INTERNATIONAL ISO/IEC
STANDARD 14496-1

Fourth edition
2010-06-01

Information technology — Coding|of
audio-visual objects —

Part 1:
Systems

Technologies de l'information — Codage des objets audioVisuels —
Partie 1: Systemes

Reference number
ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Contents Page
0 =T o o iv
0 INtrOAUCHION ... ————————— vi
1 T o - S S 1
2 Normative references.........ccccrinninin e 1
3 Additional references........coccviiiimi i e e 2
4 Terms and definitionscccccciinii S 2
5 Abbreviated terms ...l s 10
6 L0704 VT 0 1o o T G SR S, 11
7 Streaming Framework.........coccoiiiiiimnnn s s s e, 1
8 Syntactic Description Language...........cccoremmiiniimnninsmsnsmnshe b sssssssssssssssssssss s, 929
9 Profiles....oiiri i ATk e 110
Annek A (informative) Time Base Reconstructionccc.. i e, 112
Annejx B (informative) Registration procedure bt e, 115
Annekx C (informative) The QoS Management Model.for ISO/IEC 14496 Content............ccceccedovnnniininns 119
Annekx D (informative) Conversion Between Time and Date Conventionsc..cccovvcerverennneferceennennn. 120
Annei E (informative) Graphical Representation of Object Descriptor and Sync Layer Synfax........... 122
Annekx F (informative) Elementary Stream-interface........cccccovviccciriiiisccccceerreesscccsseeeeeneenss fosseenennnn, 130
Anneix G (informative) Upstream Walkthrough..........ccccccmiiiiiiicccierini s cssssseeeesesses fresssnenennnn 132
Anneix H (informative) Scene and ‘QObject Description Carrousel.........ccccccceveerrerrericccssmeereeennsss forseeenennn, 137
Annei | (normative) Usage of ITU-T Recommendation H.264 | ISO/IEC 14496-10 AVCJcceeeenneee 138
Annekx J (informative) Patent'statementscccccoviiimiiniin e e, 141
Bibliggraphy ... e s amn e e 144

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Foreword

ISO (the

International Organization for Standardization) and

IEC (the International

Electrotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental

and non-gov
technology, |

International
The main ta
Standards ad

an Internation

ISO/IEC 1444
Subcommitte

This fourth eq
revised.
ISO/IEC 1444
ISO/IEC 1444

ISO/IEC 1444
audio-visual (

Part 1: §
Part 2:
Part 3: A
Part 4: O
Part 5: R
Part 6: D

Part7: G

ernmental, in liaison with 1ISO and IEC, also take part in the work. In the field of infern
50 and IEC have established a joint technical committee, ISO/IEC JTC 1.

Standards are drafted in accordance with the rules given in the ISO/IEC Directivesy Part 2.
5k of the joint technical committee is to prepare International Standards.“Draft Interna
opted by the joint technical committee are circulated to national bodies forwvoting. Publicat
al Standard requires approval by at least 75 % of the national bodies gasting a vote.

6-1 was prepared by Joint Technical Committee ISO/IEC JTE™, Information techn

e SC 29, Coding of audio, picture, multimedia and hypermedia-ihformation.

t also incorporates the Amendments ISO/IEC 14496-1:2004/Amd.1
6-1:2004/Amd.2:2007, ISO/IEC 14496-1:2004/Amd.3:2007 and Technical
6-1:2004/Cor.1:2006 and ISO/IEC 14496-1:2004/Cor.2:2007.

6 consists of the following parts, under the>general title Information technology — Cod|
bjects:

ystems

isual

Ldio

lonformance testing

eference software

elivery Multimedia Integration Framework (DMIF)

ptimized reference software for coding of audio-visual objects

hation

tional
on as

blogy,

ition cancels and replaces the third edition (ISO/IEC 14496~1:2004), which has been technically

2005,

Corrigenda

ing of

Part 8: C

arriage of ISO/IEC 14496 contents over IP networks

Part 9: Reference hardware description

Part 10: Advanced Video Coding

Part 11: Scene description and application engine
Part 12: ISO base media file format

Part 13: Intellectual Property Management and Protection (IPMP) extensions

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

— Part 14: MP4 file format

— Part 15: Advanced Video Coding (AVC) file format
— Part 16: Animation Framework eXtension (AFX)
— Part 17: Streaming text format

— Part 18: Font compression and streaming

— Part 19: Synthesized texture stream

— Rart 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation.Fefmat (SAF)
— Rart 21: MPEG-J Graphics Framework eXtensions (GFX)
— Rart 22: Open Font Format

— Rart 23: Symbolic Music Representation

— Rart 24: Audio and systems interaction

— Rart 25: 3D Graphics Compression Model

— Rart 26: Audio conformance

— Rart 27: 3D Graphics conformance

© ISO/IEC 2010 — All rights reserved Vv

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

0 Introduction

0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification
includes the following elements.

a) The coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D opjects
that can [be manifested audibly and/or visually (audio-visual objects) (specified in Parts 2, 3,c10; 111, 16,
19, 20, 23 and 25 of ISO/IEC 14496).

b) The codged representation of the spatio-temporal positioning of audio-visual objectsCas well ag their
behavior|in response to interaction (scene description, specified in Parts 11 and 20 of\ISO/IEC 1449F).

c) The coded representation of information related to the management of data-streams (synchronization,
identification, description and association of stream content, specified in/this Part and in Part[24 of
ISO/IEC [14496).

d) A generi¢ interface to the data stream delivery layer functionality (specified in Part 6 of ISO/IEC 14496).

e) An appli¢ation engine for programmatic control of the player: fofmat, delivery of downloadable Java byte
code as|well as its execution lifecycle and behavior through“APIs (specified in Parts 11 and |21 of
ISO/IEC [14496).

f) A file format to contain the media information of an ISOAEC 14496 presentation in a flexible, extehsible
format tq facilitate interchange, management, editing;“and presentation of the media specified in Pjart 12
(ISO Filg Format), Part 14 (MP4 File Format) andPart 15 (AVC File Format) of ISO/IEC 14496.

g) The codg¢d representation of font data and ofiinformation related to the management of text streanfs and
font data| streams (specified in Parts 17, 18~and 22 of ISO/IEC 14496).

The overall operation of a system communicating audio-visual scenes can be paraphrased as follows:

At the senfling terminal, the audio-visual scene information is compressed, supplemented| with
synchronizatipn information and-passed to a delivery layer that multiplexes it into one or more coded pinary
streams that| are transmitted-or/stored. At the receiving terminal, these streams are demultiplexed and
decompressgd. The audio-visual objects are composed according to the scene description and
synchronizatipn information-and presented to the end user. The end user may have the option to interagt with
this presentation. Interaction information can be processed locally or transmitted back to the sending terminal.
ISO/IEC 14496 defines’the syntax and semantics of the bitstreams that convey such scene informati¢n, as
well as the dgtails.of their decoding processes.

This part of ISO/TEC 14496 specifies the following tools.

— A terminal model for time and buffer management.

— A coded representation of metadata for the identification, description and logical dependencies of the
elementary streams (object descriptors and other descriptors).

— A coded representation of descriptive audio-visual content information [object content information (OCI)].
— An interface to intellectual property management and protection (IPMP) systems.
— A coded representation of synchronization information (sync layer — SL).

— A multiplexed representation of individual elementary streams in a single stream (M4Mux).

Vi © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

These various elements are described functionally in this clause and specified in the normative clauses that
follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496 describes the means to create an interactive
audio-visual scene in terms of coded audio-visual information and associated scene description information.
The entity that composes and sends, or receives and presents such a coded representation of an interactive
audio-visual scene is generically referred to as an “audio-visual terminal” or just “terminal”. This terminal may
correspond to a stand-alone application or be part of an application system.

Display and
User

) —

hqteractive,Audl'o’visual /’,
Pt “Scene e
Pig - "
-~ ’
gy
Composition and Rendering
I I it b
i
&> 6 $] Upstream Compression
ob Scene - ® Information Layer
t - :
DestrieCtor Desctiption AV Object
P Information data
44
Elementary Streams Elementary Stream Interfyce
[st][sLp{se] [sif[sL| [sL]... Sync
EQ Layer
SL-Packetized Streams
™~ -~ ~ - ~ ~~ DMIF Application Interfpce
| | | | [v vyl
M4Mux | M4Mux | M4Mux
\l I/ \l r \I Y I/ Delivery
Layer
o 1 EED || AaLa || H223 DAB ve
TS P ATM PSTN Mux
Multiplexed Streams
Transmission/Storage Medium

Figure 1 — The ISO/IEC 14496 Terminal Architecture

© ISO/IEC 2010 — All rights reserved

Vii

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

The basic operations performed by such a receiver terminal are as follows. Information that allows access to
content complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6
of ISO/IEC 14496 defines the procedures for establishing such session contexts as well as the interface to the
delivery layer that generically abstracts the storage or transport medium. The initial set up information allows,
in a recursive manner, to locate one or more elementary streams that are part of the coded content
representation. Some of these elementary streams may be grouped together using the multiplexing tool
described in ISO/IEC 14496-1.

Elementary streams contain the coded representation of either audio or visual data or scene description
information or user interaction data or text or font data. Elementary streams may as well themselves convey
information to identify streams, to describe Ioglcal dependenmes between streams, or to describe information

Elementary

gtreams are decoded using their respective stream-specific decoders. The audio-visual o
are composed according to the scene description information and presented by the terminal's’ preser
device(s). Allf these processes are synchronized according to the systems decoder model (SDM) usir
synchronizatipn information provided at the synchronization layer.

bjects
tation
g the

These basic ¢pperations are depicted in Figure 1, and are described in more detail below:

0.3 Terminal Model: Systems Decoder Model

with

The systems
ISO/IEC 1444
in terms of &

comprises the

buffer model

decoder model provides an abstract view of the behavior of a terminal complying
6-1. Its purpose is to enable a sending terminal to predict how the receiving terminal will b
uffer management and synchronization when reconstructing the audio-visual informatio
presentation. The systems decoder model includesya systems timing model and a sy
Which are described briefly in the following Subclauses:

0.3.1 Timing Model

The timing m
enables it to
mechanisms
user interact
requires that
information
sending term
specific even
information.

