INTERNATIONAL ISO/IEC
STANDARD 19505-1

First edition
2012-04-15

Information technology — Object
Management Group Unified Modeling
Language (OMG UML) —

Part 1:
Infrastructure

Technologies de l'information — Langage de modélisation|unifié OMG
(OMG UML) —

Partie 1: Infrastructure

Reference number
ISO/IEC 19505-1:2012(E)

©|SO/IEC 2012

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Table of Contents

IR T o o T o T 1
2. Conformance ittt i A 1
A o General ... e e 1

2 Language Units e 2

3 Compliance Levels AT 2

4 Meaning and Types of Compliance oot 3

.5 Compliance Level ContentsYot 5

3. NormativeReferences 2 . b, 5
4. Terms and Definitions & . . i b, 6
5. Notational Conventions5 it ennnn 6
6. Additional Information@..... i i e 6
5.1 Architectural Alignment and MDA Support o 6

5.2 Howto Proceedo e 6

6.2.1 Diagramformat ... e e e [7

7. Language Architecture i 13
.1 General . . o 13

.2 Design RrinCiples e 13

.3 Infrastructure Architecture 13
o | T 14

(.5 Profiles e 16

7.6 Architectural Alignment between UMLand MOF 16

7.7 Superstructure Architecture 17

7.8 Reusing Infrastructure 18

7.9 TheKernel Package e 18

7.10 Metamodel Layering 18

7.11 The Four-layer Metamodel Hierarchy 19

© ISO/IEC 2012 - Al rights reserved iii

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

712 Metamodeling 19
7.13 An Example of the Four-level Metamodel Hierarchy 20
8. Language Formalism i iiiiiinnnnnnns 23
8.1 General 23
2 tevelsof Formatism - - -~~~ 23
8.3 Package Specification Structure OV 24
8.3.1 Class DeSCriptioNScoooiiiiiiiiiiiieieee e eeieeeee e e e e e e B e e e e e e 24

8.3.2 DiIAagramsSocuueiiieiiiiiiee ettt e et e e ee s e e e snneee e G e nnreeee e s e 24

8.3.3 Instance Modelcooiiiiiiiiiii e e [24

8.4 Class Specification Structure ;N7 oo oo o o 24
8.4.1 DeSCriPtiON ... s S e e e e 25

8.4.2 ArIDULES ... O e [25

8.4.3 ASSOCIALIONS......eiiiiiiiiiiiii it sl ee e s [25

8.4.4 ConStraiNtS........ooiiiiiiiiiiiie e SR T e e 25

8.4.5 Additional Operations (0ptional)cooee e e 25

8.4.6 SeMANTICS ...oooiviiiii i e eee s e 25

8.4.7 Semantic Variation Points (optional) .8 e e 25

8.4.8 NOALIONeeiiiiiiiie i A ettt e s srnbreee e s e 26

8.4.9 Presentation Options (optional) ..&a e [26

8.4.10 Style Guidelines (0ptioNal) ... (25 ceeeeiiiieeieiiiiiee e [26

8.4.11 EXxamples (OPtioNal) 8 ettt e e e 26

8.4.12 Rationale (0ptional)aft oo [26

8.4.13 Changes from UML 1.4\ ..o e ee e e 26

8.5 UseofaConstraintLanguage 26
8.6 Useof Natural Language i, 27
8.7 Conventions and Typography i 27
9. Core::Abstractions i 31
9.1 BehavieralFeaturesPackage o 33
9141 BehavioralFeature ..o e [33

D.2 (Barameter e 34
Q3 (‘hqngnahili’rine Package s 1 . . 35
9.3.1 StructuralFeature (as SPeCIialiZed)oooiiiiiiiiiii e 36

9.4 ClassifiersPackage 36
.41 ClASSITIEI ..t e e e e s re e e e e 37

1S =T | U (= PP PR PUPPPPP 38

9.5 CommentsPackage 39
O.5.1T COMIMENT ...ttt e e e e bt e e e st e e e e aa b e e e e e e b b e e e e e e sabe e e e e srnneeeenas 39

O.5.2 EIBIMENT.....ceiiiieeeee ettt e e e e e e e e s e e e e n e e e e 40

iv © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.6

Constraints Package
9.6.1 CONSIIAINTeeiiiiiiiie e et e e
9.6.2 Namespace (as specialized)

9.7 Elements Package

9.7.1 Element

Evnracaoiona Daslea~na

I_I\PIUOOIUI o1 uunugu

9.8.1 Expression
9.8.2 OpaqueExpression
9.8.3 ValueSpecification

D.9 Generalizations Package

9.9.1 Classifier (as specialized)
9.9.2 Generalization

D.10 Instances Package

9.10.1 InstanceSpecification
9.10.2 InstanceValue
9.10.3 Slot

D.11 Literals Package

9.11.1 LiteralBoolean
9.11.2 Literallnteger
L IR B G B 1 = =N [0 | e SRR
9.11.4 LIEralREaAI..... e N et
9.11.5 LiteralSpecification
9.11.6 LiteralString......ceceeee e
9.11.7 LiteralUnlimitedNatural

D.12 Multiplicities Package
9.12.1 MultiplicityElement

D.13 MultiplicityExpressions Package
9.13.1 MultiplicityElement (specialized)

D.14 Namespaces Package

9-44.1 NamedElement
9:14.2 Namespace

D.15Ownerships Package

95t Efement(as speciatized)
9.16 Redefinitions Package i
9.16.1 RedefinableElement

9.17 Relationships Package

9.17.1 DirectedRelationship
9.17.2 Relationship

9.18 StructuralFeatures Package

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

10.

11.

Vi

9.18.1 STTUCIUFAIFEALUIEcoiiieiiie ettt e et e e e e sttt e e e e sttt e e e e anttaeeeeeaneeeeeans 83

919 Super Package 84
9.19.1 Classifier (as SPeCI@liZEA)uuiiiiiiiiiiei e 85

9.20 TypedElements Package 87
LS 240 I 1Y/ =SSR 88

—— 0202 TypedElemeAt—— e 89
D.21 Visibilities Package AN 89
9.21.1 NamedElement (as specialized)cccccoiiiiiiiiiiiiiiniieeeeeeee i e L 90

9.21.2 VisibilityKind.........oooirie i e 91
Core::BasiC0 i e 93
0.1General e 93
0.2Types Diagram 94
10.2.1 COMMENT ..o ssiieee e By Tt ee e seneeeee e | 94

T0.2.2 Element........oooiiiiiceeeeeeee e S T e 95

10.2.3 NamedElementcoiiiiiiiiiiiiiiieeegie S e 95

(O Y o T N RS SUSSURRRPR ISR 96

10.2.5 TypedElement..........ooooviee s e e e e e e e e e 96

0.3 Classes Diagram o e 97
T0.3.1 ClaSsS ..t ettt ee e enneeee e | e 97

10.3.2 MultipliCityElement e e e e e e e ee e e e 98

T0.3.3 OPEratioNueiiiiiieiie e ettt e e e e e e e s e e re e e e e e e e e e s e e sssnnnrrnnareeaaaaeeesees|erirreraeaeee s 99

10.3.4 Parameter ... e e 99

(OGN o (o] o =] Y/ A S URUURRRRPRRTP APPSR 100

0.4 DataTypes Diagramy).o e 101
(L0 B = = Y o 1= T TP OUSRPPRIRITY TR 101

10.4.2 ENUMEFATIONoviiiiiiiiieee ettt eeeee e e e e e e e e e e s s s nnnnenneneeeeneaaees | oeeenneeeeees 102

10.4.3 ENUMEIAtiONLIteral.........ccooiiiiiieee et ee e e e e e e | 102

10.4.4 PAMIIVETYPE ...t e s ee e e | 103
0.5Packages Diagram e 103
10.5:1 PACKAGEceie e | 103

(LRSI Y/ o1 TSR SURRRSURROUNN ISR 104
Core:Constructscouiiuuuuiutenseensnnnnneas .105
111 General 105
11.2 Root Diagram 106
22 I @7 1 10T o | G SRR 107

11.2.2 DirectedRelatioNSNIP.........ueeieiee e e e e e e e 108

T1 23 EIBMENT ...ttt e e e e e e e e e e e e e e e a e 108

11.2.4 RelatioNShiD ..o e e e e e e e e e e e e aeaaaae 109

11.3 Expressions Diagram 110

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

11,30 EXPIESSION .o e e e e e ———————————— e aaaaaaaaaas 110

11.3.2 OpaqUEEXPIESSION ... e 111

11.3.3 ValueSpecCifiCationcooiiiee e 111

11.4 Classes Diagram e 112
T1.4.1 ASSOCIALION ...ttt e et e e e e e e e e e e e 113

L 1 - T SRR 120
HA3Classifier———— e e 123

L @ o T=Y = 1] I EEUPRURRUPRPPPRPRPRRIRA S % FSOTOPRRRRRR 126

L R T o] 01T o R UUUUPRR G S FRSR 126

11.5 Classifiers DiagramNoo 0oL 131
11.5.1 ClasSIfier.....coiveiiiiiie e N e [, 132

T15.2 FRAUIE ...t e e e e e | 133

11.5.3 MultiplicityElement ... N e e 134

11.5.4 RedefinableElementcccoooiiiiiiet A L, 134

11.5.5 StructuralFeature ... S e e, 135

T1.5.6 TYPE e e s seeeess e e e L 136

11.5.7 TyPEAEIEMENT....cciiiiiiii e e et e e e enrre e e e enneee e e e e 137

11.6 Constraints Diagram0 . e 137
11.6.1 ConStraintceevveiieeeeiiiee G D e e 138

11.6.2 NAMESPACE.eiiiiiiiiiiieiiiiieie e ot e s e nneee e e e e 139

11.7 DataTypes Diagram 8 .. . i 139
T1.7.1 DAtaTYPE e N et L 140

T1.7.2 ENUMEIAtION ...ceeeeeiiiiiie e e et e e e e e e e e eee e e e e e e e e e e e | 141

11.7.3 EnumerationLiteral. ... s oo e e 143

T1.7.4 OPEration ... T et e e e e e e e nee e e e e e e e e e e e e e 144

11.7.5 Primitive TYPE oo e ettt e s snine e e 144

1176 PrOPEITY o m Tttt e e e e e e e s L 145

11.8 Namespaces Diagram e 146
11.8.1 Elementimporto e e e e e e e e e e 146

11.8.2 NamedElemento ee e e e e e e | 149

T1.8.3 NAMESPACE.t ee e e e e e e e e e e e e ennneeeeeeeeeeeeenes e 150
11.84.PackageableElement........ ..o L 151

14585 PackagelmpPort.........veiiiiie e L 152
11.9-Operations Diagram e 153
11.9.1 BehavioralFeature ... e 154

HO 2 Operatior T T e 156

LS IR =T = 10 1= =T PR SERRPP 159

11.9.4 ParameterDireCtionKind.............oueiiiiiiiiiia e 160

11.10 Packages Diagram 161
1t T Y/ o = USSR 161

L L0 =T €= To = PP PSPRRPR 162
11.10.3 PACKAGEIMEIGE......o ittt ettt e e e e e e e e e e e e e e e eeeeas 165

12. Core:iProfiles i i i it e e 175
© ISO/IEC 2012 - Al rights reserved Vii

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

12.1 General
12.2 Profiles package

13. Pr

Subp
Annex
Annex
Annex

INDEX

12.2.1 Class (from Profiles)
12.2.2 Extension (from Profiles)
12.2.3 ExtensionEnd (from Profiles)
12.2.4 Image (from Profiles)

1225 Package (fromrProfites)
12.2.6 PackageableElement (from Profiles)
12.2.7 Profile (from Profiles)
12.2.8 ProfileApplication (from Profiles)
12.2.9 Stereotype (from Profiles)

imitiveTypes

3.1 General

3.2 PrimitiveTypes Package

13.2.1 Boolean
(B T 141 (Yo = o USSP
13.2.3 Real
13.2.4 String
13.2.5 UnlimitedNatural

art Il - Annexes
A: XMI SerializationandSchema.......................

B: Support for Model-Driven Architecture
C: UML XMI Documents

viii

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with

ISO, also
matters of

Internatiof

The main
technical
approval |

Attention
rights. IS

This Inter
collaborat
Available

This Inter

« IT
Ol

This Inter
distributed

« Pa

Apart fror
UML, v2.

. PaI 1: Infrastructure

ake part i tie work. TSOTottaborates closety witir the Ttermatiomat Efectrotechmicat-Commmissio
electrotechnical standardization.

nal Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Patt 2.

task of technical committees is to prepare International Standards. Draft International Standards a
ommittees are circulated to the member bodies for voting. Publication as an International Standd
y at least 75 % of the member bodies casting a vote.

is drawn to the possibility that some of the elements of this part of ISO/IEC-19505 may be the sul
shall not be held responsible for identifying any or all such patent rights.

hational Standard was prepared by Technical Committee ISO/IEG/FC JTC1, Information technol
on with the Object Management Group (OMG), following the~submission and processing as a P
Specification (PAS) of the OMG Unified Modeling Language (UML) specification.

hational Standard is related to:

[J-T Recommendations X.901-904 | ISO/IEC 107465the Reference Model of Open Distributed Procd
P).

hational Standard consists of the following'parts, under the general title Information technology -
/ processing - UML specification:

2: Superstructure

h this Foreword, the text of this International Standard is identical with that for the OMG specifi
1.1, Part 1.

(IEC) on all

dopted by the
rd requires

ject of patent

gy, in
iblicly

ssing (RM-

Open

cation for

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and

ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability, and portability
can be integrated.

RM-ODP
systems. 1|
of cases, t
(e.g., intet]
appropriat]

RM-ODP
foundatior
2 of the R
specificati

The Unifi
graphical

software 4
such, it se

e anj
« ab

e arg

As an intg
interchang

* bet
* bet
* bet

The existd
environmg

While not

he scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and
he RM-ODP Part 2 and the UML specification use the same term for concepts that are related bu
face). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using U
 extensions (using stereotypes, tags, and constraints).

Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed
al concepts and framework defined in Part 2. Given the relation between UML as a modeling lang
M ODP standard, it is easy to show that UML is suitable as a notation. o the individual viewpo,
ons defined by the RM-ODP.

bd Modeling Language (UML) is a general-purpose modeling language with a semantic specifica
hotation, an interchange format, and a repository query interface. It is designed for use in object-
pplications, including those based on technologies recommended by the Object Management Groy
rves a variety of purposes including, but not limited to,/th¢ following:

eans for communicating requirements and design iftent,
hsis for implementation (including automated code generation),
verse engineering and documentation facility.

rnational standard, the various compenents of UML provide a common foundation for model an
e:

veen software development(fools,
ween software developets, and
iveen repositories @nd-other object management facilities.

nce of such-a'standard facilitates the communication between standardized UML environments 4
nts.

limifed to this context, the UML standard is closely related to work on the standardization of Opq

Processing

Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework for describillg distributed

, in a number
not identical
ML with

using the
uage and Part
int

tion, a
oriented
p (OMQG). As

| metadata

nd other

n Distributed

©DP).

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

INTERNATIONAL STANDARD

ISO/IEC 19505-1:2012 (E)

1

Information technology - Object Management Group
Unified Modeling Language (OMG UML), Infrastructure

Scope

This Inter
provide sy
implemen
The initia
and incorf
architectu

precise dej
capability

One of th
interopera
and notati

A f
sym
co1]
A d
ind
Ad

we
Sys

A ¢
sup
(X1

2

hational Standard defines the Unified Modeling Language (UML), revision 2. The objectiverof U
stem architects, software engineers, and software developers with tools for analysis, desigm, and
ation of software-based systems as well as for modeling business and similar processes.

versions of UML (UML 1) originated with three leading object-oriented methods)(Booch, OMT|
orated a number of best practices from modeling language design, object-oriented programming|
al description languages. Relative to UML 1, this revision of UML has béen enhanced with signi
finitions of its abstract syntax rules and semantics, a more modular langdage structure, and a gre
for modeling large-scale systems.

primary goals of UML is to advance the state of the industry by‘enabling object visual modelin|
bility. However, to enable meaningful exchange of model information between tools, agreement
bn is required. UML meets the following requirements:

pbrmal definition of a common MOF-based metamodel that specifies the abstract syntax of the UML.
tax defines the set of UML modeling concepts, theirlattributes and their relationships, as well as the
hbining these concepts to construct partial or comiplete UML models.

etailed explanation of the semantics of eachhslUML modeling concept. The semantics define, in a tech
ependent manner, how the UML concepts‘ate to be realized by computers.

pecification of the human-readablesnotation elements for representing the individual UML modeling]
1 as rules for combining them infoa-variety of different diagram types corresponding to different aspe
fems.

etailed definition of ways in which UML tools can be made compliant with this International Standal
ported (in a separate-specification) with an XML-based specification of corresponding model interch
MI) that must be r€alized by compliant tools.

Conformance

ML is to

and OOSE),
and
ficantly more
htly improved

o tool
bn semantics

The abstract
rules for

nology-

concepts as
cts of modeled

rd. This is
ange formats

2.1

General

UML is a language with a very broad scope that covers a large and diverse set of application domains. Not all of its
modeling capabilities are necessarily useful in all domains or applications. This suggests that the language should be
structured modularly, with the ability to select only those parts of the language that are of direct interest. On the other
hand, an excess of this type of flexibility increases the likelihood that two different UML tools will be supporting
different subsets of the language, leading to interchange problems between them. Consequently, the definition of
compliance for UML requires a balance to be drawn between modularity and ease of interchange.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Experience with previous versions of UML has indicated that the ability to exchange models between tools is of
paramount interest to a large community of users. For that reason, this International Standard defines a small number of
compliance levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible
language subsets. However, in recognition of the need for flexibility in learning and using the language, UML also

provides t

2.2

The mode
coupled
a particulg
event-drivj
provides f
UML mea
models. If
a UML us

In additio1
previous d
individual
excess of
provided 1
below.

2.3

The stratif
modeling

Complian
levels. As

For ease g

Le

end
cap
bet

e Me
bui

he concept of language units.

Language Units
ing concepts of UML are grouped into /anguage units. A language unit consists of a collection
odeling concepts that provide users with the power to represent aspects of the system undep study
r paradigm or formalism. For example, the State Machines language unit enables modelers to sp
en behavior using a variant of the well-known statecharts formalism, while the Activities langua
pr modeling behavior based on a workflow-like paradigm. From the user’s perspeétive, this parti
ns that they need only be concerned with those parts of the language that they.¢onsider necessar
those needs change over time, further language units can be added to the'user’s repertoire as req
er does not have to know the full language to use it effectively.

I, most language units are partitioned into multiple increments, edeh adding more modeling capa
nes. This fine-grained decomposition of UML serves to make the language easier to learn and u
segments within this structure do not represent separate compliance points. The latter strategy wo
compliance points and result to the interoperability problems described above. Nevertheless, the

y language units and their increments do serve to simplify the definition of UML compliance as

Compliance Levels

ication of language units is used as the, foundation for defining compliance in UML. Namely, thg
concepts of UML is partitioned intd_horizontal layers of increasing capability called compliance
e levels cut across the various ldnguage units, although some language units are only present in
their name suggests, each compliance level is a distinct compliance point.

f model interchange, there. are just two compliance levels defined for UML Infrastructure:

el 0 (L0) - This contains a single language unit that provides for modeling the kinds of class-based s
ountered in most pepular object-oriented programming languages. As such, it provides an entry-lev

iveen different categories of modeling tools.

tfamodelN\Constructs (LM) - This adds an extra language unit for more advanced class-based structure
rding metamodels (using CMOF) such as UML itself.

f tightly-
according to

ecify discrete

be unit

fioning of

y for their

uired. Hence,

bilities to the
e, but the
uld lead to an
proupings
explained

set of
Jevels.
the upper

ctures

e|l modeling
ability. Morg.iimportantly, it represents a low-cost common denominator that can serve as a basis for iE‘eroperability

used for

As noted, compliance levels build on supporting compliance levels. The principal mechanism used in this International
Standard for achieving this is package merge (see Section 11.10.3, “PackageMerge,” on page -164). Package merge
allows modeling concepts defined at one level to be extended with new features. Most importantly, this is achieved in the
context of the same namespace, which enables interchange of models at different levels of compliance as described in

“Meaning

and Types of Compliance.”

For this reason, all compliance levels are defined as extensions to a single core “UML” package that defines the common
namespace shared by all the compliance levels. Level 0 is defined by the top-level metamodel shown below.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

airnports
PrimitiveTypes Basic
. A
al . T Hll:
«rrierge:s :
.

Lo

Figure 2.1 - Level 0 package diagram

In this mqddel, ”UML” is originally an empty package that simply merges in the cOntents of the Basic pack
UML Infrpstructure. This package, contains elementary concepts such as ClassyPackage, DataType, Opera

At the neAt level (Level LM), the contents of the “UML” package, now ineluding the packages merged int

their cont¢gnts, are extended with the Constructs package.

1

Primitivie Types

irnporte

?‘-‘-\.

({ ______________

RN

Basic

Constructs

<<|:ﬁérg.e>3

Figure 2.2 - Level M package diagram

Note that LM does not explicitly merge Basic, since the elements in Basic are already incorporated into the

elements in Cofistructs.

N

'
“IMErdes
'

S

Lhd

age from the
ion, etc.

b Level 0 and

orresponding

24 Meaning and Types of Compliance

Compliance to a given level entails full realization of all language units that are defined for that compliance level. This
also implies full realization of all language units in all the levels below that level. “Full realization” for a language unit at
a given level means supporting the complete set of modeling concepts defined for that language unit at that level.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with the Level 0 and Level
1. A tool that is compliant at a given level must be able to import models from tools that are compliant to lower levels
without loss of information.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 1

9505-1:2012(E)

There are two distinct types of compliance. They are:

» Abstract syntax compliance. For a given compliance level, this entails:

» compliance with the metaclasses, their structural relationships, and any constraints defined as part of the merged

UML metamodel for that compliance level, and

» the ability to output models and to read in models based on the XMI schema corresponding to that compliance

level.

» Coficrete syntax compliance. For a given compliance level, this entails:

Complian
+ abg
+ cor]
+ abs

* abs

metamodel elements that are defined as part of the merged metamodel for that compliance.level and
implication, the diagram types in which those elements may appear; and optionally

the ability to output diagrams and to read in diagrams based on the XMI schemaddefined by the Dia
Interchange specification for notation at that level. This option requires abstract syntax and concretq
compliance.

Concrete syntax compliance does not require compliance to any presentation options that are define
notation.

e for a given level can be expressed as:
(ract syntax compliance

crete syntax compliance

(ract syntax with concrete syntax compliance

(ract syntax with concrete syntax and diagram interchange compliance

Table 2.1 F Example compliance statement
Compliance Summary
Compliance level Abstract-Syntax | Concrete Syntax Diagram Interchange Op-
tion
LO YES YES NO
LM NO YES NO

In case offtools that.generate program code from models or those that are capable of executing models, it is
| thellevel of support for the run-time semantics described in the various “Semantics” sub clausef of the

understan

compliance to the notation defined in the “Notation” sub clauses in this part of ISO/IEC 19505 for those

, by

bram
syntax

1 as part of the

also useful to

are defined

specificatijon,"However, the presence of numerous variation points in these semantics (and the fact that the

informally using natural language), make it impractical to define this as a formal compliance type, since the number of

possible combinations is very large.

A similar situation exists with presentation options, since different implementers may make different choices on which
ones to support. Finally, it is recognized that some implementers and profile designers may want to support only a subset
of features from levels that are above their formal compliance level. (Note, however, that they can only claim compliance
to the level that they fully support, even if they implement significant parts of the capabilities of higher levels.) Given this
potential variability, it is useful to be able to specify clearly and efficiently, which capabilities are supported by a given
implementation. To this end, in addition to a formal statement of compliance, implementers and profile designers may

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

also provide informal feature support statements. These statements identify support for additional features in terms of
language units and/or individual metamodel packages, as well as for less precisely defined dimensions such as
presentation options and semantic variation points.

An example feature support statement is shown in Table 2.2 for an implementation whose compliance statement is given
in Table 2.1. In this case, the implementation adds two new language units from higher levels.

Table 2.2 - Example feature support statement

Feature Support Statement

Languag¢ Unit Feature

Construct: An Association A1 specializes another Association A2 if eactrend of A1 subsets|the
corresponding end of A2.

Construct: A redefining property must have the same name as the redefined property.

2.5 Compliance Level Contents

Table 2.3 jdentifies the packages by individual compliance levels in addition to those that are defined in lover levels (as
a rule, Leyel (N) includes all the packages supported by Level (N-1))<The set of actual modeling features gdded by each
of the packages are described in the appropriate clauses of the related language unit.

Table 2.3 |- Metamodel packages added to compliance levels

Level Metamodel Package Added
LO Basic
LM Constructs

3 Normative References

The folloying normative documents contain provisions which, through reference in this text, constitute proyisions of this
part of ISQ/IEC 19505.For dated references, subsequent amendments to, or revisions of, any of these publigations do not

apply.

« RF[C2419;http://ietf.org/rfc/rfc2119, Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, March
1997

+ ISO/IEC 19505-2 , Information technology — OMG Unified Modeling Language (OMG UML) Version 2.4.1 — Part
2: Superstructure; pas/2011-08-12

« OMG Specification formal/2011-08-06, UML Superstructure, v2.4.1

« OMG Specification formal/2010-02-01, Object Constraint Language, v2.2

« OMG Specification formal/2011-08-07, Meta Object Facility (MOF) Core, v2.4.1
« OMG Specification formal/2011-08-09, XML Metadata Interchange (XMI), v2.4.1

© ISO/IEC 2012 - All rights reserved 5

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

* OMG Specification formal/06-04-04 , UML 2.0 Diagram Interchange

Note — UML 2 is based on a different generation of MOF and XMI than that specified in ISO/IEC 19502:2005 Information
technology - Meta Object Facility (MOF) and ISO/IEC 19503:2005 Information technology - XML Metadata Interchange
(XMI) that are compatible with ISO/IEC 19501 UML version 1.4.1.

4 Terms and Definitions

There are

5 Notational Conventions

The keyw

are to be interpreted as described in RFC 2119.

no formal definitions in this part of ISO/IEC 19505 that are taken from other documents.

brds “must,” “must not,” “shall,” “shall not,” “should,” “should not,~and “may” in this part of IS

6

6.1 |

Clause 7,
Superstru
can be str

The MOF

The OMG;
technolog
a technold
technolog
Driven AR

6.2

dditional Information

rchitectural Alignment and MDA Support

‘Language Architecture,” explains how the\UML 2: Infrastructure is architecturally aligned with|
ture that complements it. It also explains’how the InfrastructureLibrary defined in the UML 2: I
ctly reused by MOF 2 specifications.

2: Core Specification is architécturally aligned with this part of ISO/IEC 19505.

's Model Driven Architecture)(MDA) initiative is an evolving conceptual architecture for a set of
I specifications that will support a model-driven approach to software development. Although MD
gy specification, it represents an important approach and a plan to achieve a cohesive set of moq
U specifications. This International Standard’s support for MDA is discussed in Annex B: “Suppo
chitecture,” on'page 213.

How-to'Proceed

O/IEC 19505

the UML 2:
Wfrastructure

industry-wide
A is not itself
el-driven

't for Model

The rest o

fthis’document contains the technical content of this part of ISO/IEC 19505. Readers are encouraged to first

read “Subpart I - Introduction” to familiarize themselves with the structure of the language and the formal approach used
for its specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in “Subpart
II - Infrastructure Library” or the UML::Classes::Kernel package that reuses it, described in the UML 2: Superstructure.
The former specifies the flexible metamodel library that is reused by the latter.

Readers who want to explore the user level constructs that are built upon the infrastructural constructs specified here
should investigate the specification that complements this, the UML 2: Superstructure.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 195

05-1:2012(E)

Although the clauses are organized in a logical manner and can be read sequentially, this is a reference specification
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.2.1

Diagram format

The following conventions are adopted for all metamodel diagrams throughout this part of ISO/IEC 19505:

An

An

ass

If i

If 4
mo|
oft
cor
me

rul¢:

“A

wh
the

association with one end marked by a navigability arrow means that:
the association is navigable in the direction of that end,
the marked association end is owned by the classifier, and

the opposite (unmarked) association end is owned by the association.

association with neither end marked by navigability arrows means that:
the association is navigable in both directions,

each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the

beiation ends to which they apply. Thus:

the constraint {subsets endA} means that the associatiomend to which this constraint is applied is a
of association end endA that is part of the association‘being specialized.

a constraint {redefines endA} means that the association end to which this constraint is applied redd
association end endA that is part of the association being specialized.

o multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

n association end is unlabeled, the default name for that end is the name of the class to which the end
dified such that the first letter is a lowercase letter. (Note that, by convention, non-navigable associat|
bn left unlabeled since, in general, there is no need to refer to them explicitly either in the text or in fq
straints — although they may be needed for other purposes, such as MOF language bindings that use
amodel.)

ociations that are ndt explicitly named, are given names that are constructed according to the follow

h

ITEEE)

| 7 <association-end-namel> <association-end-name2>

bre <{association-end-namel> is the name of the first association end and <association-end-name2>
séeond association end.

association).

ociation specialization and redefinition are indicated by appropridte constraints situated in the proximity of the

specialization

fines the

is attached,
on ends are
rmal
the

ng production

is the name of

An

unlabeled dependency between two packages is interpreted as a package import relationship.

Note that some of these conventions were adopted to contend with practical issues related to the mechanics of producing
this International Standard, such as the unavailability of conforming modeling tools at the time the specification itself was
being defined. Therefore, they should not necessarily be deemed as recommendations for general use.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

6.2.2 Contents of Subparts | and Il

6.2.2.1 Contents of Subpart| - Introduction

The Unified Modeling Language is a visual language for specifying, constructing, and documenting the artifacts of
systems. It is a general-purpose modeling language that can be used with all major object and component methods, and
that can be applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation platforms

AY

(e.g., 2EE—NEF

The OM

several minor revisions, the most recent being the UML 1.4 specification, which was adopted in May,2001[.

Under the
been succ
should be
vendors. A
for consid

Although

changes tq
architectu
Language

This UM
with the b
Superstrug

7

adopted the UML 1.1 specification in November 1997. Since then UML Revision Task Forces'h

stewardship of the OMG, the UML has emerged as the software industry’s dominantmiodeling la
pssfully applied to a wide range of domains, ranging from health and finance to @erospace to e-c
expected, its extensive use has raised numerous application and implementationdissues by model
s of the time of this writing over 500 formal usage and implementation issues have been submitte
pration.

many of the issues have been resolved in minor revisions by Revision/Task Forces, other issues
the language that are outside the scope of an RTF. Consequently, the OMG issued four compler
ally aligned RFPs to define UML: UML Infrastructure, UML(Superstructure, UML Object Cons
and UML Diagram Interchange.

specification is organized into two volumes (UML 2. Tnfrastructure and UML 2: Superstructure
reakdown of modeling language requirements into«two RFPs (UML Infrastructure RFP and UMI
ture RFP). Since the two volumes cross-referenee each other and the specifications are fully intq

two volunpes could easily be combined into a single volume at a later time.

6.2.2.2 C
This subp
9 - Core::
10 - Core
11 - Core:
12 - Core
13 - Primi

ontents of Subpart Il - InfrastructureLibrary

it includes the following clauses:
Abstractions

:Basic

:Constructs

-Profiles

tive Typés

This descifibes ‘the structure and contents of the Infrastructure packages for the UML metamodel and related
such as thg‘Meta Object Facility (MOF) and the Common Warehouse Metamodel (CWM). The first top ley

ave produced

hguage. It has
mmerce. As

ers and

d to the OMG

equire major
nentary and
raint

, consistent

grated, these

metamodels,

el package is

InfrastructureLibrary, which defines a reusable metalanguage kernel and a metamodel extension mechanism for UML.
The metalanguage kernel can be used to specify a variety of metamodels, including UML, MOF, and CWM. In addition,
the library defines a profiling extension mechanism that can be used to customize UML for different platforms and
domains without supporting a complete metamodeling capability. The nested packages of the InfrastructureLibrary are
Core and Profile. The other top level package is PrimitiveTypes, which consists of a small number of primitive types that
are commonly used for metamodeling. The PrimitiveTypes package is imported by nested packages in the
InfrastructureLibrary and can be imported by other packages, libraries and metamodels that need to define primitive data.
The high level architecture of the Infrastructure packages is shown below.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 195

05-1:2012(E)

1
InfrastructureLibrary
1 1
Core Profiles | PrimitiveTypes
Figure 6.1| - The Metamodel Library package contains the packages
Core and Profiles
The Core package is the central reusable part of the InfrastructureLibrary, and is further subdivided as show

below.

