
Information technology — Plenoptic
image coding system (JPEG Pleno) —
Part 2:
Light field coding
Technologies de l'information — Système de codage d'images
plénoptiques (JPEG Pleno) —
Partie 2: Codages des champs de lumière

© ISO/IEC 2021

INTERNATIONAL
STANDARD

ISO/IEC
21794-2

Reference number
ISO/IEC 21794-2:2021(E)

First edition
2021-04

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)
﻿

ii� © ISO/IEC 2021 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)
﻿

Foreword...iv
Introduction...v
1	 Scope.. 1
2	 Normative references... 1
3	 Terms and definitions.. 1
4	 Symbols and abbreviated terms.. 3

4.1	 Symbols.. 3
4.2	 Abbreviated terms.. 7

5	 Conventions.. 8
5.1	 Naming conventions for numerical values.. 8
5.2	 Operators.. 8

5.2.1	 Arithmetic operators... 8
5.2.2	 Logical operators.. 9
5.2.3	 Relational operators.. 9
5.2.4	 Precedence order of operators... 9
5.2.5	 Mathematical functions... 10

6	 General..10
6.1	 Functional overview on the decoding process.. 10
6.2	 Encoder requirements.. 11
6.3	 Decoder requirements... 11

7	 Organization of the document..11
Annex A (normative) JPEG Pleno Light Field superbox...12
Annex B (normative) 4D transform mode..29
Annex C (normative) JPEG Pleno light field reference view decoding...73
Annex D (normative) JPEG Pleno light field normalized disparity view decoding..81
Annex E (normative) JPEG Pleno Light Field Intermediate View superbox...89
Bibiliography.. 117

© ISO/IEC 2021 – All rights reserved� iii

Contents� Page

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives or www​.iec​.ch/​members​
_experts/​refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents) or the IEC
list of patent declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www​.iso​.org/​
iso/​foreword​.html. In the IEC, see www​.iec​.ch/​understanding​-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

A list of all parts in the ISO/IEC 21794 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www​.iso​.org/​members​.html and www​.iec​.ch/​national​
-committees.

﻿

iv� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

http://www.iso.org/directives
http://www.iec.ch/members_experts/refdocs
http://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch
http://www.iso.org/iso/foreword.html
http://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
http://www.iso.org/members.html
http://www.iec.ch/national-committees
http://www.iec.ch/national-committees
https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Introduction

This document is part of a series of standards for a system known as JPEG Pleno. This document defines
the JPEG Pleno framework. It facilitates the capture, representation, exchange and visualization of
plenoptic imaging modalities. A plenoptic image modality can be a light field, point cloud or hologram,
which are sampled representations of the plenoptic function in the form of, respectively, a vector
function that represents the radiance of a discretized set of light rays, a collection of points with
position and attribute information, or a complex wavefront. The plenoptic function describes the
radiance in time and in space obtained by positioning a pinhole camera at every viewpoint in 3D spatial
coordinates, every viewing angle and every wavelength, resulting in a 7D function.

JPEG Pleno specifies tools for coding these modalities while providing advanced functionality at system
level, such as support for data and metadata manipulation, editing, random access and interaction,
protection of privacy and ownership rights.

﻿

© ISO/IEC 2021 – All rights reserved� v

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

Information technology — Plenoptic image coding system
(JPEG Pleno) —

Part 2:
Light field coding

1	 Scope

This document specifies a coded codestream format for storage of light field modalities as well as
associated metadata descriptors that are light field modality specific. This document also provides
information on the encoding tools.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

 ITU-T Rec. T.800 | ISO/IEC 15444-1, Information technology — JPEG 2000 image coding system — Part 1:
Core coding system

 ITU-T Rec. T.801 | ISO/IEC 15444-2, Information technology — JPEG 2000 image coding system — Part 2:
Extensions

ISO/IEC 21794-1:2020, Information technology — Plenoptic image coding system (JPEG Pleno) — Part 1:
Framework

ISO/IEC 60559, Information technology — Microprocessor Systems — Floating-Point arithmetic

3	 Terms and definitions

For the purposes of this document the terms and definitions given in ISO/IEC 21794-1 and the
following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

—	 IEC Electropedia: available at http://​www​.electropedia​.org/​

3.1
arithmetic coder
entropy coder that converts variable length strings to variable length codes (encoding) and vice versa
(decoding)

3.2
bit-plane
two-dimensional array of bits

3.3
4D bit-plane
four-dimensional array of bits

INTERNATIONAL STANDARD� ISO/IEC 21794-2:2021(E)

© ISO/IEC 2021 – All rights reserved� 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://www.iso.org/obp
http://www.electropedia.org/
https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

3.4
coefficient
numerical value that is the result of a transformation or linear regression

3.5
compression
reduction in the number of bits used to represent source image data

3.6
depth
distance of a point in 3D space to the camera plane

3.7
disparity view
image that for each pixel of the subaperture view contains the apparent pixel shift between two
subaperture views along either horizontal or vertical axis

3.8
hexadeca-tree
division of a 4D region into 16 (sixteen) 4D subregions

3.9
pixel
collection of sample values in the spatial image domain having all the same sample coordinates

EXAMPLE	 A pixel may consist of three samples describing its red, green and blue value.

3.10
plenoptic function
amount of radiance in time and in space by positioning a pinhole camera at every viewpoint in 3D
spatial coordinates, every viewing angle and every wavelength, resulting in a 7D representation

3.11
reference view
subaperture view that is used as one of the references to generate the intermediate views

3.12
subaperture view
subaperture image
image taken of the 3D scene by a pinhole camera positioned at a particular viewpoint and viewing angle

3.13
texture
pixel attributes

EXAMPLE	 Colour information, opacity, etc.

3.14
transform
transformation
mathematical mapping from one signal space to another

﻿

2� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

4	 Symbols and abbreviated terms

4.1	 Symbols

Codestream_Body() coded image data in the codestream without Codestream_Header()

Codestream_Header() codestream header preceding the image data in the codestream

D t s v uDEC , , ,()
decoded normalized disparity value at view t s,() for pixel location v u,()

D t s v u, , ,()
normalized disparity value at view t s,() for pixel location v u,()

DPECk

pointer to contiguous codestream for normalized disparity view k

Dshift

scaling parameter to translate quantized normalized disparity maps to pos-
itive range

DCODEC disparity view codec type

f focal length

FPWp

fixed-weight merging parameter for view p

H t s,()
view hierarchy value for view t s,()

HCC t s,()
horizontal camera centre coordinate for view t s,()

H t sD ,()
binary value defining the availability of a normalized disparity view t s,()

J0

Lagrangian encoding cost

J1

Lagrangian encoding cost of spatial partitioning

J2

Lagrangian encoding cost of view partitioning

KRp c,

sparse filter regressor mask of texture component c for view p

LightField() JPEG Pleno light field codestream

LSWj
p c,

quantized least-squares merging weight of texture component c for view p ,
j NLSp= …1 2, , ,

MIDV absolute value of the minimum value over all quantized normalized disparity views

﻿

© ISO/IEC 2021 – All rights reserved� 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

MMODEp

view merging mode for intermediate view p

MSPp

sparse filter order for view p

NLSp

number of least-squares merging coefficients for intermediate view p

NRTp

regressor template size parameter for sparse filter for view p

NC number of components in an image

NI

number of intermediate views

NNDV

number of reference normalized disparity views

Np
D

number of normalized disparity reference views for intermediate view p

Np
T

number of texture reference views for intermediate view p

NREF

number of reference views

NRES

number of prediction residual views

Nsp

total available number of regressors for sparse filter

Plev level a particular codestream complies to

Ppih profile a particular codestream complies to

Qp

2D image of dimensions V U× , defines the occlusion state-based segmentation
at Intermediate view p

Q normalized disparity quantization parameter

R rate or bitrate, expressed in bit per sample

RCODEC prediction residual view codec type

RDATA array of bytes containing for a single prediction residual view the RCODEC
codestream after header information has been stripped

RENCODING array of bytes containing for a single prediction residual view the full DCODEC
codestream

RGB colour data for the red, green and blue colour component of a pixel

RHEADER array of bytes containing for a single prediction residual view the header infor-
mation from the RCODEC codestream

﻿

4� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

RPEC j

pointer to contiguous codestream for prediction residual view j

s coordinate of the addressed subaperture image along the s-axis

S size of the light field image along the s-axis (COLUMNS)

sii
Tr

subscript of the column index of the reference view, ii Np

T= …1 2, , , in the light
field array in row-wise scanning order

s jj
Dr

subscript of the column index of the reference normalized disparity view,
jj Np

D= …1 2, , , in the light field array in row-wise scanning order

SFp

binary variable, determines if sparse filter is used (true) or not (false)

SPWj
p,0

quantized sparse filter coefficients of texture component c for view p , j MSPp= …1 2, , ,

SPW j
p c



,

de-quantized sparse filter coefficients of texture component c for view p ,
j MSPp= …1 2, , ,

t coordinate of the addressed subaperture image along the t-axis

T size of the light field image along the t-axis (ROWS)

tii
Tr

subscript of the row index of the reference view, ii Np

T= …1 2, , , in the light field
array in row-wise scanning order

t jj
Dr

subscript of the row index of the reference normalized disparity view, jj Np

D= …1 2, , ,
in the light field array in row-wise scanning order

t sk
D

k
D,()

view coordinate subscripts for normalized disparity view k

t sl
X

l
X,()

view coordinate subscripts for reference view l

t sp
I

p
I,()

view coordinate subscripts for intermediate view p

t s v uk k k k× × ×
4D block dimensions at the 4D block partitioning stage

t s v ub b b b× × ×
4D block dimensions at the bit-plane hexadeca-tree decomposition stage

TCODEC reference view codec type

TDATA array of bytes, containing for a single reference view, the TCODEC codestream,
after header information has been stripped

﻿

© ISO/IEC 2021 – All rights reserved� 5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

TENCODING array of bytes, containing for a single reference view the full TCODEC codestream

THEADER array of bytes, containing for a single reference view the header information
from the TCODEC codestream

TPECl

pointer to contiguous codestream for reference view l

u sample coordinate along the u-axis within the addressed subaperture image

U size of the subaperture image along the u-axis (WIDTH)

v sample coordinate along the v-axis within the addressed subaperture image

V size of the subaperture image along the v-axis (HEIGHT)

VCC t s,()
vertical camera centre coordinate for view t s,()

VPPp

view prediction parameters for intermediate view p

X t s v u c, , , ,()
texture value at view t s,() for pixel location v u,() for texture component c

X t s v u cDEC , , , ,()

decoded texture value at view t s,() for pixel location v u,() for texture com-
ponent c

X t sW
t s
1 1

2 2

,
,

() ()

result of warping the texture view t s1 1,() to view location t s2 2,()

∆x
horizontal distance between a pair of camera centres

∆y
vertical distance between a pair of camera centres

YCbCr colour data for the luminance, the blue chrominance and the red chrominance
component of a pixel

z t s v u, , ,()
depth value at view t s,() for pixel location v u,()

θ̂i
p

distance based merging weight for reference view i Np

T= …1, , at intermedi-
ate view p

αi
p

distance based factor, used for defining the merging weight, at intermediate
view p for reference view i Np

T= …1, ,

Γ p

binary matrix, defining the locations of the non-zero merging weights in merg-
ing weight matrix Θp c, at intermediate view p . It is identical between all colour
components c

﻿

6� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

θ j
p c,

de-quantized least-squares merging weight of texture component c for view p
, j NLSp= …1 2, , ,

θp c
sp
,

sparse filter coefficients at intermediate view p for colour component c

Θp c,

merging weight matrix for intermediate view p for colour component c

Υ p c,

locations of the non-zero elements of Ψ v u,()

Ψ v u,()

regressor template at pixel location v u,()

Ωp
Dr

set of reference normalized disparity views for intermediate view p

Ωp
occlD

set of occluded pixels, which remain to be inpainted, during normalized dispar-
ity view synthesis at intermediate view p

Ωp
occlT

set of occluded pixels, which remain to be inpainted, during texture view syn-
thesis at intermediate view p

Ωp
Tr

set of reference views for intermediate view p

4.2	 Abbreviated terms

2D two dimensional

3D three dimensional

4D four dimensional

DCT discrete cosine transform

floating point floating point notation as specified in ISO/IEC 60559

HTTP hypertext transfer protocol

IDCT inverse DCT

IPR intellectual property rights

IV intermediate view; subaperture view that is generated from surrounding refer-
ence view(s)

JPEG Joint Photographic Experts Group

JPL JPEG Pleno file format

LSB least significant bit

﻿

© ISO/IEC 2021 – All rights reserved� 7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

MSB most significant bit

R-D rate-distortion

RV reference view

URL uniform resource locator

XML eXtensible Markup Language

5	 Conventions

5.1	 Naming conventions for numerical values

Integer numbers are expressed as bit patterns, hexadecimal values or decimal numbers. Bit patterns
and hexadecimal values have both a numerical value and an associated particular length in bits.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead
of binary notation to denote a bit pattern having a length that is an integer multiple of 4. For example,
0x41 represents an eight-bit pattern having only its second most significant bit and its least significant
bit equal to 1. Numerical values that are specified under a "Code" heading in tables that are referred to
as "code tables" are bit pattern values (specified as a string of digits equal to 0 or 1 in which the left-
most bit is considered the most-significant bit). Other numerical values not prefixed by "0x" are decimal
values. When used in expressions, a hexadecimal value is interpreted as having a value equal to the
value of the corresponding bit pattern evaluated as a binary representation of an unsigned integer (i.e.
as the value of the number formed by prefixing the bit pattern with a sign bit equal to 0 and interpreting
the result as a two's complement representation of an integer value). For example, the hexadecimal
value 0xF is equivalent to the 4-bit pattern '1111' and is interpreted in expressions as being equal to the
decimal number 15.

5.2	 Operators

NOTE	 Many of the operators used in document are similar to those used in the C programming
language.

5.2.1	 Arithmetic operators

+ addition

− subtraction (as a binary operator) or negation (as a unary prefix operator)

× multiplication

/ division without truncation or rounding

<< left shift; x<<s is defined as x×2s

>> right shift; x>>s is defined as ⎿x/2s⏌

++ increment with 1

-- decrement with 1

﻿

8� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

umod x umod a is the unique value y between 0 and a–1
for which y+Na = x with a suitable integer N

& bitwise AND operator; compares each bit of the first operand to the corresponding bit
of the second operand
If both bits are 1, the corresponding result bit is set to 1. Otherwise, the corresponding
result bit is set to 0.

^ bitwise XOR operator; compares each bit of the first operand to the corresponding bit
of the second operand
If both bits are equal, the corresponding result bit is set to 0. Otherwise, the correspond-
ing result bit is set to 1.

5.2.2	 Logical operators

|| logical OR

&& logical AND

! logical NOT

5.2.3	 Relational operators

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

5.2.4	 Precedence order of operators

Operators are listed in descending order of precedence. If several operators appear in the same line,
they have equal precedence. When several operators of equal precedence appear at the same level in an
expression, evaluation proceeds according to the associativity of the operator either from right to left
or from left to right.

Operators Type of operation Associativity

() expression left to right

[] indexing of arrays left to right

++, -- increment, decrement left to right

!, – logical not, unary negation

﻿

© ISO/IEC 2021 – All rights reserved� 9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

×, / multiplication, division left to right

umod modulo (remainder) left to right

+, − addition and subtraction left to right

& bitwise AND left to right

^ bitwise XOR left to right

&& logical AND left to right

|| logical OR left to right

<<, >> left shift and right shift left to right

< , >, <=, >= relational left to right

5.2.5	 Mathematical functions

|x| absolute value, is –x for x < 0, otherwise x

sign(x) sign of x, zero if x is zero, +1 if x is positive, -1 if x is negative

clamp(x,min,max) clamps x to the range [min,max]: returns min if x < min, max if x > max or
otherwise x

⎾x⏋ ceiling of x; returns the smallest integer that is greater than or equal to x

⎿x⏌ floor of x; returns the largest integer that is less than or equal to x

⎿x⏋ rounding of x to the nearest integer, equivalent to sign x x() + 0 5.

6	 General

6.1	 Functional overview on the decoding process

This document specifies the JPEG Pleno Light Field superbox and the JPEG Pleno light field decoding
algorithm. The generic JPEG Pleno Light Field superbox syntax is specified in Annex A.

The specified light field decoding algorithm distinguishes two coding modes:

—	 4D Transform mode: this mode is specified in Annex B and is based on a 4D inverse discrete cosine
transform (IDCT) and 4D block partitioning and 4D bit-plane hexadeca-tree decoding;

—	 4D Prediction mode: this mode is based the prediction of intermediate views based on reference
views and normalized disparity maps. The signalling syntax and decoding of the reference views is
addressed in Annex C, the normalized disparity views in Annex D, and the prediction parameters
and residual views in Annex E. The intermediate views are reconstructed in a decoding process that
involves view warping, view merging and prediction error correction.

The overall architecture (Figure 1) provides the flexibility to configure the encoding and decoding
system depending on the requirements of the addressed use case.

﻿

10� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure 1 — Generic JPEG Pleno light field decoder architecture

6.2	 Encoder requirements

An encoding process converts source light field data to coded light field data.

In order to conform with this document, an encoder shall conform with the codestream format syntax
and file format syntax specified in the annexes for the encoding process(es) embodied by the encoder.

6.3	 Decoder requirements

A decoding process converts coded light field data to reconstructed light field data. Annexes A through
E describe and specify the decoding process.

A decoder is an embodiment of the decoding process. In order to conform to this document, a decoder
shall convert all, or specific parts of, any coded light field data that conform to the file format syntax
and codestream syntax specified in Annex A to E to a reconstructed light field.

7	 Organization of the document

Annex A specifies the description of the JPEG Pleno Light Field superbox.

This document specifies two approaches to represent a compressed representation of light field data:
the 4D Transform mode is specified in Annex B and the 4D Prediction mode is specified Annex C,
Annex D and Annex E. Annex C details the signalling of the reference view data, Annex D the signalling
of the normalized disparity views and finally, Annex E the signalling of the prediction parameters to
generate the intermediate views and residual view data to compensate for prediction errors.

﻿

© ISO/IEC 2021 – All rights reserved� 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Annex A
(normative)

JPEG Pleno Light Field superbox

A.1	 General

This annex specifies the use of the JPEG Pleno Light Field superbox which is designed to contain
compressed light field data and associated metadata. The listed boxes shall comply with their definitions
as specified in ISO/IEC 21794-1.

This document may redefine the binary structure of some boxes defined as part of the ISO/IEC 15444-1
or ISO/IEC 15444-2 file formats. For those boxes, the definition found in this document shall be used for
all JPL files.

A.2	 Organization of the JPEG Pleno Light Field superbox

Figure A.1 shows the hierarchical organization of the JPEG Pleno Light Field superbox contained by a
JPL file. This illustration does not specify nor imply a specific order to these boxes. In many cases, the
file will contain several boxes of a particular box type. The meaning of each of those boxes is dependent
on the placement and order of that particular box within the file.

This superbox is composed out of the following core elements:

—	 a JPEG Pleno Light Field Header box containing parameterization information about the light field
such as size and colour parameters;

—	 a JPEG Pleno Light Field Reference View box containing the compressed reference views of the
light field;

—	 a JPEG Pleno Light Field Disparity View box signalling disparity information for all or a subset of
subaperture views;

—	 a JPEG Pleno Light Field Intermediate View box containing prediction parameters and eventual
compressed residual signals for subaperture views not encoded as reference views.

Table A.1 lists all boxes defined as part of this document. Boxes defined as part of the ISO/IEC 15444-1
or ISO/IEC 15444-2 file formats are not listed. A box that is listed in Table A.1 as “Required” shall exist
within all conforming JPL files. For the placement of and restrictions on each box, see the relevant
section defining that box.

Note that the IPR, XML, UUID and UUID boxes introduced in Annex A can be signalled, as well at the
level of the JPEG Pleno Light Field box, to carry light field specific metadata.

﻿

12� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure A.1 — Hierarchical organization of a JPEG Pleno Light Field superbox

﻿

© ISO/IEC 2021 – All rights reserved� 13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

A.3	 Defined boxes

A.3.1	 Overview

The following boxes shall properly be interpreted by all conforming readers. Each of these boxes
conforms to the standard box structure as defined in ISO/IEC 21794-1:2020, Annex A. The following
clauses define the value of the DBox field. It is assumed that the LBox, TBox and XLBox fields exist for
each box in the file as defined in ISO/IEC 21794-1:2020, Annex A.