A

g

0.3.2 Buffer

The buffer m
decode each
receiving termi
whether or ne

bdel defines the mechanisms through which a receiving terminal establishes a notion of tim

to maintain synchronization both acress and within particular audio-visual objects as well g
on events. In order to facilitate\.these functions at the receiving terminal, the timing

the transmitted data streamsieontain implicit or explicit timing information. Two sets of
re defined in ISO/IEC 14496-1: clock references and time stamps. The former conve
inal's time base to the receiving terminal, while the latter convey a notion of relative tin
ts such as the desiréd decoding or composition time for portions of the encoded audio-

Model

bhave
h that
stems

e that

process time-dependent events. This 'model also allows the receiving terminal to establish

5 with
model
iming
y the
he for
visual

bdel enables the sending terminal to monitor and control the buffer resources that are neeq
elementary stream in a presentation The required buffer resources are conveyed

led to
o the

terminal to specify when |nformat|on may be removed from these buffers and enables |t to schedule data

transmission

so that the appropriate buffers at the receiving terminal do not overflow or underflow.

0.4 Multiplexing of Streams: The Delivery Layer

The term delivery layer is used as a generic abstraction of any existing transport protocol stack that may be
used to transmit and/or store content complying with ISO/IEC 14496. The functionality of this layer is not
within the scope of ISO/IEC 14496-1, and only the interface to this layer is considered. This interface is the
DMIF Application Interface (DAI) specified in ISO/IEC 14496-6. The DAI defines not only an interface for the
delivery of streaming data, but also for signaling information required for session and channel set up as well
as tear down. A wide variety of delivery mechanisms exist below this interface, with some of them indicated in
Figure 1. These mechanisms serve for transmission as well as storage of streaming data, i.e., a file is

Viii © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

considered to be a particular instance of a delivery layer. For applications where the desired transport facility
does not fully address the needs of a service according to the specifications in ISO/IEC 14496, a simple

multiplexing tool (M4Mux) with low delay and low overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary
conveyed as sync layer-packetized (SL-packetized) streams at the DMIF Application In
packetized representation additionally provides timing and synchronization information,

streams are
terface. This
as well as

fragmentation and random access information. The sync layer (SL) extracts this timing information to enable

synchronized decoding and, subsequently, composition of the elementary stream data.

0.6 The Compression Layer

The dompression layer receives data in its encoded format and performs the necessany operatig
this data. The decoded information is then used by the terminal's composition, rendering and
subsystems.

0.6.1 | Object Description Framework

The
assod
ISO/I
prote

urpose of the object description framework is to identify and\describe elementary str
iate them appropriately to an audio-visual scene description. @bjéct descriptors serve to g
EC 14496 content. Object content information and the interface™to intellectual property man
tion systems are also part of this framework.

An o
config
data,

bject descriptor is a collection of one or more)elementary stream descriptors that
uration and other information for the streams that _relate to either an audio-visual object,
or a scene description. Object descriptors are themselves conveyed in elementary streams
descrptor is assigned an identifier (object descriptor ID), which is unique within a defined nam
identifier is used to associate audio-visual objeets'in the scene description with a particular objg
and thus the elementary streams related to that particular object.

num
strean descriptors also include. information about the encoding format, configuration infornj
decoding process and the sync-layer packetization, as well as quality of service requiren
transmission of the stream and intellectual property identification. Dependencies between stream
signaled within the elementary stream descriptors. This functionality may be used, for exampl
audio|or visual object reépresentations to indicate the logical dependency of a stream containing
information, to a stream containing the base information. It can also be used to descril]
representations for.thie same content (e.g. the same speech content in various languages).

Elem{‘ntary stream descriptors include-information about the source of the stream data, in forn

0.6.1.1 Intellectual Property Management and Protection

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 contg

ns to decode
presentation

pams and to
ain access to
agement and

provide the
pr text or font
. Each object
b scope. This
ct descriptor,

h of a unique

ic identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary

ation for the
nents for the
s can also be
B, in scalable
Bnhancement
e alternative

nt consists of

a normatlive interface that permits an ISO/TEC 14496 terminal to host one or more IPMP Systems in the form
of monolithic IPMP Systems or modular IPMP Tools. The IPMP interface consists of IPMP elementary
streams and IPMP descriptors. IPMP descriptors are carried as part of an object descriptor stream. IPMP

elementary streams carry time variant IPMP information that can be associated to multiple object

descriptors.

The IPMP System, or IPMP Tools themselves are non-normative components that provides intellectual
property management and protection functions for the terminal. The IPMP Systems or Tools uses the
information carried by the IPMP elementary streams and descriptors to make protected ISO/IEC 14496

content available to the terminal.

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of
a set of tools that permits an ISO/IEC 14496 terminal to support IPMP functionality. This functionality is

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

provided by the following two different complementary technologies, supporting different levels of
interoperability.

a) The IPMP framework as defined in 7.2.3, consists of a normative interface that permits an ISO/IEC 14496
terminal to host one or more IPMP Systems. The IPMP interface consists of IPMP elementary streams
and IPMP descriptors. IPMP descriptors are carried as part of an object descriptor stream. IPMP
elementary streams carry time variant IPMP information that can be associated to multiple object
descriptors. The IPMP System itself is a non-normative component that provides intellectual property
management and protection functions for the terminal. The IPMP System uses the information carried by
the IPMP elementary streams and descriptors to make protected ISO/IEC 14496 content available to the
terminal.

b) The IPMP framework extension, as specified in ISO/IEC 14496-13 allows, in addition to the functignality
specified in ISO/IEC 14496-1, a finer granularity of governance. ISO/IEC 14496-13 provides-nermative
support for individual IPMP components, referred to as IPMP Tools, to be normatively placed)at identified
points off control within the terminal systems model. Additionally ISO/IEC 14496-13 provides normative
support [for secure communications to be performed between IPMP Tools. ISOAEC 14496-1 also
specifies| specific normative extensions at the Systems level to support the IPMP fungctionality desgribed
in ISO/IHC 14496-13.

An applicati
features.

may choose not to use an IPMP System, thereby offering no{management and protection

0.6.1.2 Obj¢ct Content Information

Object content information (OCI) descriptors convey descriptive information about audio-visual objectg. The
main conten} descriptors are: content classification descriptors,”keyword descriptors, rating descriptors,
language degcriptors, textual descriptors, and descriptors about the creation of the content. OCI descfiptors

d directly in the related object descriptor or elementary stream descriptor or, if it is time variant,
ried in an elementary stream by itself. AnOCI stream is organized in a sequence of Emall,
synchronized| entities called events that contain a set of'OCI descriptors. OCI streams can be associafted to
multiple objeg¢t descriptors.

0.6.2 Scene|Description Streams

Scene description addresses the orgapization of audio-visual objects in a scene, in terms of both spatial and
temporal attributes. This information, allews the composition and rendering of individual audio-visual opjects
after the respective decoders_have reconstructed the streaming data for them. For visual |data,
ISO/IEC 14496-11 does not mandate particular composition algorithms. Hence, visual composition is
implementatipn dependent. Foraudio data, the composition process is defined in a normative manper in
ISO/IEC 14496-11 and ISOMEC 14496-3.

The scene dgscription is represented using a parametric approach (BIFS - Binary Format for Scenes). The
description cpnsiststof an encoded hierarchy (tree) of nodes with attributes and other information (including
and-targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas
intermediate podes group this material to form audio-visual objects, and perform grouping, transformation, and
other such operations on audio-visual objects (scene description nodes). The scene description can evolve
over time by using scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-11
provides support for user and object interactions. Interactivity mechanisms are integrated with the scene
description information, in the form of linked event sources and targets (routes) as well as sensors (special
nodes that can trigger events based on specific conditions). These event sources and targets are part of
scene description nodes, and thus allow close coupling of dynamic and interactive behavior with the specific
scene at hand. ISO/IEC 14496-11, however, does not specify a particular user interface or a mechanism that
maps user actions (e.g., keyboard key presses or mouse movements) to such events.

X © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Such an interactive environment may not need an upstream channel, but ISO/IEC 14496 also provides means
for client-server interactive sessions with the ability to set up upstream elementary streams and associate
them to specific downstream elementary streams.

0.6.3 Audio-visual Streams
The coded representation of audio and visual information are described in ISO/IEC 14496-3 (Audio) and

ISO/IEC 14496-2 (Visual) and ISO/IEC 14496-10 (Advanced Video Coding) respectively. The reconstructed
audio-visual data are made available to the composition process for potential use during the scene rendering.

0.6.4 Upchannel Streams

Downchannel elementary streams may require upchannel information to be transmitted frem
terminal to the sending terminal (e.g., to allow for client-server interactivity). Figure 1 indicates th

the receiving
b flowpath for

an el
is spd
upcha
0.6.5

The (¢

mentary stream from the receiving terminal to the sending terminal. The content.of"'upcha
cified in the same part of the specification that defines the content of the downstréam data.
nnel control streams for video downchannel elementary streams are defined in)ISO/IEC 14

Interaction Streams

oded representation of user interaction information is not in-the scope of ISO/IEC 14

nnel streams
For example,
196-2.