IConstructs
.
I «import>» PrimitiveTypes
Abstrdctions | DN
1 «import»
Basic | N
«import»
Consfructs |-------------- -
Figure 6.2 - The Core package contains the packagés PrimitiveTypes,

Abstractions, Basic, and Constructs

The packege PrimitiveTypes is a simple package that contains a number of predefined types that are commot
metamoddling, and as such they are used-both in the infrastructure library itself, but also in metamodels li}
UML. Thq
which are
defining new metamodels. The package Constructs also contains a number of fine-grained packages, and b
many of the aspects of the Abstractions. The metaclasses in Constructs tend to be concrete rather than abs
geared toyards an object-oriented modeling paradigm. Looking at metamodels such as MOF and UML, th
import the
package Basic contains a subset of Constructs that is used primarily for XMI purposes.

The Profiles package contains the mechanisms used to create profiles of specific metamodels, and in partig
This exterfsiofizmechanism subsets the capabilities offered by the more general MOF extension mechanism

package Abstractions contains a number of fine-grained packages with only a few metaclasses
abstract. The purpose of this package is to provide a highly reusable set of metaclasses to be spe

Constructs-package since the contents of the other packages of Core are then automatically incl

h in the figure

nly used when
ke MOF and
ach, most of
cialized when
rings together
ract, and are
by typically
nded. The

ular of UML.

The detailed structure and contents of the PrimitiveTypes, Abstractions, Basic, Constructs, and Profiles packages are
further described in subsequent clauses.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

10

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Subpart I - Introduction

ISO/IEC 19505-1:2012(E)

© ISO/IEC 2012 - All rights reserved

11

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

12

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

7

71

ISO/IEC 19505-1:2012(E)

Language Architecture

General

The UML specification is defined usmg a metamodehng approach (1 e., a metamodel is used to spe01fy the model that

comprisesr at-ada - 3 3
specification method it offers the advantages of belng more intuitive and pragmatlc for most 1mplementer<
practitiondrs.!

The folloying sub clauses summarize the design principles followed, and show how they are applied to or;
Infrastruc
architectu

7.2

The UML)

7.3

Mg
org

Lay
the
arc

abstraction.

Partitioning — Partitioning is used to organize-¢onceptual areas within the same layer. In the case of the

Inf]
me
col

Ex

Repse —=A.fine-grained, flexible metamodel library is provided that is reused to define the UML metam
otherarchitecturally related metamodels, such as the Meta Object Facility (MOF) and the Common Warlehouse

This clause explains the architecture of the UML metamodel.

ure and Superstructure. The last sub clause explains how the UML metamodel confernis to a 4-lay
al pattern.

Design Principles

metamodel has been architected with the following design principles-in mind:

dularity — This principle of strong cohesion and loose couplingas.applied to group constructs into p
anize features into metaclasses.

rering — Layering is applied in two ways to the UML metamodel. First, the package structure is laye
metalanguage core constructs from the higher-level constructs that use them. Second, a 4-layer meta)
hitectural pattern is consistently applied to separate concerns (especially regarding instantiation) acrg

astructureLibrary, fine-grained partitioning is used to provide the flexibility required by current and
amodeling standards. In the case of the UML metamodel, the partitioning is coarser-grained in order
esion within packages and loosening the coupling across packages.

ensibility — The UML canbe extended in two ways:

A new dialect of UMLitcan be defined by using Profiles to customize the language for particular pla
J2EE/EJB, .NET/COM+) and domains (e.g., finance, telecommunications, aerospace).

A new language related to UML can be specified by reusing part of the InfrastructureLibrary packa
augmenting With appropriate metaclasses and metarelationships. The former case defines a new dia
while the-latter case defines a new member of the UML family of languages.

f a formal
and

panize UML’s
er metamodel

ackages and

red to separate
model
ss layers of

future

fo increase the

forms (e.g.,

be and
ect of UML,

del, as well as

amodel (F‘Xil\ﬂ)

Infrastructure Architecture

The Infrastructure of the UML is defined by the InfrastructureLibrary, which satisfies the following design requirements:

1.

It is important to note that the specification of UML as a metamodel does not preclude it from being specified via a mathemat-
ically formal language (e.g., Object-Z or VDM) at a later time.

© ISO/IEC 2012 - All rights reserved

13

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

» Define a metalanguage core that can be reused to define a variety of metamodels, including UML, MOF, and CWM.

 Architecturally align UML, MOF, and XMI so that model interchange is fully supported.

» Allow customization of UML through Profiles and creation of new languages (family of languages) based on the same

metalanguage core as UML.

As shown in Figure 7.1, Infrastructure is represented by two packages: InfrastructureLibrary and PrimitiveTypes. The

package Igfrastructuretibrary CONSISts Ot te packages Core and Profifes,; wiere the tatter defimesthe mechanisms that
are used tp customize metamodels and the former contains core concepts used when metamodeling. The pdckage
Primitiveypes consists of a few predefined primitive types that are commonly used when metamodeling, and is designed

specificallly with the needs of UML and MOF in mind.

InfrastructureLibrary

1 1

Cotle Profiles |

1
PrimitiveTypes

Figure 7.1| - The InfrastructureLibrary packages

74 Core

In its first|capacity, the Core package is a complete metamodel particularly designed for high reusability, where other
metamode]ls at the same metalevel (see 7.7, “Superstructure Architecture,” on page 17) either import or spgcialize its
specified fnetaclasses. This is illustrated in Figure /72, where it is shown how UML, CWM, and MOF each|depends on a
common cpre. Since these metamodels are at the\very heart of the Model Driven Architecture (MDA), the common core
may also be considered the architectural kernéDof MDA. The intent is for UML and other MDA metamode]ls to reuse all
or parts of the Core package, which allowstether metamodels to benefit from the abstract syntax and semarjtics that have

already bden defined.

14

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Profiles

Figure 7.2 - The role of the common Core

In order t¢ facilitate reuse, the Core package is subdivided into a number of packages: Abstractions, Basic) and
Constructy as shown in Figure 7.3. As we will see in subsequent clauses, some of these are then further divided into even
more fine{grained packages to make it possible to pick and choose the relevant parts when defining a new [metamodel.
Note, however, that choosing a specific package-also implies choosing the dependent packages. There are minor
differencep in the design rationale for the other three packages. The package Abstractions mostly contains pbstract
metaclass¢s that are intended to be further specialized or that are expected to be commonly reused by many metamodels.
Very few hssumptions are made about the metamodels that may want to reuse this package; for this reason| the package
Abstractidns is also subdivided into s€veral smaller packages. The package Constructs, on the other hand, mlostly contains
concrete thetaclasses that lend themselves primarily to object-oriented modeling; this package in particular|is reused by
both MOH and UML, and représents a significant part of the work that has gone into aligning the two metagmodels. The
package Basic represents a few/constructs that are used as the basis for the produced XMI for UML, MOF| and other
metamoddls based on thew/nffastructureLibrary.

]
Constructs

1

DaciresibivaT
rrimtiveTrypes

] import>
R

Figure 7.3 - The Core packages

© ISO/IEC 2012 - Al rights reserved 15

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

In its second capacity, the Core package is used to define the modeling constructs used to create metamodels. This is done
through instantiation of metaclasses in the InfrastructureLibrary (see 7.10, “Metamodel Layering,” on page 18). While
instantiation of metaclasses is carried out through MOF, the InfrastructureLibrary defines the actual metaclasses that are
used to instantiate the elements of UML, MOF, CWM, and indeed the elements of the InfrastructureLibrary itself. In this
respect, the InfrastructureLibrary is said to be self-describing, or reflective.

7.5

As was ddpicted in Figure 7.1, the Profiles package depends on the Core package, and defines the mechan{sms used to
tailor exisfing metamodels towards specific platforms, such as C++, CORBA, or EJB; or domains.such as feal-time,
business dgbjects, or software process modeling. The primary target for profiles is UML, but it,is, possible tp use profiles
together With any metamodel that is based on (i.e., instantiated from) the common core. A profile must be [pased on a
metamode]l such as the UML that it extends, and is not very useful standalone.

Profiles h3ve been aligned with the extension mechanism offered by MOF, but providé a more light-weight gpproach with
restrictionf that are enforced to ensure that the implementation and usage of profile$,should be straightforward and more
easily supported by tool vendors.

7.6 |

One of th¢ major goals of the Infrastructure has been to architecturally align UML and MOF. The first appjroach to
accomplish this has been to define the common core, which is«tealized as the package Core, in such a way that the model
elements qre shared between UML and MOF. The second approach has been to make sure that UML is definfed as a model
that is based on MOF used as a metamodel, as is illustratéd in Figure 7.4. Note that MOF is used as the mptamodel for
not only UML, but also for other languages such as CWM.

rchitectural Alignment between UML and MOF

M3
«metamodel»
MOF
«instanceOfy~ " «instanceOf»
M2[) S .
«metamodel» «metamodel»
UML CWM

Figure 7.4 - UML and MOF are at different metalevels

How these metalevel hierarchies work is explained in more detail in 7.7, “Superstructure Architecture,” on page 17. An
important aspect that deserves mentioning here is that every model element of UML is an instance of exactly one model
element in MOF. Note that the InfrastructureLibrary is used at both the M2 and M3 metalevels, since it is being reused
by UML and MOF, respectively, as was shown in Figure 7.2. In the case of MOF, the metaclasses of the
InfrastructureLibrary are used as is, while in the case of UML these model elements are given additional properties. The
reason for these differences is that the requirements when metamodeling differ slightly from the requirements when
modeling applications of a very diverse nature.

16 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

MOF defines for example how UML models are interchanged between tools using XML Metadata Interchange (XMI).
MOF also defines reflective interfaces (MOF::Reflection) for introspection that work for not only MOF itself, but also for
CWM, UML, and for any other metamodel that is an instance of MOF. It further defines an extension mechanism that can
be used to extend metamodels as an alternative to or in conjunction with profiles (as described in Clause 13,
“Core::Profiles™). In fact, profiles are defined to be a subset of the MOF extension mechanism.

7.7 Superstructure Architecture

The UML| Superstructure metamodel is specified by the UML package, which is divided into a number of
deal with ptructural and behavioral modeling, as shown in Figure 7.5.

Each of these areas is described in a separate clause of the UML 2: Superstructure specificatiomyNote that t
packages that are dependent on each other in circular dependencies. This is because the dé€peéndencies betw
level packlages show a summary of all relationships between their subpackages; there areno circular depen

between spbpackages of those packages.

1

packages that

here are some
een the top-
dencies

1
CommonBehaviors Classes
<« — — — — — F M — — — — - — —
/ N |
\ |
/ \ |
/ \ |
] / 1 \ |
UsdCases / StateMachines Interactions \ |
/
|
/ C =7 - | \
/ ~ | |
v “ \
/ A l |
~ = \
/ v C |
/ Activities CompositeStructures AuxilfaryConstructs
/
/
/
1 A]
Actipns Components
1
Deployments
Figure 7.5 - The top-level package structure of the UML 2 Superstructure
© ISO/IEC 2012 - Al rights reserved 17

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

7.8 Reusing Infrastructure

One of the primary uses of the UML 2 Infrastructure specification is that it should be reused when creating other
metamodels. The UML metamodel reuses the InfrastructureLibrary in two different ways:

« All of the UML metamodel is instantiated from meta-metaclasses that are defined in the InfrastructureLibrary.

« The UML metamodel imports and specializes all metaclasses in the InfrastructureLibrary.

As was dipcussed earlier, it is possible for a model to be used as a metamodel, and here we make use of thIis fact. The
InfrastrucfureLibrary is in one capacity used as a meta-metamodel and in the other aspect as a metamodel,| and is thus
reused in fwo dimensions.

7.9 The Kernel Package

The InfradtructureLibrary is primarily reused in the Kernel package of Classes in UMD 2: Superstructure; this is done by
bringing tpgether the different packages of the Infrastructure using package merge{.The Kernel package is pt the very
heart of UML, and the metaclasses of every other package are directly or indifectly dependent on it. The K¢rnel package
is very sirpilar to the Constructs package of the InfrastructureLibrary, butadds more capabilities to the mddeling
constructs|that were not necessary to include for purposes of reuse or alignment with MOF.

Because the Infrastructure has been designed for reuse, there are nictaclasses—particularly in Abstractions{—that are
partially defined in several different packages. These different aspects are for the most part brought togethet into a single
metaclass Jalready in Constructs, but in some cases this is done\only in Kernel. In general, if metaclasses with the same
name occyr in multiple packages, they are meant to represent the same metaclass, and each package where|it is defined
(specializ4d) represents a specific factorization. This samie pattern of partial definitions also occurs in Supdrstructure,
where sonhe aspects of, for example, the metaclass Class are factored out into separate packages to form c¢mpliance
points (se¢ below).

7.10 Metamodel Layering

The architecture that is centered around’the Core package is a complementary view of the four-layer metamgdel hierarchy
on which the UML metamodel has_traditionally been based. When dealing with meta-layers to define langupges there are
generally [hree layers that always have to be taken into account:

1.

=

He language speeification, or the metamodel,
2. the user spgeification, or the model, and

3. opjectsofthe model.

This structure’can be applied recursively many times so that we get a possibly infinite number of meta-layérs; what is a
metamodel in one case can be a model in another case, and this is what happens with UML and MOF. UML is a language
specification (metamodel) from which users can define their own models. Similarly, MOF is also a language specification
(metamodel) from which users can define their own models. From the perspective of MOF, however, UML is viewed as
a user (i.e., the members of the OMG that have developed the language) specification that is based on MOF as a language
specification. In the four-layer metamodel hierarchy, MOF is commonly referred to as a meta-metamodel, even though
strictly speaking it is a metamodel.

18 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 195

7.11 The Four-layer Metamodel Hierarchy

05-1:2012(E)

The meta-metamodeling layer forms the foundation of the metamodeling hierarchy. The primary responsibility of this
layer is to define the language for specifying a metamodel. The layer is often referred to as M3, and MOF is an example
of a meta-metamodel. A meta-metamodel is typically more compact than a metamodel that it describes, and often defines
several metamodels. It is generally desirable that related metamodels and meta-metamodels share common design
philosophies and constructs. However, each layer can be viewed independently of other layers, and needs to maintain its

own desig

A metamd
element in
models. T
of metam
they defin|
instance o

A model i
semantic

processes,
often refe
model ele

The metai]
model. Th

When dea
more com|
some of t}
languages
example @

Infrastruc
defined.

712

When met
instantiate
typically ¢
elements.

The typic:

Metamodeling

n integrity.

del is an instance of a meta-metamodel, meaning that every element of the metamodel is.anyinst
the meta-metamodel. The primary responsibility of the metamodel layer is to define a,Janguage

he layer is often referred to as M2; UML and the OMG Common Warehouse Metamodel (CWM)
dels. Metamodels are typically more elaborate than the meta-metamodels that deschibe them, esj

f an element in InfrastructureLibrary).

5 an instance of a metamodel. The primary responsibility of the model layef is to define languages
lomains, i.c., to allow users to model a wide variety of different problem domains, such as softw
and requirements. The things that are being modeled reside outside’the metamodel hierarchy. T}
red to as M1. A user model is an instance of the UML metameadel. Note that the user model con
ments and snapshots (illustrations) of instances of these médel elements.

nodel hierarchy bottoms out at M0, which contains théqun-time instances of model elements def]
e snapshots that are modeled at M1 are constrained-versions of the MO run-time instances.

ling with more than three meta-layers, it is usually the case that the ones above M2 gradually ge
pact the higher up they are in the hierarchy, In"the case of MOF, which is at M3, it consequently

as being reflective, i.e., languages that\can be used to define themselves. The InfrastructureLibr.
f this, since it contains all the metaclasses required to define itself. MOF is reflective since it is
ureLibrary. This allows it to be™ased to define itself. For this reason, no additional meta-layers ab

amodeling, wetprimarily distinguish between metamodels and models. As already stated, a modd
d from a m¢tamodel can in turn be used as a metamodel of another model in a recursive manner,
ontains. hodel elements. These are created by instantiating model elements from a metamodel, i.

I'role of a metamodel is to define the semantics for how model elements in a model get instanti

hince of an

for specifying
are examples
ecially when

e dynamic semantics. The UML metamodel is an instance of the MOF (in effect,-cach UML metaclass is an

that describe
are, business
is layer is
tains both

ined in a

smaller and
only shares

le metaclasses that are defined in UML. A-specific characteristic about metamodeling is the ability to define

1ry is an
based on the
ove MOF are

1 that is
A model
b., metamodel

ited. As an

example, consider Figure 7.6, where the metaclasses Association and Class are both defined as part of the UML
metamodel. These are instantiated in a user model in such a way that the classes Person and Car are both instances of the
metaclass Class, and the association Person.car between the classes is an instance of the metaclass Association. The
semantics of UML defines what happens when the user defined model elements are instantiated at M0, and we get an

instance o

f Person, an instance of Car, and a link (i.e., an instance of the association) between them.

© ISO/IEC 2012 - All rights reserved

19

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

metamodel Class Association
A
. / .
«instanceOf» / «instanceOf»
/
/
/
/
-
/
/
;
/ *
njodel Person ! Car
car

hmple Person
f the UML
ements that it
ot) of an

- An example of metamodeling; note that not all instance-of relationships are-shown

Figure 7.6
ces, which are sometimes referred to as “run-time” instances, that are efeatéd at MO from for ex

The instar]
should no
metamodg
illustrates
instance o

be confused with instances of the metaclass InstanceSpecification that are also defined as part g
l. An instance of an InstanceSpecification is defined in a model at’the’same level as the model el
as is depicted in Figure 7.7, where the instance specification Mike is an illustration (or a snapsh

f class Person.

InstanceSpecification

metgmodel Class
; Y
«instanceOf»| «instanceQf»
Model Person Mike: Person
age: Integer age = 11

- Giving andllustration of a class using an instance specification

Figure 7.7

n'Example of the Four-level Metamodel Hierarchy

713
An illustration of how these meta-layers relate to each other is shown in Figure 7.8. It should be noted that we are by no
means restricted to only these four meta-layers, and it would be possible to define additional ones. As is shown, the meta-

layers are usually numbered from MO and upwards, depending on how many meta-layers are used. In this particular case,

the numbering goes up to M3, which corresponds to MOF.

© ISO/IEC 2012 - All rights reserved

20

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

M3 (MOF) Class

ISO/IEC 19505-1:2012(E)

i classifier
M2 (UNIL) Attribute Class - Instance
7 A
/ / / !
// // // !
«instanceOf» / «instanceOf» «instangeOf» «instanceOf»
/ v / !
/ / / !
// a // ”
/ / / !
’ 1
// - // !
/ Video /
M1 (Uder model) «snapshot, : Video

“+title: String

title = "2001: A Space Odyssey"

S

3
N

*_ «instanceOf»

MO (Ryn-time instances) aVideo

Figure 7.8 - An example of the four-layer-metamodel hierarchy

© ISO/IEC 2012 - All rights reserved

21

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

22

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

8

8.1

ISO/IEC 19505-1:2012(E)

Language Formalism

General

The UML spemﬁcatlon is deﬁned by usmg a metamodehng approach that adapts formal spemﬁcatlon technlques The

explains t
The folloy

Co
Foi

Prg
sha

Co
def]

req
The speci

It is impo
so would

The struct
detailed s
Currently,
the future

8.2

A commo
static and

e spe01ﬁcat10n technlques used to deﬁne UML

ving are the goals of the specification techniques used to define UML.:

'rectness — The specification techniques should improve the correctness of the metamodel by helping
example, the well-formedness rules should help validate the abstract syntax and help:identify errors

cision — The specification techniques should increase the precision of both the syntax and semantics

hciseness — The specification techniques should be parsimonious, so that'the precise syntax and semn
ined without superfluous detail.

hsistency — The specification techniques should complementtheshetamodeling approach by adding
consistent manner.

Herstandability — While increasing the precision and cenciseness, the specification techniques shoul

unire formal techniques.
ication technique used describes the metamiodel in three views using both text and graphic prese|

tant to note that the current description, is not a completely formal specification of the language
have added significant complexitysxwithout clear benefit.

ure of the language is neverthieless given a precise specification, which is required for tool interog
mantics are described using hatural language, although in a precise way so they can easily be ui
the semantics are not ¢onsidered essential for the development of tools; however, this will probal

_evels of-Formalism

h technique for specification of languages is to first define the syntax of the language and then t
dynamic semantics. The syntax defines what constructs exist in the language and how the constr

uld be sufficient so that there is no syntactic nor semantic ambiguity for eitherimplementors or userg.

clause

b to validate it.

The precision
1

antics are

essential detail

| also improve

readability of the specification. For this reason a les§'than strict formalism is applied, since a strict fofmalism would

ntations.

because to do

erability. The
derstood.
bly change in

describe its
ucts are built

up in ternj

s‘of-other constructs. Sometimes, especially if the language has a graphic syntax, it is important

to define the

syntax in a notation independent way (i.e., to define the abstract syntax of the language). The concrete syntax is then
defined by mapping the notation onto the abstract syntax.

The static semantics of a language define how an instance of a construct should be connected to other instances to be
meaningful, and the dynamic semantics define the meaning of a well formed construct. The meaning of a description

written in the language is defined only if the description is well formed (i.e., if it fulfills the rules defined in the static
semantics).

1. By definition semantic variation points are an exception to this.

© ISO/IEC 2012 - Al rights reserved 23

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

The specification uses a combination of languages - a subset of UML, an object constraint language, and precise natural
language to describe the abstract syntax and semantics of the full UML. The description is self-contained; no other
sources of information are needed to read the document®. Although this is a metacircular description®, understanding this

document

is practical since only a small subset of UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify language constructs, using some of
the capabilities of UML. The main language constructs are reified into metaclasses in the metamodel. Other constructs, in

essence bgin

the seman|
way of de
the metacl
common 4

8.3

Lics of the variant construct to be significantly different from the base metaclass. Another more|’
fining variants is to use metaattributes. As an example, the aggregation construct is specifi€dyby :
ass Property, which is used to indicate if an association is an ordinary aggregate, a composite ag|
ssociation.

Package Specification Structure

hanism allows

lightweight”
In attribute of
pregate, or a

This sub dlause provides information for each package and each class in the UME«netamodel. Each package has one or
more of the following sub clauses.

8.3.1 Class Descriptions

The sub clause contains an enumeration of the classes specifyingthe.constructs defined in the package. It bdgins with one
diagram of several diagrams depicting the abstract syntax of the constructs (i.e., the classes and their relationships) in the
package, together with some of the well-formedness requiréments (multiplicity and ordering). Then follows a
specification of each class in alphabetic order (see below):

8.3.2 Diagrams

If a speciffic kind of diagram usually presents the constructs that are defined in the package, a sub clause d

kind of di
8.3.3

An examp
the examp

8.4 |

Instance Model

horam is included.

le may be providédto show how an instance model of the contained classes may be populated. Th
le are instances of the classes contained in the package (or in an imported package).

Class-Specification Structure

The speci

escribing this

e elements in

ntext for the

ication of a class starts with a presentation of the general meaning of the concept that sets the cq

definition.

24

2. Although a comprehension of the UML’s four-layer metamodel architecture and its underlying meta-metamodel is helpful, it is
not essential to understand the UML semantics.
3. In order to understand the description of the UML semantics, you must understand some UML semantics.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

8.4.1 Description

The sub clause includes an informal definition of the metaclass specifying the construct in UML. The sub clause states if
the metaclass is abstract. This sub clause, together with the following two, constitutes a description of the abstract syntax
of the construct.

8.4.2

Each of tH
is derived
(default in

8.4.3

A

The meml]
property i

8.44

The well-
diagram a
which mu
constraint
together W
exception;
are expres

8.4.5

A

In many ¢
separate s
informal 4

8.4.6

The mean

Attributes

e attributes of the class are enumerated together with a short explanation. The sub clause states i
or if it is a specialization of another attribute. The multiplicity of the attribute is suppresséd it d
UML).

Associations

er ends of associations connected to the class are also listed in the sanie’way. The sub clause st
b derived, or if it subsets or redefines another end.

Constraints

formedness rules of the metaclass, except for multiplicitysand ordering constraints that are define
the beginning of the package sub clause, are defined. as a (possibly empty) set of invariants for

5t be satisfied by all instances of that metaclass for\the model to be meaningful. The rules thus s
over attributes and associations defined in the@hetamodel. Most invariants are defined by OCL
ith an informal explanation of the expressionybut in some cases invariants are expressed by othg
1l cases with natural language). The statement ‘No additional constraints’ means that all well-for

Additional Operations (optional)

ases, additional operations on the classes are needed for the OCL expressions. These are then de
1b clause after the constraints for the construct, using the same approach as the Constraints sub ¢
xplanation followed.by the OCL expression defining the operation.

Semantics

Ing of aswell formed construct is defined using natural language.

If the attribute
efaults to ‘1’

tes if the

d in the

he metaclass,
becify
expressions

r means (in
nedness rules

sed in the superclasses together with the multiplicity and type information expressed in the diaggams.

fined in a
lause: an

8.4.7 Semantic Variatiom Points(optionat)

The term semantic variation point is used throughout this document to denote a part of the UML specification whose
purpose in the overall specification is known but whose form or semantics may be varied in some way. The objective of
a semantic variation point is to enable specialization of that part of UML for a particular situation or domain.

There are

several forms in which semantic variation points appear in the standard:

« Changeable default — in this case, a single default specification for the semantic variation point is provided in the
standard but it may be replaced. For example, the standard provides a default set of rules for specializing state

© ISO/IEC 2012 - All rights reserved

25

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

machines, but this default can be overridden (e.g., in a profile) by a different set of rules (the choice typically depends
on which definition of behavioral compatibility is used).

* Multiple choice — in this case, the standard explicitly specifies a number of possible mutually exclusive choices, one
of which may be marked as the default. Language designers may either select one of those alternatives or define a new
one. An example of this type of variation point can be found in the handling of unexpected events in state machines; the
choices include (a) ignoring the event (the default), (b) explicitly rejecting it, or (c) deferring it.

Foi instance, the rules for selecting the method to be executed when a polymorphic operation is invokedgre not defined

. Un{eﬁned — in this case, the standard does not provide any pre-defined specifications for the semantje yjariation point.
e standard.

in
8.4.8 Notation

The notatijon of the construct is presented in this sub clause.
8.4.9 Presentation Options (optional)

If there arp different ways to show the construct (e.g., it is not necessary¢to‘show all parts of the construct [in every
occurrenc¢), these possibilities are described in this sub clause.

8.4.10 Btyle Guidelines (optional)

Often nonfnormative conventions are used in representing;some part of a model. For example, one such cohvention is to
always haje the name of a class in bold and centered within the class rectangle.

8.4.11 Examples (optional)
In this sulj clause, examples of how the construct is to be depicted are given.
8.4.12 Rationale (optional)

If there is|a reason why a comstruct is defined like it is, or why its notation is defined as it is, this reason if given in this
sub clausd.

8.4.13 Changes from UML 1.4

Here, challlges ecompared with UML 1.4 are described and a migration approach from 1.4 to 2 is specified.

8.5 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Clause 6, “Object Constraint Language
Specification” of the UML 1.4 specification, for expressing well-formedness rules. The following conventions are used to
promote readability:

+ Self — which can be omitted as a reference to the metaclass defining the context of the invariant, has been kept for
clarity.

26 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

the

ISO/IEC 195

iterator is usually omitted, but included when it adds to understanding.

The ‘collect’ operation is left implicit where this is practical.

constraint appears.

05-1:2012(E)

In expressions where a collection is iterated, an iterator is used for clarity, even when formally unnecessary. The type of

The context part of an OCL constraint is not included explicitly, as it is well defined in the sub clause where the

8.6

We strove
semantics
meaning i
simple ph

The folloy

WH
Cl4

an
the

—_—

Ev

Ter

8.7

In the des

WH

Ini
“all

Bo

Jse of Natural Language

to be precise in our use of natural language, in this case English. For example, the description o
includes phrases such as “X provides the ability to...” and “X is a Y.” In each of these,cases, the
5 assumed, although a deeply formal description would demand a specification of(the’semantics
Fases.

ving general rules apply:

en referring to an instance of some metaclass, we often omit the word ‘/instance.” For example, instes
ss instance” or “an Association instance,” we just say “a Class” or “an,Association.” By prefixing it
,” assume that we mean “an instance of.” In the same way, by saying\something like “Elements” we 1
set) of instances of the metaclass Element.”

bry time a word coinciding with the name of some construct.in UML is used, that construct is meant.

ms including one of the prefixes sub, super, or meta are.written as one word (e.g., metamodel, subclg

Conventions and Typography

cription of UML, the following conventions have been used:
en referring to constructs in UML, not their representation in the metamodel, normal text is used.

taclass names that consist of-appended nouns/adjectives, initial embedded capitals are used (e.g., ‘M
fucturalFeature’).

mes of metaassociations are written in the same manner as metaclasses (e.g., ‘ElementReference’).

ial embedded capital is used for names that consist of appended nouns/adjectives (e.g., ‘ownedElemd
Contents’).

blean metaattribute names always start with ‘is’ (e.g., ‘isAbstract’).

Enymération types always end with “Kind” (e.g., ‘AggregationKind”).

if UML
usual English
f even these

d of saying “a

with an “a” or

nean “a set (or

SS).

bdelElement,’

nt,

model are always used.

No

visibilities are presented in the diagrams, as all elements are public.

of the heading. If an optional section is not applicable, it is not included.

While referring to metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they appear in the

If a mandatory section does not apply for a metaclass, the text “No additional XXX is used, where ‘XXX’ is the name

For textual notations a variant of the Backus-Naur Form (BNF) is often used to specify the legal formats. The conventions of
this BNF are:

© ISO/IEC 2012 - All rights reserved

27

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

28

All non-terminals are in italics and enclosed between angle brackets (e.g. ,<non-terminal>).
All terminals (keywords, strings, etc.), are enclosed between single quotes (e.g., ‘or).
Non-terminal production rule definitions are signified with the "::=' operator.

Repetition of an item is signified by an asterisk placed after that item: "*'

Alternative choices in a production are separated by the ' symhol; e g

<alternative-A> | <alternative-B>.

)

Itemns that are optional are enclosed in square brackets (e.g., [<item-x>]).

WhHere items need to be grouped they are enclosed in simple parenthesis. For example,

(<ifem-1> | <item-2>) * signifies a sequence of one or more items, each of which is <ifem=1> or <item-2>.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Subpart Il - Infrastructure Library

© ISO/IEC 2012 - Al rights reserved 29

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

30

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9 Core::Abstractions

The Abstractions package of InfrastructureLibrary::Core is divided into a number of finer-grained packages to facilitate

flexible reuse when creating metamodels.

|
Constructs

1

PrimitiveTypes

«import»

Abstfactions |— ---------------

1 «import»

Basi |- --------------------------- >
«import»
Constructs |- >

Figure 9.1 - The Core package is owned by the InfrastructureLibrary
pack and pontains several subpackages

The subpdckages of Abstractions are all shown in Figure 9.2.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

1
Elements
/I\
| N
| AN
' AN
Ownerships N
— AN
-7 A X \
— / | N N
- N N
— - —| / | N N
- - / h N
Refationships Namespaces / : — | AN N \
A P = 7 R = \/ | Expressions Comments N
| ——— S N B N
| Visibilities // \ / . / VN |
| \,. : Constraints \ \ N N
/ Classifiers \ N Multiplicities
‘ / \ N\ N
| 0 N \ N Literals A
‘ TypedElements | \ \ AN \
| I \ N \
| ~ | N |
/ \ ~ | \ \ N \
‘ / \ S \ \ N |
[p— \ 4 \ \ . \
/ Super \ | \—ﬁ \ \ AN
/ \ | \ |
. a7 \ | StructuralFeatures \ '
Generallzations 1 / \ = N MultiplicityExpressions
/ \ | /V AN
/ \ | \ Instances
|
// —— \\
/ BehavioralFeatures \
/ \
Redefimitions Changeabilities

Figure 9.2 - The Abstractions package contains several subpackages, all of which are specified in this clause

The contents of each subpackage of Abstractions is described in a separate sub clause below.

32

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

9.1 BehavioralFeatures Package

ISO/IEC 19505-1:2012(E)

The BehavioralFeatures subpackage of the Abstractions package specifies the basic classes for modeling dynamic features
of model elements.

