-deeument-structure-is—changed
brting, or moving the portion of the text. While it is encouraged that Text pattern providers, acd
changes be reflected to associated TextRange, a new range may need to be re-claimed,whg
is changed (Text_TextChangedEvent is raised).

py deleting,
ommodate
en the host

8 | Events

8.1 WinEvents

The Microsoft Windows operating system includes a feature called, WinEvents that enables pro¢esses and
applications running on the Windows desktop to exchange certain types of information. Accessibilify tools that
usg Microsoft Active Accessibility and Ul Automation are among, the primary users of the WinEvents.

In the context of accessibility, Microsoft Active Accessibility servers and Ul Automation prgviders use
WinEvents to notify clients of changes in an application/UJ; such as when a Ul element has been| created or
degtroyed, or when an element name, state, or value has Changed.

8.11 USER's Role in WinEvents

WinEvent support is provided by USER,\a fundamental part of the Windows operating system. USER

pro|

Evd
dis
pro
deq

vides:

A simple way for clients to register for event notifications;

A mechanism for injecting'client code into servers;

Routing of events from servers to interested clients;

Automatic event.generation for most HWND-based controls.

bnt generation for window (HWND)-based controls is especially important for server devs
cussed “eafrlier, Oleacc.dll provides IAccessible proxies for standard Ul elements. Sim

vides automatic WinEvent support for these same Ul elements. Because USER is involved
trOying, moving, resizing, and other actions on all HWND-based controls, it generates the

lopers. As
larly, USER
n creating,
Appropriate

WirtEvernts:

Some WinEvents, including general HWND events, are supported by USER automatically. Other types of
WinEvents are supported by controls (Microsoft Active Accessibility servers), which include state change or
selection events specific to the control behaviors.

8.1.2 Receiving Event Notifications

Clients register one or more callback functions (with USER) to receive event notifications. To do this, the client
calls SetWinEventHook and specifies which events to receive and how to receive them. The client may
choose to:

© ISO/IEC 2012 — All rights reserved 45

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Receive all events or a specific set of events;
Receive events from all threads or from a specific thread;
Receive events from all processes or from a specific process;

Handle events in process or out of process (discussed below).

When an event is generated that matches the specified criteria, USER calls the client's callback function (or
"hook procedure").

8.1.3 Sending Events

To broadcd
that identifi
to retrieve

For examp
EVENT_OB]

When a server calls NotifyWinEvent, USER determines which clients are inferested in that particular ey

and calls t!

NotifyWinEvent is comparable to a "no operation" and the performances/impact is negligible.

8.1.4 Thd

The WinEvent ID must be registered in advance. Any irregulaf usage outside of the pre-registered event |
not supporfed. At worst, it can cause system crashes or totally unexpected behaviors of applications and
operating gystem. At best, irregular usage can cause serious confusion among processes as WinEvents
also used by the operating system internally. Even with'this limitation, WinEvents serve a key role in Micro
Active Accessibility and other communication mechanisms.

A pool of WinEvent ID ranges is reserved for specific uses. This reserve can be used and shared as long

the usage

amongst themselves, but the reserve helps‘reduce the risks of unexpected collisions and conflicts of fuf
WinEvent ysages.

es the type of event and the Ul element to which the event applies. Clients can usecthis’informa
bn IAccessible object for the Ul element and collect more information.

e, to notify clients that a control's name has changed, a server calls NotifyWinEvent and pas
ECT_NAMECHANGE in the event parameter.

heir registered callback functions. If no clients have registeredfor-that event, the server's ca

Allocation of WinEvent IDs

meets the criteria of the reserve. (Creators of WinEvents still need to collaborate to avoid collisi

st an event notification to all interested clients, servers call NotifyWinEvent and pass‘information

ion

Ses

ent
| to

D is
the
are
50ft

as
pns
ure

Type Rese@ibn Currently in use Comments
Microsof Active | 0x0001-0x00FF 0x0001-0x0020 EVENT_SYSTEM_*
Accessibjlity /Ul

Automatipn Events {"0x4001-0x40FF 0x4001-0x4007 EVENT_CONSOLE_*
(System Reserved)

0x4E00-Ox4EFF

0x4E20-0x4E33

UIA Event IDs

0x7500-0x75FF

0x7530-0x759B

UIA Property Changed Event IDs

0x8000-0x80FF

0x8000-0x8015

EVENT_OBJECT_*

OEM Reserved

0x0101-0x01FF

0x0101-0x0122

IAccessible2 Events

Community Reserved

0xA000-O0xAFFF

None

Reserved for new advanced event space
leveraged by Accessibility Interoperability
Alliance (AlA) specifications

ATOM 0xCO000-OxFFFF 0xCO000-OxFFFF Reserved for general extensibility purpose for
runtime event allocations
46 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

8.1.4.1.1 Microsoft Active Accessibility / Ul Automation Events (System Reserved Events)
Five ranges of WinEvent IDs are reserved. The first range (0x0001-0x00FF) is reserved for system-level
events, typically used for describing situations affecting all applications in the system. The second range
(0x4001-0x40FF) is reserved for Windows console specific events. The third (Ox4E00-Ox4EFF) and fourth
ranges (0x7500-0x75FF) are for the reflection of Ul Automation events. Lastly, the fifth range (0x8000-
0x80FF) is for object-level events that pertain to situations specific to objects within one application.

All Microsoft Active Accessibility and Ul Automation events are pre-defined in header files, which can be found

in the upcoming Windows 7 SDK (for example, WINUSER.h and UIAutomationClient.h).

8.1

Thd
wh
eveg
tha

8.1

Thd
sof
usg
rec

8.1

The
this
allg

8.1

Acq
be

Re
spd
(Al
Re

AT(
ran

8.2

41.2 OEM Reserved Events

IAccessible2 specification already uses part of this range. The OEM reserved range-is-open
b would like to use WinEvents as a communication mechanism. Developers shouldldefine 3
nt definitions along with their parameters (or also with associated object types);for event prg
accidental collisions of event IDs can be avoided.

4.1.3 Community Reserved Events

previous two ranges are reserved based on current mainstream usage of WinEvents for acces
ware automation. The Accessibility Interoperability Alliance (AlA) Extensions are reserved for
ge of WinEvent ranges across the industry. Due to the nature of WinEvent architecture,
bmmended that developers publish and define a standard specification before any official usage

41.4 ATOM (Runtime Reserved Events)

range is allowed. Using GlobalAllocAtom with)a string GUID is recommended as a preferred
cating WinEvents in ATOM.

4.2 The Use of Reserves

ording to the WinEvent specification, the system reserved area and any other non-defined ar
consumed without SDK revisjon. For any new events, applications should use OEM Reser
terved ranges. When a_new event is defined, it is highly recommended that developers
cification openly and widely prior to actual usage of the events. The Accessibility Interoperabi
A\, http://www.accessinteropalliance.com/) is expected to organize new specifications amor
served WinEvent ID-Range.

M range is kept.reserved for general extensibility purpose for runtime event allocations. Do 1
ge for any static / public consumption.

Ul Automation Events

ul

to anyone
nd publish
cessing so

bsibility and
any future
it is highly

b ATOM range is reserved for general extensibility-purposes for runtime event allocations. No stafic usage of

method of

eas cannot
ved or AIA
share the
ity Alliance
g the AIA

ot use the

N\ utomation event notification is a kpy feature for assistive fpr‘hnnlngipc such as screen readers

nd screen

magnifiers. These Ul Automation clients track events that are raised by Ul Automation providers when
something happens in the Ul and use the information to notify end users.

Efficiency is improved by allowing provider applications to raise events selectively, depending on whether any
clients are subscribed to those events, or not to raise event, if no clients are listening for any events.

Ul Automation events fall into the following categories.

© ISO/IEC 2012 — All rights reserved

47

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC T

R 13066-2:2012(E)

Event

Description

Property change

Raised by a provider when a property on a Ul Automation element or control pattern changes.
For example, if a client needs to monitor an application's check box control, it can register to
listen for a property change event on the ToggleState property. When the check box control is
checked or unchecked, the provider raises the event and the client can act as necessary.

Element action

Raised by a provider when a change in the Ul results from end user or programmatic activity; for
example, when a button is clicked or invoked through InvokePattern.

Structure ¢

hange

Raised by a provider when the structure of the Ul Automation tree changes. The structure

changes when new Ul items become visible, hidden, or removed on the desktop.

General eV

shifts from one element to another, or when a window closes.

ent Raised by a provider when actions of global interest to the client occur, such as when-the focus

Some ever
text-entry f
the user d
application
Provider m
— Autom
— Eleme

— 1Inval

— TextC

to check whether anything has actually changed before taking action.

ntSelectedEvent;
idatedEvent ;

hangedEvent ;

8.2.1 How Providers Raise Events

ay raise the following events when the state of the Ul has not changed.

btionPropertyChangedEvent (depending on the property that-has changed);

ts do not necessarily mean that the state of the Ul has changed. For examplesif.the user tabs {o a
eld and then clicks a button to update the field, the provider raises a TextChangedEvent evgn if
id not actually change the text. When processing an event, it may be“necessary for a cllent

Providers raise an event regardless of whethér a change in the Ul was triggered by user input or by a cllent
applicationjusing Ul Automation. Ul Automation providers use the following functions to raise events:
Function o Description
AN
UiaRaiseAutomationEvent Raises various events, including events triggered by contfol
patterns.
UiaRaiseAutomationPrepertyChangedEvent Raises an event when a Ul Automation property has changed
UiaRaiseYtructlireChangedEvent Raises an event when the structure of the Ul Automation tree has
changed, for example, by removing or adding an element.