196. But this

informpation shall be translated into scene modification and the~modifications made avajlable to the

comp

0.6.6

Sceng¢ description often contains information presented.in textual format. The audio-visual data e

scene
baseq
timed
in 1S(
ISO/I

0.7 A

The MPEG-J is a programmatie’ system (as opposed to a conventional parametric system) w
for interoperation oftMPEG-4 media players with Java code. By combining MPEG-4 mg¢dia and safe

API(s
execl
media
forms
Applid

The J
direct

Dsition process for potential use during the scene rendering;

Text and Font data Streams

may also be accompanied by supplemental téxt information such as subtitles. In order td
updates of text data and to insure the text@ppearance and layout, both elementary stre

/IEC 14496-17. The font data format-and encoded representation of font data stream arg
EFC 14496-18 (font data stream) and ISO/IEC 14496-22 (font data format).

\pplication Engine

table code, contentyereators may embed complex control and data processing mechanis
data to intelligeéntly manage the operation of the audio-visual session. The parametric MP|
the Presentation Engine while the MPEG-J subsystem controlling the Presentation Eng
ation Engige.

ava application is delivered as a separate elementary stream to the MPEG-4 terminal. T
bd/10-the MPEG-J run time environment, from where the MPEG-J program will have 3

hcoded in the
enable time-
ams carrying

text information and font data are used. . The coded representation of the timed text stream is described

described in

hich specifies

ms with their
FG-4 System
ne forms the

nere it will be
ccess to the

vario

s edomponents and required data of the MPEG-4 player to control it

In addition to the basic packages of the language (java.lang, java.io, java.util) a few categories of APIs have
been defined for different scopes. For the Scene graph API the objective is to provide access to the scene
graph specified in ISO/IEC 14496-11: to inspect the graph, to alter nodes and their fields, and to add and
remove nodes within the graph. The Resource API is used for regulation of performance: it provides a
centralized facility for managing resources. This is used when the program execution is contingent upon the
terminal configuration and its capabilities, both static (that do not change during execution) and dynamic.
Decoder API allows the control of the decoders that are present in the terminal. The Net API provides a way to
interact with the network, being compliant to the MPEG-4 DMIF Application Interface. Complex applications
and enhanced interactivity are possible with these basic packages. The architecture of MPEG-J is presented
in more detail in ISO/IEC 14496-11.

© ISO/IEC 2010 — All rights reserved Xi

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

0.8 Extensi

ble MPEG-4 Textual Format (XMT)

The Extensible MPEG-4 Textual (XMT) format is a textual representation of the multimedia content described
in ISO/IEC 14496 using the Extensible Markup Language (XML). XMT is designed to facilitate the creation
and maintenance of MPEG-4 multimedia content, whether by human authors or by automated machine
programs. XMT is specified in ISO/IEC 14496-11.

The textual representation of MPEG-4 content has high-level abstractions, XMT-O, that allow authors to
exchange their content easily with other authors or authoring tools, while at the same time preserving
semantic intent. XMT also has low-level textual representations, XMT-A, covering the full scope and function
of MPEG-4. The high-level XMT-O is designed to facilitate interoperability with the Synchronized Multimedia

Integration |
specification,
Language (V

The XMT lan
contain rules
language, fo
representatio

All constructs
and Audio p3
audiovisual b
hints in a tex
MPEG-4 pres

0.9 Patent

nguage (QI\/III) 2.0 a recommendation from - the \W3C consortivm,—and also with Extensih

X3D, developed by the Web3D consortium as the next generation of Virtual Reality Mo
RML).

guage has grammars that are specified using the W3C XML Schema language. The gran
for element placement and attribute values, etc. These rules for XMT, defined,using the Sd
low the binary coding rules defined in ISO/IEC 14496-11 and help ensure that the t
h can be coded into correct binary according to ISO/IEC 14496-11 coding. rules.

in the ISO/IEC 14496 specification have their parallel in the XMT 4extual format. For the

rts, XMT provides a means to reference external media streams, of either pre-encoded ¢
nary content. While XMT does not contain a textual format for-audiovisual media, it does ¢
ual format that allow an XMT tool to encode and embed the audiovisual media into a con
entation.

Rights

The Internatipnal Organization for Standardization (ISO) and.International Electrotechnical Commission

draw attentio
The ISO and

The holder o
reasonable a
the statemen
from the com

Attention is d
rights other t
all such pate

h to the fact that it is claimed that complianceWith this document may involve the use of a p
IEC take no position concerning the evidence, validity and scope of this patent right.

f this patent right has assured.the ISO and IEC that he is willing to negotiate licences
nd non-discriminatory terms and conditions with applicants throughout the world. In this re
of the holder of this patent.right is registered with the ISO and IEC. Information may be ob
banies listed in Annex J.

rawn to the possibility*that some of the elements of this document may be the subject of

t rights.

le 3D
Heling

hmars
hema
bxtual

Visual
r raw
bntain
plete

(IEC)
Atent.

under
spect,
ained

patent

an those identified-in Annex J. ISO and IEC shall not be held responsible for identifying any or

Xii

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

INTERNATIONAL STANDARD ISO/IEC 14496-1:2010(E)

Information technology — Coding of audio-visual objects —

Part 1:
Systems

1 Scope

This part of ISO/IEC 14496 specifies system level functionalities for the communication of intefactive audio-
visual scenes, i.e. the coded representation of information related to the management of fHata streams
(synchronization, identification, description and association of stream content).

2 ormative references
The following referenced documents are indispensable for the application of this document. For dated
refergnces, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code

ISO/IEC 10646-1:2000, Information technology.~ Universal Multiple-Octet Coded Character [Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated aydio for digital
storage media at up to about 1,5 Mbjt/s=— Part 2: Video

ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated aydio for digital
storage media at up to about 1,5 Mbit/s — Part 3: Audio

ISO/IEEC 13818-3:1998, Information technology — Generic coding of moving pictures and asspciated audio
information — Part 3:'Audio

ISO/IEC 13818-72006, Information technology — Generic coding of moving pictures and asspciated audio
infornmpation =~Part 7: Advanced Audio Coding (AAC)

ISO/IEC14496-2:2004, Information technology — Coding of audio-visual objects — Part 2: Visugl

ISO/IEC 14496-10:2009, Information technology — Coding of audio-visual objects — Part 10: Advanced
Video Coding

ISO/IEC 14496-15:2004, Information technology — Coding of audio-visual objects — Part 15: Advanced
Video Coding (AVC) file format

ISO/IEC 14496-16:2006, Information technology — Coding of audio-visual objects — Part 16: Animation
Framework eXtension (AFX)

ISO/IEC 14496-18:2004, Information technology — Coding of audio-visual objects — Part 18: Font
compression and streaming

© ISO/IEC 2010 — All rights reserved 1

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures and associated audio
information — Part 2: Video

ISO/IEC 10918-1:1994, Information technology — Digital compression and coding of continuous-tone still
images — Part 1: Requirements and guidelines

ANSI/SMPTE 291M:1996, Television — Ancillary Data Packet and Space Formatting

SMPTE 315M:1999, Television — Camera Positioning Information Conveyed by Ancillary Data Packets

W3C Recommendation: 28 October 2004 — XML Schema, http://www.w3.org/TR/xmlschema-0/

3 Additiq

For additiona

4 Terms

For the purpdg

41

access unit
AU

smallest indi

information c

4.2
alpha map
representatio

4.3
audio-visual
representatio

NOTE Th
visual object is

4.4
audio-visual
AV scene
set of audio-
attributes incl

nal references

references see the Bibliography.

and definitions

ses of this document, the following terms and definitions apply.

vidually accessible portion of data within an elementary stream to which unique
hn be attributed

h of the transparency parameters associated with a texture map

object

h of a natural or synthetic objectthat has an audio and/or visual manifestation

b representation corresponds’to a node or a group of nodes in the BIFS scene description. Each
associated with zero or'more elementary streams using one or more object descriptors.

scene

uding-behaviors resulting from object and user interactions

4.5

iming

audio-

isual objects together with scene description information that defines their spatial and tenmporal

AVC parameter set
sequence parameter set or a picture parameter set

4.6
AVC access

unit

access unit made up of NAL Units as defined in ISO/IEC 14496-10 with the structure defined in
ISO/IEC 14496-15:2004, 5.2.3

4.7

AVC parameter set access unit
access unit made up only of sequence parameter set NAL units or picture parameter set NAL units having
same timestamps to be applied

© ISO/IEC 2010 — All rights reserved

http://www.w3.org/TR/xmlschema-0/
https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.8
AVC parameter set elementary stream
elementary stream containing made up only of AVC parameter set access units

4.9
AVC video elementary stream
elementary stream containing access units made up of NAL units for coded picture data

4.10
binary format for scene
BIFS

coded rplnmenntntinn of a3 Inaramntrir scene dpqrripfinn farmat as annpifipd N ISO/NEC 14496-11

4.11
buffef model
mode] that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are
needgd to decode a presentation

412
byte aligned
positipn in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream

413
clocK reference
specigl time stamp that conveys a reading of a time base

414
composition
process of applying scene description informationin order to identify the spatio-temporal 3ttributes and
hieranchies of audio-visual objects

415
composition memory
CM
randgm access memory that contains eomposition units

416
composition time stamp
CTS
indicdtion of the nominal_ composition time of a composition unit

417
composition unit
Ccu
indivigually accessible portion of the output that a decoder produces from access units

418
compression layer

layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded
representation of an elementary stream and its decoded representation. It incorporates the decoders

419
control point
point on a given elementary stream in a terminal where IPMP Processing on stream data is carried out

4.20

decoder

entity that translates between the coded representation of an elementary stream and its decoded
representation

© ISO/IEC 2010 — All rights reserved 3

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.21

decoding buffer

DB

buffer at the input of a decoder that contains access units

4.22

decoder configuration

configuration of a decoder for processing its elementary stream data by using information contained
elementary stream descriptor

4.23

in its

decoding time stamp
DTS
indication of the nominal decoding time of an access unit

4.24
delivery layer
generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a num
multiplexed elementary streams or M4Mux streams

4.25

descriptor
data structur¢ that is used to describe particular aspects of an elementary.;stream or a coded audio-
object

4.26
DMIF application interface
DAI

ber of

visual

interface spdgcified in ISO/IEC 14496-6 used to model theJexchange of SL-packetized stream data and

associated cqntrol information between the sync layer andithe delivery layer

4.27
elementary stream
ES
consecutive flow of mono-media data from\a single source entity to a single destination entity o
compression [ayer

4.28
elementary gtream descriptor

structure confained in object_descriptors that describes the encoding format, initialization information
layer configufation, and other‘descriptive information about the content carried in an elementary stream

4.29

elementary gtream interface

ESI

conceptual irfterface modeling the exchange of elementary stream data and associated control inforn

n the

sync

hation

between the compressiortayer-and-the-synctayer

4.30

M4Mux channel

FMC

label to differentiate between data belonging to different constituent streams within one M4Mux stream

NOTE A sequence of data in one M4Mux channel within a M4Mux stream corresponds to one single SL-packetized

stream.