Table A.1 — Defined boxes

Box name Type Superbox Required? Comments
JPEG Pleno Light Field
box

‘jplf’
(0x6A70 6C66)

Yes Yes This box contains a series of boxes
that contain the encoded light field,
its parameterization and associated
metadata. (Defined in ISO/IEC 21794-
1:2020, Annex A)

JPEG Pleno Profile and
Level box

‘jppl’
(0x6A70 706C)

No Yes This box indicates to which profile
and associated level the file format
and codestream complies. (Defined in
Annex A.3.2)

JPEG Pleno Light Field
Header box

'jplh'
(0x6A70 6C68)

Yes Yes This box contains generic information
about the file, such as the number of
components, bits per component and
colour space. (Defined in Annex A.3.3)

Light Field Header box ‘lhdr’
(0x6C68 6472)

No Yes This box contains fixed length generic
information about the light field, such
as light field dimensions, subaperture
image size, number of components,
codec and bits per component. (De-
fined in Annex A.3.3.2)

Camera Parameter box ‘lfcp’
(0x6C66 6370)

No No This box signals intrinsic and extrin-
sic camera parameters for calibration
of the light field data. (Defined in
Annex A.3.3.3)

Contiguous Codestream
box

'jp2c'
(0x6A70 3263)

No No This box contains a JPEG Pleno code-
stream (Defined in Annex A.3.4)

JPEG Pleno Light Field
Reference View superbox

‘lfrv’
(0x6C66 7276)

Yes No This box contains a series of boxes
that contain the encoded reference
views and their associated parame-
ters. (Defined in Annex C.2)

JPEG Pleno Light Field
Reference View Descrip-
tion box

‘lfrd’
(0x6C66 7264)

No No This box signals which views are
encoded as reference views and their
encoding configuration. (Defined in
Annex C.3.1)

Common Codestream
Elements box

‘lfcc’
(0x6C66 6363)

No No This box contains the redundant part
of the signalled codestreams. (Defined
in Annex C.3.2)

JPEG Pleno Light Field
Normalized Disparity
View superbox

‘lfdv’
(0x6C66 6476)

Yes No This box contains a series of boxes
that contain the encoded normalized
disparity views and their associated
parameters. (Defined in Annex D.2)

JPEG Pleno Light Field
Normalized Disparity
View Description box

‘lfdd’
(0x6C66 6464)

No No This box signals for which views
normalized disparity information is
signalled and their encoding configu-
ration. (Defined in Annex D.3.1)

﻿

14� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Box name Type Superbox Required? Comments
JPEG Pleno Light Field
Intermediate View
superbox

‘lfiv’
(0x6C66 6976)

Yes No This box contains a series of boxes
that contain both the prediction
parameters for the intermediate
views and the encoded residual views.
(Defined in Annex E.2)

JPEG Pleno Light Field
Prediction Parameter box

‘lfpp’
(0x6C66 7070)

No No This box signals prediction parame-
ter information for the intermediate
views. (Defined in Annex E.3.1)

JPEG Pleno Light Field
Residual View Descrip-
tion box

‘lfre’
(0x6C66 7265)

No No This box signals the encoding configu-
ration for the residual views contain-
ing the prediction errors. (Defined in
Annex E.3.2)

A.3.2	 JPEG Pleno Profile and Level box

The conformance to profiles is indicated in the file type box by the addition of the compatible profiles as
brands within the compatibility list. Derived and application specifications based on this specification
may define additional brands.

The type of the JPEG Pleno Profile and Level box shall be ‘jppl’ (0x6A70 706C) and contents of the box
shall have the organization as in Figure A.2 and format as in Table A.2.

Key
Ppih profile of the codestream
Plev level of the codestream

Figure A.2 — Organization of the contents of a JPEG Pleno Profile and Level box

Table A.2 — Format of the contents of the JPEG Pleno Profile and Level box

Field name Size (bits) Value
Ppih 16 Reserved for future

ISO/IEC use
Plev 16 Reserved for future

ISO/IEC use

A.3.3	 JPEG Pleno Light Field Header box

A.3.3.1	 General

The JPEG Pleno Header box contains generic information about the file, such as the number of
components, bits per component and colour space. This box is a superbox. Within a JPL file, there shall
be one and only one JPEG Pleno Header box. The JPEG Pleno Header box may be located anywhere
within the file after the File Type box but before the Contiguous Codestream box. It also must be at the
same level as the JPEG Pleno Signature and File Type boxes (it shall not be inside any other superbox
within the file).

The type of the JPEG Pleno Header box shall be 'jplh' (0x6A70 6C68).

﻿

Table A.1 (continued)

© ISO/IEC 2021 – All rights reserved� 15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

This box contains several boxes. Other boxes may be defined in other documents and may be ignored by
conforming readers. Those boxes contained within the JPEG Pleno Header box that are defined within
this document are shown in Figure A.3:

—	 The Light Field Header box specifies information about the reference grid geometry, bit depth
and the number of components. This box shall be the first box in the JPEG Pleno Header box and is
specified in A.3.3.2.

—	 The Bits Per Component box specifies the bit depth of the components in the file in cases where the bit
depth is not constant across all components. Its structure shall be as specified in ISO/IEC 15444-1.

—	 The Colour Specification boxes specify the colour space of the decompressed image. Their structures
shall be as specified in ISO/IEC 15444-2. There shall be at least one Colour Specification box within
the JPEG Pleno Header box. The use of multiple Colour Specification boxes provides the ability for a
decoder to be given multiple optimization or compatibility options for colour processing. These boxes
may be found anywhere in the JPEG Pleno Header box provided that they come after the Light Field
Header box. All Colour Specification boxes shall be contiguous within the JPEG Pleno Header box.

—	 The Channel Definition box defines the channels in the image. Its structure shall be as specified in
ISO/IEC 15444-1. This box may be found anywhere in the JPEG Pleno Header box, provided that it
comes after the Light Field Header box.

Key
lhdr Light Field Header box
bppc Bits Per Component box
colri Colour Specification boxes
cdef Channel Definition box

Figure A.3 — Organization of the contents of a JPEG Pleno Header box

A.3.3.2	 Light Field Header box

A.3.3.2.1	 General

This box contains fixed length generic information about the light field, such as light field dimensions,
subaperture image size, number of components, codec and bits per component. The contents of the
JPEG Pleno Header box shall start with a Light Field Header box. Instances of this box in other places in
the file shall be ignored. The length of the Light Field Header box shall be 30 bytes, including the box
length and type fields. Much of the information within the Light Field Header box is redundant with
information stored in the codestream itself.

All references to "the codestream" in the descriptions of fields in this Light Field Header box apply to the
codestream found in the first Contiguous Codestream box in the file. Files that contain contradictory
information between the Light Field Header box and the first codestream are not conforming files.
However, readers may choose to attempt to read these files by using the values found within the
codestream.

The type of the Light Field Header box shall be 'lhdr' (0x6C68 6472) and the contents of the box shall
have the format as in Figure A.4 and Table A.3:

—	 ROWS (T): The value of this parameter indicates the number of rows of the subaperture view array.
This field is stored as a 4-byte big-endian unsigned integer.

﻿

16� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

—	 COLUMNS (S): The value of this parameter indicates the number of columns of the subaperture
view array. This field is stored as a 4-byte big-endian unsigned integer.

—	 HEIGHT (V): The value of this parameter indicates the height of the sample grid. This field is stored
as a 4-byte big-endian unsigned integer.

—	 WIDTH (U): The value of this parameter indicates the width of the sample grid. This field is stored
as a 4-byte big-endian unsigned integer.

—	 NC: This parameter specifies the number of components in the codestream and is stored as a 2-byte
big-endian unsigned integer. The value of this field shall be equal to the value of the NC field in the
LFC marker in the codestream (as defined in B.3.2.6.3). If no Channel Definition Box is available, the
order of the components for colour images is R-G-B-Aux or Y-U-V-Aux.

—	 BPC: This parameter specifies the bit depth of the components in the codestream, minus 1, and is
stored as a 1-byte field (Table A.4).

The low 7-bits of the value indicate the bit depth of the components. The high-bit indicates whether
the components are signed or unsigned. If the high-bit is 1, then the components contain signed
values. If the high-bit is 0, then the components contain unsigned values. If the components vary
in bit depth or sign, or both, then the value of this field shall be 255 and the Light Field Header box
shall also contain a Bits Per Component box defining the bit depth of each component (as defined in
A.3.3.2.2).

—	 C: This parameter specifies the compression algorithm used to compress the image data. It is
encoded as a 1-byte unsigned integer. It the value is 0, the 4D Transform mode coding is activated. If
the value is 1, the 4D Prediction mode is activated. All other values are reserved for ISO/IEC use.

—	 UnkC: This field specifies if the actual colour space of the image data in the codestream is known.
This field is encoded as a 1-byte unsigned integer. Legal values for this field are 0, if the colour space
of the image is known and correctly specified in the Colour Space Specification boxes within the
file, or 1 if the colour space of the light field is not known. A value of 1 will be used in cases such as
the transcoding of legacy images where the actual colour space of the image data is not known. In
these cases, while the colour space interpretation methods specified in the file may not accurately
reproduce the image with respect to an original, the image should be treated as if the methods do
accurately reproduce the image. Values other than 0 and 1 are reserved for ISO/IEC use.

—	 IPR: This parameter indicates whether this JPL file contains intellectual property rights information.
If the value of this field is 0, this file does not contain rights information, and thus the file does not
contain an IPR box. If the value is 1, then the file does contain rights information and thus does
contain an IPR box as defined in ISO/IEC 15444-1. Other values are reserved for ISO/IEC use.

Key
ROWS (T) number of rows of the subaperture view array
COLUMNS (S) number of columns of the subaperture view array
HEIGHT (V) subaperture view height
WIDTH (U) subaperture view width
NC number of components
BPC bits per component
C compression type
UnkC colour space unknown
IPR intellectual property

Figure A.4 — Organization of the contents of a Light Field Header box

﻿

© ISO/IEC 2021 – All rights reserved� 17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table A.3 — Format of the contents of the Light Field Header box

Field name Size (bits) Value
ROWS 32 1 to (232– 1)

COLUMNS 32 1 to (232– 1)
HEIGHT 32 1 to (232– 1)
WIDTH 32 1 to (232– 1)

NC 16 1 to 16 384
BPC 8 See Table A.4

UnkC 8 0 to 1
IPR 8 0 to 1

Table A.4 — BPC values

Values (bits)
Component sample precision

MSB LSB
x000 0000

to
x010 0101

Component bit depth = value + 1. From 1 bit deep to 38 bits
deep respectively (counting the sign bit, if appropriate).

0xxx xxxx Components are unsigned values.
1xxx xxxx Components are signed values.
1111 1111 Components vary in bit depth.

 All other values reserved for ISO/IEC use.

A.3.3.2.2	 Bits Per Component box

The Bits Per Component box specifies the bit depth of each component. If the bit depth of all components
in the codestream is the same (in both sign and precision), then this box shall not be found. Otherwise,
this box specifies the bit depth of each individual component. The order of bit depth values in this box is
the actual order in which those components are enumerated within the codestream. The exact location of
this box within the JPEG Pleno Header box may vary provided that it follows the Light Field Header box.

There shall be one and only one Bits Per Component box inside a JPEG Pleno Header box.

The type of the Bits Per Component box shall be 'bpcc' (0x6270 6363). The contents of this box shall be
as in Table A.5 and Figure A.5.

Key
BPCi bits per component

Figure A.5 — Organization of the contents of a Bits Per Component box

Table A.5 — Format of the contents of the Bits Per Component box

Field name Size (bits) Value
BPCi 8 See Table A.6

This parameter specifies the bit depth of component i, minus 1, encoded as a 1‑byte value (Table A.6).
The ordering of the components within the Bits Per Component box shall be the same as the ordering

﻿

18� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

of the components within the codestream. The number of BPCi fields shall be the same as the value of
the NC field from the Light Field Header box. The value of this field shall be equivalent to the respective
Ssizi field in the LFC marker in the codestream. The low 7-bits of the value indicate the bit depth of this
component. The high-bit indicates whether the component is signed or unsigned. If the high-bit is 1, then
the component contains signed values. If the high-bit is 0, then the component contains unsigned values.

Table A.6 — BPCi values

Values (bits)
Component sample precision

MSB LSB
x000 0000

to
x010 0101

Component bit depth = value + 1. From 1 bit deep to 38 bits
deep respectively (counting the sign bit, if appropriate).

0xxx xxxx Components are unsigned values.
1xxx xxxx Components are signed values.

 All other values reserved for ISO/IEC use.

A.3.3.3	 Camera Parameter box

A.3.3.3.1	 General

The Camera Parameter box provides information on the positioning of the local reference grid in the
global reference grid, its size, and calibration information about the light field. This box is optional.

Camera models can be represented by matrices with particular properties that represent the mapping
of the 3D world coordinate system to the image coordinate system. This 3D to 2D transform depends on
a number of parameters, known as the intrinsic and extrinsic parameters.

A.3.3.3.2	 JPEG Pleno camera parameters

As specified in ISO/IEC 21794-1, JPEG Pleno provides a mechanism to co-register plenoptic data
contained by the JPL file on a 3D reference grid system. This reference grid system exists out of a global
and a local reference grid. The global reference grid allows the positioning of the individual modalities
in the represented 3D scene. In addition, each JPEG Pleno Light Field, Point Cloud and Hologram box
shall be assigned a local reference grid to address their sampled plenoptic data. This local reference
grid is specified by signalling its translation and rotation with respect to the global reference grid. The
rotation angles shall be determined utilizing the right-hand rule for curve orientation.

The parameters related to the local reference grid are signalled per plenoptic object in the associated
JPEG Pleno Light Field, Point Cloud or Hologram box.

﻿

© ISO/IEC 2021 – All rights reserved� 19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure A.6 — The global and local reference grid

In Figure A.6, boundaries and coordinate axes of the global and one local reference grid are shown. In
each case, the samples or coefficients coincident with the left and upper boundaries are included in
a given bounding box, while samples or coefficients along the right and/or lower boundaries are not
included in that bounding box.

A.3.3.3.3	 Camera modelling and calibration

A.3.3.3.3.1	 General

The camera modelling and calibration is described based on the local reference grid (XL, YL, ZL) in
Figure A.6. Both intrinsic and extrinsic parameters are being signalled to model and calibrate the
camera setting and behaviour. The intrinsic parameters are the camera parameters that are internal
and fixed to a particular camera/digitization setup, allowing the mapping between camera coordinates
and pixel coordinates in the image plane.[1] The extrinsic parameters are the camera parameters that
are external to the camera and may change with respect to the 3D local reference grid, defining the
location and orientation of the camera with respect to the 3D local reference grid coordinate system.

A.3.3.3.3.2	 Intrinsic camera parameters

Considering a pinhole camera model, the centre of projection is the ‘optical centre’ (C in Figure A.7).
The camera's ‘principal axis’ (ZCAM in Figure A.7) is the line perpendicular to the image plane that
passes through the pinhole. Its intersection with the image plane is known as the ‘principal point’ (p
in Figure A.7) and it is the geometrical centre of the image. The parameters u0 and v0 are the principal
points offsets, which are the coordinates of the principal point relative to the coordinate axes u and v
(Figure A.7).

﻿

20� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure A.7 — Pinhole camera geometry

The focal lengths fu and fv correspond to the distance between the optical centres of the cameras and
their respective image planes. They are represented in terms of pixel dimensions in the u and v
directions. For example, if the camera focal length is given in mm one needs to convert it to pixel
dimensions using Formulae (A.1) and (A.2). For square pixels the sensor height is equal to the sensor
width, and fu is equal to fv .

fu (pixel) = (focal length (mm) / sensor width (mm)) × image width (pixel)	 (A.1)

fv (pixel) = (focal length (mm) / sensor height (mm)) × image height (pixel)	 (A.2)

The axis skew parameter sk causes shear distortion in the projected image, and for most of the cameras
its value is equal to zero. The parameters fu , fv , sk , u0 and v0 completely characterize the mapping of
an image point from camera to pixels coordinates. They are known as the intrinsic or internal
parameters of a camera system and can be represented by the transformation matrix K in Formula (A.3):

K =



















f sk u

f v
u

v

0

0
0

0 0 1

	 (A.3)

The matrix K is known as the calibration matrix. In general, the mapping from 3D local reference grid
to the image is linear. A camera system is said to be calibrated when its intrinsic parameters are known,
otherwise it is an uncalibrated camera system.

A.3.3.3.3.3	 Extrinsic camera parameters

The parameters that relate the camera orientation and position to a 3D local reference grid coordinate
system are called the extrinsic or external parameters. The geometric quantities (rotational and
translational components) describing the relative position and orientation of the cameras are called
the extrinsic parameters of the camera system. The rotation and translation can be represented in

﻿

© ISO/IEC 2021 – All rights reserved� 21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

an extrinsic matrix taking the form of a rigid transformation matrix: a 3×3 rotation matrix R, and
a 3×1 translation column-vector tM = (XCC, YCC, ZCC)T that can be represented in a 3×4 matrix, as in
Formula (A.4).

R|tM

r r r

r r r

r r r

XCC

YCC

ZCC

=



















11 12 13

21 22 23

31 32 33

	 (A.4)

Matrix P (Formula (A.5)), known as the projection matrix, or camera matrix, represents the pose of
the 3D local reference grid coordinates relative to the image coordinates. It contains 6 independent
parameters (Degrees of Freedom - DoF): 3 for rotation and 3 for translation. These parameters are
expressed in the local reference grid (Figure A.6).

P=K R t | M 	 (A.5)

The 3×4 matrix P relates the sensor plane 2D image coordinates u = (u, v) (u = (u, v, 1) in homogeneous
coordinates) to the 3D local reference grid coordinates X = (XL, YL, ZL) (X = (XL, YL, ZL, 1) in homogeneous
coordinates) via Formula (A.5). The mapping between a point in the 3D world into a 2D image is given
by u =P X , where u is the image point in homogeneous coordinates, P is the camera matrix and X is
the 3D local reference grid point in homogeneous coordinates. The extrinsic camera parameter matrix
represents the current status of the camera in the 3D scene.

For example, a rotation in 3D local reference grid space involves an axis around which to rotate, and an
angle of rotation, according to the right-handed coordinates.

Formulae (A.6), (A.7) and (A.8) show the rotation matrix values for rotations around these 3 axes:

Rx X X

X X

CAM CAM

CAM CAM

= −





















1 0 0

0

0

cos sin

sin cos

θ θ

θ θ

, rotation around the XL axis, rotates YL, ZL, leaving the XL

coordinates fixed	 (A.6)

Ry

Y Y

Y Y

CAM CAM

CAM CAM

=

−



















cos sin

sin cos

θ θ

θ θ

0

0 1 0

0

, rotation around the YL axis, rotates XL, ZL, leaving the YL

coordinates fixed	 (A.7)

﻿

22� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Rz

Z Z

Z Z

CAM CAM

CAM CAM
= −



















cos sin

sin cos

θ θ

θ θ

0

0

0 0 1

, rotation around the ZL axis, rotates XL, YL, leaving the ZL

coordinates fixed.	 (A.8)

Any rotation can be expressed as a combination of the three rotations about the three axes, as per
Formula (A.9):

R X X

X X

CAM CAM

CAM CAM

= −





















1 0 0

0

0

cos sin

sin cos

θ θ

θ θ

cos sin

sin cos

θ θ

θ θ

Y Y

Y Y

CAM CAM

CAM CAM

0

0 1 0

0−



















cos sin

sin cos

θ θ

θ θ
Z Z

Z Z

CAM CAM

CAM CAM

0

0

0 0 1

−



















	 (A.9)

Formula (A.10) shows the mapping of a 3-D local reference grid point (XL, YL, ZL) to the image coordinate
system (u,v) , for a calibrated system:

u

v

f sk u

f v

r r r

r r r
u

v
1

0

0 0 1

0

0

11 12 13

21 22



















=



















223

31 32 33 1
r r r

XCC

YCC

ZCC

X

Y

Z

L

L

L







































	 (A.10)

A.3.3.3.4	 Camera Parameter box definition

The type of the Camera Parameter box shall be 'lfcp' (0x6C66 6370) and the contents of the box shall
have the format as in Figure A.8.

If the Camera Parameter box is not signalled, all parameters specified in Figure A.8 and Table A.7 shall
be initialized to zero. The scaling values SGLX, SGLY and SGLZ will be initialised to 1.