To optimize performance, a provider can selectively raise events, or raise no events at all if no client
application is registered to receive them. The following API elements are used for optimization.

API Element Description

UiaClientsArelListening

This function ascertains whether any client applications have
subscribed to Ul Automation events.

IRawElementProviderAdviseEvents

Implementing this interface on a fragment root enables the
provider to be advised when clients register and unregister event
handlers for events on the fragment.

48

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

8.2.2 How Clients Register for and Process Events

Client applications subscribe to events of a particular kind by registering an event handler. To receive and
handle events, a client implements an event-handling object that exposes a callback interface, and registers
the object by calling one of the following methods. The callback interface has a single method; Ul Automation
calls this method when the event is processed.

Method Description

AddFocusChangedEventHandler Subscribes to events that are raised when the focus changes from
onlllelement to anaother

AddPropertyChangedEventHandler Subscribes to events that are raised when the value.ofla property
changes.

AddStructureChangedEventHandler Subscribes to events that are raised whefi-the structurg of the Ul
changes.

AddAutomationEventHandler Subscribes to other types of events.

On|shutdown, or when Ul Automation events are no longer of interest to the application, Ul Automation clients
shquld call one or more of the following IUlAutomation methods.

<
Method Description k\

RemoveAutomationEventHandler Unregisters, an event handler that was registered| by using
AddAutomationEventHandler.

RgmoveFocusChangedEventHandler Unregisters an event handler that was registered| by using
AddFocusChangedEventHandler.

RemovePropertyChangedEventHandler Unregisters an event handler that was registered| by using
AddPropertyChangedEventHandler or
AddPropertyChangedEventHandlerNativeArray.

RemoveStructureChangedEventHandler Unregisters an event handler that was registered| by using
AddStructureChangedEventHandler.

RemoveAllEventHandlers Unregisters all registered event handlers

9 | Programmatic Modifications of States, Properties, Values and Text

9.1 UlAutomation Design Considerations

This_section provides information about how to wark with Ul Automation which is necessary to design and use
the features of Ul Automation to programmatically modify states, properties, values, text and introduces the
concepts of control patterns and control types.

9.1.1 Introduction

The Ul Automation Specification provides flexible programmatic access to Ul elements on the Windows
desktop, enabling assistive technology products such as screen readers to provide information about the Ul to
end users and to manipulate the Ul by means other than standard input.

Ul Automation is broader in scope than just an interface definition. It provides:

© ISO/IEC 2012 — All rights reserved 49

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

values

A core

, and manipulate Ul elements.

infrastructure for finding and fetching across process boundaries.

elements.

functionality, and structure of a Ul object.

An object model and functions that make it easy for client applications to receive events, retrieve property

A set of interfaces for providers to express the tree structure, general properties, and functionality of Ul

A "control type" property that allows clients and providers to clearly indicate the common properties,

Ul Automa
Enabli
Expos
Coexig
Provid

The implen

9.1.2 Ul 4

Ul Automa

property values for each element. Elements are exposed:as a tree structure, with the desktop as the

element.

Automatior
is the cont
box).

9.1.3 Ul

The Ul Aut
are applicg
toolbars, a
shows.

ion improves on Microsoft Active Accessibility by:

hg efficient out-of-process clients, while continuing to allow in-process access.

ng more information about the Ul in a way that allows clients to be out-of-process!
ting with and leveraging Microsoft Active Accessibility without inheriting its limitations.

ng an alternative to IAccessible that is simple to implement.

Automation Elements

ion exposes every piece of the Ul to client applications as an automation element. Providers suy

elements expose common properties of the Ul elements they represent. One of these proper
ol type, which describes its basic appearance and functionality (for example, a button or a ch

Automation Tree
omation tree represents the entire Ul: the root element is the current desktop, and child elems

tion windows. Each of these child elements can contain elements representing menus, buttg
nd so on. These efements in turn can contain elements like list items, as the following illustra

i
i

"'W:\
ml“ll(}
i

50

nentation of the Ul Automation Specification in Windows features-Component Object Model (COM)-
based inteffaces and managed interfaces.

ply
oot

ties
eck

nts
ns,
tion

L

mmm-nnnw»mmmmmummmuu"“«»lw
‘l
i

A
' L ICRCA T]
ll"ml Il

eV N ummm“i

om0

Figure 5 — Screen Shot Showing Ul Automation Tree

© ISO/IEC 2012 — All rights reserved

http://msdn.microsoft.com/en-us/library/dd318466(v=VS.85).aspx
https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Be aware that the order of the siblings in the Ul Automation tree is quite important. Objects that are next to
each other visually should also be next to each other in the Ul Automation tree.

Ul Automation providers for a particular control support navigation among the child elements of that control.
However, providers are not concerned with navigation between these control sub-trees. This is managed by
the Ul Automation core, using information from the default window providers.

To help clients process Ul information more effectively, the framework supports alternative views of the
automation tree: raw view, control view, and content view. As the following table shows, the type of filtering
determines the views, and the client defines the scope of a view.

Al{}omation Description

Tree
Raw view The full tree of automation element objects for which the desktop is the roet.
Control view A subset of the raw view that closely maps to the Ul structure as theruser perceives it.

Content view A subset of the control view that contains content most relevantto the user, like the falues in a
drop-down combo box.

9.1/4 Ul Automation Properties

The Ul Automation Specification defines two kinds of properties: automation element properties and control
patiern properties. Automation element properties apply-te. most controls, providing fundamental jnformation
abqut the element, such as its name. Control pattern properties apply to control patterns, which ar¢ described
next.

Unlike with Microsoft Active Accessibility, every Ul Automation property is identified by a GUID and a
programmatic name, which makes new properties easier to introduce.

9.1(5 Ul Automation Control Patterns

A gontrol pattern describes a particular aspect of the functionality of an automation element. For pxample, a
simple "click-able" control like.a‘button or hyperlink should support the Invoke control pattern to represent the
"cligk" action.

Eag¢h control pattern-is:*a canonical representation of possible Ul features and functions. The current
implementation of Ut Automation defines 22 control patterns. The Windows Automation APl can also support
cusgtom control patterns. Unlike Microsoft Active Accessibility role or state properties, one automatipn element
car| support multiple Ul Automation control patterns.

9.1|6 UFFAutomation Control Types

A contfol type is an automation element property that specifies a well-known control that the element
represents. Currently, Ul Automation defines thirty-eight control types, including Button, CheckBox,
ComboBox, DataGrid, Document, Hyperlink, Image, ToolTip, Tree, and Window.

Before you can assign a control type to an element, the element needs to meet certain conditions, including a
particular automation tree structure, property values, control patterns, and events. However, you are not
limited to these. You can extend a control with custom patterns and properties, as well as with the pre-defined
ones.

The total number of pre-defined control types is significantly lower than Microsoft Active Accessibility object

roles, because Ul Automation control types can be combined to express a larger set of features while
Microsoft Active Accessibility roles cannot.

© ISO/IEC 2012 — All rights reserved 51

http://msdn.microsoft.com/en-us/library/dd373608(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd373608(v=VS.85).aspx
https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

9.1.7 Ul Automation Events

Ul Automation events notify applications of changes to, and actions taken with automation elements. There
are four different types of Ul Automation events, and they do not necessarily mean that the visual state of the
Ul has changed. The Ul Automation event model is independent of the WinEvent framework in Windows,
although the Windows Automation API makes Ul Automation events interoperable with the Microsoft Active
Accessibility framework.

For details, see UI Automation Specification and Windows Automation API Overview.

10 DesiJ;n Considerations

10.1 Ul Automation Design Considerations

This sectign provides information about how to work with Ul Automation. Information @nd examples [are
provided fgr both Ul Automation clients and Ul Automation providers. Interoperability between Microsoft Active
Accessibility and Ul Automation is also addressed.

10.1.1 Ul Automation Clients

There are |many different actions that Ul Automation clients can perform.)This section summarizes sgme
common prrocedures performed by clients.

10.1.1.1 Find Ul Automation Elements Based on a Property Condition

This section contains example code that shows how to locate‘elements within the Ul Automation tree baged
on a specific property or properties. In the following example, a set of property conditions are specified that
identify a certain element (or elements) of interest. A search for all matching elements is then performed ith
the FindAll.

/// <sumnary>
/// Findg all enabled buttons in the_35pecified window element.
/// </summary>
/// <pargm name="elementWindowElement">An application or dialog box window.</param>
/// <retyrns>A collection of elewents that meet the conditions.</returns>
AutomatignElementCollection FindByMultipleConditions (AutomationElemgnt
elementWijndowElement)
{
Condiftion conditions = new AndCondition(
new PropertyCondition(AutomationElement.IsEnabledProperty, true),
new PropertyCondition(AutomationElement.ControlTypeProperty, ControlType.Button)

)5

// Find/Tl children that match the specified conditions (for example, buttons

B

ot

AutomationElementCollection elementCollection =
elementWindowElement.FindAll(TreeScope.Children, conditions);
return elementCollection;

10.1.1.2 Navigate Among Ul Automation Elements with TreeWalker
This section contains example code that shows how to navigate among Ul Automation elements by using the

TreeWalker class. The following example uses GetParent to walk up the Ul Automation tree until it finds the
root element, or desktop. The element just below that is the parent window of the specified element.