4.31
M4Mux packet
smallest data entity managed by the M4Mux tool consisting of a header and a payload

4 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.32

M4Mux stream

sequence of M4AMux Packets with data from one or more SL-packetized streams that are each identified by
their own M4Mux channel

4.33
M4Mux tool
tool that allows the interleaving of data from multiple data streams

4.34

graphics profile
profiIF that Qpnnifipq the permissible set of graphical elements of the BIES tool that may be used in a scene
descr|ption stream

NOTE] BIFS comprises both graphical and scene description elements.

4.35
inter
mode|for coding parameters that uses previously coded parameters to construct.a prediction

4.36
interaction stream
elemg@ntary stream that conveys user interaction information

4.37
intra
mode| for coding parameters that does not make reference’ to previously coded parameters t¢ perform the
encoding

4.38
initial object descriptor
special object descriptor that allows the receiving terminal to gain initial access to portions of corjtent encoded
accorfling to ISO/IEC 14496 and that conveys profile and level information to describe the complexity of the
contept

4.39
intellectual property identification
IPI
unique identification of one\er more elementary streams corresponding to parts of one or morg audio-visual
objecijs

4.40
intellectual property management and protection system

IPMP|system

genetjic term for mechanisms and tools to manage and protect intellectual property

NOTE Thic-poart oflSOUNEC 14496 dafinac-thao intart: taocrch cvctama ac vl Ao tha fallaa e~
oot O oo o Hrroo G e ot atCtO—SuCoyotChioaSvwo i ao t 1o Tonmowit g

— The provision for the identification of IPMP tools either through the use of a registration authority or through the use
of a functional description of the IPMP tools' capabilities in a parametric fashion.

— Controlling the time of instantiation of IPMP tools either by the inclusion of references to the required IPMP tools or at
the request of already instantiated IPMP tools.

— Providing secure messaging between IPMP tools and the terminal and between IPMP tools and the user.
— Notification of the instantiation of IPMP tools to IPMP tools requesting such notification.
— Interaction between IPMP tools, and/or the terminal and the user.

— The carriage of IPMP tools within the bitstream.

© ISO/IEC 2010 — All rights reserved 5

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.41
IPMP information
Information directed to a given IPMP Tool to enable, assist or facilitate its operation

4.42

IPMP system

monolithic IPMP protection scheme which requires implementation dependant access to protected streams at
required Control Points and must provide any intra-communication within an IPMP System on an
implementation basis

NOTE In this standard the use of the term “IPMP System” is used in some cases to indicate either an actual IPMP
System or a combination of IPMP Tools whose combination provides the functionality of an IPMP System. In cases where
the distinction is important the proper respective terms are used.

4.43
IPMP tool
module that gerforms (one or more) IPMP functions such as authentication, decryption, watefmarking

NOTE Canceptually the use of one or more IPMP tools is combined to perform the functionality of an IPMP slystem.
IPMP tools, as| opposed to IPMP systems, are normatively identified as to which control points they function at as ell as
are provided pormative methods for secure communications both within as well as outside of a given IPMHA tools
comprised fungtional “IPMP system”. An additional difference between IPMP tools and\IPMP systems is that IPMH tools,
or a combinatipn thereof, may be used for the protection of object streams.

4.44
IPMP tool identifier
unambiguouq identifier for IPMP tools at the presentation level or at'a‘universal level

NOTE Two different identifiers are provided to support the differentiation between the use of IPMP systenjs and
IPMP tools.

4.45

IPMP tool list

list of selectaple IPMP tools required to process the'content

4.46

media node

time dependgnt BIFS node that refers o a media stream through a URL field in
— AnimationStream,

— AudioBuffer,

— AudioClip,
— AudioSotrce,

— Inline, ard

— MovieTexture

4.47

media stream

one or more elementary streams whose ES descriptors are aggregated in one object descriptor and that are
jointly decoded to form a representation of an AV object

4.48

media time line
time line expressing normal play back time of a media stream

6 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.49
MP4 file
name of the file format described in ISO/IEC 14496-14

4.50

object clock reference

OCR

clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream

4.51

object content information
OocCl
additipbnal information about content conveyed through one or more elementary streams; either alaggregated to
indivigual elementary stream descriptors or is itself conveyed as an elementary stream.

4.52
objedt descriptor
oD
descr|ptor that aggregates one or more elementary streams by means of their elementary stream descriptors
and defines their logical dependencies

4.53
objedt descriptor command
comnjand that identifies the action to be taken on a list of object\descriptors or object descriptor IDs, e.g.,
update or remove

4.54
objedt descriptor profile
profilg that specifies the configurations of the object descriptor tool and the sync layer tool that arg allowed

4.55
objedt descriptor stream
elemg@ntary stream that conveys object descriptors encapsulated in object descriptor commands

4.56
objedt time base
oTB
time ase valid for a given elementary stream, and hence for its decoder; conveyed to the decoper via object
clock [references and whichlis used by all time stamps relating to this object's decoding process

4.57
parametric audiotdecoder
set of tools for-representing and decoding speech signals coded at bit rates between 6 Kbps pnd 16 Kbps,
accorfling to_the’specifications in ISO/IEC 14496-3

4.58
parametric-description
SDL declaration that describes the parametric configuration and other interface message(s) that drive the tool
and the behaviour defined for fulfilment of such a description

4.59

quality of service

QoS

performance that an elementary stream requests from the delivery channel through which it is transported.
QoS is characterized by a set of parameters (bit rate, delay jitter, bit error rate, etc.)

© ISO/IEC 2010 — All rights reserved 7

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.60

random access
process of beginning to read and decode a coded representation at an arbitrary point within the elementary

stream

4.61

reference point
location in the data or control flow of a system that has some defined characteristics

4.62
rendering
action of ftre

mon

representatio

4.63
rendering ar
portion of the

are to be renglered

4.64

scene descr
information t
resulting fro
audio-visual ¢

4.65
scene descr|
elementary sf

4.66

scene graph
elements of
positioning o
excluding the

4.67
scene graph
profile that de

description stream

NOTE BIf

4.68
seekable
property of a

:La

nafnrming a_scene dnqrripﬁnn and its constituent audio-visual nhjnan from a co
h space to a specific presentation device (i.e. speakers and a viewing window)

pa
display device's screen into which the scene description and its constituent audio-visual o

ption

t describes the spatio-temporal positioning of audio-visual objects as well as their be
object and user interactions and which makes reference’ to elementary streams
ata by means of pointers to object descriptors

ption stream
ream that conveys scene description information

elements
he BIFS language that relate only to.the structure of the audio-visual scene (spatio-ten
f audio-visual objects as well as their behavior resulting from object and user interag
audio, visual and graphics nodes-as specified in ISO/IEC 14496-11

profile
fines the permissible set of scene graph elements of the BIFS tool that may be used in a

FS comprises both.graphical and scene description elements.

media stream for which the play back is possible from any position

4.69

bjects

havior

with

nporal

tions)

scene

SL-packetized stream

SPS

sequence of sync layer packets that encapsulate one elementary stream

4.70

stream object
media stream or a segment thereof, referenced through a URL field in the scene in the form “OD:n” or
“OD:n#<segmentName>"

4.71

structured audio
method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

4.72

sync layer

SL

layer to adapt elementary stream data for communication across the DMIF Application Interface, providing
timing and synchronization information, as well as fragmentation and random access information

NOTE The sync layer syntax is configurable and can be configured to be empty.