Typed

Elements Classifiers

Figure 9.3

BehavioralFeatures

- The BehavioralFeatures package

[w]

Figure 9.4
9.1.1
A behavid

Descript
A behavig

Behavior

Generali

BehavioralFeature

on

Feature,

rations

Featurt Namespace NamedElement TypedElement
(from Classifiers) (from Namespaces) (from Namespaces) (from TypedElements)
[\ [\

ehavioralFeature

- The elements defined in the BehaviorailFeatures package

ral feature is a feature of.a classifier that specifies an aspect of the behavior of its instances.

ral feature is a‘feature of a classifier that specifies an aspect of the behavior of its instances. BehgvioralFeature

is an abstatllact metaclass-specializing Feature and Namespace. Kinds of behavioral aspects are modeled by pubclasses of

» “Feature” on page 38

« “Namespace” on page 75

Attributes

No additional attributes

Constrai

nts

No additional constraints

© ISO/IEC 2012 - All rights reserved

33

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Additional Operations

[1] The query isDistinguishableFrom() determines whether two BehavioralFeatures may coexist in the same Namespace. It
specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;

isDisti
if

then

e
e

Semantigq
The list of

Notation
No additi

9.2

A parame
feature.

Descript
Parameter
Generalij
. GGT}
o ‘CN

Attributes

No additig

nguishableFrom =
n.ocllsKindOf(BehavioralFeature)

if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.parameter->collect(type))
else true
endif

se true

ndif

LS

parameters describes the order and type of arguments that can be @iyen when the BehavioralFeaty

nal notation

Parameter

er is a specification of an argument used to\pdss information into or out of an invocation of a be

on

is an abstract metaclass speeializing TypedElement and NamedElement.

rations
pedElement” on page-89

medElementen page 73

nal attributes

ire is invoked.

havioral

Associat

ions

No additional associations

Constraints

No additional constraints

34

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics
A parameter specifies arguments that are passed into or out of an invocation of a behavioral element like an operation. A
parameter’s type restricts what values can be passed.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

Notation

No generdl notation. Specific subclasses of BehavioralFeature will define the notation for their parameters

Style Gujdelines

A paramefer name typically starts with a lowercase letter.

9.3 Changeabilities Package

The Changeabilities subpackage of the Abstractions package defines when a.structural feature may be modified by a

client.

StructuralFeatures

Changeabilities

Figure 9.5 - The Changeabilities package

StructuralFeature
(from StructyralFeatures)

SN

StructuralFeature
isReadOnly : Boolean = false

Figure 9.6 - The elements defined in the Changeabilities package

© ISO/IEC 2012 - Al rights reserved 35

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.3.1 StructuralFeature (as specialized)

Description

StructuralFeature is specialized to add an attribute that determines whether a client may modify its value.

Generalizations

« “StfucturalFeature” on page 83

Attributes

» isRea@lOnly: Boolean — States whether the feature’s value may be modified by a client. Default'is false.

Associations

No additignal associations

Constraipts

No additignal constraints

Semanti¢s

No additignal semantics

Notation

A read only structural feature is shown using {readOnly}as part of the notation for the structural feature. This annotation
may be suppressed, in which case it is not possible;to determine its value from the diagram.

Presentation Option

It is possilple to only allow suppression_of this annotation when isReadOnly=false. In this case it is possible {o assume this
value in a]l cases where {readOnly} (s not shown.

9.4 Classifiers Package

The Class]fiers packagein‘the Abstractions package specifies an abstract generalization for the classificatioh of instances
according[to their featdres.

Namespaces

A

|
/

I
/
|

Classifiers

Figure 9.7 - The Classifiers package

36 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Namespace NamedElement
(from Namespaces) (from Namespaces)
Classifier /featuringClas sifier /feature Feature
0..* {union} *
{subsets member,
union}

Figure 9.9 - The elements defined in the Classifiers package

9.4.1
A classifig

Descript
A classifig

Generali

. ch

Attributes

No additi

Associations

+ /featyre : Feature [*]
pecifies each feature defined in the classifier. Subsets Namespace::member. This is a derived unior].

S

Addition
[1] Theq

Classifier
r is a classification of instances — it describes a set of instances that have features in common.

on

r is a namespace whose members can include features. Classifier is an abstract metaclass.

rations

hmespace” on page 75

nal attributes

pl Operations
hery, allFeatures() gives all of the features in the namespace of the classifier. In general, through mech

inisms such as

inheri
Class

fancé, this will be a larger set than feature.

ifier::allFeatures(): Set(Feature);

allFeatures = member->select(ocllsKindOf(Feature))

Constrai

nts

No additional constraints

Semantics

A classifier is a classification of instances according to their features.

© ISO/IEC 2012 - All rights reserved

37

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

The default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

Presentation Options

Any comyartment may be Suppressed. A separator 1ine 1S not drawn 10T @ Suppressed compartment. 1T @ conpartment is
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used
to remove| ambiguity, if necessary.

9.4.2 Feature

A feature declares a behavioral or structural characteristic of instances of classifiers.

Descript|jon

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract|metaclass.

Generalizations

+ “NgmedElement” on page 73

Attributes
No additignal attributes

Associations

» /featyringClassifier: Classifier [0..*]

The Classifiers that have this Feature as a feature. This is a derived union.

Constraints

No additignal constraints

Semanti¢s

A Feature|represents §ome characteristic for its featuring classifiers. A Feature can be a feature of multiplg classifiers.

Notation

No generdl ‘notation. Subclasses define their specific notation.

38 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.5 Comments Package

The Comments package of the Abstractions package defines the general capability of attaching comments to any element.

Comments

Figure 9.9 - The Comments package

{subsets owner}t
+ arjnotatedElement i
Element + owvningElement

* 0.1

{subsets ownedElErment}
+ owvnediCamment

Comment

*

Figure 9.10 - The elements defined in the Comments package

9.51 Comment

A comment is atextual annotation that can be attached to a set of elements.

Descriptjon

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain
information that is useful to a modeler.

A comment may be owned by any element.

Generalizations

None

© ISO/IEC 2012 - Al rights reserved 39

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Attributes

* body: String
Specifies a string that is the comment.

Associations

» annotatedElement: Element[*]
References the Element(s) being commented

Constraipts

No additignal constraints

Semanti¢s

A Comment adds no semantics to the annotated elements, but may represent information. useful to the reader of the
model.

Notation

A Commant is shown as a rectangle with the upper right corner bent (this is'also known as a “note symbol”). The
rectangle ¢ontains the body of the Comment. The connection to eachrannotated element is shown by a sepgrate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated elemént(s) may be suppressed if it is clear from the cpntext, or not
important |in this diagram.

Examples

This claps was added

by Alan|Wright after

meeting with the B \\
mission|planning team. ~-| Account

Figure 9.1{1 - Comment notation

9.5.2 Elément

Description

An element can own comments.

Attributes

No additional attributes

40 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations
+ “Element (as specialized)” on page 77

Associations

+ ownedComment: Comment[*]
The Comments owned by this element. Subsets Element::ownedElement.

ConstraiLts

No additignal constraints

Semanti¢s

The comnpents for an Element add no semantics but may represent information useful to-the reader of the model.

Notation

No additignal notation

9.6 (Constraints Package

The Consf{raints subpackage of the Abstractions package specifi€s’the basic building blocks that can be usgd to add
additional|semantic information to an element.

Expressions Namespaces
7
™ A
\ /
N /’
\\ ’
“ /
— /
Constraints

Figure 9.12 - The Constraints package

© ISO/IEC 2012 - Al rights reserved 41

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Element

A

{readOnly, union,
subsets ownedElement,
subsets member}

+/ownedMember
~| NamedElement
{readOnly, union}
+/member
*
{readOnly, union,
subsetsjowner}
/namespace | 0..1
{ordered}
- +constrainedElement Elefdnent
0 N Constraint
Namespace {subsets ownedMember} . *
+ownedRule

{SEESn?LSxt”ameSpa"e} {subsets ownedElement}

subsets owner} ~ *specification —
‘0) p iowmngmmm}t Value$pecification
b et
0.1 1

Figure 9.113 - The elements defined in the Constraints package
9.6.1 Constraint

A constraint is a condition.er restriction expressed in natural language text or in a machine readable langugge for the
purpose of declaring §enie of the semantics of an element.

Descriptjon

Constrain{ contains a ValueSpecification that specifies additional semantics for one or more elements. Certpin kinds of
constraints are predefined in UML, others may be user-defined. A user-defined Constraint is described using a specified
language, whose syntax and interpretation is a tool responsibility. One predefined language for writing constraints is
OCL. In some situations, a programming language such as Java may be appropriate for expressing a constraint. In other
situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to the element.

Constraint contains an optional name, although they are commonly unnamed.

42 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations

+ “NamedElement” on page 73

Attributes

No additional attributes

Associations
* constfainedElement: Element[*]
e ordered set of Elements referenced by this Constraint.

* context: Namespace [0..1]
Specifies the Namespace that is the context for evaluating this constraint. Subsets NamedElement.:namespace.

+ speciffication: ValueSpecification[1]
A condition that must be true when evaluated in order for the constraint to be §atisfied.
Subsets Element::ownedElement.

Constraints
[1] The vhlue specification for a constraint must evaluate to a Boolean valug:
Canngt be expressed in OCL.

[2] Evalupting the value specification for a constraint must not have side effects.

Canngt be expressed in OCL.

[3] A constraint cannot be applied to itself.
not cdnstrainedElement->includes(self)

Semanti¢s

A Constralint represents additional semantic information attached to the constrained elements. A constraint {s an assertion
that indicqdtes a restriction that must be.satisfied by a correct design of the system. The constrained elements are those

elements fequired to evaluate the conStraint specification. In addition, the context of the Constraint may be faccessed, and
may be usgd as the namespace for interpreting names used in the specification. For example, in OCL ‘self” i$ used to refer
to the confext element.

Constrain{s are often expresséd as a text string in some language. If a formal language such as OCL is usef, then tools
may be aljle to verify seme aspects of the constraints.

In generall there areumany possible kinds of owners for a Constraint. The only restriction is that the owning|element must
have accefs to the.constrainedElements.

The ownef of'the Constraint will determine when the constraint specification is evaluated. For example, thjs allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
constraint ::= ‘{* [<name> *:’] <Boolean expression>"}’

For an element whose notation is a text string (such as an attribute, etc.) the constraint string may follow the element text
string in braces. Figure 9.14 shows a constraint string that follows an attribute within a class symbol.

© ISO/IEC 2012 - Al rights reserved 43

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 9.15 shows an {xor} constraint
between two associations.

PresentJtion Options

The constfaint string may be placed in a note symbol and attached to each of the symbols for the constrainefl elements by
a dashed line. Figure 9.16 shows an example of a constraint in a note symbol.

If the congtraint is shown as a dashed line between two elements, then an arrowhead may be.placed on ong end. The
direction ¢f the arrow is relevant information within the constraint. The element at the tail\otf the arrow is mapped to the
first positjon and the element at the head of the arrow is mapped to the second position in the constrainedHlements
collection

For three pr more paths of the same kind (such as generalization paths or association paths), the constraint{may be
attached t¢ a dashed line crossing all of the paths.

Examples

Stack

size: Intgger {size >= 0}

push()
pop()

Figure 9.14 - Constraint attached to anattribute

/ Person
T
I
1
\

Account !
“\
\

{xor}

Corporation

Figure 9.15 - {xor} constraint

44 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

0..1/, boss
employee employer
Person Company
* 0..1
{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 9.16 - Constraint in a note symbol
9.6.2 Namespace (as specialized)

Descriptjon

A namesppce can own constraints. A constraint associated with a naim¢space may either apply to the namespace itself, or
it may apply to elements in the namespace.

Generalizations

« “Npmespace” on page 75

Attributes
No additignal attributes

Associations

* ownedlRule: Constraint[*]
Specifies a set of Constraints owned by this Namespace. Subsets Namespace.:ownedMember.

Constraints

Semanti¢s

The owneflRul€ constraints for a Namespace represent well-formedness rules for the constrained elements.| These
constraints are evaluated when determining if the model elements are well-formed.

Notation

No additional notation

© ISO/IEC 2012 - All rights reserved 45

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.7 Elements Package

The Elements subpackage of the Abstractions package specifies the most basic abstract construct, Element.

Elements

Figure 9.1 - The Elements package

Element

Figure 9.18 - The elements defined in the Elements package
9.71 Element

An elemert is a constituent of a model.

Description

Element ig an abstract metaclass with no superclass. It .is"used as the common superclass for all metaclasse$ in the
infrastructpire library.

GeneraliZations

« Nortje

Attributes
No additional attributes

Associations

No additiopal associations

No additional. ¢onstraints

Constralts

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent.

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.

46 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.8 Expressions Package

The Expressions package in the Abstractions package specifies the general metaclass supporting the specification of
values, along with specializations for supporting structured expression trees and opaque, or uninterpreted, expressions.
Various UML constructs require or use expressions, which are linguistic formulas that yield values when evaluated in a

context.

Ownerships

EXpressions

Figure 9.19 - The Expressions package

Infrastructurelibrary:: Core::Abstractions::Ownerships::
Element

{subsets (@nedElement. ordered)

ValueSpecification + operand

—

OpaqueE xpression Expression 0.1
+ body . Biring [*] {nonunigue, ordeged} + symbol - String [0..1]
+ lang L String [7 [ordenad) + xprassion

{subsels owner)

Figure 9.20 - The elements defined in the Expressions package

9.8.1 Expression

in a context.

sion-1s-a structured-tree of oym]ﬁn]c that denotes-a (pr\ca”ﬂ} pmpfy) set of vzalues when-evaluated

An expre

Description
An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and

has a possibly empty sequence of operands that are value specifications.

+ “ValueSpecification” on page 49

© ISO/IEC 2012 - All rights reserved 47

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Attributes
* symbol: String [1]
The symbol associated with the node in the expression tree.

Associations

» operand: ValueSpecification[*]

S

ecifies a sequence of operands Subsets Element: ownedFlement

Constrai

No additignal constraints

Semanti¢s

An expression represents a node in an expression tree. If there is no operand, it represents a terminal node

operands,

The intergretation of this symbol depends on the context of the expression.

Notation

By defaul
is notated
notations

Examples

X
e
p
X
9.8.2 ¢

An opaqu
in a conte

Descript
An opaqu
specificati

One predd
used.

his

it represents an operator applied to those operands. In either case there is'a §ymbol associated w

by its symbol, followed by round parentheses containing its operands in order. In particular cont|
may be permitted, including infix operators.

D7
se
us(x,1)
7

DpaqueExpression

b expression is an uninferpreted textual statement that denotes a (possibly empty) set of values w
Kt.

on

p expression contains language-specific text strings used to describe a value or values, and an op
on of-flig*languages.

If there are
th the node.

an expression with no operands is notated simply by its symbel, with no quotes. An expression With operands

exts special

hen evaluated

ional

fined language for specifying expressions is OCL. Natural language or programming languages fnay also be

Generalizations

» “ValueSpecification” on page 49

Attribute
* body:
T

48

S

String [0..*] {nonunique, ordered}
he text of the expression, possibly in multiple languages.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

* language: String [0..*] {ordered}
Specifies the languages in which the expression is stated. The interpretation of the expression body depends on the
language. If languages are unspecified, it might be implicit from the expression body or the context. Languages are
matched to body strings by order.

Associations

No additi

Constrai
[1] If the

langu

Semanti

The expre
representa
determine
strings is

implicit fy

It is assun
will be ev]

Notation
An opaqu
a tool and|

An opaqu

The langu|
a particulg
form of th
before thej

Style Gu

A languag
example,

Example
a

nal associations

nts

anguage attribute is not empty, then the size of the body and language arrays must be the same’

hge->notEmpty() implies
(body->size() = language->size())

LS

ksion body may consist of a sequence of text strings — each in a different language — representin

om the expression bodies or the context.

ied that a linguistic analyzer for the specified languages will evaluate the bodies. The time at wh
hluated is not specified.

linguistic analyzers for the language!

p expression is displayed as apatt of the notation for its containing element.

e expression makes its purpose clear. If the language name is shown, it should be displayed in b
expression string fo which it corresponds.

delines

15¢“OCL, not ocl.

b alternative

tions of the same content. When multiple language strings are provided, the language of each separate string is
1 by its corresponding entry in the “language” attribute (by, sequence order). The interpretation off the text
anguage specific. Languages are matched to body strings by order. If the languages are unspecifidd, it might be

ch the bodies

b expression is displayed as text string-in particular languages. The syntax of the strings are the re§ponsibility of

hoes of an opaque expression, if specified, are often not shown on a diagram. Some modeling tools may impose
r language or assume @ particular default language. The language is often implicit under the assunpption that the

faces ({})

e naine should be spelled and capitalized exactly as it appears in the document defining the language. For

s
>0

{OCL} i > j and self.size > i
average hours worked per week

9.8.3 ValueSpecification

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

© ISO/IEC 2012 - All rights reserved

49

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Generalizations

Attributh

No additignal attributes

Associations

Constraipts

No additignal constraints

Additionpl Operations

These opefrations are introduced here. They are expected to be redéfined in subclasses. Conforming implem:
be able to|compute values for more expressions that are specified by the constraints that involve these ope

[1] The gqpery isComputable() determines whether a value specification can be computed in a model. This operd
fully defined in OCL. A conforming implementation:is expected to deliver true for this operation for all vajue
speciffications that it can compute, and to computetall of those for which the operation is true. A conformin|
implementation is expected to be able to compute'the value of all literals.

(3]

[4]

(3]

50

expregsion: Expression[0..1]
I{ this value specification is an operand, the owning expression. Subsets Element::owner.

Valuegpecification::isComputable(): Boolean;

The qpery integerValue() gives a single Integer value when one can be computed.
ValuePpecification::integerValue() : [Integer];

The gpery realValue() gives a single Real value when one can be computed.

Value$pecification::realValue() : [Real];

The qpery booleanValue() gives a single Boolean value when one can be computed.

Valueppécification::booleanValue() : [Boolean];

» “Element (as specialized)” on page 77

gComputable = false

ritegerValue = Set{}

r¢alValue =-Set{}

pntations may
ations.

tion cannot be

Y

b l \ /ol = O ot
oorCarrvaat oCOs

The query stringValue() gives a single String value when one can be computed.
ValueSpecification::stringValue() : [String];

stringValue = Set{}

The query unlimitedValue() gives a single UnlimitedNatural value when one can be computed.
ValueSpecification::unlimitedValue() : [UnlimitedNatural];

unlimitedValue = Set{}

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

[7] The query isNull() returns true when it can be computed that the value is null.
ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the

context where-the-valuespeetfieationis—tsed-
Notation

No specific notation

9.9 (Generalizations Package

The Genetalizations package of the Abstractions package provides mechanisms forspecifying generalization relationships
between cllassifiers.

Supe

Relationships | | TypedElements

Generalizations

Figure 9.21 - The Generalizations package

Infyastructurelibrary::Core:: . Infrastructurel ibrary::Core::Abstractions::
Abstractions:: TypedElements: Type Relationships:DirectedRelationship

{subsets source, subsets owner} {subsets ownedElement?

+ specific + generalization
*
1

Classifier Generalization

Jsubsets target)
+ general

1

+ fgeneral

Figure 9.22 - The elements defined in the Generalizations package

© ISO/IEC 2012 - All rights reserved 51

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC

19505-1:2012(E)

9.9.1 Classifier (as specialized)

Descript

ion

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers.

Attributes

No additi

Generalizations
* “Type” on page 88

+ “Classifier (as specialized)” on page 85

Associations

* gener
S
c

» /gengpal : Classifier[*]

S

Constrai
[1] Theg
gener

Addition
[1] Theq
Class!

p

[2] Theq
in the
Class

¢

Semantigq
A Classif]

nal attributes

lization: Generalization[*]

assifiers in the generalization hierarchy. Subsets Element::ownedElement.

pecifies the general Classifiers for this Classifier. This is‘derived.

hts
bneral classifiers are the classifiers referenced by the generalization relationships.
bl = self.parents()

pl Operations

hery parents() gives all of the immediate ancestors of a generalized Classifier.
fier::parents(): Set(Classifier);

brents = generalization.general

hery conformsTo() gives ‘true for a classifier that defines a type that conforms to another. This is used
specification of signature conformance for operations.
fier::conformsdo(oether: Classifier): Boolean;
bnformsTo-='(self=other) or (self.allParents()->includes(other))

LS

pecifies the Generalization relationships for this Classifier. TheseGeneralizations navigate to more general

, for example,

Classifier is

Eratay participate in generalization relationships with other Classifiers. An instance of a specifid

also an (indirect) instance of the general Classifier. The specific semantics of how generalization affects each concrete
subtype of Classifier varies. A Classifier defines a type. Type conformance between generalizable Classifiers is defined so
that a Classifier conforms to itself and to all of its ancestors in the generalization hierarchy.

Notation

No additional notation

52

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

See Generalization

9.9.2 Generalization

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each

: Nk | . 1 e . 1 . £l 11 e 1 1 Ll 1 il . :
mstance oftire SPCTTITC CIASSIIICT IS alsU dll IIStaIct O UIT gUTICTal CIasSIIICI. T IUS, UIT SPTCIIIC CIAaSSIIICT 1T d1rectly has

features of the more general classifier.

Descriptjon

A general]zation relates a specific classifier to a more general classifier, and is owned by the-Specific classfifier.

Generalizations

+ “DirectedRelationship” on page 81

Attributes
No additignal attributes

Associations

+ generjl: Classifier [1]
cferences the general classifier in the Generalization.relationship. Subsets DirectedRelationship: :target.

» specifiic: Classifier [1]
eferences the specializing classifier in the Generalization relationship. Subsets DirectedRelationship}:source and
ement::.owner.

Constraints

No additignal constraints

Semanti¢s

Where a generalization relates-a specific classifier to a general classifier, each instance of the specific classifier is also an
instance off the general classifier. Therefore, features specified for instances of the general classifier are implicitly

specified for instances of the specific classifier. Any constraint applying to instances of the general classifigr also applies
to instanc¢s of the specific classifier.

Notation

A Generalizafion 1s shown as a [ine with a hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style.” See the example sub clause below.

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared
target style.” See the example sub clause below.

© ISO/IEC 2012 - All rights reserved 53

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

54

ISO/IEC 19505-1:2012(E)

Examples
Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape
Polygon Ellipse Spline
Figure 9.2

3 - Examples of generalizations between classes

9.10 |nstances Package

The Instar

Expressions

StructuralFeatures

Instances

Figure 9.24 - The Instances package

ces package in the Abstractions package provides for modeling instances of classifiers.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

ValueSpecification NamedElement Element
A A
{subsets owner} {subsets OwnedElement} {subsets owner} {subsets ownedElement,ordered}

+owninginstance + slot Slot + owningSlot +value | Valye Specification

InstanceSpecification >——

InstanceYalue P *
P - 0.1
+ instance 1

+definingFeature | StrpcturalFeature

* 1

{subsets ownedElement}

+specification
{subsets owner} ValueSpecification
+owninglnstanceSpec
>
0..1 0.1

+classifier] Classifier

* *

Figure 9.25 - The elements defined in the Instances package
9.10.1 InstanceSpecification

An instan¢e specification is a model element that represents an instance in a modeled system.

Descriptjon

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description includes:

« Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier specified is
abstract, then the instance specification only partially describes the entity.

« The kind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier is a

class describes an object of that class, while an instance specification whose classifier is an association describes a link
of that association.

© ISO/IEC 2012 - All rights reserved 55

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

» Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

» Specification of how to compute, derive, or construct the instance (optional).

InstanceSpecification is a concrete class.

Generalizations

« “NgmedElement” on page 73

Attributes
No additignal attributes

Associations

» classifier : Classifier [0..*]
e classifier or classifiers of the represented instance. If multiple classifiérs.dre specified, the instanc
classified by all of them.

slot giving the value or values of a structural feature of the instance. An instance specification can h|
slot per structural feature of its classifiers, including inheritedfeatures. It is not necessary to model a s
ctural feature, in which case the instance specification‘is a partial description. Subsets Element.:o/

» speciffication : ValueSpecification [0..1]
Al specification of how to compute, derive, or construct the instance. Subsets Element::ownedElement

Constraipts

[1] The dgfining feature of each slot is a structural\feature (directly or inherited) of a classifier of the instance
slot->forAll(s |

classifier->exists(c | c.allFeatures()->includes(s.definingFeature))

)

[2] One sfructural feature (including the same feature inherited from multiple classifiers) is the defining feature
slot i} an instance specification.

classifier->forAll(c |
(¢.allFeatures()=>forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)

)

Semanti¢s

b 1S

Ave one
ot for each
nedElement.

pecification.

of at most one

An instan £ eppr‘i‘ﬁr‘nfinn may QpP(‘iF} f]’\F‘ F‘YiQfPﬂ(‘P nF an Pl’\fif}l 1.1’1 a mndPlPl‘l Q}IQme An ianﬂﬂf‘F‘ Qppl‘iﬁf‘

ation may

provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has

features with values indicated by each slot of the instance specification. Having no slot in an instance spec

ification for

some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of

interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled

using multiple instance specifications, one for each snapshot.

56 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the dynamic
element that it is modeling. Therefore, one should not expect the dynamic semantics of InstanceSpecification model
elements in a model repository to conform to the semantics of the dynamic elements that they represent.

When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does not
depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled

system, aj
required s
actual ent

Notation

An instan
an underli|
showing 1

Names arg
absence ir

The stand.

If an insta
equal sign
an enclosi
shape.

1acton et 4 fomanxt of tbhot oo ot Tiactane 133

B reation 1A aaecificationc oo mradalad
hstanee-speetfieationrepresents—part-of-that-system—Instanee-speetfieations—eanbe-modeled
ructural features can be omitted, and classifiers of an instance specification can be abstract, cvei
ty would have a concrete classification.

e specification is depicted using the same notation as its classifier, but in place @f the classifier
ned concatenation of the instance name, a colon (‘:’), and the classifier nameronames. The con
hultiple classifiers is to separate their names by commas.

the underlying model.
ird notation for an anonymous instance specification of an unnmamed classifier is an underlined ¢

nce specification has a value specification as its specification, the value specification is shown e
(“=") following the name, or without an equal sign below the name. If the instance specification i
ng shape (such as a rectangle) that contains the name; the value specification is shown within thg

st

eetName: String

S. Crown Ct."

Figure 9.26 - Specification of an_ instance of String

Slots are s
textually i
(‘=") and

hown using similar,notation to that of the corresponding structural features. Where a feature wot
n a compartment,-a slot for that feature can be shown textually as a feature name followed by an
h value specification. Other properties of the feature, such as its type, optionally can be shown.

nj

mpletely,
I though an

hame appears
ention for

optional for UML 2 classifiers and instance specifications. The absgnce of a name in a diagram fnay reflect its

lon (' :").

ther after an
5 shown using
b enclosing

1ld be shown
equal sign

yAddress: Address

streetName ="S. Crown Ct."
streetNumber : Integer = 381

Figure 9.2

7 - Slots with values

© ISO/IEC 2012 - All rights reserved

57

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

Dan : Person | father son Josh : Person

Figure 9.28 - Instance specifications representing two objects connected by a link

Presentation Options

A slot valfie for an attribute can be shown using a notation similar to that for a link. A'selid path runs from the owning
instance specification to the target instance specification representing the slot value,‘and the name of the atfribute adorns
the target pnd of the path. Navigability, if shown, must be only in the direction of\the target.

9.10.2 InstanceValue
An instan¢e value is a value specification that identifies an instane€:

Descript{on
An instan¢e value specifies the value modeled by an instdnce specification.
Generalizations

+ “VglueSpecification” on page 49

Attributes
No additignal attributes

Associations

* instane: InstanceSpecification [1]
The instance thatis the specified value.

Constraipts

No additignal/constraints

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
slot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification.”

58 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

9.10.3

ISO/IEC 19505-1:2012(E)

Slot

A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description

A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a

structural

Generali

+ “Element (as specialized)” on page 77

Attributes

No additi

Associallilons

* defini
Thhe structural feature that specifies the values that may be held by the slot.

+ ownirglnstance : InstanceSpecification [1]
Tlhe instance specification that owns this slot. Subsets Elenient.owner.

e value

a

Constrai
No additi

Semanti
A slot reld

the instan

the defini

Notation

See “Insta

Thhe value or values corresponding to the defining feature for the owning instance specification. This i

C oy £ 1 el £l . 4 e . . 1 1
LCALUIT Ul d CIASSITICT U1 UIT HISTAIICT SPTUITICAUIUIT OWIILE UIT 510,

rations

nal attributes

gFeature : StructuralFeature [1]

. ValueSpecification [*]

sociation. Subsets Element.ownedElement.

nts

nal constraints

LS

tes an instance specification, a structural feature, and a value or values. It represents that an entit
e specification has aSstructural feature with the specified value or values. The values in a slot my
g feature of the slot-(in type, multiplicity, etc.).

nceSpecifieation”

5 an ordered

y modeled by
st conform to

© ISO/IEC 2012 - All rights reserved

59

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.11 Literals Package

The Literals package in the Abstractions package specifies metaclasses for specifying literal values.

Expressions

Figure 9.29 - The Literals package

Literals

ValueSpecification
(from Expressions)

|

| LiteralSpecification |

LiteralNujl

LiteralBoolean

LiteralInteger

LiteralReal

LiteralString

LiteralUnlimitedNatgral

value : Boolean = false

value : Integer =0

value : Real

value : String [0..1]

value : UnlimitedNatural]= 0

Figure 9.30 - The elements defined in.the-Literals package

9.11.1 LiteralBoolean

A literal Boolean is a specification of a Boolean value.

Descript|jon

A literal Boolean,'eontains a Boolean-valued attribute.

Generalizations

« “LiteralSpecification” on page 64

Attributes

* value: Boolean
The specified Boolean value. Redefines ValueSpecification: :value.

60

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Associations

No additional associations

Constraints

No additional constraints

ISO/IEC 19505-1:2012(E)

Additionrl Operations
[1] The q
LiteralBoolean::isComputable(): Boolean;

ery isComputable() is redefined to be true.

qComputable = true

[2] The gpery booleanValue() gives the value.
LiteralBoolean::booleanValue() : [Boolean];
bpoleanValue = value

Semanti¢s

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word ‘false,” corresponding to its value.

9.11.2 Literalinteger
A literal ipteger is a specification of an integer value.

Descriptjon

A literal ipteger contains an Integer-yalued attribute.

Generalizations

 “LiteralSpecification?’ on page 64

Attributes

* value]Integer

The specified Integer value. Redefines ValueSpecification: :value

Associations

No additional associations

Constraints

No additional constraints

Additional Operations
[1] The query isComputable() is redefined to be true.

© ISO/IEC 2012 - All rights reserved

61

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Literallnteger::isComputable(): Boolean;
isComputable = true
[2] The query integerValue() gives the value.
Literallnteger::integerValue() : [Integer];
integerValue = value

Semantigs

A Literallpteger specifies a constant Integer value.

Notation

A Literallpteger is typically shown as a sequence of digits.

9.11.3 LiteralNull

A literal null specifies the lack of a value.

Descriptjon

A literal null is used to represent null (i.e., the absence of a value).
Generalizations

« “LieralSpecification” on page 64

Attributes
No additignal attributes

Associations

No additignal associations

Constraints

No additignal constraints

Addition
[1] The qiery is€emiputable() is redefined to be true.

| Operations

LiteralNull;:isComputable(): Boolean;

= frue

[2] The query isNull() returns true.
LiteralNull::isNull() : Boolean;
isNull = true

Semantics

LiteralNull is intended to be used to explicitly model the lack of a value.

62

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null.” Other notations are
described for specific uses.

9.11.4 LiteralReal

: I . . d 1 1
A literal rgatts= SPCTIITCAtIoONT O a redl valuc:

Descriptjon

A literal rgal contains a Real-valued attribute.
Generalizations
 “LiteralSpecification” on page 64

Attributes

+ value{Real
Tlhe specified Real value. Redefines ValueSpecification: :value

Associations

No additignal associations

Constraints

No additignal constraints

Addition]rl Operations
[1] The q
LiteralReal::isComputable(): Boolean;

ery isComputable() is redefined'to.be true.

igComputable = true

[2] The gpery realValue() gives.the value.
LiteralString::realValue(): [Real];

realValue = value

Semanti¢s

A LiteralReal spécifies a constant Real value.

Notation

A LiteralReal is shown in the decimal notation or scientific notation. Decimal notation consists of an optional sign
character (+/-) followed by zero or more digits followed optionally by a dot (.) followed by one or more digits. Scientific
notation consists of decimal notation followed by either the letter “e” or “E” and an exponent consisting of an optional
sign character followed by one or more digits. The scientific notation expresses a real number equal to that given by the

decimal notation before the exponent, times 10 raised to the power of the exponent.
This notation is specified by the following BNF rules:

<natural-literal> ::= ('0'..'"9")+

© ISO/IEC 2012 - All rights reserved 63

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

<decimal-literal> ::= ['+' | '-'] <natural-literal>
| ['+'|'-'] [<natural-literal>] '.' <natural-literal>

<real-literal> ::= <decimal-literal> [('e' | 'E') ['*' | -'] <natural-literal>]

9.11.5 LiteralSpecification

A literal specification identifies a literal constant being modeled.