52 © ISO/IEC 2012 — All rights reserved

http://msdn.microsoft.com/en-us/library/dd373889(v=VS.85).aspx
http://go.microsoft.com/fwlink/?LinkId=198404
http://msdn.microsoft.com/en-us/library/dd561932(v=VS.85).aspx
https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

/// <summary>
/// Retrieves the top-level window that contains the specified UI Automation element.
/// </summary>
/// <param name="element">The contained element.</param>
/// <returns>The containing top-level window element.</returns>
private AutomationElement GetTopLevelWindow(AutomationElement element)
{
TreeWalker walker = TreeWalker.ControlViewWalker;
AutomationElement elementParent;
AutomationElement node = element;

if (node == AutomationFlement.RootFlement)
{
return node;
¥
do
{
elementParent = walker.GetParent(node);
if (elementParent == AutomationElement.RootElement)
{
break;
¥
node = elementParent;
}

while (true);
return node;

10.1.1.3 Get Ul Automation Element Properties
This section describes how to retrieve propertiesyof a Ul Automation element.

voild PropertyCallsExample(AutomationElement elementList)

{

// The following two calls<afe equivalent.

string name = elementList+Current.Name;

name = elementList,»GetCurrentPropertyValue(AutomationElement.NameProperty) as
stning;

// The followimgdshows how to ignore the default property, which

// would prokgbly be an empty string if the property is not supported.
// Passing \““false" as the second parameter is equivalent to using the overJload
// that&eeés not have this parameter.
object help =
elgmentList. GetCurrentPropertyValue(AutomationElement.HelpTextProperty, true);
if((help == AutomationElement.NotSupported)

'y
heip = ‘No help availapie
}
else
{
string helpText = (string)help;
}

© ISO/IEC 2012 — All rights reserved 53

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

10.1.1.4 Subscribe to Ul Automation Events

This section describes how to subscribe Ul Automation events. The following example code registers an event
handler for the event that is raised when a control such as a button is invoked, and removes it when the
application form closes. The event is identified by an AutomationEvent passed as a parameter to
AddAutomationEventHandler.

// Member variables.
AutomationElement ElementSubscribeButton;
AutomationEventHandler UIAeventHandler;

/// <sumnfary>

/// Regigter an event handler for InvokedEvent on the specified element.
/// </summary>

/// <pargm name="elementButton">The automation element.</param>

public vdid SubscribeToInvoke(AutomationElement elementButton)

{
if (glementButton != null)
{
Automation.AddAutomationEventHandler(InvokePattern.InvokedEvent,
elementButton, TreeScope.Element,
UIAeventHandler = new AutomationEventHandler (OnUIAutomationEvent));
HlementSubscribeButton = elementButton;
}
}

/// <sumnary>

/// AutonlationEventHandler delegate.

/// </summary>

/// <pardm name="src">Object that raised the event.</param>

/// <pardm name="e">Event arguments.</paramy

private Void OnUIAutomationEvent(object snrcy AutomationEventArgs e)

{
// M3ke sure the element still exi¥ts. Elements such as tooltips
// c3dn disappear before the evedd is processed.
AutomationElement sourceElement = src as AutomationElement;
if (¢.EventId == InvokePattern.InvokedEvent)

{
/ TODO Add handling °code.
}
else
{
/ TODO HgadNe any other events that have been subscribed to.
}
}
private Moid” ShutdownUIA()
{
if (UIAeventHandler != null)
{
Automation.RemoveAutomationEventHandler (InvokePattern.InvokedEvent,
ElementSubscribeButton, UIAeventHandler);
}
}

10.1.1.5 Manipulate a Control by Ul Automation

This section describes how to retrieve control pattern objects from Ul Automation elements.

54 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

It is strongly recommended that a client not use GetSupportedPatterns (a managed client API) or
PollForPotentialSupportedPatterns (an native client API). A client should call GetCurrentPattern for
the key patterns of interest.

Obtain a Specific Control Pattern
1) Getthe AutomationElement whose control patterns you are interested in.

2) Call GetCurrentPattern or TryGetCurrentPattern to query for a specific pattern. These methods
are similar, but if the pattern is not found, GetCurrentPattern raises an exception, and
TryGetCurrentPattern returns false

The following example retrieves an AutomationElement for a list item and obtains a SelectionItemPattern
from that element.

///] <summary>

/// Sets the focus to a list and selects a string item in that listg
/// </summary>

/// <param name="listElement">The list element.</param>

///] <param name="itemText">The text to select.</param>

///] <remarks>

// This deselects any currently selected items. Tofatd the item to thg current
sellection

/// in a multiselect list, use AddToSelection instead.df Select.

/// </remarks>

puBlic void SelectListItem(AutomationElement listElement, String itemText)

if ((listElement == null) || (itemText =5“"))
{

}
listElement.SetFocus();

Condition cond = new PropertyCohdition(

AutomationElement.NameProperty, itemText, PropertyConditionFlags.Ignore(ase);
AutomationElement elementItem = listElement.FindFirst(TreeScope.Children, cqnd);
if (elementItem != null)

{

throw new ArgumentException("Argument cannot be null or empty.");

SelectionItemPattern pattern;
try
{

pattern’ = elementItem.GetCurrentPattern(SelectionItemPattern.Pattern) as
SelectionItemPattern;

}

catch (InvalidOperationException ex)

{

Console.WriteLine(ex.Message); // Most likely "Pattern not supportdd."
return;

i
pattern.Select();

}

10.1.2 Ul Automation Providers

Most of the standard controls in applications that use the Win32, Windows Forms, or Windows Presentation
Foundation (WPF) frameworks are automatically exposed to the Ul Automation system. Applications that
implement custom controls may also implement Ul Automation providers for those controls, and client
applications do not have to take any special steps to gain access to them. This section demonstrates tasks for
writing Ul Automation providers for Ul elements.

© ISO/IEC 2012 — All rights reserved 55

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

10.1.2.1 Implement Core Provider Interfaces

Every Ul Automation provider must implement one of the following interfaces.

Interface

Description

IRawElementProviderSimple

This interface represents an instance of a Ul element, and it has methods
that expose property values and pattern interfaces. All elements exposed
to Ul Automation must implement this interface at minimum.

IRawElementProviderFragment

Adds functionality for _an element in_a complex control,

includi

ng

rectangle of the element.

navigation within the fragment, setting focus, and returning the boundi

ng

IRawElenlentProviderFragmentRoot

state for the entire control.

Adds functionality for the root element in a complex contrgl, ‘includi
locating a child element at specified coordinates and setting the fogus

ng

The following interfaces provide added functionality but are not required to be implemented.

Interface

Description <;§:)

IRawElenentProviderAdviseEvents | Enables the provider to track requestsyfor events.

IRawElementProviderHwndOverride

tree of a fragment.

Enables repositioning of HWNDbased elements within the Ul Automati

pon

10.1.2.2 Expose a Server-side Ul Automation Provider

The example code in this section shows how to expose@ server-side Ul Automation provider that is hoste
a SystemJWindows.Forms.Control window. The ‘example overrides the window procedure to har
WM_GETOBJECT, which is the message sent by the Ul Automation core service when a client applica
requests information about the window.

/// <sumnfary>

/// Handlles WM_GETOBJECT messag@;” others are passed to base handler.

/// </summary>

/// <pargm name="m">Window$ message.</param>

/// <remarks>

/// This |method enablds yUI Automation to find the control.
/// In this example,\the implementation of IRawElementProvider is in the same class

/// as this method}

/// </remarks>

protected override void WndProc(ref Message m)

d in
dle
ion

if ((m.Msg == WM _GETOBJECT) && (m.LParam.ToInt32() ==
AutomationInteropProvider.RootObjectlId))

AutomationInteropProvider.ReturnRawElementProvider(

this.Handle, m.WParam, m.LParam,
(IRawElementProviderSimple)this);

{
const_int WM_GETOBJECT = ©x003D;
{
m.Result =
return;
}
base.WndProc(ref m);
}
56

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

10.1.2.3 Return Properties from a Ul Automation Provider

The example code in this section demonstrates how a Ul Automation provider can return properties of an
element to client applications. For any property it does not explicitly support, the provider must return null.
This ensures that Ul Automation attempts to obtain the property from another source, such as the host
window provider.

/// <summary>

/// Gets provider property values.

/// </summary>

///—<param name="propTd">Property identifier </param>

/// <returns>The value of the property.</returns>
object IRawElementProviderSimple.GetPropertyValue(int propId)
{
if (propId == AutomationElementIdentifiers.NameProperty.Id)
return "Custom list control";
}
else if (propId == AutomationElementIdentifiers.ControlTypeProperty.Id)
{
return ControlType.List.Id;
else if (propIld == AutomationElementIdentifiers.IsContentElementProperty.Id
{
return true;
else if (propId == AutomationElementIdentifiers.IsControlElementProperty.Id
{
return true;
}
else
{
return null;
}
}
10.1.2.4 Raise Events from-a:Ul Automation Provider
The example code in this.section demonstrates how a Ul Automation event is raised in the implementation of
a custom button control~The implementation enables a Ul Automation client application to simulgte a button
click. To avoid unnécessary processing, the example checks ClientsArelListening to see whether events
shquld be raised.
///] <summary>
/// RespqQnds to a button click, regardless of whether it was caused by a mouse qr
// /| keyboard click or by InvokePattern.Invoke.
// A ¥fsummary>

private void OnCustomButtonClicked()
{

// TODO Perform program actions invoked by the control.