4.73

sync layer configuration

configuration of the sync layer syntax for a particular elementary stream using information contained in its
elementary stream descriptor

4.74

sync [layer packet
SL-packet
smallg¢st data entity managed by the sync layer consisting of a configurable header.'and a payload which may
consist of one complete access unit or a partial access unit

4.75
syntdctic description language SDL
langupge defined in ISO/IEC 14496-1:2010, Clause 8 that allows the desecription of a bitstream's pyntax

4.76
systems decoder model
SDM
mode] that provides an abstract view of the behavior of a-terminal compliant to ISO/IEC 14496 which consists
of thelbuffer model and the timing model

4.77
system time base
STB
time hase of the terminal whose resolution.is’implementation-dependent and according to which jgll operations
in the|terminal are performed

4.78
termipal
system that sends, or receives and presents the coded representation of an interactive audio-vigual scene as
defingd by ISO/IEC 14496-14 which can be a standalone system, or part of an application syst¢m complying
with IBO/IEC 14496

4.79
time base
clock, equivalent to a counter that is periodically incremented

4.80
timing-model
model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly)
in the coded representation of information, and how it can be recovered at the receiving terminal

4.81
time stamp
indication of a particular time instant relative to a time base

4.82

track
collection of related samples in an MP4 file

© ISO/IEC 2010 — All rights reserved 9

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

5 Abbreviated terms

AU
AV
AVC
BIFS
CM
CTS
CuU
DAI
DB
DTS
ES
ESI
ESID
FMC

IPI
IPMP
NAL
OCl
OCR
oD
ODID
OTB
PLL
QOS
SDL
SDM
SEI
SL
SL-packet
SPS
STB
URL
VOP

10

access unit

audio-visual

advanced video coding (see ISO/IEC 14496-10)
binary format for scene

composition memory

composition time stamp

composition unit

DMIF application interface (see ISO/IEC 14496-6)
decoding buffer

decoding time stamp

elementary stream

elementary stream interface

elementary stream identifier

M4Mux channel

intellectual property

intellectual property identification

intellectual property management and protéction
network abstraction layer

object content information

object clock reference

object descriptor

object descriptor identifier

object time base

phase locked loop

quality of 'service

syntactic description language

evctameoe Ancndanr madAl
Ty ot GCCOGCTToOGCT

supplementary enhancement information
synchronization layer

synchronization layer packet
SL-packetized stream

system time base

universal resource locator

video object plane

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

6 Conventions

ISO/IEC 14496-1:2010(E)

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the
normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the
specification of the mapping of the various parameters in a binary format as well as how they are placed in a
serialized bitstream. The definition of the language is provided in Clause 8 of this specification.

7 Streaming Framework

7.1

7141

The p
comp
in ter
strea

The s

Systems Decoder Model

Introduction

ystems decoder model specifies:

urpose of the systems decoder model (SDM) is to provide an abstract view of the behavio

ying with ISO/IEC 14496. It may be used by the sender to predict how the receiving termin
s of buffer management and synchronization when decoding data receivedin the form
s. The systems decoder model includes a timing model and a buffer model.

1. the interface for accessing demultiplexed data streams (DMIF Application Interface),

2. de
3.
4. co|

5.

thg behavior of elementary stream decoders,

coding buffers for coded data for each elementary stream,

mposition memory for decoded data from eachdecoder, and

the output behavior of composition memory towards the compositor.

Thes¢ elements are depicted in Figure 2..Each elementary stream is attached to one single de

More
audio

Lvisual object).

than one elementary stream may. be connected to a single decoder (e.g., in a decoder

of a terminal
Al will behave
Df elementary

coding buffer.
of a scalable

Figure 2 — Systems Decoder Model

7.1.2 Concepts of the systems decoder model

t_ Decoding | | |, |Composition
DM 1l Buffer DB i Decoderl Memory |
c terface !
. Decoding | |, || Composition
Tl er emor
L7 | Buffer DB, Decod Memory \
> ecoder , .
7] g »| Decoding | || Compositor
v Buffer DB /
\ Decoding | |, Composition
Decoder [
(encapsulates Buffer DB, n Memory
Demultiplexer.
plexer) |Elementary Stream Interface |

This Subclause defines the concepts necessary for the specification of the timing and buffering model. The
sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

© IS0/

IEC 2010 — All rights reserved

11

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.1.21 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the
demultiplexer and provides access to streaming data that is consumed by the decoding buffers. The
streaming data received through the DAI consists of SL-packetized streams. The required properties of the
DAl are described in 7.3.3. The DAI semantics are fully specified in ISO/IEC 14496-6.

71.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified
in 7.3.2, that encapsulate a single elementary stream. The packets contain elementary stream data partitioned

in access uni
the decoding

71.23 Ac
Elementary {
determined b
the smallest
elementary s

o do VVC“ do biu‘l_" iIIfUIIIIdtiUII, C.y., fUI tilllilly dlll.‘lI dlUCToOo unit idbc“llg. SPS ddtd payiuau'
buffers, i.e., the side information is removed at the input to the decoding buffers.

cess Units (AU)

tream data is partitioned into access units. The delineation of an access-unit is comy
y the entity that generates the elementary stream (e.g., the compression layer). An access
data entity to which timing information can be attributed. Two access units from the
ream shall never refer to the same decoding or composition time. Any/further partitioning

data in an elgmentary stream is not visible for the purposes of the systems decoder model. Access un

conveyed byj
access units

NOTE — An IS

SL-packetized streams and are received by the decoding.buffers. The decoders cor
ith the necessary side information (e.g., time stamps) from the.decoding buffers.

O/IEC 14496-1 compliant terminal implementation is not required to process each incoming access

a whole. It is flirthermore possible to split an access unit into several fragments for transmission as specified in 7.

allows the sen
partial AUs ma

71.24

The decoding
receives and

ing terminal to dispatch partial AUs immediately as they.are generated during the encoding process|
y have significance for improved error resilience.

Decoding Buffer (DB)

stores access units. The systems.\buffer model enables the sending terminal to monit

decoding buffer resources that are used during.a presentation.

71.25
Streaming dg
elementary s
by the comp
integrity of an
71.2.6

The element

Elementary Streams (ES)

ta received at the aqufput of a decoding buffer, independent of its content, is considered
ream for the purpose of ISO/IEC 14496. The elementary streams are produced and cons
ession layer entities (encoders and decoders, respectively). ISO/IEC 14496 assumes th
elementarystfeam is preserved from end to end.

El¢mentary-Stream Interface (ESI)

bry{stream interface is a concept that models the exchange of elementary stream dat

pnters

letely
Lnit is
same
of the
ts are
sume

Linit as
B. This
Such

buffer is a buffer at the input of ancelementary stream decoder in the receiving terminal that

br the

as an
umed
at the

A and

associated ¢

71.2.7

ntrotinformatiom betweern thecompressiom tayer and the-syrnc tayerttisexptaimed-further

Decoder

1 7.3.

For the purposes of this model, the decoder extracts access units from the decoding buffer at precisely
defined points in time and places composition units, the results of the decoding processes, in the composition
memory. A decoder may be attached to several decoding buffers.

7.1.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer
number of composition units. In case of multiple elementary streams attached to a single decoder (scalable

12 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

coding), each composition unit is derived from access units from one or more of these streams. Composition
units reside in composition memory.

7.1.2.9

Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this
memory is not normatively specified.

7.1.2.

10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g.

comp
in 1SQ
mode

713

The t
one d
conveg
which
comp
units

synta

NOTE
7.1.3.

The

dependent. All actions of the terminal are scheduled according to this time base for the purpose
mode].

NOTE

7.1.3.

The g
be se
insert

terminal either by,means of object clock reference information inserted in the stream or by an i

its tim

bses and presents them, In the case of audio-visual data) or skips them. The compositor.is
/IEC 14496-1, as the details of this operation are not relevant within the context of thelsys
. 7.1.3.5 defines which composition units are available to the compositor at any instantof ti

Timing Model Specification

ming model relies on clock references and time stamps to synchronize. audio-visual data
r more elementary streams. The concept of a clock with its associated clock referenc
y the notion of time to a receiving terminal. Time stamps are used t¢/indicate the precise ti

the receiving terminal consumes the access units in the ,.decoding buffers or may
Dsition units resident in the composition memory. The time stamps are therefore associate
and composition units. The semantics of the timing model are“defined in the subsequent
x for conveying timing information is specified in 7.3.2.

— This timing model is designed for rate-controlled (“push™).applications.

1 System Time Base (STB)

— This does not imply that all terminals compliant with ISO/IEC 14496 operate on one single STB.

2 Object Time Base (OTB)

bject time base (OTB) defines the notion of time for a given data stream. The resolution of
ected as required by the application or as defined by a profile. All time stamps that the ser
5 in a coded data’ stream refer to this time base. The OTB of a data stream is known at

e base is'slaved to a time base conveyed with another stream, as specified in 7.3.2.3.

not specified
ems decoder
me.

conveyed by
s is used to
e instants at
access the
H with access
clauses. The

ystem time base (STB) defines the terminal's notion of time. The resolution of the STB is implementation

of this timing

this OTB can
ding terminal
the receiving
hdication that

NOTE|1 —\Elementary streams may be created for the sole purpose of conveying time base information.
NOTE Z— The receiving terminal's system time base need not be Iocked o any of the available object time bases.
7.1.3.3 Object Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary
stream decoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal
generates the object clock reference time stamp. OCR time stamps are placed in the SL packet header as
described in 7.3.2.4. The receiving terminal shall evaluate the OCR when its last bit is extracted at the input of
the decoding buffer.

© ISO/IEC 2010 — All rights reserved 13

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.1.3.4 Decoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the
decoding buffer for decoding. The AU is not guaranteed to be available in the decoding buffer either before or
after this time. Decoding is assumed to occur instantaneously when the instant of time indicated by the DTS is
reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access
units is indicated in the setup of the elementary stream (see 7.3.2.3). Otherwise a decoding time stamp (DTS)
whose syntax is defined in 7.3.2.4 conveys this point in time.

A decoding time
well, and only if the DTS and CTS values are different. Presence of both t|me stamps in an AU may |nd|
reversal between coding order and composition order.

p as
cate a

7.1.3.5 Cdgmposition Time Stamp (CTS)
ble in
sition
S, the
U, for

Each compogition unit has an associated nominal composition time, the time at whichiitunust be availz
the compositjon memory for composition. The CU is not guaranteed to be available in the compg
memory for gomposition before this time. Since the SDM assumes an instantane€ous decoding proces
CU is availafle to the decoder, at that instant in time corresponding to the DTS 0f the corresponding A
further use (e.g. in prediction processes).

sition
vhose

This instant ip time is implicitly known, if the (constant) temporal distance between successive compg
units is indicgted in the setup of the elementary stream. Otherwisera ‘eomposition time stamp (CTS)
syntax is defiped in 7.3.2.4 conveys this instant in time.

nd the
omes
ptor is

The current
composition
unavailable 3
removed).