Descript|jon

A literal specification is an abstract specialization of ValueSpecification that identifies a literal_constant bejng modeled.

Generalizations

« “ValueSpecification” on page 49

Attributes
No additignal attributes

Associations

No additignal associations

Constraipts

No additignal constraints

Semanti¢s

No additignal semantics. Subclasses of LiteralSpecification are defined to specify literal values of differen types.

Notation

No specific notation
9.11.6 LiteralString

A literal sfring is-asspecification of a string value.

Description

A literal string contains a String-valued attribute.

Generalizations

« “LiteralSpecification” on page 64

Attributes

» value: String
The specified String value. Redefines ValueSpecification: :value.

64 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Associations

No additional associations

Constraints

No additional constraints

Additionrl Operations
[1] The qgery isComputable() is redefined to be true.

Litera

g

[2] Theq
Litera

S

Semanti
A LiteralS

Notation
A LiteralS

9.11.7
A literal

Descript
A literal y

Generali

. “L]

Attributes

e value
Ti

String::isComputable(): Boolean;
Computable = true

hery stringValue() gives the value.
String::stringValue() : [String];
ringValue = value

LS

tring specifies a constant String value.

tring is shown as a sequence of characters within double quotes. The character set used is unspe
_iteralUnlimitedNatural
nlimited natural is a specification of an unlimited natural number.

on

nlimited natural contains an UnlimmitedNatural-valued attribute.

rations

teralSpecification” gn'page 64

UnlimitedNatural
he speeified UnlimitedNatural value. Redefines ValueSpecification::value

Associations

cified.

No additional associations

Constraints

No additional constraints

© ISO/IEC 2012 - All rights reserved

65

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Additional Operations
[1] The query isComputable() is redefined to be true.
LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true
[2] The query unlimitedValue() gives the value.
LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNaturall;
uplimitedValue = value

Semanti¢s

A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where the asterisk ¢lenotes
unlimited jand not infinity).

9.12 Multiplicities Package

The Multiplicities subpackage of the Abstractions package defines th€. metamodel classes used to support thg specification
of multiplfcities for typed elements (such as association ends and-attributes), and for specifying whether mpltivalued
elements gre ordered or unique.

Elements
Multiplicities

Figure 9.31 - The Multiplicities-package

66 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Element
(from Elements)

Multiplic ityElement

isOrdefred : Boolean = false
isUnigpe : Boolean = true

lower | Integer = 1[0..1]

upper | UnlimitedNatural = 1[0..1]

Figure 9.32 - The elements defined in the Multiplicities package
9.12.1 MultiplicityElement

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (pdssibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalitips for an instantiation of this element.

Descriptjon

A MultipljcityElement is an abstract metaclass which ineludes optional attributes for defining the bounds of p multiplicity.
A MultipljcityElement also includes specifications of\whether the values in an instantiation of this elemenf must be
unique or jordered.

Generalizations

+ “Element” on page 46

Attributes
* isOrdg¢red: Boolean
Fpr a multivalued multiplicity, this attribute specifies whether the values in an instantiation of this element are
bquentially ordered (Default is false).

72}

* isUnigue : Boolean
Fpr a multivalued multiplicity, this attributes specifies whether the values in an instantiation of this elgment
are anique (Default is true).

* lower : Integer [0..1]
Specifies the lower bound of the multiplicity interval (Default is one).

* upper : UnlimitedNatural [0..1]
Specifies the upper bound of the multiplicity interval (Default is one).

Associations

No additional associations

© ISO/IEC 2012 - All rights reserved 67

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Constraints

These constraint must handle situations where the upper bound may be specified by an expression not computable in the
model. In this package such situations cannot arise but they can in subclasses.
[1] The lower bound must be a non-negative integer literal.

lowerBound()->notEmpty() implies lowerBound() >= 0

[2] The upper bound must be greater than or equal to the lower bound.

(uppefBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

Additionpl Operations
[1] The gpery isMultivalued() checks whether this multiplicity has an upper bound greater than one:
MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()
isMultjvalued = (upperBound() > 1)
[2] The qpery includesCardinality() checks whether the specified cardinality is valid for this multiplicity.
MultipjicityElement::includesCardinality(C : Integer) : Boolean;
pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)
[3] The qpery includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.
MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;

pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()

d M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()
includpsMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())
[4] The qpery lowerBound() returns the lower bound of the multiplicity as an integer.
MultipjicityElement::lowerBound() : [Integer};
lowerBound = if lower->notEmpty() then‘lower else 1 endif
[5] The qpery upperBound() returns thejyupper bound of the multiplicity for a bounded multiplicity as an unlimfited natural.
MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upper->notEmpty() then upper else 1 endif

Semanti¢s

A multiplicity defin€s,a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity M
if M.incluflesCardinality(C).

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (pospibly infinite)
upper bound:

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a set of values. The
multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the set of values in an instantiation of this
element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the set of
values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

68 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 195

If the MultiplicityElement is specified as unique (i.e., isUnique is true), then the set of values in an instant
element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no se

05-1:2012(E)

iation of this
mantic effect.

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions. A MultiplicityElement can define a [0..0] multiplicity. This restricts cardinality
to be 0; that is, it forces the collection to be empty. This is useful in the context of generalizations - to constrain the

cardinalities of a more general classifier. It applies to (but is not limited to) redefining properties existing in
classifiers

more general

Notation

The specil
a multipli
showing t

ic notation for a MultiplicityElement is defined by the concrete subclasses. In general, the'notatio
ity specification, which is shown as a text string containing the bounds of the intetval, and a no
he optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:

lower-bound>"..” <upper-bound>

where </oj
used as p4g

er-bound> is a non-negative integer and <upper-bound> is an unlimited natural number. The a
rt of a multiplicity specification to represent the unlimited (or jrifinite) upper bound.

If the Mul
string will
part of att

tiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), th
be placed within square brackets ([]) as part of that text string. Figure 9.33 shows two multiplic
Fibute specifications within a class symbol.

If the M
string is
multiplici

L;ltiplicity is associated with an element that appears.as a symbol (such as an association end), the
splayed without square brackets and may be.placed near the symbol for the element. Figure 9.34
y strings as part of the specification of two\association ends.

The speci
Multiplici
and uniqu

ic notation for the ordering and uniqueness specifications may vary depending on the specific sy
yElement. A general notation is to, use a property string containing ordered or unordered to defing
b or nonunique to define the unigueness.

Presentation Options

If the low!
bound. Fo

br bound is equal to_the\upper bound, then an alternate notation is to use the string containing ju
r example, “1” is,semantically equivalent to “1..1.”

A multipl
a single a;

city with zero=as the lower bound and an unspecified upper bound may use the alternative notati
terisk “*>-instead of “0..*”.

The folloy
above.

ing BNF defines the syntax for a multiplicity string, including support for the presentation optid

n will include
ation for

sterisk (*) is

e multiplicity
ity strings as

multiplicity
| shows two

bclass of
the ordering,

t the upper

bn containing

ns listed

mitiplietty>———<mltiplicity-ranse
[[{* <order-designator> [*,’ <uniqueness-designator>] ‘}’] |
[{* <uniqueness-designator> [*,’ <order-designator>] }’]]

<multiplicity-range> ::= [<lower> ‘.’] <upper>

<lower> ::= <integer> | <value-specification>

<upper> ::= *’| <value-specification>

<order-designator> ::= ‘ordered’ | ‘unordered’

<uniqueness-designator> ::= ‘unique’ | ‘nonunique’

© ISO/IEC 2012 - All rights reserved

69

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

Customer

purchase : Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Figure 9.33 - Multiplicity within a textual specification

purchase

Purchgse

Figure 9.34 - Multiplicity as an adornment to a symbol

Rationale

MultiplicifyElement represents a design trade-off to improye some technology mappings (such as XMI).

, {ordered,
unique}

Customer

account

{unique} 0.5

9.13 MultiplicityExpressions Package

Account

The MultiplicityExpressions subpackage of the) Abstractions package extends the multiplicity capabilities tp support the
use of valpie expressions for the bounds.

Expressions

Figure 9.35—Fhe-MuttipticityExpressions-package

70

4\;‘

MultiplicityExpressions

Multipliciies

7
)
/
/
/
/

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

MultiplicityElement Element
(from Multiplicities) (from Ownerships)
Z} % +owningUp per upperValue
{subsets owner} {subsets ownedElement
MultiplicityElement ~ .~ ValueSpecification
/1¢wer : Integer[0..1] U' o (from Expregsjops)
/ Upper : UnlimitedNatural0..1] | +towningLower lowerValue
{subsets owner} {subsets ownedElement}
0.1 0.1

Figure 9.36 - The elements defined in the MultiplicityExpressions package
9.13.1 MultiplicityElement (specialized)

Descriptjon
MultiplicifyElement is specialized to support the use of value specifications to define each bound of the m
Generalizations

« “MpultiplicityElement” on page 67

+ “Element (as specialized)” on page 77

Attributes

+ /lowdr : Integer [0..1]
Specifies the lower bound of the multiplicity interval, if it is expressed as an integer. This is a redefini
cprresponding property from Multiplicities.

* /uppdr : UnlimitedNatural [0..1]
Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited natural. This is
of the corresponding property from Multiplicities.

Associations
* lowerMalue: ValueSpecification [0..1]
e specifieation of the lower bound for this multiplicity. Subsets Element::ownedElement

» upperMalue=ValueSpecification [0..1]
esSpecification of the upper bound for this multiplicity. Subsets Element::ownedElement

hltiplicity.

ion of the

a redefinition

Constraints

[1] If a ValueSpecification is used for the lower or upper bound, then evaluating that specification must not have side effects.

Cannot be expressed in OCL.

[2] Ifa ValueSpecification is used for the lower or upper bound, then that specification must be a constant expression.

Cannot be expressed in OCL.

[3] The derived lower attribute must equal the lowerBound.
lower = lowerBound()

© ISO/IEC 2012 - All rights reserved

71

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

[4] The derived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations
[1] The query lowerBound() returns the lower bound of the multiplicity as an integer.
MultiplicityElement::lowerBound() : [Integer];

lowerBegre—

fllowerValue->isEmpty() then
1
else
lowerValue.integerValue()
ehdif
[2] The gpery upperBound() returns the upper bound of the multiplicity as an unlimited.natural.
MultipjicityElement::upperBound() : [UnlimitedNatural];
upperBound =

flupperValue->isEmpty() then

1

else
upperValue.unlimitedValue()
ehdif

Semanti¢s

The lower] and upper bounds for the multiplicity of a MultiplicityElement may be specified by value speciffcations, such
as (side-effect free, constant) expressions.

Notation

The notatijon for Multiplicities::MultiplicityElement (see page 67) is extended to support value specificatiops for the
bounds.

The folloying BNF defines thesyntax for a multiplicity string, including support for the presentation optidns.

multiplicity> : %= <multiplicity-range>

L[<order-designator> [*,’ <uniqueness-designator>] }’] |

[{ " <uniqueness-designator> [*,” <order-designator>] }’]]
multiplicity-range> ::= [<lower> ‘.." | <upper>
lower> ::= <integer> | <value-specification>
uppér> ::= *’| <value-specification>
<order-designator> ::= ‘ordered’ | ‘unordered’
<uniqueness-designator> ::= ‘unique’ | ‘nonunique’

72 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.14 Namespaces Package

The Namespaces subpackage of the Abstractions package specifies the concepts used for defining model elements that
have names, and the containment and identification of these named elements within namespaces.

Ownerships

Nafmespaces

Figure 9.37 - The Namespaces package

Element

NamedElement

name - Stang [0.1]
fquaiifiedName : String [0.1]

{readOnly, junion, subsets

ownedElerhent, subsets mermber}
+ fownedMember | * {readOrily, uniDn}/

+ fraamber

%

freadCnly, union,

subsets ownert
+ fnamespace {0\

+

Namespace

Figure 9.:18 <{The elements defined in the Namespaces package

9.14.1 NamedElement

A named element is an element in a model that may have a name.

Description

A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

© ISO/IEC 2012 - Al rights reserved 73

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations

+ “Element (as specialized)” on page 77

Attribute

. name:

S
String [0..1]

The name of the NamedElement.

* /qual
A

N

Associations

e /nam
S
Constrai

[1] If thete is no name, or one of the containing namespaces has no name, thete is no qualified name.

(self.n

[t
[2] Whenl
names
(self.n

n

Addition
[1] Theq
Name]
allNar

if s

the

elsd

end

[2] Theq
By de

filom the names of the containing namespaces starting at the root of the hierarchy and ending with the

fiedName: String [0..1]
name which allows the NamedElement to be identified within a hierarchy of nested Namespaees» It

amedElement itself. This is a derived attribute.

pspace: Namespace [0..1]

hts

ame->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
hplies self.qualifiedName->isEmpty()

there is a name, and all of the containing namespaces.have a name, the qualified name is constructed
of the containing namespaces.

ame->notEmpty() and self.allNamespaces()->seléct(ns | ns.name->isEmpty())->isEmpty()) implies
If. qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->unign(result))

al Operations

dElement::allNamespaces(): Sequence(Namespace);
hespaces =

If.namespace->isEmpty()

n Sequence{}
self.namespace.allNamespaces()->prepend(self.namespace)
f

Lery isDistinguishableFrom() determines whether two NamedElements may logically co-exist within
fault, two named elements are distinguishable if (a) they have unrelated types or (b) they have relateq

is constructed
hame of the

pecifies the namespace that owns the NamedElement. Subsets Element::owner.) This is a derived union.

from the

hery allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, worling outwards.

a Namespace.
| types but

differ

ntnames

Name
isDisti

dElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
nguishable =

if self.oclIsKindOf(n.oclType) or n.ocllsKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()

else true

end

74

if

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

[3] The query separator() gives the string that is used to separate names when constructing a qualified name.
NamedElement::separator(): String;
separator = 7’

Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the atgribute-has-a—rauipheity O he-possibiity-of-the-absenee-of-a—name-{which is
different from the empty name).

9.14.2 Namespace
A namesphce is an element in a model that contains a set of named elements that can be identified by name.

Descriptjon

A namesphce is a named element that can own other named elements. Each naméd.element may be owned Yy at most one
namespac¢. A namespace provides a means for identifying named elements by.name. Named elements can|be identified
by name ih a namespace either by being directly owned by the namespace or-by being introduced into the pamespace by
other meahs (e.g., importing or inheriting). Namespace is an abstract m¢taclass.

Generalizations

« “Namespace” on page 75

Attributes
No additignal attributes

Associations

* /menjber: NamedElement [*]
Al collection of NamedElements'identifiable within the Namespace, either by being owned or by being introduced by
ifpporting or inheritance. This is a derived union.

+ /owngdMember: NamedElement [*]
Al collection of NamedElements owned by the Namespace. Subsets Element::ownedElement and
Namespace::member. This is a derived union.

Constraints

[1] All the members of a Namespace are distinguishable within it.

membersAreDistinguishable()

Additional Operations

[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a
member can have multiple names in a Namespace if it is imported more than once with different aliases. Those semantics
are specified by overriding the getNamesOfMember operation. The specification here simply returns a set containing a
single name, or the empty set if no name.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember =
if member->includes(element) then Set{}->including(element.name) else Set{} endif

© ISO/IEC 2012 - Al rights reserved 75

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

[2] The Boolean query membersAreDistinguishable() determines whether all of the namespace’s members are
distinguishable within it.

Namespace::membersAreDistinguishable() : Boolean;

membersAreDistinguishable =

self.member->forAll(memb |
self.member->excluding(memb)->forAll(other |

Semanti¢s

A namesppce provides a container for named elements. It provides a means for resolving composite names} such as
e2::name3. The member association identifies all named elements in a namespacgicalled N thaf can be
referred tq by a composite name of the form N::<x>. Note that this is different from all of the-names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing_namespaces.

Named elgments may appear within a namespace according to rules that specify how-one named element i$
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelatqd types, or
related types but different names. This rule may be overridden for particular-cases, such as operations that fare

distinguished by their signature.

Notation

No additignal notation. Concrete subclasses will define their ownispecific notation.

9.15 Ownerships Package

The Owndrships subpackage of the Abstractions package extends the basic element to support ownership df other
elements.

Elements
A
|
/
/

/
1/

wnerships

Figure 9.39 ~-The Ownerships package

76 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Element
(from Elements)

A

/ownedElement
* {union}

Element

/lowner

g
0..1{union}

Figure 9.40 - The elements defined in the Ownerships package
9.15.1 Element (as specialized)
An element is a constituent of a model. As such, it has the capability, of Owning other elements.

Descriptjon
Element hlas a derived composition association to itself to support the general capability for elements to own other

elements.

Generalizations

+ “Element” on page 46

Attributes
No additignal attributes

Associations
* /owngdElement: Element|*]
Tihe Elements.gwned by this element. This is a derived union.

* /owngr: Element [0..1]
Tlhe Element that owns this element. This is a derived union.

Constraints

[1] An element may not directly or indirectly own itself.

not self.allOwnedElements()->includes(self)

[2] Elements that must be owned must have an owner.
self.mustBeOwned() implies owner->notEmpty()

© ISO/IEC 2012 - Al rights reserved 77

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Additional Operations
[1] The query allOwnedElements() gives all of the direct and indirect owned elements of an element.
Element::allOwnedElements(): Set(Element);
allOwnedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do not
require an owner must override this operation.

Elemgnt-mustBeOwned() : Boolean,

mustBeOwned = true

Semanti¢s

Subclasse

of Element will provide semantics appropriate to the concept they represent.

The deriv¢d ownedElement association is subsetted (directly or indirectly) by all compesed association ends in the
metamodg]l. Thus ownedElement provides a convenient way to access all the elements,that are directly owfed by an

Element.

Notation

There is np general notation for an Element. The specific subclasses of Element define their own notation.

9.16 Redefinitions Package

The Redefinitions package in the Abstractions package specifies the general capability of redefining mode] elements in
the context of a generalization hierarchy.

Redefinitions

Figure 9.41 - The Redefinitions package

78

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Infrastructurel ibrary::Core::
Abstractions::Namespaces::
NamedElement

Fa

freadOnly, union}
+ fredefinedElement

*

RedefinableElement

* freadCnly, union}
+ fredefinitionCantext Infrastructurel ibrary::
- Core::Abstractions::
Super::Classifief

Figure 9.42 - The elements defined in the Redefinitions package
9.16.1 RedefinableElement

A redefingble element is an element that, when defined in the.context of a classifier, can be redefined more gpecifically or
differentlyf in the context of another classifier that specializes (directly or indirectly) the context classifier.

Descriptjon

A redefingble element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Generalizations

« “NpmedElement” on page 73

Attributes
No additignal attributes

Associations

* /redefinitionContext: Classifier[*]
References the contexts that this element may be redefined from. This is a derived union.

Constraints

[1] At least one of the redefinition contexts of the redefining element must be a specialization of at least one of the
redefinition contexts for each redefined element.

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))

© ISO/IEC 2012 - Al rights reserved 79

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

[2] A redefining element must be consistent with each redefined element.
self.redefinedElement->forAll(re | re.isConsistentWith(self))

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, this is false; this operation must be overridden for
subclasses of RedefinableElement to define the consistency conditions.

RedefjnableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false

[2] The gpery isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are
propetly related to the redefinition contexts of the specified RedefinableElement to allow¢his element to rgdefine the

other.|By default at least one of the redefinition contexts of this element must be a specialization of at least|one of the
redefipition contexts of the specified element.

RedefjnableElement::isRedefinitionContexValid(redefinable: RedefinableElement)/Boolean;
gRedefinitionContextValid =

redefinitionContext->exists(c | c.allparents()->
includes (redefined.redefinitionContext))

Semanti¢s

A RedefinableElement represents the general ability to be redefined in the context of a generalization relatjonship. The
detailed s¢mantics of redefinition varies for each specialization of RedefinableElement.

A redefingble element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another elemenf can redefine
the elemenmt from the general classifier in order to*augment, constrain, or override the specification as it applies more
specificallly to instances of the specializing classifier.

A redefining element must be consistentwith the element it redefines, but it can add specific constraints of other details
that are p4rticular to instances of the(spécializing redefinition context that do not contradict invariant constraints in the
general cgntext.

A redefingble element may be redefined multiple times. Furthermore, one redefining element may redefine] multiple

inherited fedefinable elements.

Semanti¢ Variation Points

There are [varigus degrees of compatibility between the redefined element and the redefining element, such| as name
compatibility(the redefining element has the same name as the redefined element), structural compatibility (the client

visible pr lJCftiCb oftheredefined—~ctermentarcatso }uupcﬁica ofthe Lcdcﬂuiug C}ClllCllt), or-behavioratcon atlblllty (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.

80 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

9.17 Relationships Package

The Relationships subpackage of the Abstractions package adds support for directed relationships.

1

Ownerships

Relationships

Figure 9.43 - The Relationships package

Infrastructurel ibrary::
Cone::Abstractions::
Owtferships::Element

T

Infrastricturel ibrary::

freadOnly, union}

Relptionship + IrelatecElement Coeer:Abstractions::
" Chwnerships::Element
1.5 ¢
freadOnly, union,
subsets relatedElernent
+.fgaurce

Direct¢dRelationship [1 -

Tread@ily, union,

subsets relatedElerment}
+ ftarget

1.7

Figure 9.44 - The elements.défined in the Relationships package
9.17.1 DirectedRelationship

A directed relatienship represents a relationship between a collection of source model elements and a colle¢tion of target
model elements.

Description

A directed relationship references one or more source elements and one or more target elements. DirectedRelationship is
an abstract metaclass.

Generalizations

+ “Relationship” on page 82

© ISO/IEC 2012 - Al rights reserved 81

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Attributes

No additional attributes

Associations

* /source: Element [1..*]
Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedElement. This is a derived union.

» /targdt: Element [1..¥]
Specifies the targets of the DirectedRelationship. Subsets Relationship::relatedElement. This is a\détived
uhion.

Constraipts

No additignal constraints

Semanti¢s

DirectedRElationship has no specific semantics. The various subclasses of DirectedRelationship will add sgmantics
appropriate to the concept they represent.

Notation

There is np general notation for a DirectedRelationship. The specifie’subclasses of DirectedRelationship willl define their
own notatjon. In most cases the notation is a variation on a ling.drawn from the source(s) to the target(s).

9.17.2 Relationship

RelationsHip is an abstract concept that specifies:seme kind of relationship between elements.

Description

A relationphip references one or more.related elements. Relationship is an abstract metaclass.

Generalizations

» “Element (as specialized)” on page 77

Attributes
No additignal attributes.

Associations

* /relatedElement: Element [1..*]
Specifies the elements related by the Relationship. This is a derived union.

Constraints

No additional constraints

82 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most casef TITE NOTAtioNn 15 @ variation on a [ine drawn between e related Clements.

9.18 BtructuralFeatures Package

The StrucfuralFeatures package of the Abstractions package specifies an abstract generalizationof structuryl features of
classifiers

TypedElements Classifiers
J

StructuralFeatures

Figure 9.45 - The StructuralFeatures package

TypedElement Feature
(from TypedElements) (from Classifiers)
StructuralFeature

Figure 9.16 -The elements defined in the StructuralFeatures package

9.18.1 StructuralFeature

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

© ISO/IEC 2012 - Al rights reserved 83

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations

« “TypedElement” on page 89

» “Feature” on page 38

Attributes

No additi

Associations

No additi

Constrai
No additig

Semantig

A structur|
type.

Notation
No additi

9.19

The Super
classifiers

1 ftaacloao ot
TIar act Toatcs

nal associations

hts

nal constraints

LS

h| feature specifies that instances of the featuring classifier have a“slot whose value or values are jof a specified

nal notation

Super Package

package of the Abstractions package provides mechanisms for specifying generalization relationghips between

Classifiers

7
A
]
/
j
/

/
1/

Super

Figure 9.47 - The,Super package

84

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Infrastructurel ibrary::
Core::Abstractions::
Namespaces::Namespace

il
{readOnly, subsets member}:
Classifier + fAinheritediember Infrastructurelibrary::
isdbstradt - Boolean * * Core::Abstractions::
L | Namespaces::
genera NamedE lement

+

Figure 9.48 - The elements defined in the Super package
9.19.1 Classifier (as specialized)

Descriptjon

A classifi¢r can specify a generalization hierarchy by referencing its general classifiers.

Generalizations

+ “Classifier” on page 37

Attributes

* isAbsjract: Boolean
I true, the Classifier does not provide a complete declaration and can typically not be instantiated. Anj abstract

classifier is intended tobe used by other classifiers (e.g., as the target of general metarelationships or generalization
r¢lationships). Default value is false.

Associations

+ generjl: Classifier|*]
Specifies\the more general classifiers in the generalization hierarchy for this Classifier.

+ /inhetitedMember: NamedElement[*]
Specifies all elements inherifed by this classifier from the general classifiers. subsets Namespace:-member. This is
derived.

Constraints

[1] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

© ISO/IEC 2012 - Al rights reserved 85

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

[2] A classifier may only specialize classifiers of a valid type.
self.parents()->forAll(c | self.maySpecialize Type(c))

[3] The inheritedMember association is derived by inheriting the inheritable members of the parents.
self.inheritedMember = self.inherit(self.parents()->collect(p | p.inheritableMembers(self))->asSet())

Additional Operations

[1] The q Cly pdlUllLb\} giVCb dll Uf th illllllCL‘lidlC dlICCTSLOIS de gCllUldliLCL‘l Cidbbiﬁcl.
Classffier::parents(): Set(Classifier);
parents = general

[2] The qpery allParents() gives all of the direct and indirect ancestors of a generalized Classifier,
Classifier::allParents(): Set(Classifier);
allPargnts = self.parents()->union(self.parents()->collect(p | p.allParents()))

[3] The qpery inheritableMembers() gives all of the members of a classifier that may be inherited in one of its [descendants,
subjedt to whatever visibility restrictions apply.
Classffier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: dallParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[4] The qpery hasVisibilityOf() determines whether a named element.is(visible in the classifier. It is only called when the
argunlent is something owned by a parent.
Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: sglf.allParents()->collect(c | c.member)->includes(n)

hpsVisibilityOf = (n.visibility <> #private)

[5] The qpery inherit() defines how to inherit a set of-dlements. Here the operation is defined to inherit them all} It is intended
to be fedefined in circumstances where inheritatice is affected by redefinition.
Classifier::inherit(inhs: Set(NamedElement)):)Set(NamedElement);
inherif = inhs

[6] The qpery maySpecializeType() determines whether this classifier may have a generalization relationship tp classifiers of

the spgcified type. By default a classifier may specialize classifiers of the same or a more general type. It is|intended to be
redefihed by classifiers thathave different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecialize Type ='self.oclIsKindOf(c.oclType)

Semanti¢s

The specific sgmantics of how generalization affects each concrete subtype of Classifier varies.

An instante_of a QpP{‘iﬁ(‘ Classifier is also an (indirect) instance of each of the genera] Classifiers Therefoke, features

specified for instances of the general classifier are implicitly specified for instances of the specific classifier. Any
constraint applying to instances of the general classifier also applies to instances of the specific classifier.

Notation

The name of an abstract Classifier is shown in italics.

Generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as “separate
target style.” See the example sub clause below.

86 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Presentation Options

Multiple Classifiers that have the same general classifier can be shown together in the “shared target style.” See the
example sub clause below.

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

Examples
Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape
Polygon Ellipse Spline

Figure 9.49 - Example class generalization hierarchy

9.20 TypedElements Package

The TypedElements subpackage of‘the Abstractions package defines typed elements and their types.

Namegpaces

Figure 9.50 - The TypedElements package

© ISO/IEC 2012 - Al rights reserved 87

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

infrastructurel ibrary::Core::
Abstractions::Namespaces::
NamedE lement

A
|

TypefElement +type Type
s

Figure 9.91 - The elements defined in the TypedElements package
9.20.1 Type

A type constrains the values represented by a typed element.

Description

A type sefves as a constraint on the range of values represented by a typed element. Type is an abstract mgtaclass.

Generalizations

+ “NgmedElement” on page 73

Attributes
No additiqnal attributes

Associations

No additignal association$

Constraints

No additignal constraints

Additional Operations

[1] The query conformsTo() gives true for a type that conforms to another. By default, two types do not conform to each other.
This query is intended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics

A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

88 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

No general notation
9.20.2 TypedElement

A typed element has a type.

Descriptjon

A typed element is an element that has a type that serves as a constraint on the range of values the élement fan represent.
Typed elenent is an abstract metaclass.

Generalizations

« “NpmedElement” on page 73

Attributds
No additignal attributes

Associations

ype [0..1]
e type of the TypedElement.

Constraints

No additignal constraints.

Semanti¢s

Values refjresented by the element are constrained to be instances of the type. A typed element with no associated type
may reprefpent values of any type.

Notation

No generdl notation

9.21 Visibilities Package

The Visibllity subpackage of the Abstractions package provides basic constructs from which visibility sempntics can be
constructed:

© ISO/IEC 2012 - Al rights reserved 89

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Namespaces

Z
7
/

/
/

/
/
/

Visibilities

Figure 9.52 - The Visibilities package

NamedElement «enumeration»
+ visibility | VisibilityKind [0..1] VisibilityKind
public
private
protected
package

Figure 9.53 - The elements defined in the Visibilities package
9.21.1 NamedElement (as specialized)

Descriptjon

NamedElgment has a visibility attribute.

Attributes
» visibility: VisibilityKind [0..1]
Determines where the NamedElement appears within different Namespaces within the overall model, and its
agcessibility.

Generalizations

+ “NamedElement” on page 73

Associaliions

No additional associations

Constraints
[1] If a NamedElement is not owned by a Namespace, it does not have a visibility.

namespace->isEmpty() implies visibility->isEmpty()

90 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

The visibility attribute provides the means to constrain the usage of a named element either in namespaces or in access to
the element. It is intended for use in conjunction with import, generalization, and access mechanisms.

9.21.2 VisibilityKind

T 1 4 Tt . +1 i 1 1 1 . 1 LELL L L £ . 1
VlSlblll'[y b ILIU IS dll CITUIIICT AUIOIN Ty pUTUIal UCLIHITS TICTAIS U UULCTIHIIIC UIT VISIUIIILY U1 TICIHTILS 111 d THOW

Generalizations

+ Nope

Descriptjon
VisibilityKind is an enumeration of the following literal values:
« public
* priyate
+ protected
« padkage

Semanti¢s

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizgtions, Packages, and Classifiers packages. Detdiled semantics are specified with those mechanisms. If the
Visibility package is used without those packages, these-literals will have different meanings, or no meanirggs.

A public element is visible to all elements that’can access the contents of the namespace that owns it.
+ A qrivate element is only visible inside the namespace that owns it.
- A protected element is visible to elements that have a generalization relationship to the namespace that gwns it.

A package element is owned by ayhamespace that is not a package, and is visible to elements that are in the same
padkage as its owning namespace. Only named elements that are not owned by packages can be marked|as having
padkage visibility. Any.element marked as having package visibility is visible to all elements within thg nearest
endlosing package (giventhat other owning elements have proper visibility). Outside the nearest enclosing package, an
element marked asthaving package visibility is not visible.

In circumgtances where a named element ends up with multiple visibilities, for example by being imported nultiple times,
public visbility overfides private visibility, i.e., if an element is imported twice into the same namespace, pnce using
public import and once using private import, it will be public.

Notation

The following visual presentation options are available for representing VisibilityKind enumeration literal values:
47 public

e private
“H#” protected

T3k

package

© ISO/IEC 2012 - Al rights reserved 91

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

92

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

10 Core::Basic

10.1 General

The Basic package of InfrastructureLibrary::Core provides a minimal class-based modeling language on top of which
more complexlanguages can be built It is intended for reuse by the Essential layer of the Meta-Object Eacility (MOF).
The metadlasses in Basic are specified using four diagrams: Types, Classes, DataTypes, and Packages. Basjic can be
viewed as|an instance of itself. More complex versions of the Basic constructs are defined in Constracts, which is
intended foor reuse by the Complete layer of MOF as well as the UML Superstructure.

Figure 1041 illustrates the relationships between the Core packages and how they contribute te.the origin anfl evolution of
package Hasic. Package Basic imports model elements from package PrimitiveTypes. Basic also contains metaclasses

derived frpm shared metaclasses defined in packages contained in Abstractions. These shared metaclasses afe included in
Basic by ¢opy.

|
Constructs
«import»
[PrimitiveTypes

Absfractions |— ------------------- >
1 «import»

Basif |— ----------------------- ---2>
«import»

Constructs |— --------------------- >

Figure 101 - The Core package is owned by the InfrastructureLibrary
package dnd contains several subpackages

© ISO/IEC 2012 - Al rights reserved 93

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

10.2 Types Diagram

The Types diagram defines abstract metaclasses that deal with naming and typing of elements.