﻿

© ISO/IEC 2021 – All rights reserved� 23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Key
Light field position in global reference grid
PP precision of coordinates (Precision Prec = 16×2PP)
XLO position of the origin of the local reference grid in the global reference system along the XG

coordinate axis
YLO position of the origin of the local reference grid in the global reference system along the YG

coordinate axis
ZLO position of the origin of the local reference grid in the global reference system along the ZG

coordinate axis

θθ
XL

 rotation offset around the XG axis (in rad)

θθ
YL

rotation offset around the YG axis (in rad)

θθ
ZL

 rotation offset around the ZG axis (in rad)

SGLX scaling of local reference grid system with respect to global reference grid system for the X-axes before
rotation

SGLY scaling of local reference grid system with respect to global reference grid system for the Y-axes before
rotation

SGLZ scaling of local reference grid system with respect to global reference grid system for the Z-axes before
rotation

Extrinsic parameters for pinhole camera corresponding to subaperture view (t, s)
ExtInt signals which extrinsic and intrinsic camera parameters are signalled
BaselineX horizontal camera baseline, used when XCC(t,s) = s × BaselineX + XCC(0,0), and hence, XCC(0,1),

XCC(0,2), …, XCC(T-1,S-1) do not need to be signalled
BaselineY vertical camera baseline, used when YCC(t,s) = t × BaselineY + YCC(0,0), and hence, YCC(0,1), YCC(0,2),

…, YCC(T-1,S-1) do not need to be signalled
XCC (t, s) camera centre of subaperture view (t, s) in local reference grid along XL coordinate axis

﻿

24� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

YCC(t, s) camera centre of subaperture view (t, s) in local reference grid along YL coordinate axis
ZCC (t, s) camera centre of subaperture view (t, s) in local reference grid along ZL coordinate axis

θθXCAM
 (t, s) camera rotation offset around the XL axis (in rad)

θθYCAM
(t, s) camera rotation offset around the YL axis (in rad)

θθZCAM
(t, s) camera rotation offset around the ZL axis (in rad)

Intrinsic parameters for pinhole camera corresponding to subaperture view (t, s)
f (t,s) focal length (in mm)
sW (t,s) sensor width (in mm)
sH (t,s) sensor height (in mm)
sk (t,s) sensor skew
u0 (t,s) horizontal principle point offset
v0 (t,s) vertical principle point offset

NOTE 1	 PP indicates the floating-point precision issued for the coordinates.

NOTE 2	 XLO, YLO, ZLO, θθ
XL

, θθ
YL

, θθ
ZL

, SGLX, SGLY, SGLZ, θθXCAM
 (t, s) , θθYCAM

(t, s) and θθZCAM
(t, s) utilize the

chosen floating-point precision.

Figure A.8 — Organization of the contents of the Camera Parameter box

The geometrical coordinates of the centre of the camera when acquiring the view (t, s) are denoted as

XCC t s X

YCC t s Y

ZCC t s

L

L

,

,

,

()
()
()

, camera centre on

, camera centre on

,, camera centre on ZL .
An example of camera centre coordinates for a planar camera array is given in Figure A.9, where both
the horizontal and vertical coordinates are illustrated for five views in the camera array. The camera
centres XCC and YCC are used together with the normalized disparity maps D to obtain horizontal and
vertical disparity maps between a pair of views in the light field. For usage examples see Annex D.4 and
Annex E.4.

﻿

© ISO/IEC 2021 – All rights reserved� 25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure A.9 — Organization of subaperture views and associated planar
camera calibration information

Table A.7 — Format of the contents of the Camera Parameter box

Field name Size (bits) Value
PP 8 0 to (28-1)
XLO variable big endian, floating point
YLO variable big endian, floating point
ZLO variable big endian, floating point

θθ
XL

 variable big endian, floating point

θθ
YL

 variable big endian, floating point

θθ
ZL

 variable big endian, floating point

SGLX variable big endian, floating point
SGLY variable big endian, floating point
SGLZ variable big endian, floating point

ExtInt 16 See Table A.8
BaselineX 32 single precision, big endian floating-point
BaselineY 32 single precision, big endian floating-point
XCC(0,0) 32 single precision, big endian floating-point
YCC(0,0) 32 single precision, big endian floating-point
ZCC(0,0) 32 single precision, big endian floating-point

﻿

26� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Field name Size (bits) Value

θθ
Xcam

(,)0 0 32 single precision, big endian floating-point

θθ
Ycam

(,)0 0 32 single precision, big endian floating-point

θθ
Zcam
(,)0 0 32 single precision, big endian floating-point

f(0,0) 32 single precision, big endian floating-point
sW(0,0) 32 single precision, big endian floating-point
sH(0,0) 32 single precision, big endian floating-point
sk(0,0) 32 single precision, big endian floating-point
u0(0,0) 32 single precision, big endian floating-point
v0(0,0) 32 single precision, big endian floating-point

XCC(0,1) 32 single precision, big endian floating-point
YCC(0,1) 32 single precision, big endian floating-point

… … …
u0(T-1,S-1) 32 single precision, big endian floating-point
v0(T-1,S-1) 32 single precision, big endian floating-point

Table A.8 — Meaning of ExtInt bits

Bit position Value Meaning

0 (LSB)

0 XCC(t,s) = s × BaselineX + XCC(0,0)
Signal BaselineX and XCC(0,0), the remaining (T×S)-1 XCC entries in Table A.7 are not
signalled

1 The T×S XCC(t,s) entries in Table A.7 are signalled

1

0 YCC(t,s) = t × BaselineY + YCC(0,0)
Signal BaselineY and YCC(0,0), the remaining (T×S)-1 YCC entries in Table A.7 are not
signalled

1 The T×S YCC(t,s) entries in Table A.7 are signalled

2
0 ZCC(t,s) = ZCC(0,0) and the remaining (T×S)-1 ZCC entries in Table A.7 are not signalled
1 The T×S ZCC(t,s) entries in Table A.7 are signalled

3
0 θXcam(t,s) = θXcam(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S θXcam(t,s) entries in Table A.7 are signalled

4
0 θYcam(t,s) = θYcam(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S θYcam(t,s) entries in Table A.7 are signalled

5
0 θZcam(t,s) = θZcam(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S θZcam(t,s) entries in Table A.7 are signalled

6
0 f(t,s) = f(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S f(t,s) entries in Table A.7 are signalled

7
0 sW(t,s) = sW(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S sW(t,s) entries in Table A.7 are signalled

8
0 sH(t,s) = sH(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S sH(t,s) entries in Table A.7 are signalled

9
0 sk(t,s) = sk(0,0) and the remaining (T×S)-1 entries in Table A.7 are not signalled
1 The T×S sk(t,s) entries in Table A.7 are signalled

﻿

Table A.7 (continued)

© ISO/IEC 2021 – All rights reserved� 27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Bit position Value Meaning

10
0 u0(t,s) = ⎿U/2⏌ and the (T×S) entries in Table A.7 are not signalled
1 The T×S u0(t,s) entries in Table A.7 are signalled.

11
0 0(t,s) = ⎿V/2⏌ and the (T×S) entries in Table A.7 are not signalled
1 The T×S v0(t,s) entries in Table A.7 are signalled

12-15 0 Reserved for future ISO/IEC use

A.3.4	 Contiguous Codestream box

The Contiguous Codestream box contains a JPEG Pleno codestream.

The type of a Contiguous Codestream box shall be 'jp2c' (0x6A70 3263). The contents of the box shall be
as in Figure A.10 and Table A.9:

Figure A.10 — Organization of the contents of the Contiguous Codestream box

Table A.9 — Format of the contents of the Contiguous Codestream box

Field name Size (bits) Value
Code Variable Variable

Code This field contains valid and complete JPEG Pleno codestream components as specified in
Annexes B, C, D and E.

﻿

Table A.8 (continued)

28� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Annex B
(normative)

4D transform mode

B.1	 General

This annex describes an instantiation of 4D Transform mode encoder. Next, the codestream syntax is
specified and subsequently the light field decoding process is detailed.

B.2	 4D transform mode encoding

B.2.1	 High-level coding architecture

In the 4D transform mode, the light field is encoded with a four-step process (Figure B.1). First, the
4D light field data is divided into fixed-sized 4D blocks that are independently encoded according to
a predefined and fixed scanning order. However, if any light field dimensions are not multiple of such
fixed-sized 4D blocks, the sizes of the 4D blocks at the light field boundaries shall be truncated to fit in
the light field dimensions. The initial blocks can be further partitioned into a set of non-overlapping 4D
sub-blocks, where the optimal partitioning parameters are derived based on a rate-distortion (R-D)
criterion. Each sub-block is independently transformed by a variable block-size 4D DCT. Subsequently,
the transformed blocks are quantized and entropy coded using hexadeca-tree bit plane decomposition
and adaptive arithmetic encoding, producing a compressed representation of the light field. This coding
procedure is applied to each colour component independently.

Figure B.1 — 4D transform mode encoding architecture

A sample (pixel) of the light field is referenced in a 4D coordinate system along the t, s, v and u-axes,
where t and s are representing the coordinates of the addressed subaperture view, and v and u the
sample coordinates within the subaperture images as illustrated in Figure B.2. The blocks are scanned
in the directions t, s, v and u, with direction u corresponding to the inner loop of the scan. In Table B.1
a pseudo-code describes the scan of the 4D blocks. Each 4D block will generate a separate codestream
embedded in the codestream, which can be independently decoded in support of random access.

﻿

© ISO/IEC 2021 – All rights reserved� 29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.2 — 4D structure

The 4D block partitioning, as well as the clustering of the bit-planes of transform coefficient – for
efficient encoding – are signalled using tree structures (Figure B.3). The partitioning of the 4D blocks
in sub-blocks is signalled with a binary tree using ternary flags. These flags signal whether:

—	 a block is transformed as is;

—	 is split into 4 blocks in the s,t (view) dimensions;

—	 is split into 4 blocks in the u,v (spatial) dimensions.

Key
Sn split node
Ln leaf node

Figure B.3 — Binary tree representing 4D-block partitioning of a tk×sk×vk×uk 4D block

Before subsequently applying the 4D-DCT on the sub-blocks, a level-shift operation is performed
to reduce the dynamic range requirements of the DCT (Annex B.2.3.1). The deployed 4D DCT
(Annex B.2.3.2) is separable, i.e. with 1D transforms computed separately in each of the 4 directions. An
example of the computation flow of the 4D separable transform is depicted in Figure B.4. The order of
the 1D transforms is arbitrary.

﻿

30� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.4 — Separable forward 4D-DCT

After the 4D-DCT is performed, the set of transform coefficients is sliced into 4D bit-planes. A transform
coefficient is considered non-significant on a 4D bit-plane if its bits belonging to higher 4D bit-planes
are all zero. Otherwise, the transform coefficient is considered to be significant. A hexadeca-tree with
ternary flags is used to group the non-significant transform coefficients and thus localize the significant
transform coefficients (Figure B.5). The ternary flags signal that:

—	 either a block of transform coefficients containing a significant coefficient at the current bit-plane is
split into 16 blocks in the four t, s, v, u dimensions,

—	 or a block of transform coefficients not containing any significant coefficient at the current bit-plane
is not split,

—	 or a block of transform coefficients containing a significant coefficient at the current bit-plane is
discarded.

The 4D bit-planes are scanned from the most significant bit-plane to the least significant one, where the
least significant 4D bit-plane being determined by the desired quantization level. Both the hexadeca-
tree bits and the bits from the transform coefficients are encoded using an adaptive arithmetic coder.

Key
Sn Split node
Ln Leaf node

Figure B.5 — Hexadeca-tree representing the clustering of bit-planes of 4D transform
coefficients of a tb×sb×vb×ub 4D block

The structure that clusters the non-significant 4D transform coefficients and thus localizes the
significant ones is a hexadeca-tree, that is encoded using ternary flags. They signal that a block of
transform coefficients containing a significant coefficient at the current bit-plane is split into 16 blocks
in the four t, s, v, u dimensions, or that a block of transform coefficients not containing any significant
coefficient at the current bit-plane is not split, or that a block of transform coefficients containing a
significant coefficient at the current bit-plane is discarded. The 4D bit-planes are scanned from the
most significant to the least significant one, where the least significant 4D bit-plane being determined
by the desired quantization level. Both the hexadeca-tree bits and the bits from the coefficients are

﻿

© ISO/IEC 2021 – All rights reserved� 31

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

encoded using an adaptive arithmetic coder. The hexadeca-tree structure mentioned above is depicted
in Figure B.5.

The following two sections provide more insight on the partitioning strategy and the entropy and
quantization steps.

B.2.2	 Optimize partitioning

The optimized partitioning for each block in Figure B.6 is obtained as follows: initially each block is
transformed by a full-size DCT (B.2.3.2), and the Lagrangian encoding cost, J0 is evaluated (Table B.5).
This cost is defined as J0 = D + λ R, where D is the distortion incurred when representing the original
block by the quantized version and R is the rate needed to encode it. The procedure of Table B.5 is used
to evaluate this cost.

Figure B.6 — 4D Block of a light field

Next, the block can be partitioned in four sub-blocks each one with approximately a quarter of the
pixels in the spatial dimensions. For example, let us consider a block B of dimensions tk×sk×vk×uk.
This block (pictured in Figure B.7 and Figure B.8) will be subdivided in four sub-blocks of sizes
tk×sk×⎿vk/2⏌×⎿uk/2⏌, tk×sk×⎿vk/2⏌×(uk-⎿uk/2⏌), tk×sk×(vk-⎿vk/2⏌)×⎿uk/2⏌ and tk×sk×(vk-⎿vk/2⏌)×(uk-
⎿uk/2⏌), respectively.

Figure B.8 shows a 4D block with dimensions tk×sk×vk×uk in the root node. When applying the spatial
split (signalled with the spatialSplit flag) to the root node, the tree in Figure B.8 is obtained. Figure B.7
illustrates the four ways that a single view is partitioned using the spatialSplit flag, corresponding to
four nodes of Figure B.8. The optimal partition for each sub-block is computed by means of the recursive
procedure described in Table B.5 and the Lagrangian costs of the four sub-blocks are added to compute
the Lagrangian cost JS (Spatial R-D cost).

﻿

32� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.7 — Spatial partitioning of block with spatial dimensions vk×uk

Key

Node

spatialSplit flag

Figure B.8 — Hierarchical 4D partitioning of a 4D block with dimensions tk×sk×vk×uk using the
spatialSplit flag

The block can be partitioned in four sub-blocks each one with approximately a quarter of the pixels
in the view dimensions. For example, let us consider again a block B of dimensions tk×sk×vk×uk.
This block (pictured in Figure B.9 and Figure B.10) will be subdivided in four sub-blocks of
sizes ⎿tk/2⏌×⎿sk/2⏌×vk×uk ⎿tk/2⏌×(sk-⎿sk/2⏌)×vk×uk, (tk-⎿tk/2⏌)×⎿sk/2⏌×vk×uk, (tk-⎿tk/2⏌)×(sk-
⎿sk/2⏌)×vk×uk, respectively Figure B.10). When applying the view split (signalled with the viewSplit
flag) to the root node, the tree in Figure B.10 is obtained. Figure B.9 illustrates the four ways that a
4D block is partitioned using the viewlSplit flag, corresponding to four the nodes of Figure B.10. The
optimal partition for each sub-block is computed by means of the recursive procedure described in
Table B.5 and the Lagrangian costs of the four sub-blocks are added to compute the Lagrangian cost JV
(View R-D cost).

﻿

© ISO/IEC 2021 – All rights reserved� 33

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.9 — View partitioning of a 4D block of dimensions tk×sk×vk×uk

Key

Node

viewSplit flag

Figure B.10 — Hierarchical 4D partitioning of a 4D block with dimensions tk×sk×vk×uk , using
the viewSplit flag

Finally, the three Lagrangian costs (J0, JS and JV) are compared (Table B.5) and the one presenting the
lowest value is chosen.

The recursive partition procedure (Table B.5) keeps track of this tree (Table B.11) and returns a
partitionString (Table B.5) that represents the optimal tree. The string is obtained as follows: once
the lowest cost is chosen, the current value of partitionString is augmented by appending to it the flag
corresponding to the lowest cost chosen. Then, the string returned by the recursive call that leads to
the minimum cost is also appended to the end of the partitionString and the procedure returns both the
minimum cost J0 , JS or JV and the updated partitionString.

﻿

34� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Key

Node

spatialSplit flag

viewSplit flag

transform flag

NOTE	 The transform flag signals that the node is a leaf node and will be no further partitioned.

Figure B.11 — Hierarchical 4D partitioning using the viewSplit flag and the spatialSplit flag

After the optimal partition tree is found, the Encode Partition procedure (Table B.6) is called to encode it.

B.2.3	 Forward 4D-DCT

B.2.3.1	 Level shift

Subsequently, the subblocks are subject to a DCT. However, before processing the forward DCT for a
block of source light field samples, if the samples of the component are unsigned, those samples shall
be level shifted to a signed representation. if the MSB of Ssizi from the LFC marker segment (see Annex
B.3.2.6.3) is zero, all samples x(u,v,s,t) of the ith component are level shifted by subtracting the same
quantity from each sample as follows:

x u v s t x u v s t Ssizi, , , , , ,() ← ()−2

B.2.3.2	 Forward 4D-DCT function

First all components have to be converted to the same precision (bit-depth). Each colour component c is
by multiplied by 2× −()BPC Ssizc before the forward 4D-DCT.

﻿

© ISO/IEC 2021 – All rights reserved� 35

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

For a given light field x(u,v,s,t) the corresponding 4D-DCT representation X(i,j,p,q) is computed by
transforming the block along each dimension as follows.

X i v s t u i X
u i

u
u v s tu

k
u

u

k

k
()

=

−

() = () +()






∑, , , (, , ,)cos α

π

0

1

2 1

2 



= … − = … −

= … − = … −
;

, , , ; , , ,

, , , ; , , ,

i u v v

s s t t
k k

k k

0 1 1 0 1 1

0 1 1 0 1 1

X i j s t v j X i v s t
v j

v
uv

k
v

v
u

k

k
()

=

−
()() = () () +()

∑, , , , , , cos α
π

0

1

2 1

2









= … − = … −

= … − = …
;

, , , ; , , ,

, , , ; , , ,

 i u j v

s s t t
k k

k

0 1 1 0 1 1

0 1 1 0 1 kk −1

X i j p t s p X i j s t
s p

s
uvs

k
s

s
uv

k
()

=

−
()() = () () +()

∑, , , , , , cos α
π

0

1

2 1

2 kk

k k

k

i u j v

p s t













= … − = … −

= … − = …
;

, , , ; , , ,

, , , ; , ,

 0 1 1 0 1 1

0 1 1 0 1 ,, tk −1

X i j p q t q X i j p t
t q

tk
t

t
u v s

k

k

, , , , , , cos, ,() = () () +()

=

−
()∑ α

π

0

1

2 1

2









= … − = … −

= … − = …
;

, , , ; , , ,

, , , ; , , ,

 i u j v

p s q t
k k

k

0 1 1 0 1 1

0 1 1 0 1 kk −1

where α 0
1() =
N

 and α n
N
n N() = = … −2

1 2 1; , , , , , where N is the size of the transform. Output

coefficients are represented as 32-bit integers. As indicated earlier, the transform order is arbitrary.

B.2.4	 Quantization and entropy encoding.

The quantization and entropy encoding rely on the R-D optimized hexadeca-tree structure, which is
constructed based on the procedure listed in Table B.7 and which is further discussed in this paragraph.
This tree is uniquely represented by a series of ternary flags: lowerBitplane, splitBlock and zeroBlock
(Table B.44). The hexadeca-tree is built by recursively subdividing a 4D block until all sub-blocks reach
a 1×1×1×1 4D block-size. The hexadeca-tree is built by recursively subdividing a 4D block. Starting from
a 4D block of size tb×sb×vb×ub, and a bit-plane initially set to maxBitplane (Table B.11), 3 operations are
performed:

 i) Lower the bit-plane: in this case, the descendant of the node is another block with the same
dimensions as the original one but represented with precision bitplane-1. This is used to indi-
cate for all pixels of the block that the binary representation of their magnitudes at the current
bitplane and above are zero. This situation is encoded by the ternary flag value lowerBitPlane.

 ii) Split the block: in this case, the node will have up to 16 children, each one associated to a sub-
block with approximately half the length of the original block in all four dimensions. For example,
a block B of size tb×sb×vb×ub can be split in the following sub-blocks:

 B0000 of size (⎿tb/2⏌ × ⎿sb/2⏌ × ⎿vb/2⏌ × ⎿ub/2⏌),
B0001 of size (⎿tb/2⏌ × ⎿sb/2⏌ × ⎿vb/2⏌ × ub-⎿ub/2⏌),

B0010 of size (⎿tb/2⏌ × ⎿sb/2⏌ × vb-⎿vb/2⏌ × ⎿ub/2⏌),
B0011 of size (⎿tb/2⏌ × ⎿sb/2⏌ × vb-⎿vb/2⏌ × ub-⎿ub/2⏌),

B0100 of size (⎿tb/2⏌ × sb -⎿sb/2⏌ × ⎿vb/2⏌ × ⎿ub/2⏌),
B0101 of size (⎿tb/2⏌ × sb -⎿sb/2⏌ × ⎿vb/2⏌ × ub-⎿ub/2⏌),
B0110 of size (⎿tb/2⏌ × sb -⎿sb/2⏌ × vb-⎿vb/2⏌ × ⎿ub/2⏌),

B0111 of size (⎿tb/2⏌ × sb -⎿sb/2⏌ × vb-⎿vb/2⏌ × ub-⎿ub/2⏌),
B1000 of size (tb-⎿tb/2⏌ × ⎿sb/2⏌ × ⎿vb/2⏌ × ⎿ub/2⏌),
B1001 of size (tb-⎿tb/2⏌ × ⎿sb/2⏌ × ⎿vb/2⏌ × ub-⎿ub/2⏌),

﻿

36� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

B1010 of size (tb-⎿tb/2⏌ × ⎿sb/2⏌ × vb-⎿vb/2⏌ × ⎿ub/2⏌),
B1011 of size (tb-⎿tb/2⏌ × ⎿sb/2⏌ × vb-⎿vb/2⏌ × ub-⎿ub/2⏌),
B1100 of size (tb-⎿tb/2⏌ × sb -⎿sb/2⏌ × ⎿vb/2⏌ × ⎿ub/2⏌),

B1101 of size (tb-⎿tb/2⏌ × sb -⎿sb/2⏌ × ⎿vb/2⏌ × ub-⎿ub/2⏌),
B1110 of size (tb-⎿tb/2⏌ × sb -⎿sb/2⏌ × vb-⎿vb/2⏌ × ⎿ub/2⏌),
B1111 of size (tb-⎿tb/2⏌ × sb -⎿sb/2⏌ × vb-⎿vb/2⏌ × ub-⎿ub/2⏌).