// Raise an event.
if (AutomationInteropProvider.ClientsArelListening)

{

AutomationEventArgs args = new
AutomationEventArgs(InvokePatternIdentifiers.InvokedEvent);

© ISO/IEC 2012 — All rights reserved 57

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

AutomationInteropProvider.RaiseAutomationEvent(InvokePatternIdentifiers.InvokedEvent,
this, args);

}
}

10.1.2.5 Enable Navigation in a Ul Automation Provider

The example code in this section demonstrates how to implement Navigate for a list item within a list. The
parent element is the list box element and the sibling elements are other items in the list collection. The
method returns null for directions that are not valid; in this case, FirstChild and LastChild, because the
element has.no.children

/// <sumnfary>

/// Navigate to adjacent elements in the automation tree.

/// </summary>

/// <pargm name="direction">Direction to navigate.</param>

/// <returns>The element in that direction, or null.</returns>

/// <remgrks>

/// parentControl is the provider for the list box.

/// parentItems is the collection of list item providers.

/// </remarks>

public IRawElementProviderFragment Navigate(NavigateDirection dipection)

{
int nmMyIndex = parentItems.IndexOf(this);

if (direction == NavigateDirection.Parent)
{
return (IRawElementProviderFragment)parentCantrol;
}
else |[if (direction == NavigateDirection.NextSibling)
{
iff (myIndex < parentItems.Count - 1)
{
return (IRawElementProviderFragment)parentItems[myIndex + 1];
)
}
else |[if (direction == NavigateDirection.PreviousSibling)
{
if (myIndex > @)
{
return (IRawElementProviderFragment)parentItems[myIndex - 1];
)
}

retunn null;

}

10.1.2.6 Pupport Control Patterns in a Ul Automation Provider

This section shows how to implement one or more control patterns on a Ul Automation provider so that client
applications can manipulate controls and get data from them.

To support control patterns:

1) Implement the appropriate interfaces for the control patterns that the element should support, such
as IInvokeProvider for InvokePattern

2) Return the object containing your implementation of each control interface in your implementation of
GetPatternProvider().

58 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following example shows an implementation of ISelectionProvider for a single-selection custom list
box. It returns three properties and gets the currently selected item.

#region ISelectionProvider Members

/// <summary>

/// Specifies whether selection of more than one item at a time is supported.
/// </summary>

public bool CanSelectMultiple

{
gn‘l’
{
return false;
}
}

/// <summary>

/// Specifies whether the list has to have an item selected at all <times.
/// </summary>

public bool IsSelectionRequired

{
get
{
return true;
}
}

///] <summary>

/// Returns the automation provider for thaMselected list item.

/// </summary>

/// <returns>The selected item.</retuens>

///A <remarks>

/// MyList is an Arraylist collec@i®n of providers for items in the list box.
/// SelectedIndex is the index e¥“the selected item.

/// </remarks>

pullic IRawElementProviderSimple[] GetSelection()

{
if (SelectedIndex >=./0)
{
IRawElementProviderSimple itemProvider =
(IHRawElementProviderSimple)MyList[SelectedIndex];
IRawElementProviderSimple[] providers = { itemProvider };
retdpn providers;
}
Else
{
return null;
}
}

#endregion ISelectionProvider Members

10.1.3 Co-existence and Interoperability with Microsoft Active Accessibility
Ul Automation provider interfaces are not derived from the Microsoft Active Accessibility IAccessible COM

interface. However, the Ul Automation Core does take advantage of existing Microsoft Active Accessibility
implementations.

© ISO/IEC 2012 — All rights reserved 59

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

To coexist with and take advantage of existing Microsoft Active Accessibility implementations and clients, Ul
Automation translates between Microsoft Active Accessibility and Ul Automation as appropriate. Clients using
the Ul Automation client APl can use its services to search over existing IAccessible implementations. Code
that writes to the Ul automation provider interfaces will still be visible to existing IAccessible client code.

Also, a Microsoft Active Accessibility implementation can add specific Ul Automation properties and control

patterns in

addition to the base accessibility implementations using IAccessibleEx interface.

Two main ways that information is shared between Ul Automation and Microsoft Active Accessibility are the

“MSAA -to-

Ul-Automation Proxy” and “Ul-Automation-to-MSAA Bridge.”

10.1.3.1 *IISAA-to-UI-Automation Proxy

The MSAA
available t
the IAcceq
serveris e
visible to U
interfaces.

10.1.3.2

The MSAA

that implement Ul Automation. By bridging Microsoft Active Accessibility and Ul Automation toget

Microsoft A
programmg
Presentatid
(UIAutoma

information.

10.2 1Acd

This sectio
and exam
between M

10.2.1 Desgign Consideration for Providers before Implementing the IAccessibleEx Interface

While IAcd
good Micr]
considerati
The b3

IAcces

crosoft Active Accessibility and Ul Automation.

proxy is a component that consumes Microsoft Active Accessibility information andimake
rough the Ul Automation Client API, mapping the programmatic information and features such
sible interface to the corresponding Ul Automation features. If a Microsoft Active Accessib
tended with Ul Automation properties and patterns using the IAccessibleEx interface, these too
| Automation and clients just as they are to an implementation that uses UNAutomation prov

Ul-Automation-to-MSAA Bridge

Bridge enables client applications that use Microsoft Active-Accessibility to access applicati
\ctive Accessibility-based clients, such as a screen reader designed for Windows XP, can
tically interact with Ul Automation-based providersicof Ul information, such as a Wind

n Foundation (WPF) application. It is partyef the Ul Automation Core compor
FionCore.dll). See Annex B — Microsoft ActivesAccessibility Bridge to Ul Automation — for m

essibleEx Design Considerations

les on using IAccessibleEx from both client and provider side and it addresses interoperab

essibleEx is verycost-effective way of supporting Ul Automation when an application already
psoft Active Accessibility server practice, a few technical concerns should be taken
pn before implementing the I1AccessibleEx and Ul Automation Provider interfaces.

seline Microsoft Active Accessibility accessible object hierarchy must be clean

sibleEx cannot correct problems with existing accessible object hierarchies. If there is an issue

S it

as
ility
are
der

bNs
ner,
still
DWS
ent
ore

n provides information about how to~work with |IAccessibleEx. In addition, it supplies information

ility

has
nto

vith

object

model structure, you must fix it in Microsoft Active Accessibility prior to implementing

the

IAccessibleEx interface.

Autom

ation specifications

IAccessibleEx implementation should be compliant with both Microsoft Active Accessibility and Ul

When it is implemented, the resulting object model should be compliant with both Microsoft Active
Accessibility and Ul Automation. Tools are available to confirm under both specifications.

60

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

10.

ISO/IEC TR 13066-2:2012(E)

2.2 The lAccessibleEx Interface for Providers

This section provides information about how Microsoft Active Accessibility implementations can expose Ul
Automation information by using IAccessibleEx and IRawElementProviderSimple.

10.

2.2.1 Implement the IServiceProvider interface

The first step for a provider is to implement IServiceProvider on the existing IAccessible object. Incoming
calls to QueryService for a service id of __uuidof(IAccessibleEx) should return a reference to the object
implementing IAccessibleEx.

10.2.2.2 Implement the Childld

In Microsoft Active Accessibility, a Ul element is always identified by the pair of IAccessible COM interface
and a ChildId object identifier. This means that a single IAccessible COM object can/represent|{multiple Ul
elements.

An|IAccessibleEx instance represents a single Ul element, so it must map from the IAccessible and
ChildId pair to a corresponding IAccessibleEx. IAccessibleEx inclddes two methods to handle this
mapping:

If a
int

//

clgss MyAccessibleImpl: public IAccessible,

this implementation does not use ChildId, does not have_an,TAccessibleEx for the specifi
already represents a child element.

GetIAccessiblePair — Returns an IAccessible and'\ChildId pair for the IAccessibleEx e
IAccessible object and CHILDID_SELF.

N accessible object implementation does notdse ChildId, the methods can still be implemente
ne following code snippet.

or inner object instead.

public IAccessibleEx,
public IRawElementProviderSimple

GetObjectForChild — Returns the IAccessibleEx element forthe specified child. Returns S| OK/NULL if

ed child, or

ement. For

IAccessible implementations that do not use’ ChildId, the method returns the corresponding

H as shown

This sample implements IAcces®ibleEx on the same object; it could use a tear-off

{
public:
HRESULT STDMETHODCALLTYPE GetObjectForChild(long idChild, IAccessibleEx *f pRetVal
)
{
v7> This implementation doesn't support child IDs...
*pRetVal = NULL;
return S OK;
}
HRESULT STDMETHODCALLTYPE GetIAccessiblePair(IAccessible ** ppAcc, long * pidChild
)
{
// Assuming that IAccessibleEx is implemented on same object as
// IAccessible...
*ppAcc = static_cast<IAccessible *>(this);
(*ppAcc)->AddRef();
*pidChild = CHILDID_ SELF;
return S_0K;
}
© ISO/IEC 2012 — All rights reserved 61

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

10.2.23 |

mplement the IRawElementProviderSimple Interface

Servers use IRawElementProviderSimple to expose information about Ul Automation properties and control
patterns. IRawElementProviderSimple includes the following methods:

ProviderOptions — This method is not used with IAccessibleEx implementations.

supports the specified control pattern, or NULL if the control pattern is not supported.

GetPatternProvider — This method is used to expose control pattern interfaces. It returns an object that

GetPr

HostR

An I/
IRawEleme

ppertyVatue—= Fhismethodisusedto EXPUSE HtAotomation plUpUIty vatues:
bwE lementProvider — This method is not used with TAccessibleEx implementations.