0.1
+ annotatedElement

*

+ *+ownedComment | *

NamedElenent Comment
name String sedttributes body @ String...
TypadHemont +type Type
* 0.1

Figure 1012 - The classes defined in the Types diagram
10.2.1 Comment

Description
Basic::Comment reuses the definition-ef Comment from Abstractions::Comments.
Generalizations

+ “Element” on page\95

Attributes

* body:|String [0..1]
Spetifies a string that is the comment.

Associations

» annotatedElement: Element[*]
Redefines the corresponding property in Abstractions.

Constraints

No additional constraints

94 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

No additional semantics

Notation

No additional notation

10.2.2 Element

An element is a constituent of a model.

Descriptjon

Element i$ an abstract metaclass with no superclass. It is used as the common superclassfor all metaclassgs in the
infrastrucfure library.

Generalizations

* Nope

Attributées
No additignal attributes

Associatjons

No additignal associations

Constraints

No additignal constraints

Semanti¢s

Subclasse$ of Element provide semantics appropriate to the concept they represent.

Notation

There is no general notation for an Element. The specific subclasses of Element define their own notation.

10.2.3 NamedElement

Descriptlon

A named element represents elements with names.
Generalizations

« “Element” on page 95

Attributes

* name: String [0..1]
The name of the element.

© ISO/IEC 2012 - Al rights reserved 95

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

Elements with names are instances of NamedElement. The name for a named element is optional. If specified, then any valid
string, including the empty string, may be used.

Notation

As an abstract class, Basic::NamedElement has no notation.

10.2.4 Type

Description
A type is p named element that is used as the type for a typed element.
Generalizations

+ “NamedElement” on page 95

Attributes
No additiqnal attributes

Semanti¢s

Type is th¢ abstract class that represents the general notion of the type of a typed element and constrains thg set of values
that the typed element may refer to.

Notation

As an absfract class, Basic::Type has no notation\

10.2.5 TypedElement

Description
A typed element is a kind of mamed element that represents elements with types.
Generalizations

+ “NamedElenient” on page 95

AttributT
* type: Frpefo-H

The type of the element.

Semantics

Elements with types are instances of TypedElement. A typed element may optionally have no type. The type of a typed
element constrains the set of values that the typed element may refer to.

Notation

As an abstract class, Basic::TypedElement has no notation.

96 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

10.3 Classes Diagram

ISO/IEC 19505-1:2012(E)

The Classes diagram defines the constructs for class-based modeling.

TypedElement
A\

MultiplicityElement

+ isOrdered : Boolean = false

+ isUnique : Boolean = true

+ lower : Integer [0..1] = 1

+ upper : UnlimitedNatural [0..1] =4

| TypedElement | | MultiglicityElement |

Parameter

[fyee |
Property + opposite
{ordered} |+ isReadOnly : Boolean = false
Class] + default : String [0..1] 041
Abstratt - Boolean = Fal + ownedAttribute | + isComposite : Boolean = false
* 15rbstrajt - Soolean = 1ase gy, + isDerived : Boolean = false 0.1
0.1 * +isID : Boolean = false
+ superClass
* TypedElement | | MuttiplicityElement | {ordered)
- {ordered} + ownedParameter
+ ownedOperation Operation | @ 0.1 X
g) isedExcepti
* + raisedException
- > 1ype |
* *
Figure 10J3 - The classes defined in'the Classes diagram
10.3.1 Class
Descriptjon
A class is|a type that)has objects as its instances.
Generalizations

+ “Type” on page 96

Attributes

e isAbstract : Boolean
True when a class is abstract. The default value is false.

* ownedAttribute : Property [*]
The attributes owned by a class. These do not include the inherited attributes. Attributes are represented by instances
of Property.

© ISO/IEC 2012 - All rights reserved

97

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

* ownedOperation : Operation [*]
The operations owned by a class. These do not include the inherited operations.

* superClass : Class[*]
The immediate superclasses of a class, from which the class inherits.

Semantics

Classes hgve attributes and operations and participate i Mieritance hierarchics. Muttipie mheritance 13 attpwed. The
instances pf a class are objects. When a class is abstract it cannot have any direct instances. Any direct.instance of a
concrete (].e., non-abstract) class is also an indirect instance of its class’s superclasses. An object has,a slot for each of its
class’s dirpct and inherited attributes. An object permits the invocation of operations defined in its class anjd its class’s
superclassis. The context of such an invocation is the invoked object.

A class cannot access private features of another class, or protected features on another cldss that is not its|supertype.
When creating and deleting associations, at least one end must allow access to the class:

Notation

The notation for Basic::Class is the same as that for Constructs::Class with(he omission of those aspects df the notation
that canndt be represented by the Basic model.

10.3.2 MultiplicityElement

Descriptjon
Basic::MultiplicityElement reuses the definition from Abséractions:: MultiplicityElement.
Generalizations

« “Element” on page 95

Descriptjon

Construct§::Relationship reuses the definition of Relationship from Abstractions::Relationships. It adds a spgcialization to
Construct§::Element.

Generalizations

« “Element” on-page 95

Attributes
No additignal“attributes

Associations

No additional associations

Constraints

No additional constraints

98 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

No additional semantics

Notation

No additional notation

10.3.3 Operation

Descriptjon

An operatjon is owned by a class and may be invoked in the context of objects that are instances_of that clasp. It is a typed
element apd a multiplicity element.

Generalizations
« “TypedElement” on page 96

« “TypedElement” on page 96 - MultiplicityElement.

Attribut

+ class {Class [0..1]
e class that owns the operation.

* ownedlParameter : Parameter [*] {ordered, composite }
e parameters to the operation.

« raisedException : Type [*]
Tlhe exceptions that are declared as possibleZduring an invocation of the operation.

Semanti¢s

An operatjon belongs to a class. It is possible to invoke an operation on any object that is directly or indirectly an instance
of the clags. Within such an invocation’the execution context includes this object and the values of the pargmeters. The
type of th¢ operation, if any, is the, type of the result returned by the operation, and the multiplicity is the rhultiplicity of
the result.| An operation can Be ‘associated with a set of types that represent possible exceptions that the opgration may
raise.

Notation

The notation for Basic::Class is the same as that for Constructs::Class with the omission of those aspects gf the notation
that canndt be represented by the Basic model.

10.3.4 Parameter

Description

A parameter is a typed element that represents a parameter of an operation.

Attributes

+ operation: Operation [0..1]
The operation that owns the parameter.

© ISO/IEC 2012 - Al rights reserved 99

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

When an operation is invoked, an argument may be passed to it for each parameter. Each parameter has a type and a
multiplicity. Every Basic::Parameter is associated with an operation, although subclasses of Parameter elsewhere in the
UML model do not have to be associated with an operation, hence the 0..1 multiplicity.

Notation

The notatipn for Basic::Parameter s the same as that for CONSIucts:. Parameter with the omission of those
notation that cannot be represented by the Basic model.

10.3.5 Property

Descript|ion

A property is a typed element that represents an attribute of a class.

Generalizations

Attributes

+ “TypedElement” on page 96

« “TypedElement” on page 96 - MultiplicityElement.

class {Class [0..1]
The class that owns the property, and of which the property is an attribute.

default : String [0..1]
Al string that is evaluated to give a default value for the attribute when an object of the owning class is

isConpposite : Boolean
If isComposite is true, the object containing the attribute is a container for the object or value containe|

aftribute. The default value is false.

isDerived : Boolean
If isDerived is true, the value of the attribute is derived from information elsewhere. The default value

isReaglOnly : Boolean
If isReadOnly is truey the attribute may not be written to after initialization. The default value is false.

opposiite : Property/f0..1]
o attributes attrl and attr2 of two objects ol and 02 (which may be the same object) may be paired Y
s¢ thato hattr] refers to 02 if and only if 02.attr2 refers to ol. In such a case attrl is the opposite of att
the Opposite of attrl.

spects of the

instantiated.

d in the

is false.

vith each other
2 and attr2 is

isID : Boolean

True indicates this property can be used to uniquely identify an instance of the containing Class. Default value is false

Semantics

A property represents an attribute of a class. A property has a type and a multiplicity. When a property is paired with an
opposite they represent two mutually constrained attributes. The semantics of two properties that are mutual opposites are
the same as for bidirectionally navigable associations in Constructs, with the exception that the association has no explicit
links as instances, and has no name.

100

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

A property may be marked as being (part of) the identifier (if any) for classes of which it is a member. The

interpretation

of this is left open but this could be mapped to implementations such as primary keys for relational database tables or ID

attributes in XML. If multiple properties are marked (possibly in superclasses) then it is the combination of

the (property,

value) tuples that will logically provide the uniqueness for any instance. Hence there is no need for any specification of
order and it is possible for some (but not all) of the property values to be empty. If the property is multivalued then all

values are included.

Notation

When a Bpsic::Property has no opposite, its notation is the same for Constructs::Property when used(as an
the omissjon of those aspects of the notation that cannot be represented by the Basic model. Normally if tH
property if a data type, the attribute is shown within the attribute compartment of the class box,,and if the
property if a class, it is shown using the association-like arrow notation.

When a pijoperty has an opposite, the pair of attributes are shown using the same notation as for a Construct
with two favigable ends, with the omission of those aspects of the notation that cann0tbe represented by th

10.4 PataTypes Diagram

The DataTypes diagram defines the metaclasses that define data types.

Type
DataType
NamedElement
PrinjitiveType Enumeration enumeration ownedLiteral| EnumerationLiteral

0.1 {ordered} »

Figure 1044 - The classes defined in the DataTypes diagram

10.4.1 DataType

attribute with
e type of the
type of the

;:Association
e Basic model.

Descriptlan

DataType is an abstract class that acts as a common superclass for different kinds of data types.
Generalizations

« “Type” on page 96

Attributes
No additional attributes

© ISO/IEC 2012 - All rights reserved

101

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

DataType is the abstract class that represents the general notion of being a data type (i.e., a type whose instances are
identified only by their value).

Notation

As an abstract class, Basic::DataType has no notation.

10.4.2 Enumeration

Descript|jon
An enumgration defines a set of literals that can be used as its values.
Generalizations

« “DataType” on page 101

Attributes

» ownedLiteral: EnumerationLiteral [*] {ordered, composite} — The ordered collection of literals for the enpmeration.

Semanti¢s

An enumgration defines a finite ordered set of values, such as\{ted, green, blue}.

The valuep denoted by typed elements whose type is anenimeration must be taken from this set.

Notation

The notatifon for Basic::Enumeration is the same as that for Constructs:: Enumeration with the omission of|those aspects
of the notjtion that cannot be represented, by ‘the Basic model.

10.4.3 EnumerationLiteral

Descript|jon

An enumgdration literal ista value of an enumeration.

Generalizations

+ “NamedElement” on page 95

Attributes

* enumeration: Enumeration [0..1]
The enumeration that this literal belongs to.

Semantics

See Enumeration

102 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Notation

See Enum

ISO/IEC 19505-1:2012(E)

eration

10.4.4 PrimitiveType

UML

Description
A primitive type is a data type implemented by the underlying infrastructure and made available for modeling.
Generalizations
« “DptaType” on page 101
Attributes
No additignal attributes
Semanti¢s
Primitive fypes used in the Basic model itself are Integer, Boolean, Strings.and UnlimitedNatural. Their spec
is given by the tooling context, or in extensions of the metamodel (e.g.,(OCL).
Notation
The notation for a primitive type is implementation-dependent; Notation for the primitive types used in the
metamoddl is given in the “PrimitiveTypes Package” on page 203.

10.5

The Packd

Packages Diagram

ges diagram defines the Basic constructs related to Packages and their contents.

Namedflement
i
Padkage Apackage ownedType Type
0.1 *
nestingPackage
0..1
TTes tedPackage
Figure 10.5 - The classes defined in the Packages diagram

10.5.1 Package

Description

A package is a container for types and other packages.

© ISO/IEC 2012 - All rights reserved

ific semantics

103

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations
+ “NamedElement” on page 95

Attributes

» nestedPackage : Package [*]
The set of contained packages.

» nestingPackage : Package [0..1]
The containing package.

+ ownedType : Type [*]
The set of contained types.
* URI: Btring [0..1] {id}
Fovides an identifier for the package that can be used for many purposes. A URIisthe universally unjique

dentification of the package following the IETF URI specification, RFC 2396 http://www.ietf.org/rfc/rfc2396.txt and
tlmust comply with those syntax rules.

= = g

Semanti¢s

Packages provide a way of grouping types and packages together, which(¢can be useful for understanding and managing a
model. A package cannot contain itself. The URI can be specified to‘provide a unique identifier for a Packiage.

Notation

Containm¢nt of packages and types in packages uses the same notation as for Constructs::Packages with the omission of
those aspdcts of the notation that cannot be represented by the Basic model.

10.5.2 Type
Note — (additional properties - see “Type” on-page 96).

Descript|jon

A type caf be contained in a package.

Generalizations

« “NamedElement” on page 95

Attribut

. packIe : Package [0..1]
The containing package.

Semantics

No additional semantics

Notation

Containment of types in packages uses the same notation as for Constructs::Packages with the omission of those aspects
of the notation that cannot be represented by the Basic model.

104 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

11 Core::Constructs

11.1 General

This clause describes the Constructs package of InfrastructureLibrary::Core. The Constructs package is intended to be
reused by the Meta nlﬂjﬁr\f pqr\i’“fy

]
Constructs
1
«import» PrimitiveTypes
Abstractions |— ------------------- >
] «import»
Basic [~ >
«import»
Constructs |—------------- e >

Figure 11J1 -The Core package is owned by the
InfrastructureLibrary package, and contains several subpackages

The Consfructs package is specified by a number of diagrams each of which is described in a separate sub [clause below.

The constfucts package is dependent on several othér packages, notably Basic and various packages from Abstractions, as

depicted ih Figure 11.2.

© ISO/IEC 2012 - Al rights reserved 105

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC

Figure 11.

Figure 11.
package (
metaclassq
are includ
definition
Construct.
Construct

11.2

The Root

19505-1:2012(E)

o menis

Clamifiens
.y 1
L o g ol 1 He = 1 | L,"or::d:r:llnt-"
1
i
i — . !
= . T A e T
Behawvi oral Features * | C g e ! | .
e e = Erge == Cwnerihips
k- 1
Elsmants <<margess) - VAN
=YY i T
. | i]
| S T e g e 'I Expre s ons
Sl e T 1
- - 1 === ke
Il Constructs
'. c<m e e . Qe e = Multiplicities |
Visibilities ; ' = —
e e g |
e (g ; 1 .
=<mgrge==
’ o N .
I i y] g g & J _
TypedElamants o 1 Hamesspaces ‘
I. R
|| St etural Features

Ferl ation ship s ‘ Redafinitions

P - The Constructs package depends on-several other packages

D illustrates the relationships between the Core packages and how they contribute to the origin an
onstructs. Package Constructs imports model elements from package PrimitiveTypes. Constructs

bd in Constructs by copy. Figure 11.2 uses PackageMerge to illustrate the packages that contribu
of Constructs and hewsThe InfrastructureLibrary metamodel does not actually include these pack

to be understood and used without requiring the use of PackageMerge.

Root Diagram

s from Basic and shared metaclasses defined in packages contained in Abstractions. These share

is a complete mgtamodel that already includes all the metaclasses in the referenced packages.]

i evolution of
also contains
d metaclasses
e to the

ge merges as
[his allows

diagram in the Constructs package specifies the Element, Relationship, DirectedRelationship, an

I Comment

constructs.

106

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Flamant

{subsets owner}
+ owvningElement

{subsets ownedElerment}:
+ orvvnedComment

ISO/IEC 19505-1:2012(E)

Comment

0.1

*

body - String [0..1]

freadonly, unionk
+ JowynecElement

*

G IR
+ Jovyner

0.1

freadOnly, unionk
+ IrelstedElement
1.*

Refationship Flamant + annaotatedElement

Comment
Body @ String [0..1]

-~

%

freadCnly, union,
subsets relatedElerment}

+ fsource

DirectddRelfationsiip

* E]
Ireadorly, union,
subsets relatedf[ﬂ?arpg%rpt}

* 1.x

Figure 113 - The Root diagram of the Constructs‘package

11.2.1 Comment

Descriptjon
Generalizations
+ “Element” on page\108

Attributes

* body:|String
Specifies a string that is the comment.

Associations

« annotatedElement: Element[*]
Redefines the corresponding property in Abstractions.

Constraints

No additional constraints

© ISO/IEC 2012 - Al rights reserved 107

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

No additional semantics

Notation

No additional notation

11.2.2 DirectedRelationship

Description

Constructg::DirectedRelationship reuses the definition of DirectedRelationship from Abstractions::Relationsfips. It adds a
specialization to Constructs.:Relationship.

Generalizations

« “R¢lationship” on page 109

Attributes
No additignal attributes

Associations

* /sourde: Element[1..*]
Rledefines the corresponding property in Abstractions. Subsets Relationship::relatedElement. This i§ a derived
uhion.

» /targef. Element[1..*]
Rledefines the corresponding property in‘bstractions. Subsets Relationship::relatedElement. This i§ a derived
uhion.

Constraipts

No additignal constraints

Semanti¢s

No additignal semantics

Notation

No additignal netation

11.2.3 Element

Description

Constructs::Element reuses the definition of Element from Abstractions::Comments.

Generalizations

« None

108 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Attributes

No additional attributes

Associations

* /ownedComment: Comment[*]
Redefines the corresponding property in Abstractions. Subsets Element::ownedElement.

+ /owngdElement: Element[*]
edefines the corresponding property in Abstractions. This is a derived union.

* /owngdr: Element[0..1]
edefines the corresponding property in Abstractions. This is a derived union.

Constraints

No additignal constraints

Semanti¢s

No additignal semantics

Notation

No additignal notation

11.2.4 Relationship

Descriptjon

Construct§::Relationship reuses the definition of*Relationship from Abstractions::Relationships. It adds a spgcialization to
Construct}::Element.

Generalizations

+ “Element” on page 108

Attributes
No additignal attributes

Associations

Constraints

No additional constraints

Semantics

No additional semantics

© ISO/IEC 2012 - Al rights reserved 109

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

No additional notation

11.3 Expressions Diagram

The Expressions diagram in the Constructs package specifies the ValueSpecification, Expression, and OpaqueExpression

constructs

PackageableElsmant \ ‘ TypodE lemant |

ral

ValueSpecification

[

i

DpagueExpression

| + body : 5
|+ languacd

ring [7] [nonunigue, orderad)
String [7] {ondered)

Expression

{subsols ownedElamant. ordarod)

+ operand

0.1

& BXprasgon

{subsars owner)

Figure 1144 - The Expressions diagram of the Constructs package

11.3.1

Descript

Construct
Construct.

Generalii

e “V4

Attributes

No additi

EXpression
on

::ValueSpecification.

rations

nalattributes

lueSpecification™ on page 111

::Expression reuses the definition of Expression from Abstractions::Expressions. It adds a specidlization to

Associat

ions

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics

110

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

No additional notation
11.3.2 OpaqueExpression

Description

Constructs::OpaqueExpression reuses the definition of OpaqueExpression from Abstractions::Expressions. It adds a
specialization to Constructs::ValueSpecification.

Generalizations
« “P4ckageableElement” on page 151
+ “TypedElement” on page 137

Attributes
No additignal attributes

Associations

No additignal associations

Constraints

No additignal constraints

Semanti¢s

No additignal semantics

Notation

No additignal notation
11.3.3 YalueSpecification

Descriptjon

Construct$:: ValueSpecification reuses the definition of ValueSpecification from Abstractions::Expressions. [[t adds a
specialization to Constructs:: TypedElement.

Generalizations

« “Relationship” on page 109

Attributes

No additional attributes

Associations

No additional associations

© ISO/IEC 2012 - Al rights reserved 111

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Constraints

No additional constraints

Semantics

No additional semantics

Notation

No additignal notation

11.4 Classes Diagram

The Classgs diagram of the Constructs package specifies the Association, Class, and Property constructs and| adds features
to the Clagsifier and Operation constructs.

112 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Relationship
[\

redefinableElement} A\
+ classifier + /attribute
Classifi Property
0.1 * + isReadOnly : Boolean = false

{subsets featuringClassifier,
subsets redefinitionContext}

{readOnly, union, subsets
feature, subsets

ISO/IEC 19505-1:2012(E)

StructuralFeature

Association

{subsets memberNamespace}

+ isDerived

[T Boolean = talse

{ordered, subsets member}

+ default : String [0..1]
+ isComposite : Boolean = false

+isDerived. . Bool =falsa.

{subsets redefinedElement}

+ redefinedProperty

*

*

+ association

+ memberEnd

0..1

{subsets association,
subsets featuringClassifier,
subsets namespace}

+ owningAssociation

2.%

{ordered, subsets memberEnd, subsets
feature, subsets ownedMember}

+ ownedEnd

>
0..1

{subsets owningAssociation}

+ association

*

{subsets ownedEnd}

+ navigableOwnedEnd

0..1

{subsets relationship}

+ association

*

{readOnly, subsets relatedElement}

+ /endType

Class|

*

{subsets classifier, subsets namespace}

+ class

Class

>|| Type

1.

+ isDerivedUnion : Boolean = false
+ isID : Boolean = false

+ property,

{subsets redefinableElement}

+ subsettedPrpperty

*

*

+ /opposite

0..1

0..1

{ordered, subsets-attribute, subsets ownedMember}

+ ownedAttribute

t

+ isAbstrac]

: Boolean = false 0..1

{subsets featuringClassifier,
subsets redefinitionContext,
subsets namespace}

+ class

*

Property

{ordered, subsets feature,
subsets redefinableElement,
subsets ownedMember}

>
0..1

{redefines general}
+ superClass

*

*

Figure 11

11.4.1 |

ASSOC

An associ

+ Class
{subsetsclassifier}

jation

+ ownedOperation
Operation

*

5 - The Classes diagram of the Constructs package

n is called a

— 1 1 e 1 1 1 £ Pt 1. A b £ s
dalIUIl UCSCUITUCS a th U tUpIcs wiiustT valucs ITICTH U 1y plu lllbtallbcb. ALl umiauuc Ul dall dbbUbldil

link.A link is a tuple with one value for each end of the association, where each value is an instance of the type of the

end.

Descript

ion

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of an association may
have the same type.

© ISO/IEC 2012 - All rights reserved

113

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

An end property of an association that is owned by an end class or that is a navigable owned end of the association
indicates that the association is navigable from the opposite ends, otherwise the association is not navigable from the
opposite ends.

Generalizations

+ “Classifier” on page 132

« “R¢lationship” on page 109

Attribut

* isDerived : Boolean
Specifies whether the association is derived from other model elements such as other aSsoe€iations or ¢

e default value is false.

Associations

e memb
E
a

* owne
T

d

* /end]
R

* navig
T
Constrai
[1] Anas
p

[2] Whenl
gener

S

[3] endTy

erEnd : Property [2..*]
ach end represents participation of instances of the classifier connectedto the end in links of the asso
h ordered association. Subsets Namespace::member.

IEnd : Property [*]
he ends that are owned by the association itself. This is an‘rdered association. Subsets Association. .
lassifier: :feature, and Namespace::ownedMember.

ype: Type [1..%]
eferences the classifiers that are used as types of.fhe ends of the association.

bleOwnedEnd : Property [*]
he navigable ends that are owned by the:asSociation itself. Subsets Association.ownedEnd.

hts
bociation specializing another.association has the same number of ends as the other association.

brents()->select(oclisKindOf(Association)).oclAs Type(Association)->
forAll(p | p.memberEnd->size() = self. memberEnd->size())

an association specializes another association, every end of the specific association corresponds to a
1 association, and\the specific end reaches the same type or a subtype of the more general end.

equence{1.,self.memberEnd->size()}->
forAll(ir| self.general->select(oclIsKindOf(Association)).oclAs Type(Association)->
forAll(ga |self.memberEnd->at(i).type.conformsTo(ga.memberEnd->at(i).type)))

pesis‘derived from the types of the member ends.

bnstraints.

ciation. This is

memberEnd,

h end of the

self,ede\Jllnn =self mnmhannr‘I->r‘nllpr‘f(n ! e fypp)

[4] Only binary associations can be aggregations

self.m

emberEnd->exists(isComposite) implies self. memberEnd->size() = 2

[5] Association ends of associations with more than two ends must be owned by the association.

if memberEnd->size() > 2

then ownedEnd->includesAll(memberEnd)

114

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same

set of instances. In such a case, links carry an additional identifier apart from their end values.

When ong

For an ass
of links of
multiplicit
will be or

Subsetting
not to the
that it is s
the subset

= £ 41 rat = dTlisa] | 3 11ty 4 " ddats ta-thai
O THOTC OO S OT T aS SOCTAat O arC-OTOCT OO, TS~ CalT y - OTOCT T S T OTITa trOT T aCraTtroT tO— o

pciation with N ends, choose any N-1 ends and associate specific instances with those ends~Ihen
the association that refer to these specific instances will identify a collection of instance$ atthe
y of the association end constrains the size of this collection. If the end is marked as ordered, th
ered. If the end is marked as unique, this collection is a set; otherwise, it allows duplicate elems

b represents the familiar set-theoretic concept. It is applicable to the collections represented by ass|
pssociation itself. It means that the subsetting association end is a collectiomrthat is either equal to
Ibsetting or a proper subset of that collection. (Proper subsetting implies.that the superset is not ¢
has fewer members.) Subsetting is a relationship in the domain of extensional semantics.

Specializ

characterized the criteria whereby membership in the collection is defin€d, not by the membership. One cl
specialize|another by adding or redefining features; a set cannot specialize another set. A naive but popula
view has it that as the classifier becomes more specialized, the extent of the collection(s) of classified objec]
the case off associations, subsetting ends, according to this view, correlates positively with specializing the
This view|falls down because it ignores the case of classifiets“which, for whatever reason, denote the empt
new criterfia for membership does not narrow the extent if‘the classifier already has a null denotation.

Redefiniti
to change
classifier,
redefinitid

The comb
11.4.5 in

associatio
redefined

For n-ary
associatio
ends.

An associ

tion is in contrast to Subsetting a relationship in the domain of intensional semantics, which is t

n is a relationship between features of classifiers within a specialization hierarchy. Redefinition|
the definition of a feature, and thereby introduce a specialized classifier in place of the original

n from specialization.

nation of constraints [1,2] @bove with the semantics of property subsetting and redefinition speci
onstraints [3,4,5] imply that any association end that subsets or redefines another association en
h of the subsetting or‘redefining association end to be a specialization of the association of the s
pssociation end respectively.

associations, the lower multiplicity of an end is typically 0. A lower multiplicity for an end of aj
h of 1 (ormore) implies that one link (or more) must exist for every possible combination of value

htion imay represent a composite aggregation (i.e., a whole/part relationship). Only binary associg

end values.

the collection
ther end. The
s collection
nts.

pbciation ends,
the collection
mpty and that

say it
issifier may

- and useful
ts narrows. In
association.
y set. Adding

may be used
featuring

but this usage is incidental. The difference in domain (that redefinition applies to features) diffedentiates

lied in section
i forces the
ibsetted or

| n-ary
5 for the other

tions can be

aggregati

ral 14 41 % % £ £ 41 that H VR 4. Lo il
IS CUTITPUSTIC A S ETCEATTUIT TS~ d- ST UTTE TUTHT UT dg ST S dtTUIT tIdt TUHUTI S ~d- Pal T IS taliC T O U TIIC IO

ed in at most

one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of all elements of the subgraph below that element.
Composition is represented by the isComposite attribute on the part end of the association being set to true.

© ISO/IEC 2012 - All rights reserved

115

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Navigability means instances participating in links at runtime (instances of an association) can be accessed efficiently
from instances participating in links at the other ends of the association. The precise mechanism by which such access is
achieved is implementation specific. If an end is not navigable, access from the other ends may or may not be possible,
and if it is, it might not be efficient. Note that tools operating on UML models are not prevented from navigating
associations from non-navigable ends.

Semantic Variation Points

The order

The logicg

Notation

Any assog
connecting
this way.

A binary 3
classifier {
segments
resizing af

An associ

Thg
cor

A'S
ass

Aq
pro
Aq

On
ass
end
dirg
puf]
rels

and way in which part instances in a composite are created is not defined.

1 relationship between the derivation of an association and the derivation of its ends is not defin

iation may be drawn as a diamond (larger than a terminator on a line) with a salid-line for each as
b the diamond to the classifier that is the end’s type. An association with more than two ends can

ssocation is normally drawn as a solid line connecting two classifiérs) or a solid line connecting
o itself (the two ends are distinct). A line may consist of one orurore connected segments. The §

I association symbol.
htion symbol may be adorned as follows:

association’s name can be shown as a name string ni¢ar the association symbol, but not near enough
fused with the end’s name.

lash appearing in front of the name of an association, or in place of the name if no name is shown, m|
bciation as being derived.

perty string on an end. A property'string is a comma-delimited list of property expressions enclosed ir
roperty expression is, in the-simplest case, a name such as ‘redefines’ or ‘subsets.’

a binary association drawn-as a solid line, a solid triangular arrowhead next to or in place of the nam
bciation and pointingaleng the line in the direction of one end indicates that end to be the last in the
s of the association.)The arrow indicates that the association is to be read as associating the end away
ction of the arrow*with the end to which the arrow is pointing (see Figure 11.6). This notation is for ¢
poses only and-has no general semantic interpretation. It is used to capture some application-specific
tionship between the associated classifiers.

Ge

neralizations between associations can be shown using a generalization arrow between the associatio
S The conimection between the 1ine depicling an association and the iCon (Often a box

An association end 1

sociation end
nly be drawn

a single
ndividual

bf the line itself have no semantic significance, but they may be,graphically meaningful to a tool in dragging or

o an end to be

arks the

roperty string may be placed near the-association symbol, but far enough from any end to not be conffused with a

curly braces.

c of the

brder of the

' from the
locumentation
detail of the

h symbols.

epicting the

connected classifier. A name string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various ot

her notations can be placed near the end of the line as follows:

« A multiplicity.

» The BNF for property strings on association ends is:

116

<property-string> ::= {' <end-property> [',' <end-property>]* '}’

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

<end-property> ::=

(

'subsets' <property-name> | 'redefines' <end-name>
)

where <property-name> and <end-name> are names of user-provided properties and association ends found in the
model context.

11 an association end is navigable, attribute-properties defined for attributes are legal as end-properties [n the property
sfring for that association end.

Note that by default an association end represents a set.

A stick arfowhead on the end of an association indicates the end is navigable. A small x oncthie’end of an gssociation
indicates the end is not navigable. A visibility symbol can be added as an adornment on andvigable end to show the end’s
visibility ¢s an attribute of the featuring classifier.

If the assdciation end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is sfown.

The notation for an attribute can be applied to a navigable end name as specified in the Notation sub clause [of “Property”
on page 126.

A composfite aggregation is shown using the same notation as a binapy association, but with a solid, filled diamond at the

aggregate [end.

Presentation Options

When twq lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that tHe lines do not
intersect (ps in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

« Show all arrows and xs. Navigation and its absence are made completely explicit.

 Suppress all arrows and xs.\No inference can be drawn about navigation. This is similar to any situation|in which
infprmation is suppressed/from a view.

+ Suppress arrows forassociations with navigability in both directions, and show arrows only for associatjons with one-
way navigability-~In this case, the two-way navigability cannot be distinguished from situations where there is no
nayigation apall; however, the latter case occurs rarely in practice.

If there arp two-et more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a singless€gment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.

© ISO/IEC 2012 - Al rights reserved 117

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

Figure 11.6 shows a binary association from Player to Year named PlayedInYear. The solid triangle indicates the order of
reading: Player PlayedInYear Year. The figure further shows a ternary association between Team, Year, and Player with
ends named team, season, and goalie respectively.

x i_E[a_yedlnYnnr

Year

year

season

Team

Player

team goalie

Figure 116 - Binary and ternary associations

The follo}ing example shows association ends with various adornments:

A

a b

B

{ordered}

d

1 0..1

Figure 11.
The folloy

118

Na
Mu
Sp¢
Sul

{subsets b}

7 - Association ends with various adornments

ing adornments are shown on the four association ends in Figure 11.7.
mes a, b, and d on/thrée of the ends.