 There are 16 possible sub-blocks, but depending on the size of the parent block, some of these
descendant sub-blocks will have one or more of their lengths equal to zero and shall be skipped.
All descendants have the same bit-depth as the parent. This situation is indicated by the flag
value splitBlock (Table B.44).

 iii) Discard the block: the node has no descendants and is represented by an all-zeros block. This
situation is indicated by the flag value zeroBlock (Table B.44).

The procedure described in Table B.7 recursively subdivides the input block, as determined by the
ternary flags in the segmentation string until a 1×1×1×1 4D block-size is reached.

Given a particular hexadeca-tree, specified by a unique segmentationString of ternary segmentation
flags together with a particular block, the data can be encoded by means of the recursive procedure
described in Table B.8. The inputs to this procedure are the transformed block to be encoded and the
optimal partition string. It recursively subdivides the input block, as determined by the ternary flags
in the segmentation string. Then the magnitude of the single coefficient of this block is encoded one bit
at a time, ranging from the current bit plane to the minimumBitplane (Table B.8), using an arithmetic
encoder with a different context information for each bit. If the coefficient is not zero valued, its signal
is encoded as well.

The rate and the distortion achieved depend heavily on the choice of the segmentation tree as well as
the data itself, and those should be matched. The procedure described in Table B.7, recursively chooses
the optimal segmentation tree to use in the encoding of a given block in a rate-distortion sense. The
optimization works as follows: it starts with bitplane=maximumBitplane, segmentationString=null,
variables J0 and J1 both set to infinity and the full transformed input block . The transformed block is
scanned and all its coefficients are compared to a threshold given by 2bitplane. If the magnitudes of
all of them are less than the threshold, the optimization procedure is recursively called with the
same block as input, but with a bitplane value decreased by one (bitplane-1). The values returned
by this recursive call are the new Lagrangian cost J0, and a rate-distortion optimized segmentation
string lowerSegmentationString. However, if any coefficient is above the threshold, the transformed
block is segmented into up to 16 sub-blocks as previously described. The optimization procedure is
called recursively for each sub-block and the returned Lagrangian costs are added to obtain the new
Lagrangian cost J1. The segmentation strings returned from these calls are concatenated to form the
splitSegmentationString.

Another Lagrangian cost J2 is evaluated considering the resulting cost if the block was replaced by a
block entirely composed of zeros. The lowest cost is chosen, and the segmentation string is updated as
follows:

—	 If the minimum cost is J0, the input segmentation string is augmented by appending a flag
lowerBitplane followed by the lowerSegmentationString.

—	 If the minimum cost is J1, the input segmentation string is augmented by appending a flag splitBlock
followed by the splitSegmentationString.

—	 If the minimum cost is J2, the input segmentation string is augmented by appending a flag zeroBlock.

The procedure returns the lowest cost and the resulting associated segmentation string.

﻿

© ISO/IEC 2021 – All rights reserved� 37

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

The 4D coefficients, flags, and probability context information generated during the encoding process,
are input to the arithmetic encoder, that generates the compressed representation of the light field
(Table B.4). The adaptive statistical binary arithmetic coding is detailed in Table B.12, Table B.13 and
Table B.14. The arithmetic coding requires transmitting only the information needed to allow a decoder
to determine the particular fractional interval between 0 and 1 to which the sequence is mapped,
adapting to changing statistics in the codestream.

B.2.5	 Sample encoding procedure

In this subclause, a sample encoding algorithm is provided for informative purposes. The main
procedure processing the individual 4D blocks is listed in Table B.1.

Table B.1 — 4D block scan procedure

LightField() {
SOC_marker() Write SOC marker
LFC_marker() Write LFC marker

Write SCC_marker() for every colour component not having a global

 scaling factor equal to 1.

Write SCC marker for colour com-
ponent of which the global scaling
factor is different from 1

PNT_marker() Write PNT marker

for(t=0; t<T; t+=BLOCK-SIZE_t){// scan order on t Scan order on t (T defined in Light
Field Header box)

 for(s=0; s<S; s+= BLOCK-SIZE_s){ // scan order on s
Scan order on s (S defined in
Light Field Header box)

 for(v=0; v<V; v+= BLOCK-SIZE_v){ // scan order on v
Scan order on v (V defined in
Light Field Header box)

 for(u=0; u<U; u+= BLOCK-SIZE_u){ // scan order on u
Scan order on u (U defined in
Light Field Header box)

 for(c=0; c<NC; c++){ // scan order on colour components Scan order on c (colour component)
 SOB_marker(); Write SOB marker
 if ((TRNC) && ((T – BLOCK-SIZE_t) < t < T)) {

 tk = T umod BLOCK_SIZE_t; }

 else tk = BLOCK-SIZE_t;

Block size computation

 if ((TRNC) && ((S – BLOCK-SIZE_s) < s < S)) {

 sk = S umod BLOCK_SIZE_s; }

 else sk = BLOCK-SIZE_s;

Block size computation

 if ((TRNC) && ((V – BLOCK-SIZE_v) < v < V)) {

 vk = V umod BLOCK_SIZE_v; }

 else vk = BLOCK-SIZE_v;

Block size computation

 if ((TRNC) && ((U – BLOCK-SIZE_u) < u < U)) {

 uk = U umod BLOCK_SIZE_u; }

 else uk = BLOCK-SIZE_u;

Block size computation

﻿

38� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 Padding(LF.BlockAtPosition(t, s, v, u)); Fills the pixels outside the light
field if needed. If TRNC ==1, there
will be no pixel outside the light
field, and Padding (Table B.2) will
have no effect.
Note that the 4D array LF.Block-
AtPosition is a local copy of the
currently processed 4D block (for
colour component c).

 InitEncoder()
Initializes the arithmetic coder
for each coded codestream
(Table B.13)

 Encode(LF.BlockAtPosition(t, s, v, u), lambda)
 } // end of scan order on colour components loop
 }
 }
 }
}

Table B.2 — 4D block padding procedure

Procedure Padding(block) { When TRNC == 0 and a block ex-
ceeds a light field dimension, the
exceeded block pixels are filled with
block values at the light field border

if (t+tk > T) {
 for(ti = T; ti<t+tk; ++ti) {
 for(si = s; si<s+sk; ++si) {
 for(vi = v; vi<v+vk; ++vi) {
 for(ui = u; ui<u+uk; ++ui) {
 block[ti-t][si-s][vi-v][ui-u]

 = block[T-t-1][si-s][vi-v][ui-u]

 }
 }
 }
 }
}
if (s+sk > S) {
 for(ti = t; ti<t+tk; ++ti) {
 for(si = S; si< s+sk; ++si) {
 for(vi = v; vi<v+vk; ++vi) {
 for(ui = u; ui<u+uk; ++ui) {
 block[ti-t][si-s][vi-v][ui-u]

 = block[ti-t][S-s-1][vi-v][ui-u]

 }
 }
 }

﻿

Table B.1 (continued)

© ISO/IEC 2021 – All rights reserved� 39

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 }
}
if (v+vk > V) {
 for(ti = t; ti<t+tk; ++ti) {
 for(si = s; si<s+sk; ++si) {
 for(vi = V; vi<v+vk; ++vi) {
 for(ui = u; ui<u+uk; ++ui) {
 block[ti-t][si-s][vi-v][ui-u]

 = block[ti-t][si-s][V-v-1][ui-u]

 }
 }
 }
 }
}
if (u+uk > U) {
 for(ti = t; ti<t+tk; ++ti) {
 for(si = s; si< s+sk; ++si) {
 for(vi = v; vi< v+vk; ++vi) {
 for(ui = U; ui< u+uk; ++ui) {
 block[ti-t][si-s][vi-v][ui-u]

 = block[ti-t][si-s][vi-v][U-u-1]

 }
 }
 }
 }
}
}

Table B.3 — 4D-DCT block coefficient component scaling

Procedure ScaleBlock(block){ Scaling of the 4D-DCT coeffi-
cients components by Spscc (see
B.3.2.6.3)

for(ti = 0; ti<tk; ++ti) {
 for(si = 0; si< sk; ++si) {
 for(vi = 0; vi< vk; ++vi) {
 for(ui = 0; ui< uk; ++ui) {
 block[ti][si][vi][ui] =⎾Spscc[c] × block[ti][si]
[vi][ui]⏋;

The array Spscc contains the global
scaling factors for each colour
component.

 }
 }
 }
}

﻿

Table B.2 (continued)

40� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table B.4 — 4D block encoding procedure

Procedure Encode(block, lambda) {
 OptimizePartition(partitionString, block, lambda); Defined in Table B.5
 EncodeMinimumBitPlane(); Defined in Table B.10
 EncodePartition(partitionString, block); Defined in Table B.6
 FlushEncoder(); Defined in Table B.14
}

Table B.5 — 4D block partition optimization procedure

Procedure OptimizePartition(block, lambda) { Finds the optimal 4D-block partition
 blockDCT = 4DDCT(block); Transformed block (using

Annex C.6.3.2 definitions)
 ScaleBlock(blockDCT); Scaling of the 4D-DCT coeffi-

cients components by Spscc (see
Table B.3)

 if((tb,sb,vb,ub) == (tk,sk,vk,uk)){ If the block size is equal to the
maximum block size

 EvaluateOptimalbitPlane(MinimumBitPlane, block, lambda); Defined in Table B.11
 set MinimumBitPlane to the optimal value found;
 set partititionString = "";
 }
 segmentationString = "";
 J0 = OptimizeHexadecaTree(block, maximumBitPlane, lambda, Defined in Table B.7
 segmentationString);

 JS = infinity;
 if((vb > 1)&&(ub > 1)) { If spatial dimensions (ub, vb) of the

block are greater than the prede-
fined minimum then segments the
block into 4 (four) nonoverlapping
sub-blocks (spatialSplit flag – Fig-
ure B.7, Figure B.8 and Table B.30)

 v'b = floor(vb/2);
 u'b = floor(ub/2);
 partitionStringS = "";
 JS = OptimizePartition(Block.GetSubblock(block, Points to the sub-block position;

Returns the Spatial Lagrangian
R-D cost

 0,0,0,0,tb,sb,v'b,u'b), lambda);

 JS += Points to the sub-block position;
Returns the Spatial Lagrangian
R-D cost

OptimizePartition(Block.GetSubblock(block,

 0,0,0,u'b,tb,sb,v'b,ub-u'b), lambda);

 JS += Points to the sub-block position;
Returns the Spatial Lagrangian
R-D cost

OptimizePartition(Block.GetSubblock(block,

 0,0,v'b,0,tb,sb,vb-v'b,u'b), lambda);

 JS += Points to the sub-block position;
Returns the Spatial Lagrangian
R-D cost

OptimizePartition(Block.GetSubblock(block,

 0,0,v'b,u'b,tb,sb,vb-v'b,ub-u'b),lambda);

 }
 JV = infinity;

﻿

© ISO/IEC 2021 – All rights reserved� 41

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 if((tb > 1)&&(sb > 1)) { If view dimensions (tb, sb) of the
block are greater than the prede-
fined minimum then segment the
block into 4 (four) nonoverlapping
sub-blocks (viewSplit flag – Fig-
ure B.9, Figure B.10 and Table B.30)

 t'b = floor(tb/2);
 s'b = floor(tb/2);
 partitionStringV = "";
 JV = Points to the sub-block position; Re-

turns the View Lagrangian R-D costOptimizePartition(Block.GetSubblock(block,

 0,0,0,0,t'b,s'b,vb,ub), lambda);

 JV += Points to the sub-block position; Re-
turns the View Lagrangian R-D costOptimizePartition(Block.GetSubblock(block,

 0,s'b,0,0,t'b,sb-s'b,vb,ub), lambda);

 JV += Points to the sub-block position; Re-
turns the View Lagrangian R-D costOptimizePartition(Block.GetSubblock(block,

 t'b,0,0,0,tb-t'b,s'b,vb,ub), lambda);

 JV += Points to the sub-block position; Re-
turns the View Lagrangian R-D costOptimizePartition(Block.GetSubblock(block,

 t'b,s'b,0,0,tb-t'b,sb-s'b,vb,ub), lambda);

 }

 if((J0 < JS)&&(J0 < JV)) { Returns: transform f lag (Fig-

ure B.11, Table B.30)
 partitionString = cat(partitionString, transformFlag);
 return partitionString, J0; Returns the Lagrangian cost of

transforming the block and the
transform f lag (Figure B.11,
Table B.30)

 }
 if((JS < J0)&&(JS < JV)) {
 partitionString = cat(partitionString, spatialSplitFlag);
 return partitionString, JS; Returns the Lagrangian cost of

the spatial segmentation and the
spatialSplit f lag (Figure B.11,
Table B.30)

 }
 if((JV < JS)&&(JV < J0)) {
 partitionString = cat(partitionString, viewSplitFlag);
 return partitionString, JV; Returns the Lagrangian cost of the

view segmenation and the viewSplit
flag (Figure B.11, Table B.30)

 }
}

﻿

Table B.5 (continued)

42� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table B.6 — 4D block encode partition procedure

Procedure EncodePartition(block, lambda) { Encodes a 4D block
 blockDCT = 4DDCT(block); Defined in Annex B.2.3.2
 ScaleBlock(blockDCT); Scaling of the 4D-DCT coeffi-

cients components by Spscc (see
Annex B.3.2.6.3 and Table B.3)

 if((tb,sb,vb,ub) == (tk,sk,vk,uk)) { If the block size is equal to the
maximum block size

 point to the start of the partitionString;
 }
 get the partitionFlag at the current position of the
 partitionString;

 advance the pointer to the partitionString by one position;

 if(partitionFlag == 0) EncodeBit(0,0); Transmits the partitionFlag;
 if(partitionFlag == 1){
 EncodeBit(1,0);
 EncodeBit(0,0);
 }
 if(partitionFlag == 2){
 EncodeBit(1,0);
 EncodeBit(1,0);
 }

 OptimizeHexadecaTree(block, lambda, maxBitPlane); Defined in Table B.7
 set the segmentationStringPointer to the start of the
 segmentationString;

 EncodeHexadecaTree(block, maxBitPlane); Defined in Table B.8
 }

 if(partitionFlag == spatialSplitFlag) {

 v'b = floor(vb/2);
 u'b = floor(ub/2);
 EncodePartition(Block.GetSubblock(block,
 0,0,0,0,tb,sb,v'b,u'b));

 EncodePartition(Block.GetSubblock(block,
 0,0,0,u'b,tb,sb,v'b,ub-u'b));

 EncodePartition(Block.GetSubblock(block,
 0,0,v'b,0,tb,sb,vb-v'b,u'b));

 EncodePartition(Block.GetSubblock(block,
 0,0,v'b,u'b,tb,sb,vb-v'b,ub-u'b));

 }
 if(partitionFlag == viewSplitFlag) {

 t'b = floor(tb/2);
 s'b = floor(tb/2);
 EncodePartition(Block.GetSubblock(block,
 0,0,0,0,t'b,s'b,vb,ub));

 EncodePartition(Block.GetSubblock(block,

﻿

© ISO/IEC 2021 – All rights reserved� 43

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 0,s'b,0,0,t'b,sb-s'b,vb,ub));

 EncodePartition(Block.GetSubblock(block,
 t'b,0,0,0,tb-t'b,s'b,vb,ub));

 EncodePartition(Block.GetSubblock(block,
 t'b,s'b,0,0,tb-t'b,sb-s'b,vb,ub));

 }
 return;
}

Table B.7 — 4D block hexadeca-tree optimization procedure

Procedure OptimizeHexadecaTree(block, bitplane,
lambda,segmentationString) {

Recursive Hexadeca-tree optimi-
zation procedure

 if(bitplane < InferiorBitPlane) {
 return the sum of the squared values of the coefficients Energy of the block
 of the block;

 }

 if(the block is o size (tb,sb,vb,ub) == (1,1,1,1)) { If the block size is 1x1x1x1 then:
 estimate the rate R to encode the remaining bits of the estimate the rate (R) to encode

the coefficient coefficient, from bitplane down to MinimumBitPlane;

 evaluate the distortion D, as the squared error between the evaluate the distortion D;
 coefficient represented with minimumBitPlane precision

 and the full precision coefficient;

 return J = D + lambda × r return the Rate-Distortion cost
 }
 J0 = infinity;
 J1 = infinity;
 if (the magnitude of any coefficient of the block If the magnitude of all elements of

the block are smaller than 2bitplane is less than 1 << bitplane) {

 lowerSegmentationString = ""; The lower segmentation string
is null

 J0 = OptimizeHexadecaTree(block, bitplane-1, lambda,
 lowerSegmentationString);

 }
 else { Subdivides the block in at most 16

non-overlapping sub-blocks t’b,
s’b, v’b and u’b (Figure B.11) by
splitting in half at each dimension
whenever the length at that dimen-
sion is greater than one

 t'b = floor(tb/2);
 s'b = floor(sb/2);
 v'b = floor(vb/2);
 u'b = floor(ub/2);
 }
 nseg_t = nseg_s = nseg_v = nseg_u = 1;

﻿

Table B.6 (continued)

44� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 if(t'b > 1) nseg_t++;
 if(s'b > 1) nseg_s++;
 if(v'b > 1) nseg_v++;
 if(u'b > 1) nseg_u++;
 splitSegmentationString = “ “; The split segmentation string is null
 J1 = 0;
 for(t = 0; t < nseg_t; t++) {
 for(s = 0; s < nseg_s; s++) {
 for(v = 0; v < nseg_v; v++) {
 for(u = 0; u < nseg_u; u++) {
 new_t = t×t'b + (1-t)×(tb-t'b);
 new_s = s×s'b + (1-s)×(sb-s'b);
 new_v = v×v'b + (1-v)×(vb-v'b);
 new_u = u×u'b + (1-u)×(ub-u'b);
 get subBlock from block. The subBlock size is (new_t, new_s,

new_v, new_u) the position is
(t×t'b,s×s'b,v×v'b,u×u'b)

 J1 +=
OptimizeHexadecaTree(subBlock, bitplane, lambda,

 splitSegmentationString);

 }
 }
 }
 }
 J2 = 0;
 J2 = sum of the squared values of the coefficients of the
block +

Energy of the block plus the La-
grangian multiplier times the
rate to encode the zeroBlock flag
(Table B.30).

 + lambda × rate to encode flag zeroBlock flag;

 J0 += lambda × rate to encode the lowerBitPlane flag The cost to encode the lowerBitplane
Flag (Table B.30).