U is instantaneously accessible by the compositoranytime between its composition time a
time of the subsequent CU. If a subsequent.*CU does not exist, the current CU beg
t the end of the lifetime of its elementary stréam (i.e., when its elementary stream descri

In case of aydio decoders, the following additionally applies to the audio samples within a compositiof unit:

the composit
explicitly spe
713.6 Ocd

The frequenc
jitter and drift

on time applies to the n-th audio(sample within the composition unit. The value of nis 1 {
ified in ISO/IEC 14496-3, 1.6.6_Interface between Audio and Systems.

currence and Precision‘of Timing Information in Elementary Streams

y at which DTS, CTS'and OCR values are to be inserted in the bitstream as well as the pre
are application andprofile dependent. Some usage considerations can be found in 7.3.2.7.

71437 Ti

An audio-vi

e Stampsdor Dependent Elementary Streams

ual ©bject may refer to multiple elementary streams that constitute a scalable ¢

nless

cision,

bntent

base.
F CTS

representation.(see 7.2.7.1.5). Such a set of eIementary streams shall adhere to a smgle object time
Temporally c6 y y
values.

EXAMPLE

The example in Figure 3 illustrates the arrival of two access units at the Systems Decoder. Due to the constant delay
assumption of the model (see 7.1.4.2 below), the arrival times correspond to the instants in time when the sending
terminal has sent the respective AUs. The sending terminal must select this instant in time so that the Decoding Buffer at
the receiving terminal never overflows or underflows. At the receiving terminal, an AU is instantaneously decoded, at that
instant in time corresponding to its DTS, and the resulting CU(s) are placed in the composition memory and remain there
until the subsequent CU(s) arrive or the associated object descriptor is removed.

14 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Arrival(AUl)
Arrival(AUy) DTS (AUy)
DTS (AU,)
. AU,
DeCOdlng 0000000000000 000000
Buffer AU,
~ oy CU;
CUTIPOUSTUUIY A 000000000000COCGOCGOCOOIOOS
Memory CU,
= available for
CTS (CU,) CTS (CUy) #O composition

Figure 3 — Composition unit availability
7.1.4| Buffer Model Specification

7141/ Elementary Decoder Model

specify the buffer model. It treats each elementary stream separately and therefore, associates @ composition

FigurI 4 indicates one branch of the systems decoder madel (Figure 2). This simplified model is used to
mem

ry with only one decoder. The legend following Figure 4 elaborates on the symbols used in|this figure.

Decoding AU CU Composition

Buffr DB [“Decoder [P MemoryCM [Compositor

Legend:

DB Decoding.buffer for the elementary stream.

CM Compesition memory for the elementary stream.
AU The current access unit input to the decoder.

CuU —Fhere may be

Figure 4 — Flow diagram for the systems decoder model

71.4.2 Assumptions

71.4.21 Constant end-to-end delay

Data transmitted in real time have a timing model in which the end-to-end delay from the encoder input at the
sending terminal, to the decoder output at the receiving terminal, is constant. This delay is equal to the sum of
the delay due to the encoding process, subsequent buffering, multiplexing at the sending terminal, the delay

© ISO/IEC 2010 — All rights reserved 15

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

due to the delivery layers and the delay due to the demultiplexing, decoder buffering and decoding processes
at the receiving terminal.

Note that the receiving terminal is free to add a temporal offset (delay) to the absolute values of all time
stamps if it can cope with the additional buffering needed. However, the temporal difference between two time
stamps (that determines the temporal distance between the associated AUs or CUs) has to be preserved for
real-time performance.

NOTE — Two elementary streams that adhere to different time bases may be synchronized tightly in case of constant
end-to-end delay as assumed by this model. If an application cannot implement this model assumption, such tight
synchronization may not be achievable. Tolerances for the constant end-to-end delay assumption need to be defined
through the profile and level mechanism.

7.1.4.2.2 Demultiplexer

The end-to-¢ ht the

receiving tern

hd delay between multiplexer output, at the sending terminal, and demultiplexer irput,
ninal, is constant.

71.4.23

Decoding Buffer

The needed dlecoding buffer size is known by the sending terminal and conveyed,te’the receiving termipal as

specified in 7
The size of th
The decoding
available and

of the decodd

Information i

2.6.6.

e decoding buffer is measured in bytes.

buffer is filled at the rate given by the maximum bit rate for this elementary stream while g
with a zero rate otherwise. The maximum bit rate is,conveyed by the sending terminal as

r configuration information during the set up phase for each elementary stream (see 7.2.6.4

received from the DAI in the form of SL packets. The SL packet headers are removed

ata is
A part

).

at the

input to the decoding buffers.

7.1.4.2.4 Decoder

The decoding processes are assumed to bg,instantaneous for the purposes of the systems decoder model.

71.4.2.5 (Qomposition Memory
The mapping

receiving tern

of an AU to one pr.more CUs (by the decoder) is known implicitly at both the sending and the
hinals.

71.4.2.6 Qompositor,

The composifion processes are assumed to be instantaneous for the purposes of the systems decoder njodel.

7143

In this example, we assume that the model is used in a “push” scenario. In applications where non-real time
content is to be delivered, flow control by suitable signaling may be established to request access units at the
time they are needed at the receiving terminal. The mechanisms for doing so are application-dependent, and
are not specified in ISO/IEC 14496.

The behaviors of the various elements in the SDM are modeled as follows:

The sending terminal signals the required decoding buffer resources to the receiving terminal before
starting the delivery. This is done as specified in 7.2.6.6 either explicitly, by requesting the decoding buffer
sizes for individual elementary streams, or implicitly, by indicating a profile (see Clause 9). The decoding
buffer size is measured in bytes.

16 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

long as data is available.

decoding buffer.

decoded AU are put in the composition memory.

The
unav4

Using
buffe
termi
availg
time.
decod
B-frar

7.2

7.21

The {

data are the basic building blocks of the architecture:of ISO/IEC 14496-1. Elementary streams

audio
the i
spatig
elemsg
indep
their ¢

The @
assod
Nume
descr]
chang

Each
are a
asca

ilable at the end of lifetime of its data stream.

these assumptions on the buffer model, the sending terminal may freely use the space in

. For example, it may deliver data for several AUs of a stream, for non real titne usage, to
al, and pre-store them in the DB long before they have to be decoded (assuming suffig
ble). Subsequently, the full delivery bandwidth may be used to transfer data of a real time
The composition memory may be used, for example, as a reordering buffer. In the ¢
ing, it may contain the decoded P-frames needed by a video decader for the decoding o
nes, before the arrival of the CTS of the latest P-frame.

Object Description Framework

Introduction
cene description (specified in ISO/IEC 14496-11) and the elementary streams that cony

or visual objects as well as for the sceneescription itself. The object description frame
hk between elementary streams and the scene description. The scene description
-temporal relationship of audio-visual, objects, while the object description framework
ntary stream resources that provide the time-varying data for the scene. This indirect
endent changes to the scene structure, the properties of the elementary streams (e.qg. its g
elivery.

bject description framework consists of a set of descriptors that allows to identify, describe

ric identifiers, called,ObjectDescriptorIDs, associate object descriptors to appropriate nodes
ption. Object descriptors are themselves conveyed in elementary streams to allow t
es to the available set of object descriptors to be made.

object descriptor is itself a collection of descriptors that describe one or more elementary
sociated to a single node and that usually relate to a single audio or visual object. This allo
able‘content representation as well as multiple alternative streams that convey the same cq

The sending terminal models the behavior of the decoding buffers by making the following assumptions :

Each decoding buffer is filled at the maximum bitrate specified for its associated elementary stream as

At the instant of time corresponding to its DTS, an AU is instantaneously decoded and removed from the

At the instant of time corresponding to its DTS, a known amount of CUs corresponding to the just

CTS of the

curreIt CU and the CTS of the subsequent CU. If a subsequent CU does not exist, the current|CU becomes

the decoding
the receiving
ient space is
5tream just in
pse of visual
intermediate

ey streaming
carry data for
vork provides
declares the
specifies the
on facilitates
ncoding) and

and properly

iate elementary streams to each other and to audio-visual objects used in the scen¢ description.

5 in the scene
me stamped

streams that
vs to indicate
ntent, e.g., in

multig

lengqualities or different lanquages.

An elementary stream descriptor within an object descriptor identifies a single elementary stream with a
numeric identifier, called ES_ID. Each elementary stream descriptor contains the information necessary to
initiate and configure the decoding process for the elementary stream, as well as intellectual property
identification. Optionally, additional information may be associated to a single elementary stream, most
notably quality of service requirements for its transmission or a language indication. Both, object descriptors
and elementary stream descriptors may use URLs to point to remote object descriptors or a remote
elementary stream source, respectively.

The object description framework provides the hooks to implement intellectual property management and
protection (IPMP) systems. IPMP information is conveyed both through IPMP descriptors as part of the object
descriptor stream and through IPMP streams that carry time variant IPMP information. The structure of IPMP

© ISO/IEC 2010 — Al rights reserved 17

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

descriptors and IPMP streams is specified in this Clause while their internal syntax and semantics and, hence,
the operation of the IPMP system is outside the scope of ISO/IEC 14496.

Object content information allows the association of metadata with a whole presentation or with individual
object descriptors or with elementary stream descriptors. A set of OCI descriptors is defined that either form
an integral part of an object descriptor or elementary stream descriptor or are conveyed by means of a proper
OCI stream that allows the conveyance of time variant object content information.