\ccessibleEx server exposes
ntProviderSimple: :GetPatternProvider.

control patterns
This method takes an

by implemen
integer\(parameter

ling
hat

specifies the control pattern. The server returns NULL if the pattern is not supported. Ifithe control patlern

interface i
appropriatg

An TAcce
IsRequirg
an integer
properties

pattern int¢rface are exposed through the control pattern interface(method. For example, the IsSelec

property
ISelectid

10.2.3 The IAccessibleEx Interface for Clients

The proce
process ar
obtained
Accessibl

10.2.3.1

1) C

__|uuidof(IServicéProvider).

2) C

10.2.3.2

supported, servers return an IUnknown and the client then calls QueryInterface to get
control pattern.

ssibleEx server can support Ul Automation properties {f(such as LabeledBy,

dForForm) by implementing IRawElementProviderSimple: :GetPropertyValue and supply
PROPERTYID identifying the property as a parameter. This technique applies only to Ul Automa
that are not included in a control pattern interface. (Properties associated with a corn
would be

from the SelectionItem control

nItemProvider::get_IsSelected.

pattern exposed

Hures and samples provided in this section assume an IAccessible client that is already
d an existing Microsoft Active Accessibility server. They also assume that the client has alre
bn IAccessible object by using” one of the accessibility framework APIs such
eObjectFromEvent, AccessibleObjectFromPoint, or AccessibleObjectFromWindow.

Dbtain an IAccessibleEx-Interface from the IAccessible Interface

bll QueryInterface, " on the original IAccessible object with an |ID

bll IServiceRrovider: :QueryService to get the TAccessibleEx.

Handle the Childid

the

and
ing
ion
trol
ted
vith

in
ady
as

of

Clients mu

st be prepared for servers with a ChildId value other than CHILDID_SELF. After obtaining

an

IAccessibI€EX from an IACCesSible, cilentS must call GetObjectrorchild If the ChildId value IS not

CHILDID_S

ELF (indicating a parent object).

The following code snippet shows how to an IAccessibleEx for an IAccessible object and ChildId pair.

HRESULT GetIAccessibleExFromIAccessible(IAccessible * pAcc, long idChild,

TAccessibleEx ** ppaex)

{
*ppaex = NULL;
// First, get IServiceProvider from the IAccessible...
IServiceProvider * pSp = NULL;
62 © ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

HRESULT hr = pAcc->QueryInterface(IID_IServiceProvider, (void **) & pSp);
if(FAILED(hr))

return hr;
if(pSp == NULL)

return E_NOINTERFACE;

// Next, get the IAccessibleEx for the parent object...

IAccessibleEx * paex = NULL;

hr = pSp->QueryService(__uuidof(IAccessibleEx), _ uuidof(IAccessibleEx),
(void **)&paex);

pSp->Release();

if(FAILED(hr))
return hr;
if(paex == NULL)
return E_NOINTERFACE;

// If this is for CHILDID_SELF, we're done. Otherwise, we've goT\a child ID|
// so ask for the object for that.
if(idChild == CHILDID_SELF)
{

*ppaex = paex;

return S_OK;
}

else
{
// Get the IAccessibleEx for the specifzedidChild...
TAccessibleEx * paexChild = NULL;
hr = paex->GetObjectForChild(idChildy &paexChild);
paex->Release();
if(FAILED(hr))
return hr;
if(paexChild == NULL)
return E_NOINTERFACE;
*ppaex = paexChild;
return S_OK;

10.2.3.3 Obtain the IRawElementProviderSimple Interface

The following code ysnippet demonstrates how, when a client has an IAccessibleEx, it can use
QudryInterface\to get to the IRawElementProviderSimple interface.
HRESULT GétIRawElementProviderFromIAccessible(IAccessible * pAcc, long idChild,
IRawElementProviderSimple ** ppEl)
{
*ppEl = NULL;
// First, get the IAccessibleEx for the IAccessible/idChild pair...
IAccessibleEx * paex;
HRESULT hr = GetIAccessibleExFromIAccessible(pAcc, idChild, &paex);
if(FAILED(hr))
return hr;
// Next, use QueryInterface.
hr = paex->QueryInterface(__uuidof(IRawElementProviderSimple), (void **)ppEl);
paex->Release();
return hr;
}

© ISO/IEC 2012 — All rights reserved

63

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

10.2.3.3.1 Use Control Patterns

The following code snippet demonstrates how, when a client has access to IRawElementProviderSimple, it
can obtain control pattern interfaces that have been implemented by providers. Clients can call methods on
those interfaces.

// Helper to get a pattern interface from an IAccessible/idChild pair. Gets the
// IAccessibleEx, then calls GetPatternObject and QueryInterface.
HRESULT GetPatternFromIAccessible(IAccessible * pAcc, long idChild,

PATTERNID patternId, REFIID iid, void ** ppv)

{

// Filrst, get the IAccesibleEx for this IAccessible/idChild pair...
IRawHlementProviderSimple * pel;

HRESULT hr = GetIRawElementProviderSimpleFromIAccessible(pAcc, idChild, &pel));
if(FAILED(hr))

return hr;

if(pgex == NULL)

neturn E_NOINTERFACE;

// Ngw get the pattern object...

IUnknown * pPatternObject = NULL;

hr = |pel->GetPatternProvider(patternId, &pPatternObject);
pel->Release();

if(FAILED(hr))

neturn hr;

if(pPatternObject == NULL)

neturn E_NOINTERFACE;

// Fijnally, QueryInterface to the correct ind&rface type...
hr = |pPatternObject->QueryInterface(iid, ppv);
pPattlernObject->Release();

if(*gpv == NULL)

neturn E_NOINTERFACE;

retunn hr;

}

HRESULT dallInvokePatternMethod{ -IAccessible * pAcc, long idChild)
{
IInvdkeProvider * pPattern;
HRESULT hr = GetPatternFromIAccessible(pAcc, varChild,
UIA InvokePatternId,
__uuidof([IInvokeProvider),
(void **)&pPattern);
if(FAILED(hr))
returashr;

hr = |pPattern->Invoke();
pPattern->Release();
return hr;

}

10.2.3.4 Obtain Property Values
Similar to control patterns, after a client has gained access to IRawElementProviderSimple, it can access

property values. The following code sample shows getting values for the Ul Automation properties
AutomationId (a string), and LabeledBy (a reference to another element).

64 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

#include <initguid.h>

#include <uiautomationcoreapi.h> // Includes +the UI Automation property GUID
definitions.

#include <uiautomationcoreids.h> // Includes definitions of pattern/property IDs.

// Assume we already have a IRawElementProviderSimple * pEl:
VARIANT varValue;

// Get AutomationId property:

varValue.vt = \/T_EMPTY;

HRESULT hr = pEl->GetPropertyValue(UIA AutomationIdPropertyld, &varValue);
if(SUCCEEDED(hr))

{
if(varValue.vt == VT_BSTR)
{
// AutomationId is varValue.bstrVal
}
VariantClear(&varValue);
}

// |Get LabeledBy property:

vanValue.vt = VT_EMPTY;

hr [= pEl->GetPropertyValue(UIA_ LabeledByPropertyIdy, &varValue);
if(SUCCEEDED(hr))

{
if(varValue.vt == VT_UNKNOWN || varValué¢punkVal != NULL)
{
// QueryInterface to IRawElementPsOviderSimple...
IRawElementProviderSimple * pEltabel = NULL;
hr = varValue.punkVal->QueryInterface(__uuidof(IRawElementProviderSimplq),
(void**)& pElLabel);
if(pElLabel !'= NULL)
{
// Use pElLabellhere...
pElLabel ->Release();
}
}
VariantClear(&varValue);
}

The code sample in this section applies to properties that are not associated with a control pattern.|For control
patfern properties, after the client has gained access to the control pattern interface, they can call {or property
valjies there.

10.2.3.5 Convert from the IRawElementProviderSimple Interface back to an TAccessible Interface
If a client obtains an IRawElementProviderSimple as a property value (for example, calling
GetPropertyValue with UIA_LabeledByPropertyId) or returned by a method (for example
ISelectionProvider: :GetSelection, which returns a SAFEARRAY of IRawElementProviderSimple), a
client can obtain a corresponding IAccessible (allowing it to obtain IAccessible properties) as follows:

— First, attempt to QueryInterface to IAccessibleEx.

— If QuerylInterface fails, use the ConvertReturnedElement on the IAccessibleEx instance that the
property was originally obtained from.

© ISO/IEC 2012 — All rights reserved 65

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

Childld value.

// IRawEl
// from a

TAccessible * pAcc

long idCh
// First,
IAccessibh
if(!pAccH
{
// Iff
// on
// td
pAccH
}
if(pAccEX
{
// C3a
pAccH
}
// Finall]
if(pAcc)
{
// U{
// on
}
11 Furth

ementProviderSimple * pVal - an element returned by a property or method
nother IRawElementProviderSimple.

NULL;
ild;

try to QI to IAccessibleEx...
*

Then use the GetIAccessiblePair method on this new IAccessibleEx to obtain an IAccessible and

N
N

X)
QI fails, and the IRawElementProviderSimple was obtained as a property
return value from another IRawElementProviderSimple, then pass it

that originating element’s IAccessibleEx.ConvertReturnedValue:
xOrig->ConvertReturnedElement(pVal, &pAccEx);

)

11 GetIAccessiblePair to get an {IAccessible, idChild}¥/.
x->GetIAccessiblePair(&pAcc, &idChild);

y, use the IAccessible,idChild

e IAccessible methods to get further indfOrmation about this UI element,
pass it to existing code that works_ 1w terms of IAccessible.

er Information

11.1 Microsoft Active Accessibility and Extensibility

Microsoft A
IAccessib

ctive Accessibility~properties and functions cannot be extended without breaking or changing
le COM interface specification. The result is that new control behavior cannot be exposed thro

the object model; it tends:to be static.