 J1 += lambda × rate to encode the splitBlock flag The cost to encode the splitBlock
flag (Table B.30).

 if(J0 < J1 && J0 < J2) {
 segmentationString = cat(segmentationString,
lowerBitplane,

 lowerSegmentationString);

 return J0, segmentationString Returns the Lagrangian cost and
the optimal segmentation string

 }
 if(J1 < J0 && J0 < J2) {
 segmentationString = cat(segmentationString, splitBlock,

 splitSegmentationString);

 return J1, segmentationString Returns the Lagrangian cost and
the optimal segmentation string

 }
 if(J2 < J0 && J2 < J1) {
 segmentationString = cat(segmentationString, zeroFlag);

﻿

Table B.7 (continued)

© ISO/IEC 2021 – All rights reserved� 45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 return J2, segmentationString Returns the Lagrangian cost and
the optimal segmentation string

 }
}

Table B.8 — 4D block hexadeca-tree encoding procedure

Procedure EncodeHexadecaTree(block, bitplane) { Encodes the resulting blocks from
the hexadeca-tree structure and
associated flags.

 if(bitplane < InferiorBitPlane) return Below the lowest level
 if(the block is of size (tb,sb,vb,ub) == (1,1,1,1)) {
 EncodeCoefficient(block, bitplane); Defined in Table B.9
 }
 get the segmentationFlag at the current position of the
segmentationString;

 advance the pointer to the segmentationString by one
position;

 EncodeBit((segmentationFlag>>1) & 01, 33 + 2×bitplane); Transmits the segmentationFlag

(Table B.12)
 UpdateModel((segmentationFlag>>1) & 01, 33 + 2×bitplane); Defined in Table B.42

 if((segmentationFlag>>1) & 01 == 0){
 EncodeBit((segmentationFlag & 01), 34 + 2×bitplane); Defined in Table B.12
 UpdateModel(segmentationFlag & 01), 34 + 2×bitplane); Defined in Table B.42
 }
 if(segmentationFlag == zeroBlock) return;

 if (segmentationFlag == lowerBitPlane) { Lowers the bit-plane
 EncodeHexadecaTree(block, bitplane-1);
 }
 if (segmentationFlag == splitBlock) {
 t'b = floor(tb/2);
 s'b = floor(sb/2);
 v'b = floor(vb/2);
 u'b = floor(ub/2);
 nseg_t = nseg_s = nseg_v = nseg_u = 1; Number of segments in each 4D

dimension
 if(tb > 1) nseg_t++;
 if(sb > 1) nseg_s++;
 if(vb > 1) nseg_v++;
 if(ub > 1) nseg_u++;

 for(t = 0; t < nseg_t; t++) {
 for(s = 0; s < nsg_s; s++) {
 for(v = 0; v < nseg_v; v++) {
 for(u = 0; u < nseg_u; u++) {

﻿

Table B.7 (continued)

46� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 new_t = t×t'b + (1-t)×(tb-t'b);
 new_s = s×s'b + (1-s)×(sb-s'b);
 new_v = v×v'b + (1-v)×(vb-v'b);
 new_u = u×u'b + (1-u)×(ub-u'b);
 get subBlock from block at position The subBlock size is (new_t,

new_s, new_v, new_u) the posi-
tion is (t×t'b,s×s'b,v×v'b,u×u'b)

 (t×t'b,s×s'b,v×v'b,u×u'b)

 EncodeHexadecaTree(subBlock, bitplane);
 }
 }
 }
 }
 }
}

Table B.9 — 4D block hexadeca-tree encode coefficient

Procedure EncodeCoefficient(coefficient, bitplane){ Uses the arithmetic encoder to
encode the coefficient bit using the
value of the bit-plane as context.

 Magnitude = |Coefficient|;
 for(bitplane_counter=bitplane ;
 bitplane_counter>=MinimumBitPlane;

 bitplane_counter--) {

 CoefficientBit = (Magnitude >> bitplane_counter-
MinimumBitPlane) & 01H;

 EncodeBit(CoefficientBit,bitplane_counter); Transmits CoefficientBit
(Table B.12)

 }
 if (Magnitude > 0) {
 if(Coefficient > 0) EncodeBit(0,0); Transmits signal (transmits '0')

(Table B.12
 else EncodeBit(1,0); Transmits signal (transmits '1')

(Table B.12)
 }
}

Table B.10 — 4D-block hexadeca-tree encode minimum bit-plane

Procedure EncodeMinimumBitPlane() { Encodes the 8-bit unsigned rep-
resentation of the maximum num-
ber of bit-planes minus 1.

 for(bitplane_counter=7 ; bitplane_counter>=0;

 bitplane_counter--) {
 Bit = (MinimumBitPlane >> bitplane_counter) & 01H;
 EncodeBit(Bit,0); Transmits Bit (Table B.12)
 }

﻿

Table B.8 (continued)

© ISO/IEC 2021 – All rights reserved� 47

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

}

Table B.11 — 4D block optimal bitplane procedure

Procedure EvaluateOptimalbitPlane(MinimumBitPlane, block,
lambda) {

Returns the minimal bit-plane

 Jmin = infinity;
 MinimumBitPlane = MaximumBitPlane;
 AcumulatedRate = 0.0;
 for(bitplane = MaximumBitPlane; bitplane >= 0; bitplane--) {
 Distortion = 0.0
 for all pixels in block {
 AcumulatedRate += rate to encode bit at current bitplane
for the current pixel;

 Distortion += distortion incurred by encoding the
current pixel with bitplane precision

 J = Distortion + lambda × AcumulatedRate;
 if(J <= Jmin) {
 MinimumBitPlane = bitplane;
 Jmin = J;
 }
 }
 }
 return(MinimumBitPlane);
}

Table B.12 — Encode bit procedure

Procedure EncodeBit(inputbit, modelIndex) { Encodes the bit that composes the
codestream (for modelIndex see
Table B.31)

 threshold = floor(((tag - inferiorLimit + 1) ×
 acumFreq_1[modelIndex])/(inferiorLimit - superiorLimit + 1))

 length = floor(((superiorLimit - inferiorLimit + 1) ×
 acumFreq_0[modelIndex])/acumFreq_1[modelIndex])

 if(inputbit == 0) superiorLimit = inferiorLimit + length - 1;
 else inferiorLimit = inferiorLimit + length;
 while((MSB of inferiorLimit == MSB of superiorLimit) ||
 ((inferiorLimit >= 4000H) and (superiorLimit < C000H)) {

 if(MSB of inferiorLimit == MSB of superiorLimit) {
 bit = MSB of inferiorLimit;
 transmits bit
 inferiorLimit = inferiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit+1
 while(ScalingsCounter > 0) {
 ScalingsCounter = ScalingsCounter - 1;
 transmits (1-bit)

﻿

Table B.10 (continued)

48� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 }
 }
 if(inferiorLimit >= 4000H) and (superiorLimit < C000H) {
 inferiorLimit = inferiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit+1;
 inferiorLimit = inferiorLimit ^ 8000H;
 superiorLimit = superiorLimit ^ 8000H;
 ScalingConter = ScalingCounter + 1;
 }
 }
}

Table B.13 — Init encoder procedure

Procedure InitEncoder() { Initializes the Arithmetic Encoder
 inferiorLimit = 0; Inferior limit of the interval length
 superiorLimit = FFFFH; Superior limit of the interval length
 ScalingsCounter = 0;
}

Table B.14 — Flush encoder procedure

Procedure FlushEncoder() { When the encoding is complete, the
bits in the buffer must be moved
to output codestream before a
terminating marker is generated.

 mScalingsCounter++;
 if(inferiorLimit >= 4000H)
 bit = 1;
 else
 bit = 0;
 transmit bit;
 while(ScalingsCounter > 0) {
 transmits (1-bit);
 ScalingsCounter--;
 }
}

B.3	 4D transform mode decoding

B.3.1	 General

In this subclause, the decoding procedure of the codestreams for light field data encoded with the 4D
Transform mode is specified. The codestream is signalled as payload of the Contiguous Codestream box
defined in Annex A.3.4. Figure B.12 illustrates the decoder architecture.

﻿

Table B.12 (continued)

© ISO/IEC 2021 – All rights reserved� 49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.12 — 4D transform mode light field decoder architecture

B.3.2	 Codestream syntax

B.3.2.1	 General

This section specifies the marker and marker segment syntax and semantics defined by this document.
These markers and marker segments provide codestream information for this document. Further,
this subclause provides a marker and marker segment syntax that is designed to be used in future
specifications that include this document as a normative reference.

This document does not include a definition of conformance. The parameter values of the syntax
described in this annex are not intended to portray the capabilities required to be compliant.

B.3.2.2	 Markers, marker segments, and headers

This document uses markers and marker segments to delimit and signal the characteristics of the
source image and codestream. This set of markers and marker segments is the minimal information
needed to achieve the features of this document and is not a file format. A minimal file format is offered
in Annexes A and B.

Main header is collections of markers and marker segments. The main header is found at the beginning
of the codestream.

Every marker is two bytes long. The first byte consists of a single 0xFF byte. The second byte denotes
the specific marker and can have any value in the range 0x01 to 0xFE. Many of these markers are
already used in ITU-T Rec. T.81 | ISO/IEC 10918-1, ITU-T Rec. T.84 | ISO/IEC 10918-3, ITU-T Rec. T.800
| ISO/IEC 15444-1 and ITU-T Rec. T.801 | ISO/IEC 15444-2 and shall be regarded as reserved unless
specifically used.

A marker segment includes a marker and associated parameters, called marker segment parameters. In
every marker segment the first two bytes after the marker shall be an unsigned value that denotes the
length in bytes of the marker segment parameters (including the two bytes of this length parameter but
not the two bytes of the marker itself). When a marker segment that is not specified in the document
appears in a codestream, the decoder shall use the length parameter to discard the marker segment.

﻿

50� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

B.3.2.3	 Key to graphical descriptions

Each marker segment is described in terms of its function, usage, and length. The function describes the
information contained in the marker segment. The usage describes the logical location and frequency of
this marker segment in the codestream. The length describes which parameters determine the length
of the marker segment.

These descriptions are followed by a figure that shows the order and relationship of the parameters
in the marker segment. Figure B.13 shows an example of this type of figure. The marker segments are
designated by the three-letter code of the marker associated with the marker segment. The parameter
symbols have capital letter designations followed by the marker's symbol in lower-case letters. A
rectangle is used to indicate a parameter's location in the marker segment. The width of the rectangle
is proportional to the number of bytes of the parameter. A shaded rectangle (diagonal stripes) indicates
that the parameter is of varying size. Two parameters with superscripts and a grey area between
indicate a run of several of these parameters.

Figure B.13 — Example of the marker segment description figures

The figure is followed by a list that describes the meaning of each parameter in the marker segment.
If parameters are repeated, the length and nature of the run of parameters is defined. As an example,
in Figure B.13, the first rectangle represents the marker with the symbol MAR. The second rectangle
represents the size of the length parameter SLmar (Table B.15). The third rectangle represents the
length parameter Lmar. Parameters Amar, Bmar, Cmar, and Dmar are 8-, 16-, 32-bit and variable length
respectively. The notation Emari implies that there are n different parameters, Emari, in a row.

After the list is a table that either describes the allowed parameter values or provides references to
other tables that describe these values. Tables for individual parameters are provided to describe any
parameter without a simple numerical value. In some cases, these parameters are described by a bit
value in a bit field. In this case, an "x" is used to denote bits that are not included in the specification of
the parameter or sub-parameter in the corresponding row of the table.

Table B.15 — Size parameters for the SLlfc, SLscc and SLpnt

Value (bits)
Parameter size

MSB LSB
xxxx xx00 Length parameter is 16 bits.
xxxx xx01 Length parameter is 32 bits.
xxxx xx10 Length parameter is 64 bits.

 All other values reserved

B.3.2.4	 Defined marker segments

Table B.16 lists the markers specified in this document.

﻿

© ISO/IEC 2021 – All rights reserved� 51

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table B.16 — List of defined marker segments

 Symbol Code Main Header 4D Block Header
Start of codestream SOC 0xFFA0 Required Not allowed
Light field Configuration LFC 0xFFA1 Required Not allowed
Colour component scaling SCC 0xFFA2 Optional Optional
Codestream pointer set PNT 0xFFA3 Optional Not allowed
Start of block SOB 0xFFA4 Not allowed Required
End of codestream EOC 0xFFD9 Not allowed Not allowed

B.3.2.5	 Construction of the codestream

Figure B.14 shows the construction of the codestream. All of the solid lines show required marker
segments. The following markers and marker segments are required to be in a specific location: SOC,
LFC, PNT, SOB and EOC. The dashed lines show optional or possibly not required marker segments.

﻿

52� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.14 — Codestream structure

B.3.2.6	 Delimiting markers and marker segments

B.3.2.6.1	 General

The delimiting marker and marker segments shall be present in all codestreams conforming to this
document. Each codestream has only one SOC marker, one EOC marker, and contains at least one 4D
block. Each 4D block has one SOB and one EOB marker. The SOC, SOB, and EOC are delimiting markers,
not marker segments, and have no explicit length information or other parameters.

B.3.2.6.2	 Start of codestream (SOC)

Function: Marks the beginning of a codestream specified in this document (Table B.17).

﻿

© ISO/IEC 2021 – All rights reserved� 53

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Usage: Main header. This is the first marker in the codestream. There shall be only one SOC per
codestream.

Length: Fixed.

SOC marker code

Table B.17 — Start of codestream parameter values

Field name Size (bits) Value
SOC (Start of Codestream) 16 0xFFA0

B.3.2.6.3	 Light field configuration (LFC)

Function: Provides information about the uncompressed light field such as the width and height of
the subaperture views, number of subaperture views in rows and columns, number of components,
component bit depth, number of 4D blocks and size of the 4D blocks, component bit depth for transform
coefficients (Figure B.15):

—	 Llfc: The value of this parameter is determined as Llfc NC= +40 2⋅ .

—	 ROWS (T): The value of this parameter indicates the number of rows of the subaperture view array.
This field is stored as a 4-byte big-endian unsigned integer.

—	 COLUMNS (S): The value of this parameter indicates the number of columns of the subaperture
view array. This field is stored as a 4-byte big-endian unsigned integer.

—	 HEIGHT (V): The value of this parameter indicates the height of the sample grid. This field is stored
as a 4-byte big-endian unsigned integer.

—	 WIDTH (U): The value of this parameter indicates the width of the sample grid. This field is stored
as a 4-byte big-endian unsigned integer.

—	 NC: This parameter specifies the number of components in the codestream and is stored as a 2-byte
big-endian unsigned integer. The value of this field shall be equal to the value of the NC field in the
Light Field Header box. If no Channel Definition Box is available, the order of the components for
colour images is R-G-B-Aux or Y-U-V-Aux.

—	 Ssizi: The precision is the precision of the component samples before DC level shifting is performed
(i.e. the precision of the original component samples before any processing is performed).
If the component sample values are signed, then the range of component sample values is
–2(Ssiz+1 AND 0x7F)–1 ≤ component sample value ≤ 2(Ssiz+1 AND 0x7F)–1 – 1. There is one
occurrence of this parameter for each component. The order corresponds to the component's index,
starting with zero.

—	 TRNC: If unset (TRNC=0), all 4D blocks will have initially the same fixed-sizes and a padding
procedure is applied.

Usage: Main header. There shall be one and only one in the main header immediately after the SOC
marker segment. There shall be only one LFC per codestream.

Length: Fixed.

﻿

54� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Key
LFC marker code
SLlfc size of Llfc parameter
Llfc length of marker segment in bytes (not including the marker)
ROWS (T) number of rows of the subaperture view array
COLUMNS (S) number of columns of the subaperture view array
HEIGHT (V) subaperture view height
WIDTH (U) subaperture view width
NC number of (colour) components
Ssizi precision (depth) in bits and sign of the ith component samples
N_4D number of 4D blocks in which the light field is segmented
BLOCK-SIZE_t size of the 4D block in the t direction – number of rows of the view array
BLOCK-SIZE_s size of the 4D block in the s direction – number of columns of the view array
BLOCK-SIZE_v size of the 4D block in the v direction – height of the views
BLOCK-SIZE_u size of the 4D block in the u direction – width of the views
max_bitplanei precision (depth) in bits of the ith component for the transform coefficients
TRNC flag indicating that 4D blocks with dimensions spanning the full available light field dimensions

have their sizes truncated to fit in the light field dimensions
LFC marker code
SLlfc size of Llfc parameter

Figure B.15 — Light field configuration syntax

Table B.18 — Format of the contents of configuration parameter set for the 4D coding

Field name Size (bits) Value
LFC 16 0xFFA1

SLlfc 8 0
Llfc 16 42 to 32808

ROWS 32 1 to (232– 1)
COLUMNS 32 1 to (232– 1)

HEIGHT 32 1 to (232– 1)
WIDTH 32 1 to (232– 1)

NC 16 1 to 16 384
Ssizi 8 See Table B.19
N_4D 32 1 to (232– 1)

BLOCK-SIZE_t 32 1 to (232– 1)
BLOCK-SIZE_s 32 1 to (232– 1)
BLOCK-SIZE_v 32 1 to (232– 1)
BLOCK-SIZE_u 32 1 to (232– 1)

﻿

© ISO/IEC 2021 – All rights reserved� 55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Field name Size (bits) Value
max_bitplanei 8 Number less than or equal to

(Ssizi AND 0x7F)+log2 (BLOCK-SIZE_t)+log2
(BLOCK-SIZE_s) +log2 (BLOCK-SIZE_v)+log2

(BLOCK-SIZE_u)
TRNC 8 0 or 1

All other values reserved for ISO/IEC use

Table B.19 — Component Ssiz parameter

Value (bits)
Component sample precision

MSB LSB
x000 0000

to x010 0101
Component sample bit depth = value + 1. From 1 bit deep to 38 bits deep
respectively (counting the sign bit, if appropriate).

0xxx xxxx Component sample values are unsigned values.
1xxx xxxx Component sample values are signed values.

 All other values reserved for ISO/IEC use.

B.3.2.6.4	 Colour component scaling (SCC)

Function: Describes the global scaling factor used for a colour component (Table B.20). If this marker
segment is not signalled for a specific colour component, the value of the global scaling factor for this
colour component shall be 1.

Usage: Main header. No more than one per any given component may be present. Optional.

Length: Variable depending on the number of colour components.

SCC marker code
Table B.20 shows the size and values of the symbol and parameters for the quantization compo-
nent marker segment.

SLscc size of Lscc parameter

Lscc length of marker segment in bytes (not including the marker)
Lscc = 6 for NC < 257; Lscc = 8 for NC ≥ 257

Cscc index of the component to which this marker segment relates
The components are indexed 0, 1, 2, etc. (either 8 or 16 bits depending on NC value defined in the
LFC marker segment).

Spscc Scaling factor used for the colour component Cscc (see Table B.21)

Spscc MantissaExponent= ×−2 16

﻿

Table B.18 (continued)

56� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table B.20 — Colour component scale parameter values

Field name Size (bits) Value
SCC 16 0xFFA2

SLscc 8 0
Lscc 16 6 or 8
Cscc 8

16
0 to 255; if NC < 257

0 to 16383; if NC ≥ 257

Spscc 16 Table B.21

Table B.21 — Quantization values for the Spscc parameter

Value (bits)
Scaling factor values

MSB LSB
xxxx x000 0000 0000

to
xxxx x111 1111 1111

mantissa of scaling factor value

0000 0xxx xxxx xxxx
to

1111 1xxx xxxx xxxx

exponent of scaling factor value

B.3.2.6.5	 Codestream pointer set (PNT)

Function: Provides pointers to the codestream associated each 4D block to facilitate efficient access
(Table B.22).

Usage: Optional. If present, must be included in the main header between the LFC marker segment
and the first SOB marker segment defined in this document. Only one PNT marker segment shall be
embedded in the main header (Figure B.16).

Length: Variable.

Key
PNT marker code
SLpnt size of Lpnt parameter
Lpnt length of marker segment in bytes (not including the marker)
Spnt size of the PPnt parameter
PPnti,c pointer to codestream of 4D block n and colour component c

NOTE 1	 The value of the Lpnt parameter is determined as follows:

Lpnt
N D

N D
=

+

+







9 4 4

9 8 4

⋅

⋅

_

_

Spnt=0

Spnt=1

where N_4D is defined in the LFC marker segment.

﻿

© ISO/IEC 2021 – All rights reserved� 57

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

NOTE 2	 The PPnti,c pointer indicates the position of the addressed 4D block codestream – its SOB marker – in
the Contiguous Codestream box counting from the beginning of this box, i.e. the LBox field.

Figure B.16 — Codestream pointer set syntax

Table B.22 — Format of the contents of the codestream pointer set for the 4D coding

Field name Size (bits) Value
PNT 16 0xFFA3

SLpnt 8 2
Lpnt 64 13 to 9 8 2 132+ −()⋅

Spnt 8 Table B.23
PPnti 32 if Spnt = 0

64 if Spnt = 1
1 to (232– 1)
1 to (264– 1)

Table B.23 — Size parameters for Spnt

Value (bits)
Parameter size

MSB LSB
xxxx xxx0 PPnt parameters are 32bits.
xxxx xxx1 PPnt parameter are 64bits.

 All other values reserved.

B.3.2.6.6	 Start of block (SOB)

Function: Marks the beginning of a 4D block (Table B.24).

Usage: Every 4D block header. Shall be the first marker segment in a 4D Block header. There shall be at
least one SOB in a codestream. There shall be only one SOB per 4D block.