Itiplicities Ol 0n a, * on b, 1 on the unnamed end, and 0..1 on d.

cification-ef ordering on b.

straint:

Ccorl

sefting on d. For an instance of class C, the collection d is a subset of the collection b. This is equival¢nt to the OCL

context C inv: b->includesAll(d)

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

The following examples show notation for navigable ends.

a b
A B
1.4 2.5
C d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5
[j
| J
1.4 2.5

Figure 118 - Examples of navigable ends

In Figure [11.8:
« The¢ top pair AB shows a binary association with two navigable ends.
+ Th¢ second pair CD shows a binary associatien with two non-navigable ends.
 Th¢ third pair EF shows a binary association with unspecified navigability.
 The¢ fourth pair GH shows a binary association with one end navigable and the other non-navigable.
« The fifth pair IJ shows a binary association with one end navigable and the other having unspecified nayigability.

Figure 119 shows that the attribute notation can be used for an association end owned by a class, because §n association
end ownedl by a class is also_an attribute. This notation may be used in conjunction with the line-arrow notption to make
it perfectly clear that the-attribute is also an association end.

b: B[]

Figure 11.9 - Example of attribute notation for navigable end owned by an end class
Figure 11.10 shows the notation for a derived union. The attribute A::b is derived by being the strict union of all of the

attributes that subset it. In this case there is just one of these, Al::bl. So for an instance of the class Al, bl is a subset of
b, and b is derived from bl.

© ISO/IEC 2012 - Al rights reserved 119

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

/b {union}
a
A B
L‘l 0.1 0. L‘l
a b1
A1 B1
0..1 0.

{subsets b}

Figure 11./10 - Example of a derived union

Figure 11J11 shows the black diamond notation for composite aggregation.

+scrollpar

Slider

Header Panel

Figure 11 /11 - Composite aggregation is depictedcas a black diamond
11.4.2 Class

A class dgscribes a set of objects that share the same specifications of features, constraints, and semantics.
Construct§::Class merges the definition of Basic::Class with Constructs::Classifier.

Descript{on

Class is a kind of classifier whose features are attributes and operations. Attributes of a class are representedl by instances
of Properjy that arerowned by the class. Some of these attributes may represent the navigable ends of binary associations.

Generalizations

. “C i 129
ASSITIVT JIT 1}“5\/ rJ .

Attributes

* isAbstract : Boolean
This redefines the corresponding attributes in Basic::Class and Abstractions. : Classifier.

120 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Associations

+ ownedAttribute : Property [*]
The attributes (i.e., the properties) owned by the class. This is an ordered association. Subsets Classifier: :attribute
and Namespace::ownedMember.

+ ownedOperation : Operation [*]
The operations owned by the class. This is an ordered association. Subsets Classifier:.feature and

NamespaceownedMember.

« super(lass : Class [*]
This gives the superclasses of a class. It redefines Classifier::general.

Constraints

No additignal constraints

Additionpl Operations
[1] The inherit operation is overridden to exclude redefined properties.

Class|:inherit(inhs: Set(NamedElement)) : Set(NamedElement);

inheri{ = inhs->excluding(inh |
opvnedMember->select(ocllsKindOf(RedefinableElement))->seléct(redefinedElement->includes(inh)))

Semanti¢s

The purpdse of a class is to specify a classification of objects-and to specify the features that characterize the structure
and behavjior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with|the
characterigtics of the attribute, for example its typ&-and multiplicity.

When an ¢bject is instantiated in a class, for‘every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for fhie instantiation, then the default value specification is evaluated to set the
initial valyie of the attribute for the objeet.

Operationf of a class can be inyoked on an object, given a particular set of substitutions for the parameterg of the
operation.| An operation invo¢ation may cause changes to the values of the attributes of that object. It may[also return a
value as a|result, where a result type for the operation has been defined. Operation invocations may also cayse changes in
value to tle attributes of-other objects that can be navigated to, directly or indirectly, from the object on which the
operation |is invoked;.t0 its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operatjon’s execution. Operation invocations may also cause the creation and deletion of objects.

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the word “class” need not be
shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom
compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

© ISO/IEC 2012 - Al rights reserved 121

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

« Center class name in boldface.

 Capitalize the first letter of class names (if the character set supports uppercase).

Leﬁjuoﬁf_y attl i:JthUb aud UPCI aﬁuua ill P‘laill fabU.
« Begin attribute and operation names with a lowercase letter.
» Puflthe class name in italics if the class is abstract.

« Shew full attributes and operations when needed and suppress them in other contexts or Wwhen merely referring to a

clags.
Examples
Window Window
+ size: Area = (100, 100)
visibility: Boolean = true
+ defaultSize: Rectangle
- xWin: XWindow
Window display()
size: Arda hide() _ _
visibility] Boolean - attachX(xWin: XWindow)
display(
hide()

Figure 11.[12 -Class notation: details suppressed, analysis-level details, implementation-level details

122 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility—Bootearm—=troe
private
xWin: YWindow
public
display|
hide()
private
attachX(xWin: XWindow)

~

Figure 11113 - Class notation: attributes and operations grouped according to visibility

11.4.3 Classifier

Note — (additional properties - see “Classifier” on page 132).

Descriptjon

Construct§::Classifier is defined in the Classifiers diagram. A Classifier is a Type. The Classes diagram adfls the
associatioh between Classifier and Property that represents'the attributes of the classifier.

Generalizations
« “Type” on page 136

« “Namespace” on page 150

Attributées
No additignal attributes

Associations

o attribyte: Propefty; [*]
efers torall of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier.|Subsets
lassifier::feature and is a derived union.

Constraints
No additional constraints

Semantics

All instances of a classifier have values corresponding to the classifier’s attributes.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

© ISO/IEC 2012 - Al rights reserved 123

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

An attribute can be shown as a text string. The format of this string is specified in the Notation sub clause of “Property”
on page 126.

All redefinitions should be made explicit with the use of a {redefines <x>} property string. Matching features in
subclasses without an explicit redefinition result in a redefinition that need not be shown in the notation. Redefinition
prevents inheritance of a redefined element into the redefinition context thereby making the name of the redefined
element ayailable for reuse, either for the redefining element, or for some other.

Presentation Options

The type, pisibility, default, multiplicity, property string may be suppressed from being displayed, even if th
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

The attribjite compartment is often suppressed, especially when a data type does not contain attributes. Thg
compartmpnt may be suppressed. A separator line is not drawn for a missing cempartment. If a compartmg
suppressedl, no inference can be drawn about the presence or absence of elements in it. Compartment namg
to remove| ambiguity, if necessary.

Additiona] compartments may be supplied to show other predefined ef user-defined model properties (for ¢
show busihess rules, responsibilities, variations, events handled, exeeptions raised, and so on). Most comps
simply lists of strings, although more complicated formats arelalso possible. Appearance of each compartnj
preferably] be implicit based on its contents. Compartment ndmes may be used, if needed.

A data-tyyl

type eithet inside the rectangle or below the icon. Qther contents of the data type are suppressed.

Style Guijdelines

Center the name of the data type in boldface.

emter keyword (including stereotype names) in plain face within guillemets above data-type name.

Fo1l those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e.,
with an uppercase character).

Leftt justify attributes and operations in plain face.
Begin attribute)and operation names with a lowercase letter.

Show full attributes and operations when needed and suppress them in other contexts or references.

ere are values

operation
nt is
s can be used

xample, to
rtments are
ent should

e symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with the namne of the data

begin them

A b + . 1l - el 1 1 it h W S PR 1 £4 £ 11 + —
ttribute mrames LypItdally UUZIII WIUD d TOWCITAST TTLCT. IVIUTUWUIU TIAIIICS dIT UICIT TOTHITU Uy COLILAlTCIIAdUT

and using lowercase for all letters, except for upcasing the first letter of each word but the first.

124

g the words

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

ClassA

name: String

shape: Rectangle

+ size: Irlteger [0..1]

/ area: Irfteger {readOnly}
height: Integer= 5

width: Infeger

ClassB

id {redefines name}
shape: Jquare

height =[7
/ width

Figure 11114 - Examples of attributes
The attribptes in Figure 11.14 are explained below.
+ ClgssA::name is an attribute with type String.
+ ClgssA::shape is an attribute with type Rectangle.
« ClgssA::size is a public attribute with type Integer with multiplicity 0..1.
+ ClgssA::area is a derived attribute with«type Integer. It is marked as read-only.
+ ClgssA::height is an attribute of type’Integer with a default initial value of 5.
+ ClgssA::width is an attribute of type Integer.
« ClgssB::id is an attribute that redefines ClassA::name.
« ClgssB::shape is anvattribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

 ClgssB::heightys an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances whjch overrides
the|ClassA-default of 5.

« C

—_

q4ssBwidth is a derived attribute that redefines ClassA::width, which is not derived.

© ISO/IEC 2012 - Al rights reserved 125

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure

11.15.
size
Window 1 Area
Figure 11./15 - Association-like notation for attribute
11.4.4 Operation
Note — (additional properties - see “Operation” on page 156).
Description
Constructg::Operation is defined in the Operations diagram. The Classes diagram adds the association betw
and Class|that represents the ownership of the operation by a class.
Generalizations
« “BghavioralFeature” on page 154
Attributes
No additignal attributes

Associations

e class
R
N
Constrai

No additi

Semantig

An operat

Class [0..1]
edefines the corresponding assoCiation in Basic. Subsets RedefinableElement. :redefinitionContext,
lamedElement: :namespace andFeature: :featuringClassifier.

hts

nal constraints

LS

on may be owned by and in the namespace of a class that provides the context for its possible rq

pen Operation

definition.

11.4.5

A property is a structural feature of a classifier that characterizes instances of the classifier. Constructs::Property merges
the definition of Basic::Property with Constructs::StructuralFeature.

A property related by ownedAttribute to a classifier (other than an association) represents an attribute and might also
represent an association end. It relates an instance of the class to a value or set of values of the type of the attribute.

A property related by memberEnd or its specializations to an association represents an end of the association. The type of
the property is the type of the end of the association.

126

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs::TypedElement. The range of valid values represented by the property can
be controlfled by setting the property’s type.

Generalizations

+ “StfucturalFeature” on page 135

Attributes

+ isDerivedUnion : Boolean
Specifies whether the property is derived as the union of all of the properties that are constrained to supset it. The
dpfault value is false.

* isReaflOnly : Boolean
This redefines the corresponding attribute in Basic.:Property and Abstractions::StructuralFeature. The default value
iy false.

+ isID :|Boolean
Tyue indicates this property can be used to uniquely identify an instance of the containing Class. Default value is false

Associations

« assocfation: Association [0..1]
eferences the association of which this préperty is a member, if any.

* ownirlgAssociation: Association [0..1]
eferences the owning association, of this property, if any. Subsets Property::association,
amedElement: :namespace, and Feature: :featuringClassifier.

* redefipedProperty : Property [*]
cferences the properties'that are redefined by this property. Subsets RedefinableElement: :redefinedEjement.

* subseftedProperty : Propesty [*]
eferences the properties of which this property is constrained to be a subset.

* /oppgsite : Property [0..1]
In the caseswhere the property is one navigable end of a binary association with both ends navigable, this gives the
other énd.

D class 1Class [Q 1]
References the Class that owns the Property. Subsets NamedElement: :namespace, Feature::featuringClassifier

Constraints

[1] Ifthis property is owned by a class, associated with a binary association, and the other end of the association is also owned
by a class, then opposite gives the other end.

opposite =
if owningAssociation->isEmpty() and association.memberEnd->size() = 2 then
let otherEnd = (association.memberEnd - self)->any() in

© ISO/IEC 2012 - Al rights reserved 127

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

if otherEnd.owningAssociation->isEmpty() then otherEnd else Set{} endif
else Set {}
endif
[2] A multiplicity of a composite aggregation must not have an upper bound greater than 1.
isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)

[3] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.

subsettedProperty->notEmpty() implies
(qubsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |

sp.subsettingContext()->exists(c | sc.conformsTo(c)))))

[4] A redg¢fined property must be inherited from a more general classifier containing the redefining property.
if (redefinedProperty->notEmpty()) then
(redgfinitionContext->notEmpty() and
redefinedProperty->forAll(rp|
((nedefinitionContext->collect(fc|
c.allParents()))->asSet())->
collect(c| c.allFeatures())->asSet()->
includes(rp))
[S] A subpetting property may strengthen the type of the subsetted property, and its upper bound may be less.
subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and
((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound{)))
[6] A derfved union is derived.
isDeriyedUnion implies isDerived
[7] A der{ved union is read only
isDeriyedUnion implies isReadOnly
[8] The vhlue of isComposite‘istrue only if aggregation is composite.
isConlposite = (self.aggreégation = #composite)
[9] A Property cannotbe subset by a Property with the same name
if (self.subsettedProperty->notEmpty()) then
sglf.subséttedProperty->forAll(sp | sp.name <> self.name)

Additional Operations

[1] The query isConsistentWith() specifies, for any two Properties in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining property is consistent with a redefined property if the type of the
redefining property conforms to the type of the redefined property, and the multiplicity of the redefining property (if
specified) is contained in the multiplicity of the redefined property.

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean

pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = redefinee.ocllsKindOf(Property) and
let prop : Property = redefinee.oclAsType(Property) in
(prop.type.conformsTo(self.type) and

128 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

((prop.lowerBound()->notEmpty() and self.lowerBound()->notEmpty()) implies
prop.lowerBound() >= self.lowerBound()) and
((prop.upperBound()->notEmpty() and self.upperBound()->notEmpty()) implies

prop.lowerBound() <= self.lowerBound()) and
and (self.isComposite implies prop.isComposite))

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the

corres

ponding classifier, and in the case of an association end, all of the classifiers at the other ends.

Propegty-subsettingContext(}+Set(Type)
subseittingContext =
iflassociation->notEmpty()
then association.endType-type

e

e

[3] Theq
Prope
IsNav|

[4] Theq

context Property::isAttribute(p : Property) : Boolean

p

Semanti

When a p
the class d
the associ
instance o
context fo
end the cq

The value
Property i
the size o

Property 4

values maly not contain, duplicates. When isOrdered is true (false being the default) the collection of values

se if classifier->notEmpty() then Set{classifier} else Set{} endif

hdif

hery isNavigable indicates whether it is possible to navigate across the property.

rty::isNavigable() : Boolean

gable = not classifier->isEmpty() or
association.owningAssociation.navigableOwnedEnd->includes(self)

hery isAttribute() is true if the Property is defined as an attribute of some classifier
bst: result = Classifier.allinstances->exists(c| c.attribute->in€ludes(p))

LS
operty is owned by a classifier other than an_association via ownedAttribute, then it represents a
r data type. When related to an association via‘memberEnd or one of its specializations, it repres
hition. In either case, when instantiated a property represents a value or collection of values assog
[one (or in the case of a ternary or higher-order association, more than one) type. This set of type
I the property; in the case of an attfibute the context is the owning classifier, and in the case of 4
ntext is the set of types at the other end or ends of the association.

or collection of values instantiated for a property in an instance of its context conforms to the pr
hherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These boun
the collection. Typieally and by default the maximum bound is 1.

Iso inherits the.isUnique and isOrdered meta-attributes. When isUnique is true (the default) the

n attribute of
ents an end of
iated with an
s is called the
n association

operty’s type.
ds constrain

tollection of
is ordered. In

combinatipn these tworallow the type of a property to represent a collection in the following way:
Table 11.1 - Collection types for properties

isOrdered istmique Cotlectiomtype

false true Set

true true OrderedSet

false false Bag

true false Sequence

© ISO/IEC 2012 - All rights reserved

129

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e., clients

cannot directly change values). But where a deriv
appropriate :

derived py
The name

A derived
the derival

If a prope
redefining

If a navig

A propert)
conforms

an instanc
correspon

A propert)
some cont

ed property is changeable, an implementation is e

operty. The derivation for a derived property may be specified by a constraint.
and visibility of a property are not required to match those of any property it redefines.

property can redefine one that is not derived. An implementation must ensure that th¢ constraint
ion are maintained if the property is updated.

'ty has a specified default, and the property redefines another property with a specified default, t
property’s default is used in place of the more general default from theredefined property.

ible property is marked as readOnly, then it cannot be updated once{ifyhas been assigned an initi

may be marked as a subset of another, as long as every elemént'in the context of the subsetting
o the corresponding element in the context of the subsetted property. In this case, the collection a

ling instance of the subsetted property.

may be marked as being a derived union. This means that the collection of values denoted by tl
ext is derived by being the strict union of all ofdhe values denoted, in the same context, by prop

to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of all the suj

null or the

A property
of this is 1
attributes

value) tup
order and
values are|

Notation

The follov
additional

same.

may be marked as being (part of) the identifier (if any) for classes of which it is a member. The
pft open but this could be mapped to implementations such as primary keys for relational databas
n XML. If multiple properties ‘arée marked (possibly in superclasses) then it is the combination of
les that will logically provide the uniqueness for any instance. Hence there is no need for any sp
it is possible for some (but not all) of the property values to be empty. If the property is multiva
included.

ing general‘notation for properties is defined. Note that some specializations of Property may al
notatienal forms. These are covered in the appropriate Notation sub clauses of those classes.

e of the subsetting property must be included in (or the same as) the collection associated with the

xpected to make

traint for the

s implied by

hen the

1l value.

property
sociated with

le property in
erties defined
bsets must be

interpretation
e tables or ID
the (property,
bcification of
ued, then all

50 have

<property> ::= [<visibility>] [/'] <name> [*:" <prop-type>] [‘[<multiplicity> ‘]’] [‘=" <defau

r>]

where:

[{ " <prop-modifier > [*,” <prop-modifier >]* }’]

« <visibility> is the visibility of the property (See “VisibilityKind” on page 91).

<visibility> ::= "+ -*

« ‘/’ signifies that the property is derived.

» <name> is the name of the property.

130

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

« <prop-type> is the name of the Classifier that is the type of the property.

« <multiplicity> is the multiplicity of the property. If this term is omitted, it implies a multiplicity of 1 (exactly one). (See
“MultiplicityElement” on page 134.)

« <default> is an expression that evaluates to the default value or values of the property.

« <prop-modifier > indicates a modifier that applies to the property.

All redefipitions shall be made explicit with the use-of a {redefines <x>} property string. Redefinition pre}

inheritanc
available

11.5

The Class

RedefinableElement, Feature,,and StructuralFeature. In each case these concepts are extended and redefine

correspon

where:

<prop-modifier> ::= ‘readOnly’ | ‘union’| ‘subsets‘ <property-name> |

‘redefines’ <property-name> | ‘ordered’ | ‘unique’| ‘id’ | <prop-constraint>

readOnly means that the property is read only.
union means that the property is a derived union of its subsets.

subsets <property-name> means that the property is a proper subset of the‘property identified by <f
name>.

redefines <property-name> means that the property redefines an inhetited property identified by <g
name>.

ordered means that the property is ordered.
unique means that there are no duplicates in a multi-valued property.
id means that the property is part of the identifier forthe class.

<prop-constraint> is an expression that specifies-a constraint that applies to the property.

e of a redefined element into the redefinition context thereby making the name of the redefined d
for reuse, either for the redefining,elément, or for some other.

Classifiers Diagram

fiers diagram of the €onstructs package specifies the concepts Classifier, TypedElement, Multip

ling definitions,in-Basic and Abstractions.

broperty-

roperty-

ents
lement

icityElement,

d from their

© ISO/IEC 2012 - All rights reserved

131

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Namespace Type NamedElamant
&
{read Only, union)
[rendOnby, union]
sfinitionCo + redefingdElemant
Classifier * MpdetinitionContaed RedefinableElement (_l‘
+ T SR I T SOt)
Fa
+ ganeral
ZI Elamant
e Faafure
+ featuringClassifier + feature o MultipticiryElemant
{subsets member} freadOnby, union} [readOnly, union, + wOndafed : Boolean
subsets member] ~Urique : Bodlsan
+ [inheripdblember : Nidwer ; Integar
 uppar | Unlimisdhatural
NamedElemant =2 Fa)
T TypedElarmant
TypedEigmant *pe | Type StructuralFeature
" 0.1

Figure 11.{16 - The Classifiers diagram of the Constructs package

11.5.1 Classifier

Descript|jon

Construct§::Classifier merges the, definitions of Classifier from Basic and Abstractions. It adds specializati
Constructy::Namespace and Canstructs::Type and the capability to specify that a classifier cannot be speci

generalizafion.
Generalizations
* “Type” on page 136

« “Namespace” on page 150

ns from
hlized by

Attributes

» isFinalSpecialization: Boolean
if true, the Classifier cannot be specialized by generalization. Note that this property is preserved through package
merge operations; that is, the capability to specialize a Classifier (i.e., isFinalSpecialization =false) must be preserved
in the resulting Classifier of a package merge operation where a Classifier with isFinalSpecialization =false is merged
with a matching Classifier with isFinalSpecialization =true: the resulting Classifier will have isFinalSpecialization

=false. Default is false.

132

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Associations

» /feature : Feature [*]
Redefines the corresponding association in Abstractions. Subsets Namespace::member and is a derived union.
Note that there may be members of the Classifier that are of the type Feature but are not included in this
association (e.g., inherited features).

Constraints
[1] The pfrents of a classifier must be non-final.

self.parents()->forAll(not isFinalSpecialization)

Semanti¢s

No additignal semantics

Notation

As definedl in Abstractions

11.5.2 Feature

Descriptjon

Construct§::Feature reuses the definition of Feature from Abstractions. It adds a specialization from
Construct}::RedefinableElement.

Generalizations

+ “R¢definableElement” on page 134

Attributes
No additignal attributes

Associations

» /featufingClassifier : Clas§ifier [1..¥]
Rledefines the corrésponding association in Abstractions. This is a derived union.

Constraints

No additignal censtraints

Semantics.

No additional semantics

Notation
As defined in Abstractions

© ISO/IEC 2012 - Al rights reserved 133

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

11.5.3 MultiplicityElement

Descripti

on

Constructs::MultiplicityElement reuses the definition of MultiplicityElement from Abstractions. It adds a specialization
from Constructs::Element.

Generali

+ “Element” on page 108

Attribut
No additiq

Associat|
No additid

Constrai
No additi

Semantig
No additi

Notation
As define

11.5.4

Descript

Constructs
from Con
Redefinab

Generalii

. “N

nal attributes

ions

nal associations

his

nal constraints

LS

nal semantics

I in Abstractions
RedefinableElement

on

::RedefinableElement teuses the definition of RedefineableElement from Abstractions. It adds a
tructs::NamedElenient and the capability for indicating whether it is possible to further redefine
[eElement.

rations

medElement” on page 149

Attributes

specialization
a

» isLeaf: Boolean
Indicates whether it is possible to further redefine a RedefinableElement. If the value is true, then it is not possible to
further redefine the RedefinableElement. Note that this property is preserved through package merge operations; that
is, the capability to redefine a RedefinableElement (i.e., isLeaf=false) must be preserved in the resulting
RedefinableElement of a package merge operation where a RedefinableElement with isLeaf=false is merged with a
matching RedefinableElement with isLeaf=true: the resulting RedefinableElement will have isLeaf=false. Default
value is false.

134

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Associations
* /redefinedElement: RedefinableElement[*]
This derived union is redefined from Abstractions.

* /redefinitionContext: Classifier[*]
This derived union is redefined from Abstractions.

Constrai

[1] Atleagt one of the redefinition contexts of the redefining element must be a specialization of at least one-ofithe redefinition
contexts for each redefined element.

self.rgdefinedElement->forAll(e | self.isRedefinitionContextValid(e))
[2] A redgfining element must be consistent with each redefined element.
[3] self.rgdefinedElement->forAli(re | re.isConsistentWith(self))A redefinable element can only, redefine non-leqf redefinable

elements

self.rgdefinedElement->forAll(not isLeaf)

Additiongal Operations

[1] The gpery isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinitioh is possible,
whether redefinition would be logically consistent. By default, this/s false; this operation must be overridden for
subclgsses of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
result|= false

[2] The gpery isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are
propetly related to the redefinition contexts of thespecified RedefinableElement to allow this element to r¢define the

other.|By default at least one of the redefinition contexts of this element must be a specialization of at leastjone of the
redefihition contexts of the specified elemént.

RedefinableElement::isRedefinitionContextValid(redefined: RedefinableElement): Boolean;
result|= self.redefinitionContext->exists(c | c.allParents()->includes(redefined.redefinitionContext))

Semanti¢s

No additignal semantics

Notation

As definedl in Abstractions

11.5.5 BtructuralFeature

Description

Constructs::StructuralFeature reuses the definition of StructuralFeature from Abstractions. It adds specializations from
Constructs::Feature, Constructs:: TypedElement, and Constructs::MultiplicityElement.

By specializing MultiplicityElement, it supports a multiplicity that specifies valid cardinalities for the set of values
associated with an instantiation of the structural feature.

© ISO/IEC 2012 - Al rights reserved 135

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations
+ “Feature” on page 133
» “TypedElement” on page 137
» “MultiplicityElement” on page 134

Attributes
No additiqnal attributes

Associations

No additignal associations

Constraints

No additignal constraints

Semanti¢s

No additignal semantics

Notation

As defined in Abstractions

11.5.6 Type

Description

Constructy:: Type merges the definitions of 7ype from Basic and Abstractions. It adds a specialization from
Construct§.:NamedElement.

Generalizations
« “NgamedElement” on page 149

» “PgckageableElement” on page 151

Attributes
No additiqnal attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

No additional semantics

136 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Notation

ISO/IEC 19505-1:2012(E)

As defined in Abstractions

11.5.7 TypedElement

Description

Construct:
from Con

Generali

. “N

Attributes

* type:
R

Associations

No additi

Constraints

No additi

Semanti
No additi

Notation
As define

11.6

The Consfraints diagram.of the Constructs package specifies the Constraint construct and adds features to t}

construct.

::TypedElement merges the definitions of TypedElement from Basic and Abstractions. It adds,a s
tructs::NamedElement.

rations

hmedElement” on page 149

Classifier [1]
edefines the corresponding attributes in both Basic and Abstractions.

nal associations
nal constraints
LS

nal semantics

| in Abstractions

Constraints Diagram

pecialization

1c Namespace

© ISO/IEC 2012 - All rights reserved

137

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

PackageableElement

T fordered

Namespace Constraint + consiralnedEEement El
* »

+ context + owhedRule
subsets ownedMermber
g {subsets namespace} { H Isubsets owner} {subsets ownedElemefht}
0.1 .+ awningConstraint + specification | 5= 20 Epacification

0.1 1

Figure 11[17 - The Constraints diagram of the Constructs package
11.6.1 Constraint

Description

Constructg::Constraint reuses the definition of Constraint from Abstractiouns::Constraints. It adds a special{zation to
PackageableElement.

Generalizations

» “PgckageableElement” on page 151

Attributes
No additignal attributes

Associations

inedElement: Element
edefines the corresponding property in Abstractions.

M const

* context: Namespace [0..1]
ecifies the Namespace that is the context for evaluating this constraint. Subsets NamedElement::namespace.

» speciffcation: ValueSpecification
edefines thé cotresponding property in Abstractions. Subsets Element.ownedElement.

Constrainpts

No additignalvéonstraints

Semantics

No additional semantics

Notation

No additional notation

138 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

11.6.2 Namespace

Note — (additional properties - see “Namespace” on page 150).

Description

Constructs::Namespace is defined in the Namespaces diagram. The Constraints diagram shows the association between

Namespa

Generali

. “N

Attributes

No additi

el M 41 ‘- RS | h L4l - MR |
Al COrSiralrit tuidt TOPITOUTHLS U UWIHCLSIHTP UL LU CULIUAUIL Uy a4 HallItspdalT.

rations

hmedElement” on page 149

nal attributes

Associa

M owne

Constrai
No additi

Semanti
No additi

11.7

The Data’l
Primitive’]
defining p

ions
Rule : Constraint [*]
edefines the corresponding property in Abstractions. Subsets Namiespace: :ownedMember.

ts

nal constraints

LS

nal semantics

DataTypes Diagram

[ypes diagram of the Constructs-package specifies the DataType, Enumeration, EnumerationLiter
[ype constructs, and adds, features to the Property and Operation constructs. These constructs are
rimitive data types (such as Integer and String) and user-defined enumeration data types. The da

typically ysed for declaring the‘types of the class attributes.

hl, and
used for
a types are

© ISO/IEC 2012 - All rights reserved

139

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Classifier

1

DRatalvn
JF

datatype ownedAttribute Property

0..1 {subsets namespace, {ordered «

subsets featuringClassifier, subsets attribute,
subsets classifier} subsets ownedMember}

datatype ownedOperation Operation

0..1 -
{subsets redefinitionContext, {ordered
subsets namespace, subsets feature,
subsets featuringClassifier} Subsets ownedMember}

Name dElement

i

PrimitiveType Enumeration enumeration ownedLiteral {{ EnumerationLiteral

>

0..1 *

{subsets namespace} {subsets:ownedMember,
ordered}

Figure 11{18 - The classes defined in the DataTypes-diagram
11.7.1 DPataType

Descriptjon

A data type is a type whose instances are identified only by their value. A DataType may contain attributes fo support the
modeling pf structured data types:

A typical pse of data types would be to represent programming language primitive types or CORBA basic [types. For
example, Integer and string types are often treated as data types.

Generalizations

» “Classifier” on page 132

Attributes
No additional attributes

Associations

* ownedAttribute: Property[*]
The Attributes owned by the DataType. This is an ordered collection. Subsets Classifier::attribute and
Namespace::ownedMember.

140 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

+ ownedOperation: Operation[*]
The Operations owned by the DataType. This is an ordered collection. Subsets Classifier:feature and
Namespace::ownedMember.

Constraints

No additional constraints

Additionlal Operations
[1] The inherit operation is overriden to exclude redefined properties
DataTlype::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherif=inhs->excluding(inh | ownedMember->
splect(ocllsKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semanti¢s

A data typje is a special kind of classifier, similar to a class. It differs from a class.if that instances of a dafa type are
identified [only by their value.

All copied of an instance of a data type and any instances of that data type\with the same value are considergd to be equal
instances. [Instances of a data type that have attributes (i.e., is a structured data type) are considered to be gqual if the

structure is the same and the values of the corresponding attribute$.are equal. If a data type has attributes, fhen instances
of that dafa type will contain attribute values matching the attribites.

Semanti¢ Variation Points

Any restrifctions on the capabilities of data types, such as constraining the types of their attributes, is a semgntic variation
point.

Notation

A data type is shown using the classifier'symbol with keyword «dataType» or when it is referenced by e.g}, an attribute,
shown as p string containing the name of the data type.

Examplejs

«dataType» size: Integer
Integer

Figure 11.19 - Notation of data type: to the left is an icon denoting a
data type and to the right is a reference to a data type that is used in an attribute.

11.7.2 Enumeration

An enumeration is a data type whose values are enumerated in the model as enumeration literals.

© ISO/IEC 2012 - Al rights reserved 141

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Description

Constructs::Enumeration reuses the definition of Enumeration from Basic. It adds a specialization to
Constructs::DataType.

Enumeration is a kind of data type, whose instances may be any of a number of predefined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Generalizations

« “DataType” on page 140.

Attributes
No additignal attributes

Associations

» ownedLiteral: EnumerationLiteral[*]
The ordered set of literals for this Enumeration. Subsets NamespacetzownedMember.

Constraipts

No additignal constraints

Semanti¢s

The run-time instances of an Enumeration are data valu€s: Each such value corresponds to exactly one
EnumeratjonLiteral.

Notation

An enumgration may be shown using the ‘classifier notation (a rectangle) with the keyword «enumeration»| The name of
the enumgration is placed in the upper‘cempartment. A compartment listing the attributes for the enumeratjon is placed
below the[name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartmpnt. A list of enumeration literals may be placed, one to a line, in the bottom compartment. The attributes and
operationy compartments may be'suppressed, and typically are suppressed if they would be empty.

142 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

s

ibility Kind

public

protec

private

ted

packd

e

Figure 11

11.7.3

An enumd

Descript

Construct;
Construct

Generali

. ch

Attributes

No additi

Associations

* enum
T]

Constraints

No additi

Semanti

An Enum

20 - Example of an enumeration
EnumerationLiteral
ration literal is a user-defined data value for an enumeration.

on

::EnumerationLiteral reuses the definition of Enumeration from Basic. It adds a specialization to
::NamedElement.

rations

hmedElement” on page 149

nal attributes

pration: Enumeration[0..1]
he Enumeration that this EnumerationLiteral is a member of. Subsets NamedElement::namespace

nal constraints

LS

pratignlkiteral defines an element of the run-time extension of an enumeration data type.

An Enumd

rationliteral has a name that can be used to Gﬂpnﬁfy 1t wathin its enumeration quafvpp The enund

eration literal

name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-ti

Notation

me values corresponding to enumeration literals can be compared for equality.

An EnumerationLiteral is typically shown as a name, one to a line, in the compartment of the enumeration notation (see
“Enumeration”).