With Ul Au

the
igh

omation; as new Ul elements are created, application developers can introduce custom propertjes,

control pat

erns,.and events to describe the new elements.

11.2 Ul Automation Extensibility Features

The Microsoft Ul Automation API specifies a predefined core set of properties, control patterns, and events.
However, applications are not limited to using these predefined specifications. The Ul Automation extensibility
features enable third parties to introduce custom, mutually agreed-upon properties, events, and control
patterns to support new Ul elements and application scenarios. Ul Automation providers and clients can begin
using the custom properties, events, and control patterns immediately without requiring the core Ul
Automation framework to be updated.

66

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

11.2.1 The Registration of Custom Ul Automation Properties, Events, and Control Patterns

A custom property, event, or pattern is specified by filling out a UIAutomationPropertyInfo,
UIAutomationEventInfo or UIAutomationPatternInfo structure as appropriate, and then calling the
appropriate Register... method on the IUIAutomationRegistrar object. This returns an integer property,
event or pattern identifier that can then be used in any Ul Automation API that uses such an identifier.
For example, the Propertyld returned by RegisterProperty can then be used in
IUIAutomationElement: :GetCurrentPropertyValue orin IUTAutomation: :CreatePropertyCondition.

The following must be specified (in the appropriate structure) for a custom item:

— | A GUID that uniquely identifies the property, event, or pattern. Note that this GUID is the real jdentifier of
the item; two properties or events or patterns are considered equivalent if they have the(samg GUID. The
integer identifier that is returned by the Register..() method is temporary and only vald within and for
the remainder of the lifetime of the Ul Automation client that called it. It may return_different intgger values
for the same GUID when called over different runtime instances of the client.
— | A string that represents the programmatic name for the item. This is used only for debugging pprposes.
Cusgtom properties also require the following to be specified:

— | A value identifying the type of the property; for example, whetheritJs a integer or a string.
Custom patterns also require the following to be specified:

— | An array of events associated with the pattern;

— | An array of properties associated with the pattern;

— | 1IDs of the pattern’s corresponding providerdnterface and client interface;

— | An array of methods associated with the pattern, for each of which the count of arguments ang argument
type must also be specified;

— | Code to create a client interface object;
— | Code to perform marshalling for the pattern’s properties and methods.
11.2.2 How Clients and Providers Support Custom Control Patterns

In order to take ‘advantage of newly registered control pattern, both clients and providers are required to
sugply a small’amount of support code.

— | Clients“use a client interface object (for example, an IUIAutomationCustomPattern interpface) that
has-getters for cached and current properties, as well as methods;

— Providers implement a provider interface (for example, an ICustomProviderinterface) that has getters
for each property, as well as methods.

To support the client API object, the code that registers a pattern must supply a factory for creating instances
of a Client Wrapper. This wrapper implements the client APl as a COM interface, and forwards all the property
getter requests and methods calls to an TUTAutomationPatternInstance that is provided by Ul Automation.
The Ul Automation framework then takes care of marshalling the call.

On the provider side, the code that registers a pattern must also supply a “pattern handler’ object that
performs the reverse function of the Client Wrapper. The Ul Automation Framework forwards the property and
method requests to the pattern handler object. The pattern handler then calls the appropriate method on the
target object’s provider interface.

© ISO/IEC 2012 — All rights reserved 67

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The Ul Automation framework takes care of all communication between the client and provider, both of which
register corresponding control pattern interfaces. The Client Wrapper and Pattern Handler need to map only
between C++ interface methods calls with positional arguments and parameters. The following diagram

illustrates this mechanism.

Process Boundary

-

by applications

\ Pattern support code provided /

Figure 6 — Client and Provider Communication Process Diagram

IXxxxProvider
IXxxxPatern |U/AutomationPatternHandler
|U/AutomationPatterninstance
Client code
(e.g. screen- _I:
reader) .*()) —]
(Stub provided by Ul
C il ATTomation) —t P r
Client Wrapper Pattern Handler Implementation
Ul Automation Core Ul Automation Core by some\Ul

-

68

© ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-

Annex A
(informative)

Microsoft Active Accessibility to Automation Proxy

2:2012(E)

Microsoft® Active Accessibility® was the earlier solution for making applications accessible. Microsoft Ul
Automation is the new accessibility model for Microsoft® Windows® and is intended to address the needs of

asq
Mid

Thi
Act

Mig
Aut
asy
Mig

Thi
Act

A

A

Mid
Itis

iue run-time identifiers for elements:-Client applications use library functions to call the Ul

IStive technology products and automated testing tools. Ul Automation ofiers many improye
rosoft Active Accessibility.

ve Accessibility.

rosoft® Active Accessibility® was the earlier solution for making applications-accessible. M
omation is the new accessibility model for Microsoft® Windows® and is intended to address tH

istive technology products and automated testing tools. Ul Automation ‘effers many improve
rosoft Active Accessibility.

ve Accessibility.

Servers and Clients

Microsoft Active Accessibility, server and client applications communicate directly, largely t
ver's implementation of the IAccessible interfacée.

JI Automation, a core service lies betweenthe server (called a provider) and the client. The ¢
kes calls to the interfaces implemented by providers and provides additional services such as

vice.
Automation providers can pravide information to Microsoft Active Accessibility clients, and Micrq
essibility servers can provide information to Ul Automation client applications. However, becaus

ve Accessibility does _not expose as much information as Ul Automation, the two models 4
npatible.

P Ul Elements

rosoft'Active Accessibility presents Ul elements either as an IAccessible interface or as a chi
difficult to compare two IAccessible pointers to determine if they refer to the same element.

nents over

5 annex includes the main features of Ul Automation and explains how these features-différ fromn Microsoft

icrosoft Ul
e needs of
ments over

5 annex includes the main features of Ul Automation and explains\how these features differ from Microsoft

hrough the

pre service
generating
Automation

soft Active
e Microsoft
re not fully

d identifier.

In Ul Automation, every element is represented as an AutomationElement object. Comparison is done by
using the equality operator or the Equals method, both of which compare the unique run-time identifiers of the
elements.

When an accessible object implements Ul Automation using the IAccessibleEx interface, the Microsoft
Active Accessibility to Ul Automation Proxy treats the enhanced accessible object as an automation element
of the Ul Automation object.

© ISO/IEC 2012 — All rights reserved

69

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

A.3 Tree Views and Navigation

The user interface (Ul) elements on the screen can be seen as a tree structure with the desktop as the root,
application windows as immediate children, and elements within applications as further descendants.

In Microsoft Active Accessibility, many automation elements that are irrelevant to end users are exposed in
the tree. Client applications have to look at all the elements to determine which are meaningful.

Ul Automation client applications see the Ul through a filtered view. The view contains only elements of
interest: those that give information to the user or enable interaction. Predefined views of only control

elements 3

Automatiorn
application

Navigation

element that lies to the left on the screen), logical (for example, moving to the next menu item;.0r the next i

in the tab ¢
the child td
objects tha

In Ul Automation, all Ul elements are AutomationElement objects that supportithe same basic functiona

(From the
IRawElemd
sibling to th
navigate fr
also navigd
is very eas

Navigation
drop-down
from them
Accessibilit

be placed anywhere in the tree despite the hierarchy imposed by ownership of windows.

A.4 Role

Microsoft

description
role of an ¢
fixed met
interaction

In contrast
property) fil
by the pro

[implement IAccessible.

nd_only _content alements are availabla: in addition —annlications can define custom \views.
4 g E o

simplifies the task of describing the Ul to the user and helping the user interact with

between elements, in Microsoft Active Accessibility, is either spatial (for example, moving to

rder within a dialog box), or hierarchical (for example, moving the first child in.a gontainer, or fi
its parent). Hierarchical navigation is complicated by the fact that child elements are not alw

standpoint of the provider, they are objects that implement{,an interface inherited fi
ntProviderSimple.) Navigation is mainly hierarchical: from parents to children, and from
e next. (Navigation between siblings has a logical element, as-it may follow the tab order.) One
bm any starting-point, using any filtered view of the tree, by using the TreeWalker class. One
te to particular children or descendants by using Findkirst and FindAll methods; for exampl
y to retrieve all elements within a dialog box that suppornt'a specified control pattern.

in Ul Automation is more consistent than in Microsoft Active Accessibility. Some elements such
lists and pop-up windows appear twice in thesMicrosoft Active Accessibility tree, and naviga
may have unexpected results. It is actually’ impossible to properly implement Microsoft Ac
y for a rebar control. Ul Automation enables re-parenting and repositioning, so that an element

s and Control Types

ul
the

the
em
om
ays

lity.
om
bne
can
can
b it

as
ion
tive
can

of the element's roletin the Ul, such as ROLE_SYSTEM_SLIDER or ROLE_SYSTEM_MENUITEM.
lement is the maif ¢lue to its available functionality. Interaction with a control is achieved by ug
nods such as._IAccessible::accSelect and IAccessible::accDoDefaultAction.

between thesglient application and the Ul is limited to what can be done through IAccessible.

describe th
support a particular contro

| pattern; for example, the provider for a check box must support the Toggle co

Active Accessibility uses”the accRole property (IAccessible::get_accRole) to retrievg

he
ing

ntrol

pattern. Other providers are required to support one or more of a set of control patterns; for example, a button
must support either Toggle or Invoke. Still others support no control patterns at all; for example, a pane that
cannot be moved, resized, or docked does not have any control patterns.