Length: Fixed.

SOB marker code

Table B.24 — Format of the contents of the start of block

Field name Size (bits) Value
SOB 8 0xFFA4

B.3.2.6.7	 End of codestream (EOC)

Function: Indicates the end of the codestream (Table B.25).

NOTE 1	 This marker shares the same code as the EOI marker in ITU-T Rec. T.81 | ISO/IEC 10918-1 and the EOC
marker in ITU-T Rec. T.800 | ISO/IEC 15444-1.

Usage: Shall be the last marker in a codestream. There shall be one EOC per codestream.

NOTE 2	 In the case a file has been corrupted, it is possible that a decoder could extract much useful compressed
image data without encountering an EOC marker.

﻿

58� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Length: Fixed.

EOC marker code

Table B.25 — Format of the contents of end of codestream

Field name Size (bits) Value
EOC 8 0xFFD9

B.3.3	 Codestream parsing

The procedure to parse and decode a light field codestream as contained by the Contiguous Codestream
box (Annex A.3.4), with dimensions (max_t, max_s, max_v, max_u) defined as ROW, COLUMN, HEIGHT
and WIDTH in Figure B.15 (Table B.18), with block dimensions (tk, sk, vk, uk) defined as BLOCK-SIZE_t,
BLOCK-SIZE_s, BLOCK-SIZE_v and BLOCK-SIZE_u in Figure B.15 (Table B.18), with a maximum number
of bit-planes of max_bitplane (defined in Figure B.15 (Table B.18)), is described in the pseudo-code (all
variables are integers). The scan order is in the order t, s, v, u, as described in Table B.26.

The coordinate set (t, s, v, u) refers to the left, superior corner of the 4D block. The procedure
“ResetArithmeticDecoder()” resets all the context model probabilities of the arithmetic decoder. The
procedure “LocateContiguousCodestream” reads the pointer corresponding to position (t,s,v,u) and
delivers the respective codestream to procedure “DecodeContiguous Codestream()”. The procedure
“DecodeContiguousCodestream()” decodes the components of the block contained in the codestream
enabling the sequential decoding of light field. The codestreams of the components are decoded
sequentially.

Table B.26 — JPEG Pleno (JPL) codestream structure (4D transform mode)

Defined syntax Simplified structure
LightField() {
 SOC_marker() Codestream_Header()
 LFC_marker()

 Read all SCC_marker()

 PNT_marker()

 for(t=0; t<T; t+=BLOCK-SIZE_t){// scan order on t Codestream_Body()
 for(s=0; s<S; s+= BLOCK-SIZE_s){ // scan order on s

 for(v=0; v<V; v+= BLOCK-SIZE_v){ // scan order on v

 for(u=0; u<U; u+= BLOCK-SIZE_u){ // scan order on u

 for(c=0; c<NC-1; c++){ // scan order on colour components

 // Initializes the arithmetic decoder for each decoded 4D
block codestream

 ResetArithmeticDecoder();

 // Finds the corresponding 4D block codestream for the
desired position on the light field

 LocateContiguousCodestream (t, s, v, u);

 SOB_marker()

 // Decodes contiguous 4D block codestream found by the
previous procedure

 if ((TRNC) && ((T – BLOCK-SIZE_t) < t < T)) {

 tk = T umod BLOCK-SIZE_t; }

 else tk = BLOCK-SIZE_t;

﻿

© ISO/IEC 2021 – All rights reserved� 59

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 if ((TRNC) && ((S – BLOCK-SIZE_s) < s < S)) {

 sk = S umod BLOCK-SIZE_s; }

 else sk = BLOCK-SIZE_s;

 if ((TRNC) && ((V – BLOCK-SIZE_v) < v < V)) {

 vk = V umod BLOCK-SIZE_v; }

 else vk = BLOCK-SIZE_v;

 if ((TRNC) && ((U – BLOCK-SIZE_u) < u < U)) {

 uk = U umod BLOCK-SIZE_u; }

 else uk = BLOCK-SIZE_u;

 LF.BlockAtPosition(t, s, v, u) =

 DecodeContiguousCodestream(tk, sk, vk, uk);

 } // end of scan order on colour components loop

 } // end of scan order on u loop

 } // end of scan order on v loop

 } // end of scan order on s loop

 } // end of scan order on t loop

 EOC_marker() Codestream_End()
}

B.3.4	 4D partitioning general structure

B.3.4.1	 General

The datasets (the all texture views in Figure B.1) are composed by 4D light fields of dimensions t×s×v×u.
The views are addressed by the s,t coordinates pair, while the u,v pair addresses a pixel within each s,t
view, as pictured in Figure B.6.

B.3.4.2	 Partition tree decoding

The root node of the tree corresponds to a full t×s×v×u transform. The partition tree is represented by
a series of ternary flags:

— A spatialSplit flag indicates that a tk×sk×vk×uk block is segmented into a set of four sub-blocks
{spatialSubblock0, spatialSubblock1, spatialSubblock2 and spatialSubblock3}, of dimensions
tk×sk×⎿vk/2⏌×⎿uk/2⏌, tk×sk×(vk−⎿vk/2⏌)×⎿uk/2⏌, tk×sk×⎿vk/2⏌×(uk−⎿uk/2⏌) and tk×sk×(vk −⎿vk/2⏌)×(uk
−⎿uk/2⏌) respectively, where D/2 indicates the largest integer smallest than or equal to D/2 .
Figure B.7, Figure B.8 and Figure B.17 illustrate the results when applying the spatialSplit flag;

— A viewSplit flag indicates that a tk×sk×vk×uk block is segmented into a set of four sub-blocks {viewSubblock0,
viewSubblock1, viewSubblock2 and viewSubblock3}, of dimensions ⎿tk/2⏌×⎿sk/2⏌×vk×uk, (tk−⎿t-
k/2⏌)×⎿sk/2⏌×vk×uk, ⎿tk/2⏌×(sk−⎿sk/2⏌)×vk×uk and tk×sk×(vk −⎿vk/2⏌)×(uk −⎿uk/2⏌), and. (tk−⎿t-
k/2⏌)×(sk−⎿sk/2⏌)×vk×uk . Figure B.9, Figure B.10 and Figure B.18 illustrate the results when applying
the viewSplit flag;

— The partition tree has its leaf nodes marked by a transform flag. Each sub-block that is not a leaf
is recursively decoded in this fashion, from sub-block 0 to 3 of the sub-block set, and the decoded
flags of the sub-trees of each sub-block are concatenated in this order.

NOTE	 The transform flag signals that the node is a leaf node and will be no further partitioned.

—	 Figure B.11 shows six nodes marked by a transform flag, two nodes split (segmented) accordingly
the spatialSplit and the viewSplit flags, and the 9th node, (⎿tk/2⏌×(sk-⎿sk/2⏌)×⎿vk/2⏌×⎿uk/2⏌, which
can be further segmented using either the spatialSplit flag or the viewSplit flag.

﻿

Table B.26 (continued)

60� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.17 depicts the result of a 4D block with dimensions of 9×9×434×625 (tk×sk×vk×uk)
partitioned, using the spatialSplit flag, into a sub-block with dimensions of 9×9×217×312, in grey,
(tk×sk×(vk −⎿vk /2⏌)×⎿uk/2⏌). Please note that, in Figure B.17 the partitioned v and u dimensions are:
217 = 434 −⎿434/2⏌ (vk −⎿vk /2⏌) and 312 =⎿625/2⏌ (⎿uk/2⏌).

Figure B.18 depicts the result of a 4D block with dimensions of 9×9×434×625 (tk×sk×vk×uk) partitioned,
using the viewSplit flag, into a sub-block with dimensions of 5×4×434×625, in grey,
((tk−⎿tk/2⏌)×⎿sk/2⏌×vk×uk). Please note that, the partitioned t and s dimensions are: 5 9 9 2= −  /
(tk−⎿tk/2⏌) and 4 =⎿9/2⏌ (⎿sk/2⏌).

Figure B.17 — Example of a 4D block with dimensions tk×sk×(vk −  vk /2 )×  uk/2  (in grey)
superimposed to a 4D block with dimensions tk×sk×vk×uk

﻿

© ISO/IEC 2021 – All rights reserved� 61

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure B.18 — Example of a 4D block with dimensions (tk-  tk/2 )×  sk/2  ×vk×uk (in grey)
superimposed on a 4D block with dimensions tk×sk×vk×uk

B.3.4.3	 Contiguous codestream of a 4D-block

For a contiguous codestream of a 4D-block with size tk×sk×vk×uk, a 4D-block partitioning decoding
procedure is performed (DecodeContiguousCodestream), that uses the recursive procedure “Procedure
DecodePartitionStep”, both defined in Table B.27 and Table B.28.

Table B.27 — Decode contiguous codestream procedure

Procedure DecodeContiguousCodestream(tk, sk, vk, uk){ Decodes a 4D block of size (tk,
sk, vk, uk)

 ReadMinimumBitPlane; Reads an 8 bits integer that
represents the lower bitplane
of transform coefficient, as
defined in Table B.34

 Block=DecodePartitionStep(0,0,0,0,tk,sk,vk,uk); Defined in Table B.29
 Return Block;

}

Table B.28 — 4D-DCT block coefficient component inverse scaling

Procedure InverseScaleBlock(block){ Inverse scaling of the 4D-DCT
coefficients components by
Spscc of colour c (see B.3.2.6.3)

 for(ti = 0; ti<tk; ++ti) {

 for(si = 0; si< sk; ++si) {

 for(vi = 0; vi< vk; ++vi) {

 for(ui = 0; ui< uk; ++ui) {

﻿

62� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 block[ti][si][vi][ui] = block[ti][si][vi][ui] /
Spscc[c];

 }

 }

 }

 }

}

Table B.29 — Decode partition step procedure

Procedure DecodePartitionStep(tpp, spp, vpp, upp, tk, sk,
vk, uk){

Recursively decodes the 4D block
and the partition flags of a contig-
uous codestream

 ReadPartitionTreeFlag; Reads flag from arithmetic decoder
– defined in Table B.37

 if (flag == transform) { Reached the Leaf Node (Transform
flag; Figure B.11, Table B.30)

 Block=DecodeBlock(max_bitplane); Recursively decodes the DCT co-
efficients (Table B.43)

 InverseScaleBlock(Block); Inverse scaling of the 4D-DCT co-
efficients components by Spscc
(see B.3.2.6.3)

 Blockdecoded=4D-IDCT(Block); Performs the inverse DCT of the
decoded coefficients (Annex B.3.7)

 return Blockdecoded;

 }

 If (flag == spatialSplit){ Figure B.7, Figure B.8, Figure B.17
and Table B.30

 Int new_tp, new_sp, new_vp, new_up, new_ tk, new_sk,

 new_vk, new_uk;

 new_tp = tpp;

 new_sp = spp;

 new_vp = vpp;

 new_up = upp;

 new_tk = tk;

 new_sk = sk;

 new_vk = floor(vk/2);

 new_uk = floor(uk/2);

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 new_up = upp +floor(uk/2);

 new_uk = uk – floor(uk/2);

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 new_vp = vpp +floor(vk/2);

 new_vk = vk – floor(vk/2);

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 new_up = upp ;

 new_uk = floor(uk/2);

﻿

Table B.28 (continued)

© ISO/IEC 2021 – All rights reserved� 63

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 };

 if (flag == viewSplit) { Figure B.9, Figure B.10, Figure B.18
and Table B.30

 Int new_tp, new_sp, new_vp, new_up, new_ tk, new_sk,

 new_vk, new_uk;

 new_tp = tpp;

 new_sp = spp;

 new_vp = vpp;

 new_up = upp;

 new_tk = floor(tk/2);

 new_sk = floor(sk/2);

 new_vk = vk;

 new_uk = uk;

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 new_sp = spp + floor(sk/2);

 new_sk = sk – floor(sk/2);

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 new_tp = tpp + floor(vk/2);

 new_tk = tk – floor(tk/2);

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 new_sp = spp ;

 new_sk = floor(sk/2);

 DecodePartitionStep(new_tp, new_sp, new_vp, new_up,

 new_tk, new_sk, new_vk, new_uk);

 }

}

Table B.30 — Lists of partition flags representations

Partition Flag Representation
transform 0

spatialSplit 1
viewSplit 2

B.3.5	 Arithmetic decoding procedure

B.3.5.1	 General

Figure B.19 shows a simple block diagram of a binary adaptive arithmetic decoder. The compressed
light field data cd and a context cx from the decoder's model unit (not shown) are input to the arithmetic
decoder. The arithmetic decoder's output is the decision d. The encoder and decoder model units need to
supply exactly the same context cx for each given decision. The decoding process should be initialized.
The contexts (cx) and bytes of compressed light field data (as needed) are read and passed on to the
decoder until all contexts have been read. The decoding process computes the binary decision d and

﻿

Table B.29 (continued)

64� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

returns a value of either 0 or 1. The estimation procedures for the probability models, which provide
adaptive estimates of the probability for each context are part of the decoding process.

Figure B.19 — Arithmetic decoder inputs and output

B.3.5.2	 Probability models

The contexts of the arithmetic coder are defined in Table B.31. When the adaptive flag is Off the
probability model is fixed.

Table B.31 — Arithmetic coder contexts

Symbol Context range Adaptive Flag
DCT coefficient sign 0 Off
DCT coefficients bits 1-32 On
Hexadecatree flags 33-98 On

Partition flags 0 Off

B.3.5.3	 Procedures to read symbols

Each call to the arithmetic decoder to read a variable is performed according to the following syntax:

	 symbol=read(Context, AdaptiveFlag);

Each call to read a symbol from stream, may update arithmetic decoder models if the adaptive flag is
On. The procedure read(Context, AdaptiveFlag) is defined in Table B.32 and the variable Context is
defined in Table B.31.

Table B.32 — Read bit using arithmetic decoder procedure

Procedure Read(Context, AdaptiveFlag){ Context defined in Table B.31
 Bit =DecodeBit(Context); Defined in Table B.41
 If (AdaptiveFlag == On) {

 If Bit == 0 {

 UpdateModel(0, Context); Defined in Table B.42
 }

 Else {

 UpdateModel(1,Context); Defined in Table B.42
 }

 }

 return Bit;

}

﻿

© ISO/IEC 2021 – All rights reserved� 65

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table B.33 — Read magnitude procedure

Procedure ReadMagnitude(bitplane, MinimumBitPlane) Reads the magnitude of a DCT
coefficient

 Magnitude = 0;

 for(bitplane_counter=bitplane ; bitplane_
counter>=MinimumBitPlane;

MinimumBitPlane denotes the
lowest bit-plane used for encodinga

 bitplane_counter--){

 Magnitude = Magnitude << 1;

 CoefficientBit =Read(bitplane_counter + 1, On); Decodes a coefficient bit
 Magnitude += CoefficientBit;

 }

 Magnitude = Magnitude << MinimumBitPlane;

 if (Magnitude > 0) {

 Magnitude += (1 << MinimumBitPlane)/2;

 }

 return Magnitude;

}
a Its value is encoded as an 8-bit unsigned integer and should be less than or equal to the variable max_bit-
plane defined in Figure B.15. It must be read just before a DecodePartitionStep procedure, using the procedure
“ReadMinimumBitPlane”, defined in Table B.34.

Table B.34 — Read minimum bitplane procedure

Procedure ReadMinimumBitPlane(){ MinimumBitPlane denotes the
lowest bit-plane used for encoding

 MinimumBitPlane = 0;

 for(counter=0 ; counter<8; counter++){

 MinimumBitPlane = MinimumBitPlane << 1;

 Bit =Read(0, Off); Defined in Table B.32
 MinimumBitPlane += Bit;

 }

 return MinimumBitPlane;

}

If a DCT coefficient is different from zero its sign must be read from the stream with the procedure in
Table B.35.

Table B.35 — Read sign procedure

Procedure ReadSign(){ Reads DCT coefficient sign if ≠ 0
 sign = read(0, Off)

 return sign

}

Every ternary hexadecatree flag shall be read using the procedure in Table B.36:

﻿

66� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table B.36 — Read hexadeca-tree flag procedure

Procedure ReadHexadecatreeFlag(bitplane){ Reads ternary hexadecatree flag:
— lowerBitPlane
— splitBlock
— zeroBlock
(Table B.44)

 bit1 = read(33 + 2×bitplane, On);

 if(bit1 == 0)

 bit0 = read(34 + 2×bitplane, On);

 flag = bit0+2×bit1;

 return flag;

}

Every ternary partition flag must be read using the procedure in Table B.37.

Table B.37 — Read partition tree flag procedure

Procedure ReadPartitionTreeFlag(){ Reads ternary partition flag:
— spatialSplit;
— viewSplit;
— transform
(Table B.30)

 flag = read(0, Off);

 if(flag ==1){

 bit = read(0, Off);

 if(bit == 1)

 flag++

 }

 return flag

}

B.3.5.4	 Arithmetic decoder procedures and definitions

The arithmetic decoder employs probabilistic models to decode symbols from the codestream.

Definitions and procedures to reset the arithmetic decoder, to update probabilistic models and read
information from the stream are detailed in this section.

The procedures use two vectors (acumFreq_0 and acumFreq_1), defined with length MAX_NUMBER_
OF_MODELS.

The codec uses 99 models numbered from 0 to 98 (i.e. MAX_NUMBER_OF_MODELS=98).

At initialization the decoder limits are set and first bits are read from the stream as specified in the
procedure in Table B.38.

Table B.38 — Initialize decoder procedure

Procedure InitDecoder(){ Arithmetic decoder initialization
 inferiorLimit = 0;

 superiorLimit = FFFFH1;

 t = Read16bitsFromStream();

 tag = 0;}

 for(n=0; n<16; n++){ Reads 16 bits From Stream

﻿

© ISO/IEC 2021 – All rights reserved� 67

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 tag = tag << 1;

 bit = Read1BitFromStream(); Reads one byte at a time, LSB first
 tag = tag + bit Append bits to tag
 }

}

A probabilistic model is initialized executing the procedure in Table B.39.

Table B.39 — Initialize probabilistic model procedure

Procedure InitProbabilisticModel(modelIndex) Probabilistic model initialization
 acumFreq_0[modelIndex] = 1;

 acumFreq_1[modelIndex] = 2;

}

The arithmetic decoder is reset, for every model, by calling the “InitDecoder” procedure (Table B.38),
followed by the “InitProbabilistModel” (Table B.39 and Table B.40).

Table B.40 — Reset arithmetic decoder procedure

Procedure ResetArithmeticDecoder()

 InitDecoder(); Defined in Table B.38
 for (counter=0; counter<99;counter++)

 InitProbabilisticModel(counter);

}

The procedure to decode a bit from the stream is described in Table B.41.

Table B.41 — Decode bit procedure

bit = DecodeBit(modelIndex){ Decodes a bit form the code-
stream (modelIndex defined in
Table B.31)

 threshold = floor(((tag - inferiorLimit + 1) ×

 acumFreq_1[modelIndex]-1)/(superiorLimit -
inferiorLimit + 1));

 length = floor(((superiorLimit - inferiorLimit + 1) ×

 acumFreq_0[modelIndex])/acumFreq_1[modelIndex]);

 if(threshold < acumFreq_0[modelIndex]) {

 bitDecoded = 0;

 superiorLimit = inferiorLimit + length-1;

 }

 else {

 bitDecoded = 1;

 inferiorLimit = inferiorLimit + length;

 }

 while((MSB of inferiorLimit == MSB of superiorLimit) ||

 ((inferiorLimit >= 4000H) and (superiorLimit < C000H))) {

 if(MSB of inferiorLimit == MSB of superiorLimit) {

 inferiorLimit = inferiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit+1

﻿

Table B.38 (continued)

68� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 tag = tag << 1; Shifts a zero into the LSB
 bit = Read1bitFromStream(); Reads one byte at a time, LSB first
 tag += bit;

 inferiorLimit = inferiorLimit & FFFFH;

 superiorLimit = superiorLimit & FFFFH;

 t = t & FFFFH;

 }	

 if((inferiorLimit >= 4000H) && (superiorLimit < C000H)) {

 inferiorLimit = inferiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit << 1; Shifts a zero into the LSB
 superiorLimit = superiorLimit+1;

 tag = tag<< 1; //Shifts a zero into the LSB Shifts a zero into the LSB
 bit = Read1bitFromStream();

 tag+= bit;

 inferiorLimit = inferiorLimit ^ 8000H;

 superiorLimit = superiorLimit ^ 8000H;

 tag = tag ^ 8000H;

 inferiorLimit = inferiorLimit & FFFFH;

 superiorLimit = superiorLimit & FFFFH;

 tag = tag & FFFFH;

 }

 }

 inferiorLimit = inferiorLimit & FFFFH;

 superiorLimit = superiorLimit & FFFFH;

 tag = tag & FFFFH;

 return bitDecoded;

}

The procedure to update the statistic model is described in Table B.42.