© ISO/IEC 2012 - All rights reserved

143

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

See “Enumeration”

11.7.4 Operation

Note — (ad

ditional properties - see “Operation” on page 156)

Descript

Construct
Operation

Generalij

. “B

Attributes

No additig

Associations

* dataty
T
R
Constrai

No additig

Semantig

An operat
11.7.5

A primitiy
UML). A

Descript

Constructs

on

::Operation is defined in the Operations diagram. The DataTypes diagram shows the assocjation
and DataType that represents the ownership of the operation by a data type.

rations

havioralFeature” on page 154

nal attributes

pe : DataType [0..1]

edefinableElement: :redefinitionContext.

his

nal constraints

LS

on may be owned by and in‘the’namespace of a datatype that provides the context for its possibl
PrimitiveType

e type defines @ predefined data type, without any relevant substructure (i.e., it has no parts in th
primitive datatype may have an algebra and operations defined outside of UML, for example, m:

on

between

he DataType that owns this Operation. Subsets NamedElement: :namespace, Feature::featuringClassifier, and

e redefinition.

e context of
ithematically.

::PimitiveType reuses the definition of PrimitiveType from Basic. It adds a specialization to

Constructs:-Datalype.

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String (see Clause 12,

“Core::Pri

mitiveTypes”).

Generalizations

« “DataType” on page 140

144

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Attributes

No additional attributes

Associations

No additional associations

Constraihts

No additignal constraints

Semanti¢s

The run-tine instances of a primitive type are data values. The values are in many-to-one cgrrespondence to|mathematical
elements dlefined outside of UML (for example, the various integers).

Instances pf primitive types do not have identity. If two instances have the same representation, then they gre
indistingujshable.

Notation

A primitiye type has the keyword «primitive» above or before the name*of the primitive type.

Instances pf the predefined primitive types (see Clause 12, “Cor¢;:PrimitiveTypes”) may be denoted with the same
notation ap provided for references to such instances (see the subtypes of “ValueSpecification™).

Examplels

See Clausp 12, “Core::PrimitiveTypes” for examples
11.7.6 Property
Note — (additional properties - see “Property” on page 126)

Descriptjon

Construct§::Property is defined“in the Classes diagram. The DataTypes diagram shows the association between Property
and Datalype that represents the ownership of the property by a data type.

Generalizations

+ “StfucturalFeature” on page 135

Attributes

No additional attributes

Associations

+ datatype : DataType [0..1]
The DataType that owns this Property. Subsets NamedElement: :namespace, Feature: featuringClassifier, and
Property::classifier.

© ISO/IEC 2012 - Al rights reserved 145

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Constraints

No additional constraints

Semantics

A property may be owned by and in the namespace of a datatype.

11.8

Namespaces Diagram

The Namdspaces diagram of the Constructs package specifies Namespace and related constructs. It specifigs how named
elements gre defined as members of namespaces, and also specifies the general capability for any namespac¢ to import all
or individpal members of packages.

/\

NamedElement

+name : String [0..1]
+ visibility : VisibilityKind [0..1]
+ /qualifiedName : String [0..1] {readOnly}

«enumeration»
VisibilityKind

public
private
proteeted
package

{subsets memberNamespace}

{readOnly, union, subsets
owner, subsets

{readOnly, union, subsets
ownedElement, subsets

DirdctedRelationship

H ackagélmport

+ visibility : VisibilityKind = public

*

+ packagelmport

{subsets
directedRdlationsHip},

{subsets directedRelationship,
subsets ownedElement}

gt

memberNamespace} member}
* + namespace. + /namespace + JownedMember
PackageableEl it I N et 01 " NamediElement
+ /importedMember- * N
{readOnly, subsetsimember}
+ memberNamespace + /member
{readOnly, union}
{subsets | DirecteaRelationship |
{subsets source, {subsets source, directedRelationship
subsets owner} subsets owner} subsets ownedEIemént}
* + importingNamespace
+ importingNamespace + elementimport Elempntimport
+ packagelmport 1 P

1

Packags.
5

+ visibility : VigibilityKind = public
+ alias : String|[0..1]

+ elementimport
{subsets directedRelationship}

1

+

mportedPackage

+ URI : String [0..1]

{subsets target}

| PackageableElement

Figure 11.21 - The Namespaces diagram of the Constructs package

11.8.1 Elementimport

|
I+ importedElement
{subsets target}

An element import identifies an element in another package, and allows the element to be referenced using its name

without a qualifier.

146

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Generali

zations

« “DfrectedRelationship” on page 108

Attributes

e visibi

<

e alias:

P
Associa
* impo

2

1]

ity: VisibilityKind

Specifies the visibility of the imported PackageableElement within the importing Package) The defaul
th

sibility to the element import; default value is public.

String [0..1]

ackage. By default, no alias is used.

ions
edElement: PackageableElement [1]

visibility is

e same as that of the imported element. If the imported element does not have a visibility, it is possible to add

pecifies the name that should be added to the namespace of the importing Rackage in lieu of the namg of the
nported PackagableElement. The aliased name must not clash with any.other member name in the infporting

Specifies the PackageableElement whose name is to be.added to a Namespace. Subsets DirectedRelatipnship. :target.

* impo

ingNamespace: Namespace [1]

Specifies the Namespace that imports a PackageableElement from another Package. Subsets

Constrai

irectedRelationship::source and Element::owner.

ts

[1] The vjsibility of an ElementImport is ¢ither public or private.

self.vi

Sibility = #public or self.visibility.= #private

[2] An injportedElement has either public visibility or no visibility at all.

self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Addition

[1] Theq
name

pl Operations

pace.

Elemgntimport::getName(): String;

getName'=

hery getName() returns the name under which the imported PackageableElement will be known in thie importing

if self.alias->notEmpty() then

e

e

self.alias
Ise
self.importedElement.name
ndif

© ISO/IEC 2012 - All rights reserved

147

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import

individual elements without relying on a package import.

In case of a nameclash with an outer name (an element that is defined in an enclosing namespace is available using its

unqualified name in enclosed namespaces) in the importing namespace, the outer name 1s hidden by an gl¢]
and the urjqualified name refers to the imported element. The outer name can be accessed using its qualific

If more thhn one element with the same name would be imported to a namespace as a consequenge of elem
package iports, the elements are not added to the importing namespace and the names of these’ elements
qualified ip order to be used in that namespace. If the name of an imported element is the same)as the name
owned by|the importing namespace, that element is not added to the importing namespaééyand the name of
must be gpalified in order to be used. If the name of an imported element is the same as‘the name of an el
by the importing namespace, the name of the imported element must be qualified sn*erder to be used and is
the imporfing namespace.

An imporfed element can be further imported by other namespaces using either element or package import

The visibifity of the ElementImport may be either the same or more restricted than that of the imported elg

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace td
element. The keyword «import» is shown near the dashed @prow if the visibility is public, otherwise the keyy
is shown fo indicate private visibility.

ion Options

If the impprted element is a package, the keyword may optionally be preceded by element (i.e., «element i

As an alte
the imporf

rnative to the dashed arrow, it is possible to show an element import by having a text that uniqug

ed element withifi gurly brackets either below or after the name of the namespace. The textual sy
“{element import ~~<qualifiedName> ‘} | ‘ {element access ‘ <qualifiedName> ‘}’
Optionally, the aliased name may be shown as well:

“{element, import ‘ <qualifiedName> ‘as’ <alias> ‘} | ‘{element access ° <qualifiedName> ‘as’ <alias> ‘}

ment import,
d name.

ent imports or
must be

of an element
that element
bment owned
not added to

ment.

the imported
vord «access»

mport»).

ly identifies
ntax is then:

Examples

The element import that is shown in Figure 11.22 allows elements in the package Program to refer to the type Time in
Types without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not
imported. Type String can be used in the Program package but cannot be further imported from Program to other

packages.

148

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Types
«datatype»
Sil ;Ilu
«access» -~
«datatype»
Integer
Program «dz:_t:’altype»

«import» Ime

Figure 1122 - Example of element import

In Figure [11.23, the element import is combined with aliasing, meaning that-the type Types::Real will be referred to as
Double in|the package Shapes.

Types
Shapes
«import»
«d zatyr:e» <o Double c
eal [NTTTtee-———illl s ircle
radius: Double

Figure 1123 - Example of element import'with aliasing
11.8.2 NamedElement

Descriptjon

Construct§::NamedEl¢ment reuses the definition of NamedElement from Abstractions::Visibilitites. It adds specializations
from Confstructs::Element and Basic::NamedElement.

Generalizations

« “Element” on page 108

Attributes

* name: String [0..1]
The name of the NamedElement.

© ISO/IEC 2012 - Al rights reserved 149

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Associations

namespace: NamedElement [0..1]
The Namespace that owns this NamedElement. Redefines the corresponding property from
Abstractions::Namespaces::NamedElement.

Constraints

No additigral-constraints

Semanti¢s

No additignal semantics

Notation

No additiqnal notation
11.8.3 Namespace

Descriptjon

Constructg::Namespace reuses the definition of Abstractions::Constraints:: Namespace.

A namesphce has the ability to import either individual members'dr all members of a package, thereby maki
to refer to|those named elements without qualification in the importing namespace. In the case of conflicts,
to use quallified names or aliases to disambiguate the referenced elements.

Generalizations

Attributes
No additignal attributes

Associations

150

« “NamedElement” on page 149

elemeptlmport: ElementImport [*]
eferences the ElémentImports owned by the Namespace.Subsets Element::ownedElement.

/impoftedMembet;:‘PackageableElement [*]
eferencessthe PackageableElements that are members of this Namespace as a result of either Packagg
ementlmports. Subsets Namespace::member.

hNas A1 k]
/member-NamedEtement T 1

Redefines the corresponding property of Abstractions::Namespaces::Namespace.

/ownedMember: NamedElement [*]
Redefines the corresponding property of Abstractions::Namespaces::Namespace.

packagelmport: Packagelmport [*]
References the Packagelmports owned by the Namespace. Subsets Element::ownedElement.

ng it possible
t is necessary

Imports or

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Constraints
[1] The importedMember property is derived from the ElementImports and the PackageImports.

importedMember = self.elementimport.importedElement.asSet()->union(self.packagelmport.importedPackage->collect(p |
p.visibleMembers()))

Additional operations

[1] The query getNamesOfMember() is overridden to take account of importing. It gives back the set of names that an
element would have in an importing namespace, either because it is owned; or if not owned, then imponted| individually;
or if not individually, then from a package.

Namejspace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember=

fl self.ownedMember ->includes(element)
then Set{}->include(element.name)

(1]

se let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = elemenf) in
if elementimports->notEmpty()
then elementimports->collect(el | el.getName())
else
self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))
endif
enhdif
[2] The gpery importMembers() defines which of a set of PackageableElements are actually imported into the namespace.

This dxcludes hidden ones, i.e., those which have names that conflict with names of owned members, and also excludes
elements that would have the same name when imported.

Namefspace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);

imporfMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.|{mp.isDistinguishableFrom(mem,.self)))

[3] The gqpery excludeCollisions() excludes from a set of PackageableElements any that would not be distingujshable from
each gther in this namespace.

Nameispace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps=>reject(imp1 | imps.exists(imp2 | not imp1.isDistinguishableFrom(imp2, self)))

Semanti¢s

No additignal semantics

Notation

No additional notation

11.8.4 PackageableElement

A packageable element indicates a named element that may be owned directly by a package.
Description

A packageable element indicates a named element that may be owned directly by a package.

© ISO/IEC 2012 - Al rights reserved 151

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations

« “NamedElement” on page 149

Attributes
No additional attributes

Associations

No additiqnal associations

Constraipts

No additignal constraints

Semanti¢s

No additignal semantics

Notation

No additignal notation
11.8.5 Packagelmport

A packagg import is a relationship that allows the use of unqualified names to refer to package members fiom other
namespacgs.

Description

A packagg import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespacg.

Generalizations

» “DirectedRelationship’l on page 108

Attributes
» visibility: VisibilityKind
Specifies:the visibility of the imported PackageableElements within the importing Namespace, i.e., wh¢ther imported
elements' will in turn be visible to other packages that use that importingPackage as an importedPackage. If the
Phckagelmport is public, the imported elements will be visible outside the package, while if it is privafe they will
not. By default, the value of visibility is public.

Associations
+ importedPackage: Package [1]
Specifies the Package whose members are imported into a Namespace. Subsets DirectedRelationship::target.

* importingNamespace: Namespace [1]
Specifies the Namespace that imports the members from a Package. Subsets DirectedRelationship::source and
Element::owner.

152 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Constraints
[1] The visibility of a Packagelmport is either public or private.
self.visibility = #public or self.visibility = #private

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing

namespace adds-themamesof-themembersof-the paul\asc tottsowr Tranrespace: Cuubcptua}}_y, a pabl\aéc import is
equivalen{ to having an element import to each individual member of the imported namespace, unless ther¢ is already a
separatelyfdefined element import.

Notation

A packag¢ import is shown using a dashed arrow with an open arrowhead from the importing package to the imported
package. A keyword is shown near the dashed arrow to identify which kind of packagéximport that is interjded. The
predefined keywords are «import» for a public package import, and «access» for a private package import.

Presentation options

As an altefnative to the dashed arrow, it is possible to show a package import by having a text that uniquely] identifies the
imported package within curly brackets either below or after the name 6£the namespace. The textual syntax is then:

“{‘import ‘ <qualifiedName> ‘}’ | “{access ‘ <qualifiedName>}’

Examples

In Figure [11.24, a number of package imports are shown:.Phe elements in Types are imported to ShoppingCart, and then
further imported WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and|cannot be
referenced using unqualified names from WebShop:

1]
Auxilip « »
B Al —
] ’: ShoppingCart [€-<"2%2 -4 WebShop
Types é—’«’import»

Figure 1124 - Examples of public and private package imports

11.9 Operations Diagram

The Operations diagram of the Constructs package specifies the BehavioralFeature, Operation, and Parameter constructs.

© ISO/IEC 2012 - Al rights reserved 153

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

TypedElement MultiplicityElement
Feature Namespace
Z% Z% {subsets ownedMamber, Parameter
BehavioralFeature | {subsets namespace} ordered}
+ ownerFormalParam +ownedParameter default - String
> —>| direction : ParameterDirectionKind
0.1
+raisedException
Type
ParameterlirectionKind
in
inout
{subsets namespace} {redefines ownedParameter} ?z—;]tturn
Operation :;peration +ownedParameter\ p_ = meter
. 0.1 '
isQuery | Boolean
/isOrdergd : Boolean
/isUnique : Boolean
llower : Ipteger +type
/upper : UnlimitedNatural Type
0..1
{redefines raisedException}
+ raisedException
{subsets-context} {subsets ownedRule}
+préCantext +precondition
01 * Constraint
{subsets context} {subsets ownedRule}
‘e +postContext +postcondition
0..1 *
{subsets context} {subsets ownedRule}
+bodyContext +bodyCondition
[
0..1 0.1
{subsets redefinedElement}
+redefinedOperation

Figure 11.25 - The Operations diagram of the Constructs package
11.9.1 BehavioralFeature

Description

Constructs::BehavioralFeature reuses the definition of BehavioralFeature from Abstractions::BehavioralFeatures. 1t adds
specializations to Constructs::Namespace and Constructs::Feature.

154 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations

. “Fe

ature” on page 133

+ “Namespace” on page 150

Attributes

NO additi P uul uttl ;b Ut\/ﬂ

Associations

* ownedlParameter: Parameter|*]
Specifies the ordered set of formal parameters of this BehavioralFeature. Subsets Naunfespace::owné

* raise
R

Constraints

No additi

Additionpal Operations

[1] Theq

speciffies that they have to have different signatures.

Beha
isDist
f

then

e
e

Semanti
The list o

BehaviorallFeature 1s invoked or which are returned when the BehavioralFeature terminates.

The owne

xception: Type[*]
eferences the Types representing exceptions that may be raised during an invocation of this feature.

nal constraints

hery isDistinguishableFrom() determines whether two BehiavioralFeatures may coexist in the same N

ioralFeature::isDistinguishableFrom(n: NamedElement} ns: Namespace): Boolean;
hguishableFrom =
n.ocllsKindOf(BehavioralFeature)

if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->include(self)->include(n)->isUnique(bf | bf.ownedParameter->collect(type))
else true
endif

se true

ndif

LS

owned, paraimeters describes the order, type, and direction of arguments that can be given when

{1 parameters with direction in or inout define the type, and number, of arguments that must be p

dMember.

amespace. It

the

rovided when

invoking the BehavioralFeature. An owned parameter with direction out, inout, or return defines the type of the argument
that will be returned from a successful invocation. A BehavioralFeature may raise an exception during its invocation.

Notation

No additional notation

© ISO/IEC 2012 - All rights reserved

155

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

11.9.2 Operation

An operation is a behavioral feature of a classifier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

Description

£ hd 1 1 el e Nnivay ° rad aY o L 1.1 b - "
Constructs —.UPTTatiolr ICUSTS UIC UCIIIITTION O Operalion ITOIT DASIC. It adds d speClallZatiolnr to

Construct§::BehavioralFeature.

The specification of an operation defines what service it provides, not how this is done, and can include a list of pre- and

postconditions.

Generalizations

Attributes

156

« “Bg¢havioralFeature” on page 154

/isOrdered : Boolean
edefines the corresponding property from Basic to derive this information from the return result for this Operation.

isQuety : Boolean
Specifies whether an execution of the Operation leaves th€ state of the system unchanged (isQuery=triie) or whether
side effects may occur (isQuery=false). The default valug.is false.

/isUnique : Boolean
edefines the corresponding property from Basic\to derive this information from the return result for this Operation.

/loweft : Integer[0..1]
edefines the corresponding property fraim*Basic to derive this information from the return result for this Operation.

/uppet : UnlimitedNatural[0..1]
edefines the corresponding property from Basic to derive this information from the return result for this Operation.

nedRule.

ubsets

Namespace.ownedRule.

raisedException: Type[*]
References the Types representing exceptions that may be raised during an invocation of this operation. Redefines
Basic::Operation.raisedException and BehavioralFeature.raisedException.

redefinedOperation: Operation[*]
References the Operations that are redefined by this Operation. Subsets RedefinableElement.redefinedElement.

/type: Type[O0..1]
Redefines the corresponding property from Basic to derive this information from the return result for this Operation.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

Constrai

ISO/IEC 19505-1:2012(E)

nts

[17 An operation can have at most one return parameter (i.e., an owned parameter with the direction set to ‘return’).

ownedParameter->select(par | par.direction = #return)->size() <= 1

[2] Ifthis operation has a return parameter, isOrdered equals the value of isOrdered for that parameter. Otherwise isOrdered is

false.

isOrdered = if returnResult()->notEmpty() then returnResult()->any().isOrdered else false endif

[3] Ifthis
true.
isUni

[4] Ifthis
lower

[5] Ifthis
upper

[6] If this

type 9 if returnResult()->notEmpty() then returnResult()->any().type else Set{}’endif

[71 A bodyCondition can only be specified for a query operation.
body¢ondition->notEmpty() implies isQuery

Additionpl Operations

[1] The q
redefi
same

redefihed parameter.

A red
numb

corregponding redefined parameter or{return result.

Operdtion::isConsistentWith(redefinee: RedefinableElement): Boolean;

pre:r
result

[2] Theq

operation has a return parameter, 1IsUnique equals the value of 1sUnique for that parameter. Otherwis

jue = if returnResult()->notEmpty() then returnResult()->any().isUnique else true endif

operation has a return parameter, lower equals the value of lower for that parameter. Otherwise lower
= if returnResult()->notEmpty() then returnResult()->any().lower else Set{} endif

operation has a return parameter, upper equals the value of upper for that parameter.) Otherwise uppert
= if returnResult()->notEmpty() then returnResult()->any().upper else Set{} endif

operation has a return parameter, type equals the value of type for that parameter. Otherwise type is

lery isConsistentWith() specifies, for any two Operations in a context in which redefinition is possib

humber of owned parameters, and the type of &ach owned parameter conforms to the type of the corr|

efining operation is consistent with aredefined operation if it has the same number of formal parame
er of return results, and the type of each formal parameter and return result conforms to the type of th

pdefinee.isRedefinitionContextValid(self)
= (redefinee.ocllskKindOf(Operation) and
let op: Operation’ = redefinee.oclAsType(Operation) in
self.ownedParameter->size() = op.ownedParameter->size() and
Sequence{1..self.ownedParameter->size()}->
forAll(i | op.ownedParameter->at(1).type.conformsTo(self.ownedParameter->at(1).type))

horyreturnResult() returns the set containing the return parameter of the Operation if one exists, other

e isUnique is

is not defined.

is not defined.

hot defined.

e, whether

hition would be logically consistent. A redefiningloperation is consistent with a redefined operation if it has the

esponding

ers, the same
e

vise, it returns

an empty set

Operation::returnResult() : Set(Parameter);

return

Result = ownedParameter->select (par | par.direction = #return)

Semantics

An operation is invoked on an instance of the classifier for which the operation is a feature. A static operation is invoked

on the cla

ssifier owning the operation, hence it can be invoked without an instance.

© ISO/IEC 2012 - All rights reserved

157

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the body(ondition may be overridden when an operation is redefined, whereas postconditions can only be [added during
redefinitign.

An operatjon may raise an exception during its invocation. When an exception is raised, it shouldmot’be assumed that the
postcondifions or bodyCondition of the operation are satisfied.

An operatjon may be redefined in a specialization of the featured classifier. This redefinition' may specializp the types of
the formal parameters or return results, add new preconditions or postconditions, add new raised exceptionsf or otherwise
refine the [specification of the operation.

Each opertion states whether or not its application will modify the state of the(inistance or any other element in the model
(isQuery).

Semanti¢ Variation Points

The behayior of an invocation of an operation when a precondition {s not satisfied is a semantic variation point.

When operations are redefined in a specialization, rules regarding invariance, covariance, or contravariancg of types and
preconditipns determine whether the specialized classifier(is substitutable for its more general parent. Such| rules
constitute [semantic variation points with respect to redefinition of operations.

Notation

If shown if a diagram, an operation is shown &ds-a text string of the form:

[<visibility>] <name> ‘(* [<parameter<list>] °)’ [‘:" [<return-type>] [‘[<multiplicity>]’]
11 <oper-property> [‘,” <oper-property>]* }’]]

where:

« <wisibility> is the visibility of the operation (See “VisibilityKind” on page 91.)
<visibility> ::= &0}

=

» <ngme> is.the name of the operation.

o <rdtuyn~type> is the type of the return result parameter if the operation has one defined.

o <multiplicity> is the multiplicity of the return type. (See “MultiplicityElement” on page 134).

« <oper-property> indicates the properties of the operation
<oper-property> ::= ‘redefines’ <oper-name> | ‘query’| ‘ordered’ | ‘unique’ | <oper-constraint>

where:
* redefines <oper-name> means that the operation redefines an inherited operation identified by <oper-name>.
* query means that the operation does not change the state of the system.

* ordered means that the values of the return parameter are ordered.

158 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

* unique means that the values returned by the parameter have no duplicates.

» <oper-constraint> is a constraint that applies to the operation.

« <parameter-list> is a list of parameters of the operation in the following format:
<parameter-list> ::= <parameter> [, <parameter>]*
<parameter> ::= [<direction>] <parameter-name> ‘:’ <type-expression>
[[<multiplicity>"]’] [‘=" <default>] [{* <parm-property> [‘,” <parm-property>]* }’]

where:

» <direction> ::= ‘in’ | ‘out’ | ‘inout’ (defaults to ‘in’ if omitted).

» <parameter-name> is the name of the parameter.

* <type-expression> is an expression that specifies the type of the parameter.

» <multiplicity> is the multiplicity of the parameter. (See “MultiplicityElement”on page 67.)
* <default> is an expression that defines the value specification for the default value of the parameter.

» <parm-property> indicates additional property values that apply to the‘parameter.

Presentation Options

The paranfeter list can be suppressed. The return result of the operation,can-be expressed as a return parameter,|or as the type
of the opefation. For example:

toString(return : String)

means thelsame thing as
toString() : String

Style Gu|delines

An operatjon name typically begins with a lowercase letter.

Examples

splay ()
~hide ()

createWindow (location: Coordinates, container: Container [0..1]): Window

o

+ +

toString (): String

11.9.3 Parameter

A parameferis’a specification of an argument used to pass information into or out of an invocation of a bghavioral
feature.

Description

Constructs::Parameter merges the definitions of Parameter from Basic and Abstractions::BehavioralFeatures. It adds
specializations to TypedElement and MultiplicityElement.

A parameter is a kind of typed element in order to allow the specification of an optional multiplicity on parameters. In
addition, it supports the specification of an optional default value.

© ISO/IEC 2012 - Al rights reserved 159

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations
+ “TypedElement” on page 137

« “MultiplicityElement” on page 134

Attributes
. default: Qﬁ*ing [n 1]

Specifies a String that represents a value to be used when no argument is supplied for the Parametef.

» directfon: ParameterDirectionKind [1]
Indicates whether a parameter is being sent into or out of a behavioral element. The defaultivalue is in

Associations

* /opergtion: Operation[0..1]
eferences the Operation for which this is a formal parameter. Subsets NamedElement::namespace an
sic::Parameter::operation.

Constrainpts

No additignal constraints

Semanti¢s

A paramefer specifies how arguments are passed into or out of an invocation of a behavioral feature like an ¢
type and rhultiplicity of a parameter restrict what values ¢an be passed, how many, and whether the values

If a defau
if and only if no argument is supplied at invocatiofr,of the behavioral feature.

Notation

See Operdtion
11.9.4 ParameterDirectionKind

Parameter|direction kind is an-enumeration type that defines literals used to specify direction of parameters.

Generalizations

* norne

d redefines

peration. The
are ordered.

is specified for a parameter, then it is evaluatéd at invocation time and used as the argument for this parameter

Description
ParameterDirectionKind is an enumeration of the following literal values:

* in— Indicates that parameter values are passed into the behavioral element by the caller.

* inout — Indicates that parameter values are passed into a behavioral element by the caller and then back out to

the caller from the behavioral element.
* out — Indicates that parameter values are passed from a behavioral element out to the caller.

* return — Indicates that parameter values are passed as return values from a behavioral element back to the

160 © ISO/IEC 2012 - Al

caller.

Il rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

11.10 Packages Diagram

The Packages diagram of the Constructs package specifies the Package and PackageMerge constructs.

/\

PackageableElement |

T {subsets namespace} {subsets ownedMember}
+ owningPackage + packagedElement
Phckage > >{ Pack bleEl - ||
+ URI {String [0..1] 0.1 *
{subsets owningPackage} {subsets packagedElement}
+ package + /ownedType
g Type
0..1 *
| DirectedRelationship |
{subsets source, {subsets directedRelationship,
subsets owner} subsets ownedElement}
+ receivingPackage + packageMerge PackageMerge
>
1 *
1 *
+ mergedPackage + packageMerge
{subsets target} {subsets directedRelationship}

{subsets packagedElement}

+ /nestedPackage

*

+ nestingPgckage

{subsets opvningPackage}

Figure 1126 - The Packages diagram of the Constructs package
11.10.1|Type
Note — (additional properties - s¢e “Type” on page 136).

Descriptjon

Constructy:: Typeds.defined in the Classifiers diagram. The Packages diagram adds the association betweer) Type and
Package thatreptesents the ownership of the type by a package.

Generalizations
« “NamedElement” on page 149

+ “PackageableElement” on page 151

Attributes

No additional attributes

© ISO/IEC 2012 - Al rights reserved 161

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC

19505-1:2012(E)

Associations

» package: Package [0..1]
Specifies the owning package of this classifier, if any. Subsets Package::owningPackage.

Constrai

nts

No additional constraints

Semanti¢s

No additignal semantics

11.10.2

A packagg is used to group elements, and provides a namespace for the grouped elements.

Descript

A packagg is a namespace for its members, and may contain other packages~®nly packageable elements ¢

members
packages,

In additiop a package can be merged with other packages.

Generalizations

» “PgckageableElement” on page 151

« “Namespace” on page 150
Attributes
* URI: PBtring [0..1] {id}

P

—

it

—

Associations
* /nesteflPackage;-Package [*]

* ownedMember: PackageableElement [*]

Package

on

or all the members of other packages.

must comply with these'syntax rules.

cferencés'the owned members that are Packages. Subsets Package::ownedMember and redefines
sici{ Package::nestedPackage.

hin be owned

f a package. By virtue of being a namespace, a package can import either individual members off other

fovides an identifier for the package that can be used for many purposes. A URI is the universally unfique
dentification of the package following the IETF URI specification, RFC 2396 http://www.ietf.org/rfc/1

fc2396.txt and

Specifies the members that are owned by this Package. Redefines Namespace::ownedMember.

+ ownedType: Type [*]
References the owned members that are Types. Subsets Package::ownedMember and redefines

B

asic::Package::ownedType.

» package: Package [0..1]
References the owning package of a package. Subsets NamedElement: :namespace and redefines

B

162

asic::Package::nestingPackage.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

+ packageMerge: Package [*]
References the PackageMerges that are owned by this Package. Subsets Element::ownedElement.

Constraints
[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visibility = #public or e.visibility = #private)

Additionlal Operations

[1] The gpery mustBeOwned() indicates whether elements of this type must have an owner.
Packdge::mustBeOwned() : Boolean
mustBeOwned = false

[2] The gpery visibleMembers() defines which members of a Package can be accessed outside it
Packdge::visibleMembers() : Set(PackageableElement);
visiblgMembers = member->select(m | self.makesVisible(m))

[3] The gpery makesVisible() defines whether a Package makes an element visible'\outside itself. Elements with no visibility
and elements with public visibility are made visible.
Packgge::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self. member->includes(el)
makesVisible =

Hthe element is in the package
(ewnedMember->includes(el)) or

it is imported individually with public visibility

(¢lementimport->

select(eilei.visibility = #public)->
collect(eilei.importedElement)->includes(el)) or

it is imported through a package with-public visibility

(packagelmport->

select(pi|pi.visibility = #public)->

collect(pi|
pi.importedPackage.member->includes(el))->notEmpty())

Semanti¢s
A packagg¢ is a naniespace and is also a packageable element that can be contained in other packages.
The elemdnts, that can be referred to using non-qualified names within a package are owned elements, impofted elements,

and elements‘id enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package are always accessible outside the package through the use of qualified names.

The URI can be specified to provide a unique identifier for a Package. Within UML there is no predetermined usage for
this, with the exception of profiles (see Using XMI to exchange Profiles in section 18.3.6). It may, for example, be used
by model management facilities for model identification. The URI should hence be unique and unchanged once assigned.
There is no requirement that the URI be dereferenceable (though this is of course permitted).

© ISO/IEC 2012 - Al rights reserved 163

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top
rectangle. The members of the package may be shown within the large rectangle. Members may also be sh

of the large
own by

branching lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end

attached to the namespace (package).

 If the members of the package are not shown within the large rectangle, then the name of the package should be placed

within the Targe rectangle.

« If the members of the package are shown within the large rectangle, then the name of the package shoul
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by a visibility sy
public and ‘-’ for private). Package elements with defined visibility may not have protectéd or package vis

The URI for a Package may be indicated with the text {uri=<uri>} following the paekage name.

Presentation Options

A tool maly show visibility by a graphic marker, such as color or font. A toolmay also show visibility by S
displaying those elements that meet a given visibility level (e.g., only public elements). A diagram showin
with contgnts must not necessarily show all its contents; it may show.a subset of the contained elements ag
some critdrion.

Elements that become available for use in an importing package-through a package import or an element imj
a distinct folor or be dimmed to indicate that they cannot be'modified.

Examples

There are [three representations of the same package Types in Figure 11.27. The one on the left just shows
without revealing any of its members. The middle one shows some of the members within the borders of the
the one to|the right shows some of the members using the alternative membership notation.

Types
] {uri=http://www:abc.com/models/Types} Types
Types 69
Time
Shape Point

1 be placed

mbol (‘+’ for
ibility.

electively
b a package
cording to

port may have

the package
package, and

Figure 11.27 - Examples of a package with members
11.10.3 PackageMerge

A package merge defines how the contents of one package are extended by the contents of another package.

164 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Generalizations

+ “DirectedRelationship” on page 108

Description

A package merge is a directed relationship between two packages, that indicates that the contents of the two packages are to be
combined. It is very similar to Generalization in the sense that the source element conceptually adds the characteristics of the
target elenfient to its own characteristics resulting in an element that combines the characteristics of both.

This mechanism should be used when elements defined in different packages have the same name and ar€inter{ded to
represent the same concept. Most often it is used to provide different definitions of a given concept for different purposes,
starting fr¢m a common base definition. A given base concept is extended in increments, with each increment defined in a
separate njerged package. By selecting which increments to merge, it is possible to obtain a custom-definition of a concept for
a specific gnd. Package merge is particularly useful in meta-modeling and is extensively used,in’the definition ¢f the UML
metamode].