Ul Automation supports custom controls, which are identified by the Custom property and can be described by
the LocalizedControlTypeProperty property.

70 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following table shows the mapping of Microsoft Active Accessibility roles to Ul Automation control types.

Microsoft Active Accessibility role

Ul Automation control type

ROLE_SYSTEM_PUSHBUTTON Button
ROLE_SYSTEM_CLIENT Pane
ROLE_SYSTEM_CHECKBUTTON CheckBox
ROLE_SYSTEM_COMBOBOX ComboBox
ROLE_SYSTEM_CLIENT Custom
ROLE_SYSTEM I TST DataGrid
RQLE_SYSTEM_LISTITEM Dataltem
RQLE_SYSTEM_DOCUMENT Document
RQLE_SYSTEM_TEXT Edit
RALE_SYSTEM_GROUPING Group
RQLE_SYSTEM_LIST Header
RQLE_SYSTEM_COLUMNHEADER Headerltem
RAQLE_SYSTEM_LINK Hyperlink
RALE_SYSTEM_GRAPHIC Image
RALE_SYSTEM_LIST List
RQLE_SYSTEM_LISTITEM Listltem
RQLE_SYSTEM_MENUPOPUP Menu
RQLE_SYSTEM_MENUBAR MenuBar
RQLE_SYSTEM_MENUITEM Menyltem
RQLE_SYSTEM_PANE Pane
RQLE_SYSTEM_PROGRESSBAR ProgressBar

RAQLE_SYSTEM_RADIOBUTTON

RadioButton

RQLE_SYSTEM_SCROLLBAR ScrollBar
RQLE_SYSTEM_SEPARATOR Separator
RJLE_SYSTEM_SLIDER Slider
RJLE_SYSTEM_SPINBUTTON Spinner
RJLE_SYSTEM_SPLITBUTTON SplitButton
RQLE_SYSTEM_STATUSBAR StatusBar
RQLE_SYSTEM_PAGETABLIST Tab
RQLE_SYSTEM_PAGETAB Tabltem
RQLE_SYSTEM\TABLE Table
RQLE_SYSTEM_STATICTEXT Text
RQLEWSYSTEM_INDICATOR Thumb
ROLE_SYSTEM_TITLEBAR TitleBar
ROLE_SYSTEM_TOOLBAR ToolBar
ROLE_SYSTEM_TOOLTIP ToolTip
ROLE_SYSTEM_OUTLINE Tree
ROLE_SYSTEM_OUTLINEITEM Treeltem
ROLE_SYSTEM_WINDOW Window

For more information about the different control types, see Ul Automation Control Types.

© ISO/IEC 2012 — All rights reserved

7

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

A.5 States and Properties

In Microsoft Active Accessibility, elements support a common set of properties, and some properties (such as
accState) must describe very different things, depending on the element's role. Servers must implement all
methods of IAccessible that return a property, even those that are not relevant to the element.

Ul Automation defines many more properties, some of which correspond to states in Microsoft Active
Accessibility. Some are common to all elements, but others are specific to control types and control patterns.
Properties are distinguished by unique identifiers, and most properties can be retrieved by using a single
method, either GetCurrentPropertyValue or GetCachedPropertyValue. Many properties are also easily

retrievable

from the Current and Cached prnpnrhjl accessormethods

A Ul Automation provider does not have to implement irrelevant properties, but can simply return a null*vg

lue

for any praperties it does not support. Also, the Ul Automation core service can obtain some properties fjom
the defaull window provider, and these are amalgamated with properties explicitly implemented by [the
provider.
As well as |supporting many more properties, Ul Automation supplies better performance by allowing muljple
properties {o be retrieved with a single cross-process call.
The followinpg table shows the correspondence between properties in the two models.

Microsoft [Active Accessibility | Ul Automation property ID Remarks%

property dccessor

N

get_accKgqyboardShortcut AccessKeyProperty or AccCessKeyProperty takes precedence if both gre
AcceleratorKeyProperty present.
get_accNgme NameProperty
get_accRqle ControlTypeProperty See the previous table for mapping of roles |to
control types.
get_accVglue ValuePattern.ValueProperty Valid only for control types that suppprt
R ValuePatt ValuePattern or RangeValuePattern. RangeValue
Valng(; a uert yrern. values are normalized to 0-100, to be consistent
aluerroperty with Microsoft Active Accessibility behavior. Valpe
items use a string.
get_accHdlp HelpTextProperty
accLocation BoundingRectangleProperty
get_accDgscription Not supported in Ul accDescription did not have a clear specificatipn
Automation within Microsoft Active Accessibility, which
resulted in providers placing different pieces |of
information in this property.
get_accHqlpTopic Not supported in Ul
Automation
72 © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following table shows which Ul Automation properties correspond to Microsoft Active Accessibility state
constants.

Microsoft Active Accessibility

Ul Automation property

Triggers State

state Change?
STATE_SYSTEM_CHECKED For check box, ToggleStateProperty Y
For radio button, IsSelectedProperty
STATE_SYSTEM_COLLAPSED ExpandCollapseState = Collapsed Y
STIATE_SYSTEM_EXPANDED ExpandCollapseState = Expanded or PartiallyExpanded Y.
STIATE_SYSTEM_FOCUSABLE IsKeyboardFocusableProperty N
STATE_SYSTEM_FOCUSED HasKeyboardFocusProperty N
STATE_SYSTEM_HASPOPUP ExpandCollapsePattern for menu items N
STATE_SYSTEM_INVISIBLE IsOffscreenProperty = True and GetClickablePoint causes | N
NoClickablePointException
STIATE_SYSTEM_LINKED ControlTypeProperty = Hyperlink N
STATE_SYSTEM_MIXED ToggleState = Indeterminate N
STIATE_SYSTEM_MOVEABLE CanMoveProperty N
STATE_SYSTEM_MUTLISELECTABLE CanSelectMultipleProperty N
STATE_SYSTEM_OFFSCREEN IsOffscreenPropenty = True N
STATE_SYSTEM_PROTECTED IsPasswordProperty N
STIATE_SYSTEM_READONLY RangeValuePattern.IsReadOnlyProperty and | N
ValuePattern.IsReadOnlyProperty
STIATE_SYSTEM_SELECTABLE SelectionltemPattern is supported N
STIATE_SYSTEM_SELECTED IsSelectedProperty N
STATE_SYSTEM_SIZEABIE CanResize N
STATE_SYSTEM_UNAVAILABLE IsEnabledProperty Y

© ISO/IEC 2012 — All rights reserved

73

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following states either were not implemented by most Microsoft Active Accessibility control servers or

have no equivalent in Ul Automation.
Microsoft Active Accessibility state Remarks
STATE_SYSTEM_BUSY Not available in Ul Automation
STATE_SYSTEM_DEFAULT Not available in Ul Automation
STATE_SYSTEM_ANIMATED Not available in Ul Automation
STATE_SYYTEM_EXTSELECTABLE Not widely implemented by Microsoft Active Accessibility servers
STATE_SYYTEM_MARQUEED Not widely implemented by Microsoft Active Accessibility servers
STATE_SYYTEM_SELFVOICING Not widely implemented by Microsoft Active Accessibility servers
STATE_SYYTEM_TRAVERSED Not available in Ul Automation
STATE_SYYTEM_ALERT_HIGH Not widely implemented by Microsoft Active ACcessibility servers
STATE_SYYTEM_ALERT_MEDIUM Not widely implemented by Microsoft Active Accessibility servers
STATE_SYYTEM_ALERT_LOW Not widely implemented by Microseft\Active Accessibility servers
STATE_SYYTEM_FLOATING Not widely implemented by Microsoft Active Accessibility servers
STATE_SYYTEM_HOTTRACKED Not available in Ul Automation
STATE_SYYTEM_PRESSED Not available in U] Adtomation
For a complete list of Ul Automation property identifiers,;see Ul Automation Properties Overview.
A.6 Events
The event mechanism in Ul Automation,-unlike that in Microsoft Active Accessibility, does not rely on Windgws
event routing (which is closely tied in.with window handles) and does not require the client application to|set
up hooks. Bubscriptions to events can be fine-tuned not just to particular events but to particular parts of|the
tree. Providers can also fine-tune, their raising of events by keeping track of what events are being listened for.
It is also easier for clients to retrieve the elements that raise events, as these are passed directly to the eyent
callback. Properties of the_element are automatically prefetched if a cache request was active when the cllent
subscribed|to the event.

74

© ISO/IEC 2012 — All rights rese

rved

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

ISO/IEC TR 13066-2:2012(E)

The following table shows the correspondence of Microsoft Active Accessibility WinEvents and Ul Automation
events.

WinEvent

Ul Automation event identifier

EVENT_OBJECT_ACCELERATORCHANGE

AcceleratorKeyProperty property change

EVENT_OBJECT_CONTENTSCROLLED

VerticalScrollPercentProperty or
change on the associated scroll bars

HorizontalScrollPercentProperty property

EVENT_OBJECT_CREATE

StructureChangedEvent

EV

ENT_OBJECT_DEFACTIONCHANGE

No equivalent

EV

ENT_OBJECT_DESCRIPTIONCHANGE

No exact equivalent; perhaps
LocalizedControlTypeProperty property change

HelpTextPrope

Ity or

EV

ENT_OBJECT_DESTROY

StructureChangedEvent

EV

ENT_OBJECT_FOCUS

AutomationFocusChangedEvent

EV

ENT_OBJECT_HELPCHANGE

HelpTextProperty change

EV

ENT_OBJECT_HIDE

StructureChangedEvent

EV

ENT_OBJECT_LOCATIONCHANGE

BoundingRectangleProperty property change

EV

ENT_OBJECT_NAMECHANGE

NameProperty property.change

EV

ENT_OBJECT_PARENTCHANGE

StructureChangedEvent

EV

ENT_OBJECT_REORDER

Not consistenily used in
corresponding event is defined in Ul Automation.