Table B.42 — Update model procedure

Procedure UpdateModel(bit, modelIndex){ Probabilistic model up-
date (modelIndex defined in
Table B.31)

 if(bit == 0) {

 acumFreq_0[modelIndex]++;

 acumFreq_1[modelIndex]++;

 }

 else {

 acumFreq_1[modelIndex]++;

 }

 if(acumFreq_1[modelIndex] == 4095){

 acumFreq_1[modelIndex] = acumFreq_1[modelIndex]/2;

 acumFreq_0[modelIndex] = acumFreq_0[modelIndex]/2;

 if(acumFreq_0[modelIndex] == 0) {

 acumFreq_0[modelIndex]++;

 acumFreq_1[modelIndex]++;

 }

}

﻿

Table B.41 (continued)

© ISO/IEC 2021 – All rights reserved� 69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

B.3.6	 4D bit-plane hexadeca-tree decoding

The MinimumBitPlane value indicates the minimum depth that the hexadeca-tree decoder will descend
for the current block.

For each Block SB_k, of size tk×sk×vk×uk, corresponding to the leaves of the partition tree, a hexadeca-
tree decoding procedure is performed. It is described by the following recursive procedure:

Table B.43 — Decode block procedure

SB = DecodeBlock(bitPlane) { Decodes the 4D blocks from
the hexadeca-tree structure

 if (bitPlane < MinimumBitPlane){

 return SB = zero Returns Block = 0
 }

 if (SB is of size 1x1x1x1){

 M = ReadMagnitude(bitplane, MinimumBitPlane); Reads a bitPlane-MinimumBit-
Plane precision positive inte-
ger M from input (Table B.33)

 if (M > 0){

 ReadSign; Reads a sign bit (Table B.35)
 if(sign bit == 1) M = -M

 }

 return SB = M

 }

 ReadHexadecatreeFlag(bitplane); Reads hexadeca-tree flag
(Table B.36)

 if (flag == “zeroBlock”) return SB = zero

 if (flag == “lowerBitPlane”){

 SB = DecodeBlock(bitPlane-1)

 return SB

 }

 if (flag == “splitBlock”){

 t'b = floor(tb/2); tb,sb,vb,ub are the dimensions
of the original Block (SB) s'b = floor(sb/2);

 v'b = floor(vb/2);

 u'b = floor(ub/2);

 nseg_t = nseg_s = nseg_v = nseg_u = 1;

 if(tb > 1) nseg_t++;

 if(sb > 1) nseg_s++;

 if(vb > 1) nseg_v++;

 if(ub > 1) nseg_u++;

 for(t = 0; t < nseg_t; t++) {

 for(s = 0; s < nseg_s; s++) {

 for(v = 0; v < nseg_v; v++) {

 for(u = 0; u < nseg_u; u++) {

 new_t = t×t'b + (1-t)×(tb-t'b);

 new_s = s×s'b + (1-s)×(sb-s'b);

 new_v = v×v'b + (1-v)×(vb-v'b);

 new_u = u×u'b + (1-u)×(ub-u'b);

﻿

70� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

 SSB_t,s,v,u = DecodeBlock(subBlock, bitplane);

 }

 }

 }

 }

 return SB = cat(SSB_t,s,v,u) The side-by-side concatenation
of all sub-blocks composes the
original block.

 }

}

Table B.44 lists the representations of the hexadeca-tree flags.

Table B.44 — Hexadeca-tree flags

Partition Flag Representation
lowerBitPlane 0

splitBlock 1
zeroBlock 2

B.3.7	 Inverse 4D-DCT procedure

B.3.7.1	 General

Figure B.20 — Inverse 4D-DCT

As with the direct transform, the inverse transform (4D-IDCT) is separable, i.e. with 1D-IDCTs computed
separately in each of the 4 directions. An example of the computation flow of the t×s×v×u separable
4D-IDCT is depicted in Figure B.20 (the 4D inverse transform is the same irrespective of the order of
application of the inverse 1D transform). After applying the inverse 4D-DCT a level shift operation is
performed.

B.3.7.2	 Inverse 4D-DCT

For a given light field 4D-DCT representation X(i,j,p,q) the corresponding light field x(u,v,s,t) can be
computed by inverse transforming each dimension in sequence as follows.

X i j p t
t

q X i j p q
t q

t
uvs

k q

t

k

k
()

=

−

() = () () +()
∑, , , , , , cos

1 2 1

2
0

1

 α
π











= … − = … −

= … − = …
;

, , , ; , , ,

, , , ; , , ,

 i u j v

p s t
k k

k

0 1 1 0 1 1

0 1 1 0 1 ttk −1

X i j s t
s

p X i j p t
suv

k p

s
uvs

k
()

=

−
()() = () () +()

∑, , , , , , cos
1 2 1

0

1

 α
π pp

s

i u j v

s s tk

k k

k2

0 1 1 0 1 1

0 1 1 0













= … − = … −

= … − =
;

, , , ; , , ,

, , , ; ,

11 1, ,… −tk

﻿

Table B.43 (continued)

© ISO/IEC 2021 – All rights reserved� 71

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

X i v s t
v

j X i j s t
v ju

k j

v
uv

k
()

=

−
()() = () () +()

∑, , , , , , cos
1 2 1

2
0

1

 α
π

vv

i u v v

s s tk

k k

k













= … − = … −

= … − =
;

, , , ; , , ,

, , , ; , ,

 0 1 1 0 1 1

0 1 1 0 1 …… −, tk 1

x u v s t
u

i X i v s t
u i

u
k i

u
u

k

k

, , , , , , cos() = () () +()



=

−
()∑1 2 1

2
0

1

α
π







= … − = … −

= … − = … −
;

, , , ; , , ,

, , , ; , , ,

 u u v v

s s t t
k k

k k

0 1 1 0 1 1

0 1 1 0 1 1

where α 0
1() =
N

, and α n
N
n N() = = … −2

1 2 1; , , , , where N is the size of the transform. Output pixels

are represented as 32-bit integers. As indicated earlier, the transform order is arbitrary.

B.3.7.3	 Inverse level shift

After processing the inverse DCT for a block of source light field samples, the reconstructed samples of
the component that are unsigned shall be inversely level shifted. If the MSB of Ssizi from the LFC marker
segment (see B.4.2.2) is zero, all reconstructed samples x(u,v,s,t) of the ith component are level shifted
by adding the same quantity from each sample as follows:

x u v s t x u v s t Ssizi, , , , , ,() ← ()+2

NOTE	 Due to quantization effects, the reconstructed samples x(u,v,s,t) can exceed the dynamic range of the
original samples. There is no specified procedure for this overflow or underflow situation. However, clipping the
value within the original dynamic range is a typical solution.

﻿

72� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Annex C
(normative)

JPEG Pleno light field reference view decoding

C.1	 General

This annex describes an instantiation of the reference view encoder for the 4D prediction mode. Next,
the decoding process is detailed.

C.2	 Organization of JPEG Pleno Light Field Reference View superbox

The JPEG Pleno Light Field Reference View box is a superbox that contains the following (see Figure C.1):

—	 a JPEG Pleno Light Field Reference View Description box, signalling the configuration of the reference
view encoding;

—	 a Common Codestream Elements box, signalling redundant header information from individual
codestreams of the reference views;

—	 a Contiguous Codestream box, containing as payload the individual codestreams of the reference
views.

The type of the JPEG Pleno Reference View box shall be ‘lfrv’ (0x6C66 7276).

Figure C.1 — Organization of the JPEG Pleno Light Field Reference View superbox

C.3	 Defined boxes

C.3.1	 JPEG Pleno Light Field Reference View Description box

The JPEG Pleno Light Field Reference View Description box contains information on the encoder issued
to individually encode the reference views, the number of reference views, which views are encoded as
reference view and pointers to the individual codestreams (see Figure C.2 and Table C.1).

The type of the JPEG Pleno Reference View Description box shall be ‘lfrd’ (0x6C66 7264).

Figure C.2 — Organization of the contents of a Light Field Reference View Description box

﻿

© ISO/IEC 2021 – All rights reserved� 73

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table C.1 — Format of the contents of the Light Field Reference View Description box (optional)

Field name Size (bits) Value
TCODEC 8 0 to (28-1)

N
REF

16 0 to (216– 1)

H 0,0() to H T-1,S-1() variable 1 bit per view [0, 1]

PP 8 0 (Precision = 32) or 1 (Precision = 64)

TPEC
1

 = pointer to contiguous
(EXTRDATA) codestream 1

Precision 1 to (2Precision– 1)



TPEC
NREF

 = pointer to
contiguous (EXTRDATA)

codestream N
REF

Precision 1 to (2Precision– 1)

TCODEC identifier for the codec deployed for reference views
TCODEC values shall correspond to the potential values for the coder type C defined in the
JPX file format (ISO/IEC 15444-2) for the Image Header box. The default value of TCODEC = 7
corresponding to ISO/IEC 15444 (JPEG 2000).

NREF number of reference views t s,() , for which H t s,() = 1

H this field specifies per subaperture image t s,() the type of view as follows:

 H t s,() == 0 specifies a intermediate view or non-existing view in the array H . In
Annex E.3.1 it is specified how this value should be updated to reflect the hierarchical
level for the intermediate views.

 H t s,() == 1 specifies the view t s,() as a reference view.

8 successive bits are packed as a byte. If T S× is not a multiple of 8, the remaining bits of
the last byte are put to zero (zero padding to stuff last byte). The scan-order of the array
H is illustrated by an example in the NOTE in Figure C.3.

PP pointer precision
0 indicates 32-bit precision (unsigned integer, default option) – 1 indicates 64-bit precision
(unsigned integer). Other values are not valid.

TPECl pointer to contiguous (EXTRDATA) codestream of texture data for texture reference
view l , l NREF= …1 2, , ,

This pointer indicates the position of the EXTRDATA codestream in the Contiguous Code-
stream box counting from the beginning of this box, i.e. the LBox field.

EXTRDATA external encoded data payload
Contains texture data encoded with the external codec TCODEC. The header information
produced by the external codec has been removed.

When TCODEC = 7 the codec deployed can be ISO/IEC 15444-1 or other parts, such as ISO/IEC 15444-2,
which added support for multi-component transforms. The required capabilities are signalled to the
JPEG 2000 decoder using the extended capabilities marker (CAP) which was introduced in

﻿

74� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

ISO/IEC 15444-1. The CAP marker is defined as 0xFF50 followed by a variable length field indicating the
Parts of the ISO/IEC 15444 series containing extended capabilities that are used to encode the image.

NOTE	 Row-wise scan order illustrated with black arrows and grey arrows. Grey arrows indicate move to the
beginning of the next row. The coordinates t s ll

X
l
X, ,() = 1,2,3, 4,5 , are the set of t s,() where H t s,() =1.

Figure C.3 — Reference view configuration array H for T S= =5 5, with five reference views in
centre plus corners configuration

C.3.2	 Common Codestream Elements box

This box contains redundant codestream elements extracted from the reference view codestreams
(Figure C.4 and Table C.2). If this box is signalled the contained codestream elements, representing
codestream header information, shall be concatenated with every codestream fragment contained by
the Contiguous Codestream box (Figure C.5 and Table C.3). This box is optional.

The type of the Common Codestream Elements box shall be ‘lfcc’ (0x6C66 6363).

Figure C.4 — Organization of the contents of the Common Codestream Elements box

Table C.2 — Format of the contents of the Common Codestream Elements box

Field name Size (bits) Value
Common codestream payload variable variable

Common
codestream
payload

The common codestream element can be, for example, the header information from
TCODEC encoded file.

﻿

© ISO/IEC 2021 – All rights reserved� 75

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

C.3.3	 Contiguous Codestream box

The Contiguous Codestream box is specified in Annex A.3.4. In this subclause, its payload is specified,
which corresponds to the stripped codestreams of the reference views, i.e. codestreams with the
redundant header information removed and stored in the Common Codestream Elements box in the
JPEG Pleno Reference View box.

Figure C.5 — Organization of the contents of the Contiguous Codestream box for reference view
signalling in the 4D Prediction mode

Table C.3 — Format of the contents of the JPEG Pleno Light Field Contiguous Codestream box for
reference view signalling in the 4D Prediction mode

Field name Size (bits) Value Comments
Codestream for reference

view 1
variable variable External codec codestream

Codestream for reference
view 2

variable variable External codec codestream



Codestream for reference
view N

REF

variable variable External codec codestream

C.4	 Reference view encoding

This clause provides a description of encoding operations for the reference views. The following
variables are elements obtained from matrix H, used for indexing the reference views:

tl
X Subscript of the row index for the reference view l NREF= …1, , in the light field array in row-wise

scanning order. Reference views are those views, for which H t s,() = 1 .

sl
X Subscript of the column index for the reference view l NREF= …1, , in the light field array in row-

wise scanning order. Reference views are those views, for which H t s,() = 1 .

Reference views are encoded with an external codec, such as TCODEC . Since all reference views share
the same dimensions and bit depth, the header information of such encoding needs to be obtained only
once. For this reason, the externally encoded files are split to two parts: 1) the header information, 2)
the remaining codestream. The encoder will place the redundant header information as payload in the
common codestream element box, and the decoder needs to concatenate the header to the remaining
codestream part prior to the decoding with TCODEC .

The texture views of the light field are denoted as,

X t s v u c, , , ,() .

The views are addressed by the t s,() coordinates pair, while the v u,() pair addresses a pixel within
each t s,() view and index c stands for colour component.

﻿

76� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Similarly, the decoded texture views are denoted as,

X t s v u cDEC , , , ,() ,

and the normalized disparity views of the light field as,

D t s v u, , ,() ,

and the decoded normalized disparity views as,

D t s v uDEC , , ,() ,

where

 t T= … −0 1 1, , ,

 s S= … −0 1 1, , ,

 v V= … −0 1 1, , ,

 u U= … −0 1 1, , ,

 c NC= … −0 1 1, , , .

Figure C.6 — Light field with dimensions T×S×V×U displaying reference views at locations
marked REF (t s ll

X
l
X, ,() = 1,2,3, 4,5)

For a given reference view t s l Nl
X

l
X

R, , , , ,() = … 1 2 EF the encoding of texture is performed as in
Table C.4. An example configuration of reference views is illustrated in Figure C.6. Note that the
numbering follows the row-wise scanning pattern as illustrated in Figure C.3.

NOTE	 Row-wise scan order illustrated with black arrows and grey arrows. Grey arrows indicate move to the
beginning of the next row. The coordinates t s ll

X
l
X, ,() = 1,2,3, 4,5 , are the set of t s,() where H t s,() =1.

﻿

© ISO/IEC 2021 – All rights reserved� 77

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table C.4 — Procedure for encoding the reference view l

1 Read the l reference view as ˆ ,X X t sl l
X

l
X= () , reference view has dimensions V U NC× ×

2 Encode X̂l with TCODEC at the requested rate

3 Repeat step 1 and 2 until all NREF reference views have been encoded
4 Extract and remove common codestream element THEADER from all the TCODEC encoded files.

5
Output all stripped TCODEC codestreams (EXTRDATA) to the Contiguous Codestream box. The location
of each stripped codestream is written to the codestream as pointer TPECl .

6 Output the common codestream element (THEADER) as the payload in the Common Codestream
Element box.

The encoding procedure of a reference view is displayed as a flowchart in Figure C.7. In Table C.4, step 4
extracts the header information from the TCODEC encoded file. The header information is an array of
bytes THEADER , and subsequently the bytes are removed from the codestream. The result is a
codestream, that is not fully decodable with the TCODEC decoder. The header information array
THEADER needs to be concatenated back prior to decoding. The decoder can obtain the header
information from common codestream element box, detailed in Table C.2, append it to the beginning of
the stripped codestream (EXTRADATA), and decode successfully. This stripping of header information
saves bytes, and makes the encoding less redundant, since only a single unique header is required.

When obtaining the common codestream element, the encoder must use the correct markers for
identifying the header section in the encoded codestream. In the case of TCODEC == 7 , the deployed
codec is JPEG 2000, and the marker for identifying the last two bytes of the header is the SOT marker
(0xFF90), i.e. the beginning of a tile marker. For other TCODEC types, the marker will depend on the
chosen codec. Note that the decoding process of the common codestream element is transparent to the
codec type. Hence, no normative constraints need to be imposed on the exact cutting point of the
TCODEC codestream.

The process of Table C.4 applies to all reference views. The encoder will output all the reference view
data and common codestream element information according to the format of Light Field Reference
View Description box.

﻿

78� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure C.7 — Overview of reference view encoding of view t s l Nl
X

l
X

REF, , , , ,() = … 1 2

C.5	 Reference view decoding

This clause provides a description of decoding operations for the reference views. Reference views are
views that use no prediction. These views are the views on the lowest hierarchical level where H t s, .() = 1

Since, the externally encoded files are split to two parts 1) the header information 2) the remaining
codestream, the decoder needs to concatenate the header to the remaining codestream part prior to
the decoding with TCODEC .

See Figure C.8 for an overview of the reference view decoding process. The detailed steps for decoding
the reference view t s l Nl

X
l
X

REF, , , , ,() = … 1 2 are given in Table C.5.

Table C.5 — Procedure for decoding X t sD
l
X

l
X

l
DEC EC, ˆ() = X

1 Obtain the header payload from Common Codestream Element box, and store the payload as an array of
bytes THEADER .

2 Obtain the reference view i data from the contiguous codestream box, pointed to by TPECl , and store the
data as an array of bytes TDATA .

3 Concatenate THEADER and TDATA as TENCODING THEADER TDATA=  , .

4 Decode the V U NC× × image X̂I
DEC from TENCODING with the external codec TCODEC .

5 X t s XDEC
l
X

l
X

l
DEC, ˆ .() =

6 Repeat from step 2 until all reference views have been decoded.

﻿

© ISO/IEC 2021 – All rights reserved� 79

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure C.8 — Overview of decoding reference view X t s l NDEC
l
X

l
X

l
DEC

REF, ˆ , , , ,() = = …X 1 2

﻿

80� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Annex D
(normative)

JPEG Pleno light field normalized disparity view decoding

D.1	 General

This annex describes an instantiation of the normalized disparity view encoder for the 4D prediction
mode. Thereafter, the decoding process is detailed.

D.2	 Organization of JPEG Pleno Light Field Normalized Disparity View Superbox

The JPEG Pleno Light Field Normalized Disparity View box is a superbox that contains the following (see
Figure D.1):

—	 a JPEG Pleno Light Field Normalized Disparity View Description box, signalling the configuration of
the normalized disparity view encoding;

—	 a Common Codestream Elements box, signalling redundant header information from individual
codestreams of the normalized disparity views;

—	 a Contiguous Codestream box, containing has payload the individual codestreams of the normalized
disparity views.

The type of JPEG Pleno Light Field Normalized Disparity View box shall be ‘lfdv’ (0x6C66 6476).

Figure D.1 — Organization of the JPEG Pleno Light Field Normalized Disparity View superbox

D.3	 Defined boxes

D.3.1	 JPEG Pleno Light Field Normalized Disparity View Description box

The JPEG Pleno Light Field Normalized Disparity View Description box contains information on the
encoder issued to individually encode the normalized disparity views, the number of normalized
disparity views, which views are encoded as normalized disparity view, and pointers to the individual
codestreams.

The type of JPEG Pleno Light Field Normalized Disparity View Description box shall be ‘lfdd’
(0x6C66 6464).

﻿

© ISO/IEC 2021 – All rights reserved� 81

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure D.2 — Organization of the contents of a Light Field Normalized Disparity View
Description box

Table D.1 — Format of the contents of the Light Field Normalized Disparity View Description box

Field name Size (bits) Value
DCODEC 8 0 to (28-1)

Q 8 0 to (28-1)

Dshift
16 0 to (216– 1)

NNDV
16 0 to (216– 1)

HD 0 0,() to H T SD – , –1 1() variable 1 bit per view [0, 1]

PP 8 0 (Precision = 32) or 1 (Precision = 64)

DPEC1 = Pointer to contiguous
(EXTRDATA) codestream 1

Precision 1 to (2Precision– 1)



DPECNNDV = Pointer to
contiguous (EXTRDATA)

codestream NNDV

Precision 1 to (2Precision– 1)

DCODEC identifier for the codec deployed for normalized disparity views
DCODEC values shall correspond to the potential values for the coder type C defined in the
JPX file format (ISO/IEC 15444-2) for the Image Header box. The default value of DCODEC = 7
corresponding to ISO/IEC 15444 (JPEG 2000).

Q depth quantization parameter

Dshift minimum normalized disparity value (optional)

The integer value is represented in unsigned 16 bit. The Dshift quantity is subtracted
from the encoded normalized disparity data to level-shift the normalized disparity data
to cover the negative and positive range of the normalized disparity field. Intended to be
used with DCODECs which do not support negative data.