Conceptudlly, a package merge can be viewed as an operation that takes the contents of two packages and pfoduces a new
package tlhat combines the contents of the packages involved in the merge. In/terms of model semantics, there is no
difference| between a model with explicit package merges, and a model in which all the merges have been performed.

Attributels

No additignal attributes

Associatjons

+ mergddPackage: Package [1]
Rleferences the Package that is to be merged with the receiving package of the PackageMerge. Subsets
DirectedRelationship: :target.

+ receiingPackage: Package [1]
Rleferences the Package that is being extended with the contents of the merged package of the PackaggMerge.
Subsets Element::owner and DiréectedRelationship: :source.

Constraints

No additignal constraints

Semanti¢s

A packag¢ merge between two packages implies a set of transformations, whereby the contents of the package to be
merged arp combined with the contents of the receiving package. In cases in which certain elements in the [two packages
represent the'Same entity, their contents are (conceptually) merged into a single resulting element according| to the formal
rules of package merge specified below.

As with Generalization, a package merge between two packages in a model merely implies these transformations, but the
results are not themselves included in the model. Nevertheless, the receiving package and its contents are deemed to
represent the result of the merge, in the same way that a subclass of a class represents the aggregation of features of all of
its superclasses (and not merely the increment added by the class). Thus, within a model, any reference to a model
element contained in the receiving package implies a reference to the results of the merge rather than to the increment that
is physically contained in that package. This is illustrated by the example in Figure 11.28 in which package P1 and
package P2 both define different increments of the same class A (identified as P1::A and P2::A respectively). Package P2
merges the contents of package P1, which implies the merging of increment P1::A into increment P2::A. Package P3

© ISO/IEC 2012 - Al rights reserved 165

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

imports the contents of P2 so that it can define a subclass of A called SubA. In this case, element A in package P3 (P3::A)
represents the result of the merge of P1::A into P2::A and not just the increment P2::A. Note that, if another package were
to import P1, then a reference to A in the importing package would represent the increment P1::A rather than the A

resulting from merge.

?‘

P3

P2 |

«merge» «import»

SubA

Figure 11.

To unders
increment
The main
results of
respect to
respect to
can be coj

me

(thi

rec
me
ang

res
san

rec
are

28 - lllustration of the meaning of package merge

and the rules of package merge, it is necessary to clearly distinguish betwen three distinct entitic
(e.g., P1::A in Figure 11.28), the receiving increment (e.g., P2::A), and the result of the merge tra
difficulty comes from the fact that the receiving package and its gentents represents both the opg
he package merge, depending on the context in which they arecounsidered. For example, in Figur
the package merge operation, P2 represents the increment that is an operand for the merge. How

s: the merged
nsformations.
rand and the
e 11.28 , with
ever, with

the import operation, P2 represents the result of the merge.This dual interpretation of the same model element

1fusing, so it is useful to introduce the following termifiolegy that aids understanding:

'ged package - the first operand of the merge, that is,ithe package that is to be merged into the receiv
s is the package that is the target of the merge arrgw in the diagrams).

biving package - the second operand of the mierge, that is, the package that, conceptually, contains thg
rge (and which is the source of the merge atrow in the diagrams). However, this term is used to refer
its contents before the merge transformations have been performed.

lting package - the package thatyconceptually, contains the results of the merge. In the model, this is
e package as the receiving package, but this particular term is used to refer to the package and its cor
'ge has been performed.

(ged element - refers toiasmodel element that exists in the merged package.

biving element - issaimodel element in the receiving package. If the element has a matching merged el
combined to.produce the resulting element (see below). This term is used to refer to the element befc
been perfermed (i.e., the increment itself rather than the result).

Iting-element - is a model element in the resulting package affer the merge was performed. For recei

ng package

b results of the
o the package

of course, the
tents affer the
bment, the two

re the merge

ving elements
fter the merge

166

havea matching merged element, this is the same element as the receiving element, but in the state ¢

element metatype - is the MOF type of a model element (e.g., Classifier, Association, Feature).

eht. For

element type - refers to the type of any kind of TypedElement, such as the type of a Parameter or StructuralFeature.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

This terminology is based on a conceptual view of package merge that is represented by the schematic diagram in
Figure 11.29 (NOTE: this is not a UML diagram). The owned elements of packages A and B are all incorporated into the
namespace of package B. However, it is important to emphasize that this view is merely a convenience for describing the
semantics of package merge and is not reflected in the repository model, that is, the physical model itself is not
transformed in any way by the presence of package merges.

merged receiving
package package

A A B

A ~N ’/ /

| N <)

| N v

I /

I package /
«merge» ! merge

: «becomes»

|

|

|

|

|

]

| resulting |
| package |j

]

I
B!

Figure 1129 - Conceptual view of the package merge semantics

The semantics of package merge are defined by a set of constraints and transformations. The constraints specify the

preconditipns for a valid package merge, while the transformations describe its semantic effects (i.e., postcpnditions). If
any constfaints are violated, the package(merge is ill-formed and the resulting model that contains it is invalid. Different
metatypes| have different semantics, but the general principle is always the same: a resulting element will npt be any less
capable thlan it was prior to the merge. This means, for instance, that the resulting navigability, multiplicity, [visibility, etc.
of a receiying model element willnot be reduced as a result of a package merge. One of the key consequences of this is
that mode| elements in the resulting package are compatible extensions of the corresponding elements in tHe (unmerged)
receiving package in the Same namespace. This capability is particularly useful in defining metamodel compliance levels
such that gach successive level is compatible with the previous level, including their corresponding XMI r¢presentations.

In this part of ISOAEC 19505, explicit merge transformations are only defined for certain general metatypes| found mostly
in metamq@dels\(Packages, Classes, Associations, Properties, etc.), since the semantics of merging other kinds of
metatypes| (e.g7, state machines, interactions) are complex and domain specific. Elements of all other kinds| of metatypes
are transformed according to the default rule: they are simply deep copied into the resulting package. (This rule can be
superseded for specific metatypes through profiles or other kinds of language extensions.)

General package merge rules
A merged element and a receiving element match if they satisfy the matching rules for their metatype.
CONSTRAINTS:

1. There can be no cycles in the «merge» dependency graph.

© ISO/IEC 2012 - Al rights reserved 167

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

TRANSFQRMATIONS:

168

7.
8.

1.

10.

I1.

12.

A package cannot merge a package in which it is contained.
A package cannot merge a package that it contains.

A merged element whose metatype is not a kind of Package, Class, DataType, Property, Association, Operation,
Constraint, Enumeration, or EnumerationLiteral, cannot have a receiving element with the same name and metatype
unless that receiving element is an exact copy of the merged element (i.e., they are the same).

A package merge 18 valid 1T and only 1T all the constraints required to periorm the merge are satisiied.

Matching typed elements (e.g., Properties, Parameters) must have conforming types. For types that are classes or data
types, a conforming type is either the same type or a common supertype. For all other cases, conformaice means that
tHe types must be the same.

Al receiving element cannot have explicit references to any merged element.

Any redefinitions associated with matching redefinable elements must not be gonflicting.

(The default rule) Merged or receiving elements for which there is ne‘matching element are deep copigd into the
r¢sulting package.

The result of merging two elements with matching names andvmetatypes that are exact copies of each pther is the
r¢ceiving element.

Matching elements are combined according to the trdnsformation rules specific to their metatype and the results
ifjcluded in the resulting package.

>

11 type references to typed elements that end:up in the resulting package are transformed into referenges to the
rresponding resulting typed elements (i.e5/hot to their respective increments).

(]

br all matching elements: if both matehing elements have private visibility, the resulting element will have private
sibility; otherwise, the resulting-¢lement will have public visibility.

<

Fpr all matching classifier elements: if both matching elements are abstract, the resulting element is afjstract;
otherwise, the resulting element is non-abstract.

5

pr all matching classifier elements: if both matching elements are final specializations, the resulting glement is a
fipal specializatign;.otherwise, the resulting element is a non-final specialization.

-

pr all matching elements: if both matching elements are not derived, the resulting element is also not|derived;
herwisesthe resulting element is derived.

Qo

Fprall'matching multiplicity elements: the lower bound of the resulting multiplicity is the lesser of thel lower bounds
of the muttipiicitics of the matcing cIements.

For all matching multiplicity elements: the upper bound of the resulting multiplicity is the greater of the upper bounds
of the multiplicities of the matching elements.

Any stereotypes applied to a model element in either a merged or receiving element are also applied to the
corresponding resulting element.

For matching redefinable elements: different redefinitions of matching redefinable elements are combined
conjunctively.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

13. For matching redefinable elements: if both matching elements have isLeaf=true, the resulting element also has
isLeaf=true; otherwise, the resulting element has isLeaf=false.

Package rules

Elements that are a kind of Package match by name and metatype (e.g., profiles match with profiles and regular packages
with regular packages).

CONSTRAINTS:

1. All classifiers in the merged package must have a non-empty qualified name and be distinguishable in|the merged
phckage.

2. All classifiers in the receiving package must have a non-empty qualified name and be distinguishable ip the receiving
phckage.

TRANSFOQRMATIONS:

1. A nested package from the merged package is transformed into a nested package with the same name ijn the resulting
phckage, unless the receiving package already contains a matching nested’package. In the latter case, the merged
npsted package is recursively merged with the matching receiving nested package.

2. An element import owned by the receiving package is transfofnied into a corresponding element impoyt in the
r¢sulting package. Imported elements are not merged (unless there is also a package merge to the packdge owning the
ipported element or its alias).

Class and DataType rules
Elements fhat are kinds of Class or DataType matchby name and metatype.
TRANSFOQRMATIONS:

1.

>

11 properties from the merged classifier are merged with the receiving classifier to produce the result|ng classifier
agcording to the property transformation rules specified below.

2. Nested classifiers are mergéd recursively according to the same rules.

Property tules
Elements fhat are kindstef Property match by name and metatype.
CONSTRAINTS:

1. Thestatic (or non-static) characteristic of matching properties must be the same.

2. e uniqueness characteristic of matching properties must be the same.
3. Any constraints associated with matching properties must not be conflicting.
TRANSFORMATIONS:

1. For merged properties that do not have a matching receiving property, the resulting property is a newly created
property in the resulting classifier that is the same as the merged property.

© ISO/IEC 2012 - Al rights reserved 169

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

2. For merged properties that have a matching receiving property, the resulting property is a property with the same
name and characteristics except where these characteristics are different. Where these characteristics are different, the
resulting property characteristics are determined by application of the appropriate transformation rules.

3. For matching properties: if both properties are designated read-only, the resulting property is also designated read-
only; otherwise, the resulting property is designated as not read-only.

4. For matching properties: if both properties are unordered, then the resulting property is also unordered; otherwise, the

1q

5. F

p

d

6. F

7. F

U]

8. T
Associati
Elements
CONSTR|
1. T

2. T
3. T

th
TRANSF
1. A

C

a

2. F

n;
Opetratior

sulting property is ordered.

br matching properties: if neither property is designated as a subset of some derived union, then.the 1
roperty will not be designated as a subset; otherwise, the resulting property will be designated‘as a sul
prived union.

br matching properties: different constraints of matching properties are combined©enjunctively.

br matching properties: if either the merged and/or receiving elements are noh-unique, the resulting d
hique; otherwise, the resulting element is designated as unique.

he resulting property type is transformed to refer to the corresponding-type in the resulting package.

DN rules

hat are a kind of Association match by name and metatype.

\INTS:

hese rules only apply to binary associations. (Thedefault rule is used for merging n-ary associations.
he receiving association end must be a composite if the matching merged association end is a compo

he receiving association end must be owned by the association if the matching merged association en
e association

RMATIONS:

merge of matching associations is accomplished by merging the Association classifiers (using the m
assifiers) and merging,their corresponding owned end properties according to the rules for propertie
sociation ends.

pbr matchingassociation ends: if neither association end is navigable, then the resulting association er
hvigable, (In)all other cases, the resulting association end is navigable.

rules

esulting
bset of that

lement is non-

site.

d is owned by

erge rules for
and

d is also not

Elements that are a kind of Operation match by name, parameter order, and parameter types, not including any return

type.
CONSTRAINTS:
1. Operation parameters and types must conform to the same rules for type and multiplicity as were defined for
properties.
2. The receiving operation must be a query if the matching merged operation is a query.

170

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

TRANSFORMATIONS:

1. For merged operations that do not have a matching receiving operation, the resulting operation is an operation with
the same name and signature in the resulting classifier.

2. For merged operations that have a matching receiving operation, the resulting operation is the outcome of a merge of
the matching merged and receiving operations, with parameter transformations performed according to the property

tr

ansformations defined above.

Enumera
Elements
CONSTR
I. M
TRANSF
I. N

Constrain
CONSTR
1. d
TRANSF
1. T

Notation

A Packag

ion rules

hat are a kind of EnumerationLiteral match by owning enumeration and literal name.
AINTS:

[atching enumeration literals must be in the same order.

RMATIONS:

t Rules
AINTS:
onstraints must be mutually non-contradictory.

RMATIONS:

Ta

foet §\\\\§<merge»

= Source

on-matching enumeration literals from the merged enumeration are concatenated to the receiving enfimeration.

Figure 11.30 - Notation for package merge

© ISO/IEC 2012 - All rights reserved

he constraints of the merged model elements‘are conjunctively added to the constraints of the matching receiving
nmjodel elements.

bMerge is shown using a dashed’line with an open arrowhead pointing from the receiving packagg (the source)
to the merged package (the target)..In-addition, the keyword «merge» is shown near the dashed line.

171

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

Examples

In Figure 11.31, packages P and Q are being merged by package R, while package S merges only package Q.

P Q
A A Cc
7 7
/ /
/
/ «merge» /]
/
/
/
/
/
/
\ !
\ S / «merge»
«mergep ;
\
\
R |\ D
1
A
A B

Figure 1131 - Simple example of package merges

The transformed packages R and S are shown in;Figure 11.32. The expressions in square brackets indicate[which
individual|increments were merged to produce.the final result, with the “@” character denoting the merge ¢perator (note

that these |lexpressions are not part of the standard notation, but are included here for explanatory purposes).

R S
D
[S::D]
A | cC
[P:A@(Q:A@R::A)] [Q:C]

C
[Q:-C]
1 _ oecy

B [Q:A@S::A] B
[P::B] [S::B]

Figure 11.32 - Simple example of transformed packages following the merges in Figure 11.31

172

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

In Figure 11.33, additional package merges are introduced by having package T, which is empty prior to execution of the
merge operation, merge packages R and S defined previously.

§1\ «merge»

|] T

S - «merge»

Figure 1133 - Introducing additional package merges

In Figure [11.34, the transformed version of package T is depicted. In this packagethe partial definitions of A, B, C, and
D have al] been brought together. Note that the types of the ends of the associations that were originally in|

the packages
Q and S hlave all been updated to refer to the appropriate elements in package T.

C
P:A@(Q::A@R::A)) \
@S::A] {Q:Cl

B
[P::B@S::B]

Figure 11.34 - The result of the additional package merges in Figure 11.33

© ISO/IEC 2012 - Al rights reserved 173

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

174 © ISO/IEC 2012 - Al rights reserved

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

ISO/IEC 19505-1:2012(E)

12 Core::Profiles

12.1 General

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them

for differ
.NET) or
Meta Obj

Position

The infras
For examyjj
the UML
higher thaj
instance o
stereotype
level of ¢
UML prof
constraint

Profiles

The Profil
standard.
model ele
more stru
superstrug

The folloy
1.

A
a
C
S|

It
u

Sakd pnrpncﬂa Thisincludes-the ql‘\i‘“fy totailor-the TIMI _metamaodel for different p]thnrmc (cnr‘l'\

Jlomains (such as real-time or business process modeling). The profiles mechanism is consistent) y
ct Facility (MOF).

ng profiles versus metamodels, MOF and UML

tructure specification is reused at several meta-levels in various OMG specifications that deal wi
le, MOF uses it to provide the ability to model metamodels, whereas the UML Superstructure us
model. This clause deals with use cases comparable to the MOF at the mefa;meta-level, which is
n the UML metamodel specification. In order to allow this, the referenée’metamodel must be def
f UML that corresponds to its definition using MOF. Thus when defiging a UML profile, the pr
s are defined to extend the UML classes in the normative version 6fthe UML metamodel merged
mpliance, L3, defined in UML whose xmi serialization is listed in Annex C. This approach allo
ile for arbitrary subsets of the UML at lower levels of compliance, which can be further restricte
defined in the profile.

listory and design requirements

e mechanism has been specifically defined for-providing a lightweight extension mechanism to t
n UML 1.1, stereotypes and tagged values were used as string-based extensions that could be attg
ments in a flexible way. In subsequent reyisions of UML, the notion of a Profile was defined in or
ture and precision to the definition of Stereotypes and Tagged values. The UML 2 infrastructure
ture specifications have carried thig\further, by defining it as a specific meta-modeling technique]

ving requirements have driventhe definition of profile semantics from inception:

profile must provide mechanisms for specializing a reference metamodel (such as a set of UML pac|

way that the specialized\semantics do not contradict the semantics of the reference metamodel. That
bnstraints may typically define well-formedness rules that are more constraining (but consistent with
pecified by the refeérence metamodel.

must be pessible to interchange profiles between tools, together with models to which they have bed
5ing the ML XMI interchange mechanisms. A profile must therefore be defined as an interchangeal

d

odel, In"addition to exchanging profiles together with models between tools, profile application shoy

as J2EE or
ith the OMG

th modeling.
es it to model
one level
ined as an
bfile?s

at the highest
s defining a
d using

he UML
ched to UML
ler to provide
and

kages) in such
is, profile
those

n applied, by
ple UML
1d also be

finable “by reference” (e.g., “import by name”); that is, a profile does not need to be interchanged if

it is already

present in the importing tool.

A profile must be able to reference domain-specific UML libraries where certain model elements are pre-defined.

It must be possible to specify which profiles are being applied to a given Package (or any specializations of that
concept). This is particularly useful during model interchange so that an importing environment can interpret a model
correctly.

It should be possible to define a UML extension that combines profiles and model libraries (including template
libraries) into a single logical unit. However, within such a unit, for definitional clarity and for ease of interchange
(e.g., ‘reference by name’), it should still be possible to keep the libraries and the profiles distinct from each other.

© ISO/IEC 2012 - All rights reserved

175

https://iecnorm.com/api/?name=9fb5d32ec49feca889cb6d6650f768cc

	1 Scope
	2 Conformance
	2.1 General
	2.2 Language Units
	2.3 Compliance Levels
	Figure 2.1 - Level 0 package diagram
	Figure 2.2 - Level M package diagram

	2.4 Meaning and Types of Compliance
	2.5 Compliance Level Contents

	3 Normative References
	4 Terms and Definitions
	5 Notational Conventions
	6 Additional Information
	6.1 Architectural Alignment and MDA Support
	6.2 How to Proceed
	6.2.1 Diagram format
	6.2.2 Contents of Subparts I and II
	Figure 6.1 - The Metamodel Library package contains the packages Core and Profiles
	Figure 6.2 - The Core package contains the packages PrimitiveTypes, Abstractions, Basic, and Constructs

	7 Language Architecture
	7.1 General
	7.2 Design Principles
	7.3 Infrastructure Architecture
	Figure 7.1 - The InfrastructureLibrary packages

	7.4 Core
	Figure 7.2 - The role of the common Core
	Figure 7.3 - The Core packages

	7.5 Profiles
	7.6 Architectural Alignment between UML and MOF
	Figure 7.4 - UML and MOF are at different metalevels

	7.7 Superstructure Architecture
	Figure 7.5 - The top-level package structure of the UML 2 Superstructure

	7.8 Reusing Infrastructure
	7.9 The Kernel Package
	7.10 Metamodel Layering
	7.11 The Four-layer Metamodel Hierarchy
	7.12 Metamodeling
	Figure 7.6 - An example of metamodeling; note that not all instance-of relationships are shown
	Figure 7.7 - Giving an illustration of a class using an instance specification

	7.13 An Example of the Four-level Metamodel Hierarchy
	Figure 7.8 - An example of the four-layer metamodel hierarchy

	8 Language Formalism
	8.1 General
	8.2 Levels of Formalism
	8.3 Package Specification Structure
	8.3.1 Class Descriptions
	8.3.2 Diagrams
	8.3.3 Instance Model

	8.4 Class Specification Structure
	8.4.1 Description
	8.4.2 Attributes
	8.4.3 Associations
	8.4.4 Constraints
	8.4.5 Additional Operations (optional)
	8.4.6 Semantics
	8.4.7 Semantic Variation Points (optional)
	8.4.8 Notation
	8.4.9 Presentation Options (optional)
	8.4.10 Style Guidelines (optional)
	8.4.11 Examples (optional)
	8.4.12 Rationale (optional)
	8.4.13 Changes from UML 1.4

	8.5 Use of a Constraint Language
	8.6 Use of Natural Language
	8.7 Conventions and Typography

	9 Core::Abstractions
	Figure 9.1 - The Core package is owned by the InfrastructureLibrary pack and contains several subpackages
	Figure 9.2 - The Abstractions package contains several subpackages, all of which are specified in this clause
	9.1 BehavioralFeatures Package
	Figure 9.3 - The BehavioralFeatures package
	Figure 9.4 - The elements defined in the BehavioralFeatures package
	9.1.1 BehavioralFeature

	9.2 Parameter
	9.3 Changeabilities Package
	Figure 9.5 - The Changeabilities package
	Figure 9.6 - The elements defined in the Changeabilities package
	9.3.1 StructuralFeature (as specialized)

	9.4 Classifiers Package
	Figure 9.7 - The Classifiers package
	Figure 9.8 - The elements defined in the Classifiers package
	9.4.1 Classifier
	9.4.2 Feature

	9.5 Comments Package
	Figure 9.9 - The Comments package
	Figure 9.10 - The elements defined in the Comments package
	9.5.1 Comment
	Figure 9.11 - Comment notation

	9.5.2 Element

	9.6 Constraints Package
	Figure 9.12 - The Constraints package
	Figure 9.13 - The elements defined in the Constraints package
	9.6.1 Constraint
	Figure 9.14 - Constraint attached to an attribute
	Figure 9.15 - {xor} constraint
	Figure 9.16 - Constraint in a note symbol

	9.6.2 Namespace (as specialized)

	9.7 Elements Package
	Figure 9.17 - The Elements package
	Figure 9.18 - The elements defined in the Elements package
	9.7.1 Element

	9.8 Expressions Package
	Figure 9.19 - The Expressions package
	Figure 9.20 - The elements defined in the Expressions package
	9.8.1 Expression
	9.8.2 OpaqueExpression
	9.8.3 ValueSpecification

	9.9 Generalizations Package
	Figure 9.21 - The Generalizations package
	Figure 9.22 - The elements defined in the Generalizations package
	9.9.1 Classifier (as specialized)
	9.9.2 Generalization
	Figure 9.23 - Examples of generalizations between classes

	9.10 Instances Package
	Figure 9.24 - The Instances package
	Figure 9.25 - The elements defined in the Instances package
	9.10.1 InstanceSpecification
	Figure 9.26 - Specification of an instance of String
	Figure 9.27 - Slots with values
	Figure 9.28 - Instance specifications representing two objects connected by a link

	9.10.2 InstanceValue
	9.10.3 Slot

	9.11 Literals Package
	Figure 9.29 - The Literals package
	Figure 9.30 - The elements defined in the Literals package
	9.11.1 LiteralBoolean
	9.11.2 LiteralInteger
	9.11.3 LiteralNull
	9.11.4 LiteralReal
	9.11.5 LiteralSpecification
	9.11.6 LiteralString
	9.11.7 LiteralUnlimitedNatural

	9.12 Multiplicities Package
	Figure 9.31 - The Multiplicities package
	Figure 9.32 - The elements defined in the Multiplicities package
	9.12.1 MultiplicityElement
	Figure 9.33 - Multiplicity within a textual specification
	Figure 9.34 - Multiplicity as an adornment to a symbol

	9.13 MultiplicityExpressions Package
	Figure 9.35 - The MultiplicityExpressions package
	Figure 9.36 - The elements defined in the MultiplicityExpressions package
	9.13.1 MultiplicityElement (specialized)

	9.14 Namespaces Package
	Figure 9.37 - The Namespaces package
	Figure 9.38 - The elements defined in the Namespaces package
	9.14.1 NamedElement
	9.14.2 Namespace

	9.15 Ownerships Package
	Figure 9.39 - The Ownerships package
	Figure 9.40 - The elements defined in the Ownerships package
	9.15.1 Element (as specialized)

	9.16 Redefinitions Package
	Figure 9.41 - The Redefinitions package
	Figure 9.42 - The elements defined in the Redefinitions package
	9.16.1 RedefinableElement

	9.17 Relationships Package
	Figure 9.43 - The Relationships package
	Figure 9.44 - The elements defined in the Relationships package
	9.17.1 DirectedRelationship
	9.17.2 Relationship

	9.18 StructuralFeatures Package
	Figure 9.45 - The StructuralFeatures package
	Figure 9.46 - The elements defined in the StructuralFeatures package
	9.18.1 StructuralFeature

	9.19 Super Package
	Figure 9.47 - The Super package
	Figure 9.48 - The elements defined in the Super package
	9.19.1 Classifier (as specialized)
	Figure 9.49 - Example class generalization hierarchy

	9.20 TypedElements Package
	Figure 9.50 - The TypedElements package
	Figure 9.51 - The elements defined in the TypedElements package
	9.20.1 Type
	9.20.2 TypedElement

	9.21 Visibilities Package
	Figure 9.52 - The Visibilities package
	Figure 9.53 - The elements defined in the Visibilities package
	9.21.1 NamedElement (as specialized)
	9.21.2 VisibilityKind

	10 Core::Basic
	10.1 General
	Figure 10.1 - The Core package is owned by the InfrastructureLibrary package and contains several subpackages

	10.2 Types Diagram
	Figure 10.2 - The classes defined in the Types diagram
	10.2.1 Comment
	10.2.2 Element
	10.2.3 NamedElement
	10.2.4 Type
	10.2.5 TypedElement

	10.3 Classes Diagram
	Figure 10.3 - The classes defined in the Classes diagram
	10.3.1 Class
	10.3.2 MultiplicityElement
	10.3.3 Operation
	10.3.4 Parameter
	10.3.5 Property

	10.4 DataTypes Diagram
	Figure 10.4 - The classes defined in the DataTypes diagram
	10.4.1 DataType
	10.4.2 Enumeration
	10.4.3 EnumerationLiteral
	10.4.4 PrimitiveType

	10.5 Packages Diagram
	Figure 10.5 - The classes defined in the Packages diagram
	10.5.1 Package
	10.5.2 Type

	11 Core::Constructs
	11.1 General
	Figure 11.1 -The Core package is owned by the InfrastructureLibrary package, and contains several subpackages
	Figure 11.2 - The Constructs package depends on several other packages

	11.2 Root Diagram
	Figure 11.3 - The Root diagram of the Constructs package
	11.2.1 Comment
	11.2.2 DirectedRelationship
	11.2.3 Element
	11.2.4 Relationship

	11.3 Expressions Diagram
	Figure 11.4 - The Expressions diagram of the Constructs package
	11.3.1 Expression
	11.3.2 OpaqueExpression
	11.3.3 ValueSpecification

	11.4 Classes Diagram
	Figure 11.5 - The Classes diagram of the Constructs package
	11.4.1 Association
	Figure 11.6 - Binary and ternary associations
	Figure 11.7 - Association ends with various adornments
	Figure 11.8 - Examples of navigable ends
	Figure 11.9 - Example of attribute notation for navigable end owned by an end class
	Figure 11.10 - Example of a derived union
	Figure 11.11 - Composite aggregation is depicted as a black diamond

	11.4.2 Class
	Figure 11.12 -Class notation: details suppressed, analysis-level details, implementation-level details
	Figure 11.13 - Class notation: attributes and operations grouped according to visibility

	11.4.3 Classifier
	Figure 11.14 - Examples of attributes
	Figure 11.15 - Association-like notation for attribute

	11.4.4 Operation
	11.4.5 Property

	11.5 Classifiers Diagram
	Figure 11.16 - The Classifiers diagram of the Constructs package
	11.5.1 Classifier
	11.5.2 Feature
	11.5.3 MultiplicityElement
	11.5.4 RedefinableElement
	11.5.5 StructuralFeature
	11.5.6 Type
	11.5.7 TypedElement

	11.6 Constraints Diagram
	Figure 11.17 - The Constraints diagram of the Constructs package
	11.6.1 Constraint
	11.6.2 Namespace

	11.7 DataTypes Diagram
	Figure 11.18 - The classes defined in the DataTypes diagram
	11.7.1 DataType
	Figure 11.19 - Notation of data type: to the left is an icon denoting a data type and to the right is a reference to a data type that is used in an attribute.

	11.7.2 Enumeration
	Figure 11.20 - Example of an enumeration

	11.7.3 EnumerationLiteral
	11.7.4 Operation
	11.7.5 PrimitiveType
	11.7.6 Property

	11.8 Namespaces Diagram
	Figure 11.21 - The Namespaces diagram of the Constructs package
	11.8.1 ElementImport
	Figure 11.22 - Example of element import
	Figure 11.23 - Example of element import with aliasing

	11.8.2 NamedElement
	11.8.3 Namespace
	11.8.4 PackageableElement
	11.8.5 PackageImport
	Figure 11.24 - Examples of public and private package imports

	11.9 Operations Diagram
	Figure 11.25 - The Operations diagram of the Constructs package
	11.9.1 BehavioralFeature
	11.9.2 Operation
	11.9.3 Parameter
	11.9.4 ParameterDirectionKind

	11.10 Packages Diagram
	Figure 11.26 - The Packages diagram of the Constructs package
	11.10.1 Type
	11.10.2 Package
	Figure 11.27 - Examples of a package with members

	11.10.3 PackageMerge
	Figure 11.28 - Illustration of the meaning of package merge
	Figure 11.29 - Conceptual view of the package merge semantics
	Figure 11.30 - Notation for package merge
	Figure 11.31 - Simple example of package merges
	Figure 11.32 - Simple example of transformed packages following the merges in Figure 11.31
	Figure 11.33 - Introducing additional package merges
	Figure 11.34 - The result of the additional package merges in Figure 11.33

	12 Core::Profiles
	12.1 General
	12.2 Profiles package
	Figure 12.1 - Dependencies between packages described in this clause
	Figure 12.2 - The classes defined in the Profiles package
	12.2.1 Class (from Profiles)
	Figure 12.3 - Showing that the extended class is a metaclass

	12.2.2 Extension (from Profiles)
	Figure 12.4 - MOF model equivalent to extending “interface” by the “Home” stereotype
	Figure 12.5 - The notation for an Extension
	Figure 12.6 - An example of using an Extension
	Figure 12.7 - An example of a required Extension

	12.2.3 ExtensionEnd (from Profiles)
	12.2.4 Image (from Profiles)
	12.2.5 Package (from Profiles)
	12.2.6 PackageableElement (from Profiles)
	12.2.7 Profile (from Profiles)
	Figure 12.8 Specification of an accessible metaclass
	Figure 12.9 - Using the “HomeExample” profile to extend a model
	Figure 12.10 - Defining a simple EJB profile
	Figure 12.11 - Importing a package from a profile

	12.2.8 ProfileApplication (from Profiles)
	Figure 12.12 - Profiles applied to a package

	12.2.9 Stereotype (from Profiles)
	Figure 12.13 - Defining a stereotype
	Figure 12.14 - Presentation options for an extended class
	Figure 12.15 - An instance specification when defining a stereotype
	Figure 12.16 - Defining multiple stereotypes on multiple stereotypes
	Figure 12.17 - Using a stereotype
	Figure 12.18 - Showing values of stereotypes and a simple instance specification
	Figure 12.19 - Using stereotypes and showing values
	Figure 12.20 - Other notational forms for depicting stereotype values

	13 PrimitiveTypes
	13.1 General
	Figure 13.1 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

	13.2 PrimitiveTypes Package
	Figure 13.2 - The classes defined in the PrimitiveTypes package
	13.2.1 Boolean
	Figure 13.3 - An example of a Boolean attribute

	13.2.2 Integer
	Figure 13.4 - An example of an integer attribute

	13.2.3 Real
	Figure 13.5 - An example of a real attribute

	13.2.4 String
	Figure 13.6 - An example of a string attribute

	13.2.5 UnlimitedNatural
	Figure 13.7 - An example of an unlimited natural

	Annex A: XMI Serialization and Schema
	Annex B: Support for Model Driven Architecture
	Annex C: UML XMI Documents
	INDEX