Microsoft Active Accessibility.

o directly

EV

ENT_OBJECT_SELECTION

ElementSelectedEvent

EV

ENT_OBJECT_SELECTIONADD

ElementAddedToSelectionEvent

EV

ENT_OBJECT_SELECTIONREMOVE

ElementRemovedFromSelectionEvent

EV

ENT_OBJECT_SELECTIONWITHIN

No equivalent

EVENT_OBJECT_SHOW StructureChangedEvent
EVENT_OBJECT_STATECHANGE Various property-changed events
EVENT_OBJEET{VALUECHANGE RangeValuePattern.ValueProperty and ValuePattern.ValueProperty changed
EMENT (SYSTEM_ALERT No equivalent
EMENT SYSTEM CAPTUREEND No equivalent
EVENT_SYSTEM_CAPTURESTART No equivalent
EVENT_SYSTEM_CONTEXTHELPEND No equivalent
EVENT_SYSTEM_CONTEXTHELPSTART No equivalent
EVENT_SYSTEM_DIALOGEND WindowClosedEvent
© ISO/IEC 2012 — All rights reserved 75

https://iecnorm.com/api/?name=657c998a27ee6fa96dae9c9aac4b2afa

	1 Scope
	2 Terms and definitions
	3 General Description and Architecture of the Microsoft Windows Automation API
	3.1 General Description
	3.1.1 Microsoft Active Accessibility Overview
	3.1.1.1 Microsoft Active Accessibility Components
	3.1.1.2 Oleacc.dll
	3.1.1.3 Microsoft Active Accessibility Clients
	3.1.1.4 Microsoft Active Accessibility Servers

	3.1.2 UI Automation Overview
	3.1.2.1 UI Automation Components
	3.1.2.2 UI Automation Model

	3.1.3 The IAccessibleEx Interface

	3.2 Architecture

	4 Using the API
	4.1 Using the Microsoft Active Accessibility API
	4.1.1 Types of Microsoft Active Accessibility Support
	4.1.1.1 Native Microsoft Active Accessibility Implementation
	4.1.1.2 Accessible Object Proxies

	4.1.2 Retrieving an Accessible Object
	4.1.3 The WM_GETOBJECT Message
	4.1.4 Special values of Object Identifier
	4.1.4.1 Using the OBJID_NATIVEOM to expose a native object model interface
	4.1.4.2 Using the OBJID_QUERYCLASSNAMEIDX to enable certain Oleacc proxy

	4.2 Using the UI Automation API
	4.2.1 UI Automation Model
	4.2.2 UI Automation Tree
	4.2.3 UI Automation Control Patterns, Control Types, Properties, and Events
	4.2.3.1 UI Automation Control Patterns
	4.2.3.2 UI Automation Control Types
	4.2.3.3 UI Automation Properties
	4.2.3.4 UI Automation Events
	4.2.3.5 UI Automation Provider Interfaces
	4.2.3.6 Custom UI Automation Properties, Control Patterns, and Events

	4.3 Using the IAccessibleEx Interface
	4.3.1 The IAccessibleEx Interface Implementation
	4.3.1.1 Control Patterns: Overlap between Microsoft Active Accessibility and UI Automation
	4.3.1.2 Properties: Overlap between Microsoft Active Accessibility and UI Automation
	4.3.1.3 Events and the WM_GETOBJECT Message

	5 Exposing User Interface Element Information
	5.1 Exposing UI Elements with Microsoft Active Accessibility
	5.1.1 How an MSAA Server Exposes Relevant Properties
	5.1.1.1 Required Properties
	5.1.1.2 Optional Properties
	5.1.1.3 The Accessible Object Role

	5.1.2 Provide Support for the Accessible Object Structure
	5.1.2.1 The accParent Property of the IAccessible Interface
	5.1.2.2 Exposing Children
	5.1.2.3 The accNavigate Method of the IAccessible Interface

	5.1.3 Support Hit Testing
	5.1.4 Generate Appropriate WinEvents
	5.1.5 Object Identifier
	5.1.6 How MSAA Clients Access Exposed UI Elements

	5.2 Exposing UI Elements with UI Automation
	5.2.1 Types of Providers
	5.2.2 UI Automation Provider Concepts
	5.2.2.1 Elements
	5.2.2.2 Navigation
	5.2.2.3 Views
	5.2.2.4 Frameworks
	5.2.2.5 Fragments
	5.2.2.6 Hosts

	5.2.3 Provider Interfaces
	5.2.4 Property Values
	5.2.5 Provider Navigation
	5.2.6 Provider Reparenting
	5.2.7 Provider Repositioning
	5.2.8 How UI Automation Clients Access Exposed UI Elements

	6 Exposing User Interface Element Actions
	6.1 Exposing User Interface Element Actions in MSAA
	6.2 Exposing User Interface Element Actions in UI Automation
	6.2.1 UI Automation Control Pattern Components
	6.2.2 Control Patterns in Providers and Clients
	6.2.3 Dynamic Control Patterns
	6.2.4 Control Patterns and Related Interfaces

	7 Keyboard Focus
	7.1 MSAA Keyboard Focus and Selection
	7.1.1 Focus and Selection Properties and Methods
	7.1.1.1 Selecting Child Objects
	7.1.1.2 Performing Complex Selection Operations

	7.1.2 Events Triggered in Menus

	7.2 UI Automation Keyboard Focus and Selection
	7.2.1 Focus
	7.2.2 Selection
	7.2.2.1 Item Selection
	7.2.2.2 Text Selection
	7.2.2.2.1 UI Automation Text Pattern Overview
	7.2.2.2.1.1 Manipulating Text Using the TextRange Object
	7.2.2.2.1.2 Manipulations of TextRange
	7.2.2.2.1.3 Text Pattern, TextRange, and Embedded Objects
	7.2.2.2.1.4 Text Pattern and Embedded Table Example
	7.2.2.2.1.5 Text Pattern and Virtualized Embedded Objects
	7.2.2.2.1.6 Leveraging ControlType.Custom in Text Pattern
	7.2.2.2.1.7 Lifetime of TextRange Claimed

	8 Events
	8.1 WinEvents
	8.1.1 USER's Role in WinEvents
	8.1.2 Receiving Event Notifications
	8.1.3 Sending Events
	8.1.4 The Allocation of WinEvent IDs
	8.1.4.1.1 Microsoft Active Accessibility / UI Automation Events (System Reserved Events)
	8.1.4.1.2 OEM Reserved Events
	8.1.4.1.3 Community Reserved Events
	8.1.4.1.4 ATOM (Runtime Reserved Events)
	8.1.4.2 The Use of Reserves

	8.2 UI Automation Events
	8.2.1 How Providers Raise Events
	8.2.2 How Clients Register for and Process Events

	9 Programmatic Modifications of States, Properties, Values and Text
	9.1 UI Automation Design Considerations
	9.1.1 Introduction
	9.1.2 UI Automation Elements
	9.1.3 UI Automation Tree
	9.1.4 UI Automation Properties
	9.1.5 UI Automation Control Patterns
	9.1.6 UI Automation Control Types
	9.1.7 UI Automation Events

	10 Design Considerations
	10.1 UI Automation Design Considerations
	10.1.1 UI Automation Clients
	10.1.1.1 Find UI Automation Elements Based on a Property Condition
	10.1.1.2 Navigate Among UI Automation Elements with TreeWalker
	10.1.1.3 Get UI Automation Element Properties
	10.1.1.4 Subscribe to UI Automation Events
	10.1.1.5 Manipulate a Control by UI Automation

	10.1.2 UI Automation Providers
	10.1.2.1 Implement Core Provider Interfaces
	10.1.2.2 Expose a Server-side UI Automation Provider
	10.1.2.3 Return Properties from a UI Automation Provider
	10.1.2.4 Raise Events from a UI Automation Provider
	10.1.2.5 Enable Navigation in a UI Automation Provider
	10.1.2.6 Support Control Patterns in a UI Automation Provider

	10.1.3 Co-existence and Interoperability with Microsoft Active Accessibility
	10.1.3.1 MSAA-to-UI-Automation Proxy
	10.1.3.2 UI-Automation-to-MSAA Bridge

	10.2 IAccessibleEx Design Considerations
	10.2.1 Design Consideration for Providers before Implementing the IAccessibleEx Interface
	10.2.2 The IAccessibleEx Interface for Providers
	10.2.2.1 Implement the IServiceProvider interface
	10.2.2.2 Implement the ChildId
	10.2.2.3 Implement the IRawElementProviderSimple Interface

	10.2.3 The IAccessibleEx Interface for Clients
	10.2.3.1 Obtain an IAccessibleEx Interface from the IAccessible Interface
	10.2.3.2 Handle the ChildId
	10.2.3.3 Obtain the IRawElementProviderSimple Interface
	10.2.3.3.1 Use Control Patterns

	10.2.3.4 Obtain Property Values
	10.2.3.5 Convert from the IRawElementProviderSimple Interface back to an IAccessible Interface

	11 Further Information
	11.1 Microsoft Active Accessibility and Extensibility
	11.2 UI Automation Extensibility Features
	11.2.1 The Registration of Custom UI Automation Properties, Events, and Control Patterns
	11.2.2 How Clients and Providers Support Custom Control Patterns