Access to ISO/IEC 14496 content is gained through an initial object descriptor that needs to be made
available through means not defined in ISO/IEC 14496. The initial object descriptor in the simplest case points
to the scene description stream and the corresponding object descriptor stream. The access scenario is
outlined in 7.27.3

initial
ObjectDescriptor

ES Descriptor []

ES_Descriptor |-

E$_ID

ObjectDescriptorUpdate
; ObjectDescriptor

,,,,,,, [Object Object : } i -
Object Descriptor Stkeam . | Descriptor Descriptor ES_Descriptor :

EX =D
|| Es.p

Visual Stream (e.g. Qase layer) /

[> 00 0|,
Visual Stream: (e.g. mporal enhancenient) I
|4

Figure 5 — Object descriptors linking scene description to elementary streams

The remaindgr of this Clause is structured in the following way:

e 7.2.2 sperifies.the data structures on which the object descriptor framework is based.

o 7.2.3 specifies the concepts of the IPMP elements in the object description framework.
e 7.2.4 specifies the object content information elements in the object description framework.

e 7.2.5 specifies the object descriptor stream and the syntax and semantics of the command set that allows
the update or removal of object descriptor components.

e 7.2.6 specifies the syntax and semantics of the object descriptor and its component descriptors.

e 7.2.7 specifies rules for object descriptor usage as well as the procedure to access content through object
descriptors.

e 7.2.8 specifies the usage of the IPMP system interface.

18 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.2 Common data structures

7.2.21 Overview

The commands and descriptors defined in this Subclause constitute self-describing classes, identified by
unique class tags. Each class encodes explicitly its size in bytes. This facilitates future compatible extensions
of the commands and descriptors. A class may be expanded with additional syntax elements that are ignored
by an OD decoder that expects an earlier revision of a class. In addition, anywhere in a syntax where a set of
tagged classes is expected it is permissible to intersperse expandable classes with unknown class tag values.
These classes shall be skipped, using the encoded size information.

The remainderof this Ctausedefinesthesyntaxand-semantics of thecommandand-descriptorclasses. Some
comnjands and descriptors contain themselves a set of component descriptors. They are said.i¢ aggregate a
set offcomponent descriptors.
Table 1 — List of Class Tags for Descriptors

Tag value Tag name

0x00 Forbidden

0x01 ObjectDescrTag

0x02 InitialObjectDescrTag

0x03 ES_DescrTag

0x04 DecoderConfigDescrTag

0x05 DecSpecificinfoTag

0x06 SLConfigDescrTag

0x07 ContentldentDescrTag

0x08 SupplContentldentDescrTag

0x09 IPI_DescrPointerTag

O0x0A IPMP_DescrPointerTag

0x0B IPMP_DescrTag

0x0C QoS_DescrTag

0x0D RegistrationDescrTag

Ox0E ES_ID_IncTag

OxOF ES_ID_RefTag

0x10 MP4_IOD_Tag

0x11 MP4_OD_Tag

0x12 IPL_DescrPointerRefTag

0x13 ExtensionProfileLevelDescrTag

0x14 profileLevellndicationIndexDescrTag

0x15-0x3F Reserved for ISO use

0x40 ContentClassificationDescrTag

Ox4+1 KeyWordbescrag

0x42 RatingDescrTag

0x43 LanguageDescrTag

0x44 ShortTextualDescrTag

0x45 ExpandedTextualDescrTag

0x46 ContentCreatorNameDescrTag

0x47 ContentCreationDateDescrTag

0x48 OCICreatorNameDescrTag

0x49 OClICreationDateDescrTag

Ox4A SmpteCameraPositionDescrTag

0x4B SegmentDescrTag

© ISO/IEC 2010 — All rights reserved 19

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.2.2

S

J

7.2.2.21

abstract 4

// empty.

}

S

72222 S
This class is
descriptor cg
establishes 4
defined in Ta
through the i

A class that
classes that 4

NOTE — User
uses a specifig

authority if reqiired.

The following

BaseDescriptor

Tag value Tag name

0x4C MediaTimeDescrTag
0x4D-0x5F Reserved for ISO use (OCI extensions)
0x60 IPMP_ToolsListDescrTag
0x61 IPMP_ToolTag

0x62 M4MuxTimingDescrTag
0x63 M4MuxCodeTableDescrTag
0x64 ExtSLConfigDescrTag

0x65 M4MuxBufferSizeDescrTag
0x66 M4MuxldentDescrTag

0x67 DependencyPointerTag
0x68 DependencyMarkerTag
0x69 M4MuxChannelDescrTag
0x6A-0xBF Reserved for ISO use
0xCO0-0xFE User private

OxFF Forbidden

yntax

ligned(8) expandable(2?®-1) class BaseDesériptor : bit(8)

To be filled by classes extending this)class.

tag=0 {

-

emantics

an abstract base class that is extéended by the descriptor classes specified in 7.2.6.
nstitutes a self-describing class, identified by a unique class tag. This abstract base
common name space for the class tags of these descriptors. The values of the class tag
ble 1. As an expandable class'the size of each class instance in bytes is encoded and acce
stance variable sizeOflnstance (see 8.3.3).

allows the aggregation of classes of type BaseDescriptor may actually aggregate any
xtend BaseDescriptor.

private descriptors may have an internal structure, for example to identify the country or manufactun
descriptor{_Fhe tags and semantics for such user private descriptors may be managed by a regis

additional symbolic names are introduced:

Each
class
s are
ssible

bf the

er that
tration

ExtDescrTagStartRange = 0x6A

ExtDescrTagEndRange = OXFE

OClIDescrTagStartRange = 0x40

OClIDescrTagendRange = Ox5F

20

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.2.3 BaseCommand

7.2.2.31 Syntax

abstract aligned(8) expandable (22®-1) class BaseCommand : bit(8) tag=0 {
// empty. To be filled by classes extending this class.
}

7.2.2.3.2 Semantics

This flass is an absfract base class that is extended by the command classes specified in }.2.5.5. Each
comnjand constitutes a self-describing class, identified by a unique class tag. This abstragt base class
establishes a common name space for the class tags of these commands. The values pf\.the dlass tags are
defingd in Table 2. As an expandable class the size of each class instance in bytes is encoded apd accessible
through the instance variable sizeOflnstance (see 8.3.3).

Table 2 — List of Class Tags for Commands

Tag value Tag name

0x00 forbidden

0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES_DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag
0x07 ES_DescrRemoveRefTag
0x08 ObjectDescrExecuteTag
0x09-0xBF Reserved for ISO (command tags)
0xCO0-0OxFE User private

OxFF forbidden

A claps that allows the aggregation of classes of type BaseCommand may actually aggregaje any of the
classg¢s that extend BaseCommand.

NOTE|— User private.commands may have an internal structure, for example to identify the country or mgnufacturer that
uses a specific command. The tags and semantics for such user private command may be managed by a registration
authotity if required.

7.2.3| Intellectual Property Management and Protection Framework (IPMP)

7.2.3.1 Overview

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of
a normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems or IPMP
Tools. Additionally, the framework contains a secure messaging system usable between IPMP Tools as well
as IPMP Tools and the Terminal and IPMP Tools and the User which is specified in ISO/IEC 14496-13.

An IPMP System or IPMP Tools are non-normative components that provide intellectual property
management and protection functions for the terminal.

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of

IPMP elementary streams is specified in this Subclause. IPMP descriptors are carried as part of an object
descriptor stream and are specified in 7.2.6.14. The IPMP interface allows applications (or derivative

© ISO/IEC 2010 — Al rights reserved 21

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

application standards) to build specialized IPMP Systems or IPMP Tools. Alternatively, an application may
choose not to use an IPMP System or IPMP Tools, thereby offering no management and protection features.
The IPMP System and IPMP Tools use the information carried by the IPMP elementary streams and
descriptors to make protected ISO/IEC 14496 content available to the terminal. The detailed semantics and
decoding process of the IPMP System or IPMP Tools are not in the scope of ISO/IEC 14496. The usage of
the IPMP System/Tools Interface, however, is explained in 7.2.8 with the usage of the IPMP framework being

explained.
7.2.3.2

7.23.21

IPMP Streams

Structure of the IPMP Stream

The IPMP str|
or Tools. Thig
at a period dg

72322 A

An IPMP acg
that are to be
streams shall
composition

the point in ti
be evaluated

An access ur

bam is an elementary stream that passes time-varying information to one or more IPMR.Sy
is accomplished by periodically sending a sequence of IPMP messages along with'\the ¢
termined by the IPMP System(s) or Tool(s).

ccess Unit Definition

ess unit consists of one or more IPMP messages, as defined in 7.2.3.2.:5. All IPMP mes
processed at the same instant in time shall constitute a single access-unit. Access units in
be labeled and time-stamped by suitable means. This shall be doneia the related flags a
me stamps, respectively, in the SL packet header (see 7.3.2,4)._ The composition time ind

e at which an IPMP access unit becomes valid, i.e., when the-.embedded IPMP messages

Decoding and composition time for an IPMP access unit shall always have the same valud.

stems
bntent

5ages
IPMP
nd the
cates
shall

it does not necessarily convey or update the compléte) set of IPMP messages that are cufrently
required. In fhat case it just modifies the persistent state of .thé IPMP system. However, if an acces

S unit

conveys the| complete set of IPMP messages requiredvat a given point in time it shall sgt the
randomAccgssPointFlag in the SL packet header to ‘1’ for this access unit. Otherwisg, the
randomAccdssPointFlag shall be set to ‘0.
NOTE — An gL packet with randomAccessPointFlag=1 but with no IPMP messages in it indicates that at the ¢urrent
time instant no|IPMP messages are required for operation.
7.2.3.2.3 ime Base for IPMP Streams
The time bage associated to an IPMP-stream shall be indicated by suitable means. This shall be dohe by
means of object clock reference.time stamps in the SL packet headers (see 7.3.2.4) for this stream|or by
indicating thg elementary stream)from which this IPMP stream inherits the time base (see 7.3.2.3). All time
stamps in the SL-packetized IPMP stream refer to this time base.
which
bntent

7.2.3.2.4.1

class IPMPDecoderConfiguration extends DecoderSpecificInfo :

Syntax

bit(8)

tag=DecSpecificInfoTag {

// 1IPMP
}

22

system specific configuration information

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.3.24.2 Semantics

An IPMP system may require information to initialize its operation. This information shall be conveyed by
extending the decoderSpecificInfo class as specified in 7.2.6.7.
IPMPDecoderConfiguration shall be conveyed in the ES_Descriptor declaring the IPMP stream.