NNDV number of normalized disparity (reference) views t s,() , for which H t sD ,() = 1

H t sD ,() this field specifies per normalized disparity view (t s,) the type of view as follows:

H t sD ,() == 0 , normalized disparity view not supplied.

H t sD ,() == 1 , normalized disparity view supplied.
8 successive bits are packed as a byte. If T S× is not a multiple of 8, the remaining bits of
the last byte are put to zero (zero padding to stuff last byte). The scan-order of the normal-
ized disparity views is illustrated by an example in the NOTE in Figure D.3.

﻿

82� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

PP pointer precision
0 indicates 32-bit precision (unsigned integer, default option) – 1 indicates 64-bit precision
(unsigned integer). Other values are not valid.

DPECk pointer to contiguous (EXTRDATA) codestream of normalized disparity data for normalized
disparity reference view k , k = …1 2, , ,NIDV
This pointer indicates the position of the EXTRDATA codestream in the Contiguous Code-
stream box counting from the beginning of this box, i.e. the LBox field.

EXTRDATA externally encoded data payload
Contains disparity data encoded with the external codec DCODEC.

When DCODEC = 7 the codec deployed can be ISO/IEC 15444-1 or other parts , such as ISO/IEC 15444-2,
which added support for multi-component transforms. The required capabilities are signalled to the
JPEG 2000 decoder using the extended capabilities marker (CAP) which was introduced in
ISO/IEC 15444-1. The CAP marker is defined as 0xFF50 followed by a variable length field indicating the
Parts in the ISO/IEC 15444 series containing extended capabilities that are used to encode the image.

NOTE	 Row-wise scan order illustrated with black arrows and grey arrows. Grey arrows indicate move to the
beginning of the next row. The coordinates t s kk

D
k
D, , , , , ,() = 1 2 3 4 5 , are the set of t s,() where H t sD ,() =1.

Figure D.3 — Normalized disparity view configuration array HD for T �S= =5 5, with five
reference views in centre plus corners configuration

D.3.2	 Common Codestream Elements box

The redundant codestream syntax from the individual codestreams of the normalized disparity data is
extracted and signalled as specified in Annex C.3.2 for the reference views. This box is optional.

D.3.3	 Contiguous Codestream box

The Contiguous Codestream box has been specified in Annex A.3.4. In this subclause, its payload is
specified, which is corresponding to the stripped codestreams of the normalized disparity views, i.e.
codestreams with the redundant header information removed and stored in the Common Codestream
Elements box in the JPEG Pleno Normalized Disparity View box (see Figure D.4 and Table D.2).

﻿

© ISO/IEC 2021 – All rights reserved� 83

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure D.4 — Organization of the contents of the Contiguous Codestream box for normalized
disparity view signalling in the 4D Prediction mode

Table D.2 — Format of the contents of the JPEG Pleno Light Field Contiguous Codestream box for
normalized disparity view signalling in the 4D Prediction mode

Field name Size (bits) Value Comments
Codestream for normal-

ized disparity view 1
variable variable External codec codestream

Codestream for normal-
ized disparity view 2

variable variable External codec codestream

Codestream for normal-

ized disparity view N
NDV

variable variable External codec codestream

D.4	 Representation of the normalized disparity data

The horizontal disparity map Dx and vertical disparity map Dy between the views t s1 1,() and t s2 2,()

are expressing the correspondence of the pixel t s v u1 1 1 1, , ,() with the pixel t s v u
2 2

, , ,ˆ ˆ , where

û u D v ux= + () 
1 1 1

,

ˆ .v v D v uy= + () 
1 1 1

,

If the pixel t v u
2 2

, , ,s ˆ ˆ() is not occluded by another pixel t s v u
2 2

, , ,ˆ ˆ’ ’() , then the colour attributes

X t s v u c1 1 1 1, , , ,() and X t s v u c
2 2

, , , ,ˆ ˆ() are very similar one to another, allowing to predict one from
the other.

The disparity maps can be estimated from the texture views t s1 1,() and t s2 2,() using optical flow
stereo estimation methods.[2] For the case of light fields there exist more specialized methods utilizing
the whole light field in the estimation.[3][4] In the latter category, the disparity maps between each pairs
of views can be obtained using the normalized disparity map, defined as,

D t s v u
D v u

B

D v u

B
x

x

y

y
1 1 1 1

1 1 1 1
, , ,

, ,
() =

()
=

()
∈ ,

where

 B XCC t s XCC t sx = ()− ()
1 1 2 2
, , ,

 B YCC t s YCC t sy = ()− ()
1 1 2 2
, , .

﻿

84� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

The normalized disparity of pixel v u,() in view t s,() is denoted as D t s v u, , ,() . For a pair of two
arbitrary views t s1 1,() and t s2 2,() the normalized disparity map can be used to find corresponding
pixels by,

X t s v u c X t s v u c
2 2 1 1 1 1

, , , , , , , ,ˆ ˆ() ≈ () for ∀ ∈ … −{ }c NC0 1, , ,

where

 û u D t s v u Bx= + ()⋅ 
1 1 1 1 1

 , , , ,

 v̂ v D t s v u By= + ()⋅ 
1 1 1 1 1

 , , , .

D.5	 Encoding of normalized disparity data

This clause provides details how the normalized disparity data is encoded using DCODEC encoder.
Normalized disparity data is used to predict intermediate views from reference views using disparity-
based warping, see Annex E.

The normalized disparity views are real-valued floating-point quantities. Denote the floating-point
normalized disparity view as D . A quantized integer precision normalized disparity view is obtained as,

 D Dquant Q= ⋅ 2 ,

where Q is the quantization factor.

For codecs which do not support encoding of negative data, the quantized normalized disparity is level-
shifted to positive range using the constant Dshift . The shifting constant Dshift is common to all
normalized disparity maps in the light field and is obtained over all quantized normalized disparity
maps. In this case of level-shifting to positive range, the quantized normalized disparity data becomes,

 D D Dquant Q
shift= ⋅ +2 .

The normalized disparity views are usually provided at lowest hierarchical level (see the example in
Figure D.5), and are used to predict subsequent intermediate views at higher hierarchies. Normalized
disparity views are encoded with an external codec, such as DCODEC. Since all normalized disparity
views share the same dimensions and bit depth, the header information of such encoding needs to be
obtained only once. For this reason, the externally encoded files are split to two parts: 1) the header
information, 2) the remaining codestream. The encoder will place the redundant header information as
payload in the common codestream element box, and the decoder needs to concatenate the header to
the remaining codestream part prior to the decoding with DCODEC .

﻿

© ISO/IEC 2021 – All rights reserved� 85

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Figure D.5 — Light field with dimensions T×S×V×U displaying normalized disparity reference
views at locations marked REF (in row-wise scan order t s kk

D
k
D, , , , , ,() = 1 2 3 4 5)

The following variables are elements obtained from matrix HD , used for indexing the normalized
disparity views,

 tk
D Subscript of the row index for the normalized disparity view k NNDV= …1, , in the light

field array in row-wise scanning order. Normalized disparity views are those views,
for which H t sD l

x
l
x,() = 1 , for l NREF= …1, , .

 sk
D Subscript of the column index for the normalized disparity view k = …1, ,NNDV in the

light field array in row-wise scanning order. Normalized disparity views are those
views, for which H t sD l

x
l
x,() = 1 , for l NREF= …1, , .

An example configuration of normalized disparity views is given in Figure D.5. For a given normalized
disparity view t s kk

D
k
D

NDV, , , ,() = … N1 the encoding of normalized disparity using DCODEC is
performed as in Table D.3.

﻿

86� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Table D.3 — Normalized disparity view encoding procedure for normalized disparity view k
when using DCODEC

1 Obtain reference normalized disparity view as D̂ D t sk k
D

k
D= () , , reference normalized disparity view has

dimensions V U×

2 Quantize by rounding to nearest integer after multiplication by 2Q , ˆ ˆD Dk
quant

k
Q= ⋅ 2

3 Level-shift by adding the quantity Dshift : ˆ ˆD D Dk
quant Q

shift= ⋅ + 2

4 Encode D̂k
quant with DCODEC at the requested rate

5 Extract and remove common codestream element DHEADER from the DCODEC encoded files.

6
Output to codestream the headerless DCODEC encodings (EXTRDATA). The location of this data in the
codestream is written to the codestream as pointer DPECk .

7 Output the common codestream element as the payload in the Common Codestream Element box, see Table C.2.

8 Obtain reference normalized disparity view as ˆ ,D D t sk k
D

k
D= () , reference normalized disparity view has

dimensions V U×

Step 5 extracts the header information from the DCODEC encoded file. The header information is an
array of bytes DHEADER , and subsequently the bytes are removed from the encoded file. The result is
an encoding, that is not fully decodable with the DCODEC decoder. The header information array
DHEADER needs to be concatenated back prior to decoding. The decoder can obtain the header
information from common codestream element box, append it to the beginning of the headerless
encoding, and decode successfully. This stripping of header information saves bytes, and makes the
encoding less redundant, since only a single unique header is required.

When obtaining the common codestream element, the encoder must use the correct markers for
identifying the header section in the encoded codestream. In the case of DCODEC == 7 , the deployed
codec is JPEG 2000, and the marker for identifying the last two bytes of the header is 0xFF90, i.e. the
beginning of a tile marker. For other DCODEC types, the marker will depend on the chosen codec. Note
that the decoding process of the common codestream element is transparent to the codec type.

D.6	 Decoding of normalized disparity data

This clause provides details on decoding the normalized disparity data using DCODEC decoder. The
normalized disparity views are usually provided at lowest hierarchical level and used to predict
subsequent intermediate views at higher hierarchical levels, see Annex E.

The normalized disparity views are real-valued floating-point quantities. During encoding they are
quantized into integer range by a multiplication with 2Q followed by rounding to nearest integer and
encoded using 16 bits. Optionally, for normalized disparity views with negative values the data is level
shifted by subtracting the quantity Dshift , see Table D.1. The Dshift value is obtained only once over all
normalized disparity views. Level shifting is not necessary for codecs which support negative input data.

﻿

© ISO/IEC 2021 – All rights reserved� 87

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Consider an encoded normalized disparity view


Dk
quantDEC obtained from decoding a codestream

encoded with DCODEC . First, the decoder level-shifts the data using,

D̂ D Dk
quantDEC

k
quantDEC

shift= −


,

Next, the inverse quantization step is applied,

ˆ (ˆ)/D Dk
DEC

k
quantDEC Q= 2 ,

where D̂k
DEC is truncated to 16 fractional bits and is representing the final decoded normalized

disparity view. It is assigned to D t s DDEC
k
D

k
D

k
DEC,() = ˆ .

The steps for decoding the normalized disparity view t s kk
D

k
D

NDV, , , , ,() = … N1 2 using DCODEC are
given in Table D.4.

Table D.4 — Normalized disparity view decoding procedure for normalized disparity view
k using DCODEC

1 Obtain header payload from Common Codestream Element box as an array of bytes DHEADER .

2 Obtain the normalized disparity view i data from the contiguous codestream box, pointed to by DPECl , and
store the data as an array of bytes DDATA .

3 Concatenate DHEADER and DDATA as DENCODING DHEADER DDATA=  , .

4 Decode DENCODING with external codec DCODEC to obtain V U× image D̂k
quantDEC

5 Level shift by subtracting Dshift , D̂ D Dk
quantDEC

k
quantDEC

shift= −


 (optional step)

6 Dequantize to floating-point values by division with 2Q : D̂k
DEC = (ˆ)/Dk

quantDEC Q2

7 D t s DDEC
k
D

k
D

k
DEC,() = ˆ .

﻿

88� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Annex E
(normative)

JPEG Pleno Light Field Intermediate View superbox

E.1	 General

This annex specifies the decoding process for intermediate view decoding in the 4D prediction mode.
It also specifies the superbox containing all information necessary to reconstruct and to decode the
intermediate views, such as prediction parameters and encoded residual prediction data.

However, for informative purposes, it first describes an instantiation of the intermediate view encoder
for the 4D prediction mode.

E.2	 Organization of JPEG Pleno Light Field Intermediate View superbox

The JPEG Pleno Light Field Intermediate View box is a superbox that contains the following (see
Figure E.1):

—	 a JPEG Pleno Light Field Prediction Parameter box, signalling the parameters of the intermediate
view prediction;

—	 a JPEG Pleno Light Field Residual View Description box, signalling the configuration of the residual
view encoding;

—	 a Common Codestream Elements box, signalling redundant header information from individual
codestreams of the residual views;

—	 a Contiguous Codestream box, containing has payload the individual (stripped) codestreams of the
residual views.

The type of JPEG Pleno Light Field Intermediate View box shall be ‘lfiv’ (0x6C66 6976).

Figure E.1 — Organization of the JPEG Pleno Light Field Intermediate View superbox

E.3	 Defined boxes

E.3.1	 JPEG Pleno Light Field Prediction Parameter box

The prediction parameters box contains prediction parameters for the NI intermediate views t sp
I

p
I, ,()

for which H t sp
I

p
I, .() = 0

﻿

© ISO/IEC 2021 – All rights reserved� 89

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

For each intermediate view t sp
I

p
I,() this box contains updated hierarchy information for the

intermediate view configuration, view merging mode options and sparse filter parameters. For each
intermediate view t sp

I
p
I, ,() the prediction parameters are contained in a separate prediction parameter

block (see Figure E.2 and Table E.1).

The type of JPEG Pleno Light Field Prediction Parameter box shall be ‘lfpp’ (0x6C66 7070).

Figure E.2 — Organization of the contents of a Light Field Prediction Parameter box

Table E.1 — Format of the contents of the Light Field Prediction Parameters Description box

Field name Size (bits) Value
NI 32 0 to (232-1)

hsize 8 1 to (28-1)

H t sI I
1 1,() to H t s

N
I

N
I

I I
,





variable [0, (2hsize-1)] in hsize bit per view

VPP1
32 1 to (232-1)



VPPNI
32 1 to (232-1)

Prediction parameter block1 variable variable



Prediction parameter blockNI variable variable

NI number of intermediate views, N N NI REF= − , where N equals the total number of views in

the light field, and NREF equals the total number of reference views

hsize precision in bit for specifying the number of hierarchical levels in the array H (up to 3 levels
requires 2 bits, from 4 to 7 levels 3 bits, etc.)

H t s,() the value specifying the type of view t s,() as follows:

H t s,() == 0 is reserved for non-existing views in the array H .

H t s,() == 1 is not allowed (reserved for reference views).

H t s,() > 1 signals the hierarchy level of the intermediate view t s,() .

Please note that the indexes tp
I and sp

I are ordered according to a row-wise scan (see NOTE
to Figure E.3).
The hsize bit per view are concatenated to one stream. 8 Successive bits are packed as a byte.
If N hsizeI × is not a multiple of 8, the remaining bits of the last byte are put to zero (zero
padding to stuff last byte). The scan-order for H is illustrated in the NOTE to Figure E.3.

﻿

90� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

t p
I subscript of the row index in row-wise scanning order for the intermediate view p NI= …1, ,

in the light field array

sp
I subscript of the column index in row-wise scanning order for the intermediate view p NI= …1, ,

in the light field array

VPPp pointer to Prediction Parameters block for intermediate view t sp
I

p
I, ,() p NI= …1, , in the

light field array in row-wise scanning order
This pointer indicates the position of this Prediction Parameters block in the Prediction
Parameters Description box counting from the beginning of this box, i.e. the LBox field.

NOTE	 Skipping of the centre reference view is illustrated with the rounded arrow. Hierarchy level is
indicated when H t s,() ≥1 . In this example there are four hierarchical levels 1 2 3 4, , ,{ } and four non-existing

views with H t s,() = 0

Figure E.3 — Subaperture views are scanned in row-wise order skipping the reference views
H t s,() = 1 that have been signalled earlier (see Annex C.3.1)

For each intermediate view t s p Np
I

p
I

I, , , ,() = … 1 the prediction parameters are contained in a separate
prediction parameter block, see Table E.2.

Table E.2 — Format of the contents of the Prediction Parameter block

Field name Size (bits) Value

Np
T 8 0 to (28-1)

Np
D 8 0 to (28-1)

tTr1
16 0 to (216– 1)

sTr1
16 0 to (216– 1)

﻿

© ISO/IEC 2021 – All rights reserved� 91

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

Field name Size (bits) Value



t
N
Tr

p
T

16 0 to (216– 1)

s
N
Tr

p
T

16 0 to (216– 1)

tDr1
16 0 to (216– 1)

sDr1
16 0 to (216– 1)



t
N
Dr

p
D

16 0 to (216– 1)

s
N
Dr

p
D

16 0 to (216– 1)

MMODEp
8 {0,1,2}

SFp
8 [0,1]

MMODEp == 0 (least-squares optimal view merging)

LSWp
1

0, 16 -(215-1) to (215-1)

LSWp
2

0, 16 -(215-1) to (215-1)



LSW
NLS
p N

p

c, −1 16 -(215-1) to (215-1)

MMODEp == 1 (geometric distance based view merging)

FPWp
32 single precision, big endian float-

ing-point

SFp == 1 (sparse filter enabled)

NRTp
8 28-1

MSPp
8 28-1

SPWp
1

0, 32 -(231-1) to (231-1)

SPWp
2

0, 32 -(231-1) to (231-1)



SPW
M
p N

SP

c, −1 32 -(231-1) to (231-1)

KRp,0 ()Nsp +1 0 to 2 1
1()Nsp + −







KRp Nc, −1 ()Nsp +1 0 to 2 1
1()Nsp + −





﻿

Table E.2 (continued)

92� © ISO/IEC 2021 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

﻿

ISO/IEC 21794-2:2021(E)

N p
T number of reference views for intermediate view t s p Np

I
p
I

I, , , ,() = … 1

N p
D number of normalized disparity views for intermediate view t s p Np

I
p
I

I, , , ,() = … 1

tii
Tr subscript of the row index of the reference view, ii Np

T= …1 2, , , in the subaperture image
array in row-wise scanning order

sii
Tr subscript of the column index of the reference view, ii Np

T= …1 2, , , in the subaperture image
array in row-wise scanning order
T he s e t of r ef er enc e v iew s f or i nt er me d i at e v iew p i s de f i ne d a s
Ωp
Tr Tr Tr Tr Tr

N
Tr

N
Trt s t s t s

P
T

P
T= …{(,), (,), , (,)}

1 1 2 2

t jj
Dr subscript of the row index of the normalized disparity view, jj Np

D= …1 2, , , in the subaperture
image array in row-wise scanning order

s jj
Dr subscript of the column index of the normalized disparity view, jj NP

D= …1 2, , , in the subap-
erture image array in row-wise scanning order
The set of normalized disparity reference views for intermediate view p is defined as
Ωp
Dr Dr Dr Dr Dr

N
Dr

N
Drt s t s t s

p
D

p
D= …{(,), (,), , (,)}

1 1 2 2

MMODEp view merging mode for texture view p p NI, , , , = …1 2

 MMODEp View merging mode for view t sp
I

p
I,()

 0 Least-squares merging, Annex E.5.4.1

 1 Fixed-weight merging, Annex E.5.4.2

 2 Median merging, Annex E.7

SFp sparse filter enabled/disabled at view p , p NI= …1 2, , , ,

	 SFp == 1 sparse filter enabled,

	 SFp == 0 sparse filter disabled.

NLSp number of LS merging coefficients for view p , computed as Np
T Np

T
⋅






2 2/

LSWj
p c, least-squares merging weight of component c for view p , j NLSp= …1 2, , ,

FPWp
fixed-weight merging parameter for view p

NRTp
regressor template parameter of sparse filter for view p
Defines the size of the sparse predictor neighbourhood from which the regressors are
selected.

﻿

© ISO/IEC 2021 – All rights reserved� 93

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
79

4-2
:20

21

https://iecnorm.com/api/?name=c34dc0105e000069207446771c4d6610

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	4.1 Symbols
	4.2 Abbreviated terms
	5 Conventions
	5.1 Naming conventions for numerical values
	5.2 Operators
	5.2.1 Arithmetic operators
	5.2.2 Logical operators
	5.2.3 Relational operators
	5.2.4 Precedence order of operators
	5.2.5 Mathematical functions
	6 General
	6.1 Functional overview on the decoding process
	6.2 Encoder requirements
	6.3 Decoder requirements
	7 Organization of the document
	Annex A (normative) JPEG Pleno Light Field superbox
	Annex B (normative) 4D transform mode
	Annex C (normative) JPEG Pleno light field reference view decoding
	Annex D (normative) JPEG Pleno light field normalized disparity view decoding
	Annex E (normative) JPEG Pleno Light Field Intermediate View superbox
	Bibiliography