7.2.3.2.5 IPMP message syntax and semantics

7.2.3.2.5.1 Syntax

aligned(8) expandable (2?®-1) class IPMP_Message

If utilized,

{
bil
if

7.2.3.

The
instan

IPMP
ISO/I
as de
Type.
IPMP

URLS
IPMP

IPMP
Strea

t(16) IPMPS_Type;
(IPMPS_Type == 0)

bit (8) URLString[sizeOfInstance-2];

se (if (IPMPS_Type == OXFFFF)

bit(16) IPMP_DescriptorIDEX;
IPMP_Data_BaseClass IPMP_ExtendedDatal]

else {
bit (8) IPMP_datal[sizeOfInstance-21];

2.5.2 Semantics
IPMP_Message conveys time-varying IPMPVinformation for associated IPMP System (
ces.

5_Type — The type of the IPMP System, in “Hooks” compliant Terminals as

signated by ISO/IEC JTC 1, shall assign a unique valid value for this field for a specific
If the IPMP_DescriptorID is “0”, another URL is referenced. This process contir

| Message with a non-zer0/ IPMP_DescriptorID is accessed.

Lring[] - contains' a UTF-8 [6] encoded URL that shall point to the location
| Message.

| DescriptworID — this is one of the IPMP_DescriptorIDs in the scope of service

m and identifies the recipient(s) of the IPMP_Message.

r IPMP Tool

specified in

FC 14496-1. The values “0x00027to “0x2000” are reserved for future ISO use. A Registrafion Authority,

PMP System
ues until an

of a remote

of this IPMP

IPMP

the IPMP-teelk

| ExtendedData - The IPMP data that is extended from IPMP_Data_BaseClass to btf delivered to

IPMP_data - opaque data to be delivered to the IPMP Tool.

The IPMP_Message is backward compatible with the IPMP_Message of ISO/IEC 14496-1:2001. However, in
order to unambiguously identify the version of the IPMP stream, the ObjectTypeIndication shall be set to
” for streams complying with this part of the specification. IPMP Streams complying with
ISO/IEC 14496-1 shall use an ObjectTypeIndication of “OxFF” as specified for in 7.2.6.6.2.

“0x02

© ISO/IEC 2010 — All rights reserved

23

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.3.2.6 Extension tags for the IPMP_Data_BaseClass

7.2.3.2.6.1 IPMP_Data_BaseClass

The IPMP_Data_BaseClass is intended to be extended to provide the carriage of ISO defined as well as
user defined IPMP related data.

7.2.3.2.6.2 Syntax

abstract aligned(8) expandable(2728-1) class IPMP_Data_BaseClass:
bit(8) tag=0..255

{
bit(8) Version;
bit (32) flatalD;
// Fields and data extending this message.

7.2.3.2.6.3 Semantics
Version - indicates the version of syntax used in the IPMP Data and shall be-set to “0x01”.

dataID - used for the purpose of identifying the message. Tools replyingdirectly to a message shall include
the same dataID in any response.

tag indicates the tag for the extended IPMP data. The exact<valdes for the extension tags are defined in
ISO/IEC 14496-13.

IPMP data eXtending from IPMP_Data_BaseClass can-be carried in the following three places:

e TIPMP Descriptor
e IPMP_Message defined in ISO/IEC 14496-13 which is subsequently carried in IPMP Stream.
e Mespages defined in ISO/IEC 14496-13 specified to carry messages between IPMP tools.

7.2.4 Objegt Content Information-(OCI)

7.24.1 OVerview

Audio-visual pbjects thathate associated with elementary stream data through an object descriptor may have
additional object content'information attached to them. For this purpose, a set of OCI descriptors is defined in
7.2.6.18. OC] descriptors may directly be included as part of an object descriptor or ES_Descriptpr as
defined in 7.2.6,

In order to accommodate time variant OCI that is separable from the object descriptor stream, OCI descriptors
may as well be conveyed in an OCI stream. An OCI stream is referred to through an ES_Descriptor, with the
streamType field set to OCI_Stream. How OCI streams may be aggregated to object descriptors is defined
in 7.2.7.1.3. The structure of the OCI stream is defined in this Subclause.

7.24.2 OCI Streams

7.2.4.21 Structure of the OCI Stream

The OCI stream is an elementary stream that conveys time-varying object content information, termed OCI
events. Each OCI event consists of a number of OCI descriptors.

24 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.4.2.2 Access Unit Definition

An OCI access unit consists of one or more OCI_Events, as described in 7.2.4.2.5. Access units in OCI
elementary streams shall be labelled and time stamped by suitable means. This shall be done by means of
the related flags and the composition time stamp, respectively, in the SL packet header (see 7.3.2.4). The
composition time indicates the point in time when an OCI access unit becomes valid, i.e., when the embedded
OCI events shall be added to the list of events. Decoding and composition time for an OCI access unit shall
always have the same value.

An access unit may or may not convey or update the complete set of OCI events that are currently valid. In
the latter case, it just modifies the persistent state of the OCI decoder. However, if an access unit conveys the

comp

ete set of QCl events valid at a gi\/nn pninf intime it shall setthe randomaccessPointy

ag inthe SL

packs

NOTE
instan

7.24,

The ti
use ¢

indicgting the elementary stream from which this OCI stream inherits)the time base (see 7.3

stamy
7.24.

7.24,

clas
tag=
cd

}

7.2.4,
This i
deco

the E{

vers

Only {he valug 0x01 is allowed; all the other values are reserved.

7.2.4,

t header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be Sef

— An SL packet with randomAccessPointFlag=1 but with no OCI events in it indicates'that at t
no valid OCI events exist.

2.3 Time Base for OCI| Streams

me base associated with an OCI stream shall be indicated by suitable means. This shall b
f object clock reference time stamps in the SL packet headers(see 7.3.2.4) for this

s in the SL-packetized OCI stream refer to this time base.
2.4 OCI Decoder Configuration

2.4.1 Syntax

5 OCIDecoderConfiguration extends @ecoderSpecificInfo : bit(8)
DecSpecificInfoTag {

nst bit(8) versionLabel = 0xQiy%

2.4.2 Semantics

hformation is needed, to .initialize operation of the OCI decoder. It shall be conveyed by

HerSpecificInfaotelass as specified in 7.2.6.7. 0OCIDecoderConfiguration shall bg
E_Descriptordeclaring the OCI stream.

i onLabel s~ \indicates the version of OCI specification used on the corresponding OCI

2.5, ~0CI_Events syntax and semantics

to ‘0.

he current time

b done by the
Stream or by
2.3). All time

bxtending the
conveyed in

data stream.

7.24.251 Syntax

aligned(8) expandable(22®-1) class OCI_Event {
bit(15) eventID;

bit (1) absoluteTimeFlag;

bit(32) startingTime;

bit(32) duration;

OCI_Descriptor OCI_Descr[l .. 2551;

© ISO/IEC 2010 — All rights reserved

25

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)
7.2.4.2.5.2 Semantics

eventID — contains the identification number of the described event that is unique within the scope of this
OCI stream.

absoluteTimeFlag - indicates the time base for startingTime as described below.

startingTime - indicates the starting time of the event in hours, minutes, seconds and hundredth of
seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in

binary coded

decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

EXAMPLE —

“0x02364559”.

If absolutgqTimeFlag is set to zero, startingTime is relative to the object time -base qf the
corresponding object. In that case it is the responsibility of the application to ensure that this object timg base
is conveyed such that startingTime can be identified unambiguously ((see 7.3.2.7). If
absoluteTimeFlag is settoone, startingTime is expressed as an absolute value, \refering to wall clock
time.

duration - contains the duration of the corresponding object in hours, minuteSy’seconds and hundredth of

seconds. The
binary coded

OCI_Descr ||
7.2.5 Objeq

7251 St
Similar to the
object descri
complete obj
update mech
they become
stamped to in

This Subclauy
semantics of

7.25.2 Ac
An OD acceq
are to be pro
descriptor elg

decimal and the last two expressing hundredth of seconds in\héxadecimal using 8 bits.

1 —an array of one up to 255 OCI_Descriptor classes as specified in 7.2.6.18.2.
t Descriptor Stream

ucture of the Object Descriptor Stream

format is 8 digits, the first 6 digits expressing hours, minutes(and seconds with 4 bits eqch in

scene description, object descriptors are transported in a dedicated elementary stream, t

available, or to remove reférences to streams that are no longer available. Updates ar
dicate the instant in time they take effect.

se specifies the stricture of the object descriptor elementary stream including the synta
ts constituent elements, the object descriptor commands (OD commands).

cess UnitDefinition

s unitsconsists of one or more OD commands, as described in 7.2.5.5. All OD command
cessed at the same instant in time shall constitute a single access unit. Access units in

rmed

ptor stream. Within such a stream,t”is possible to dynamically convey, update and rgmove
pct descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptorg. The
anism allows, for example, to advertise new elementary streams for an audio-visual objé¢ct as

time

X and

s that
bbject

mentary streams shall be labelled and time stamped by suitable means. This shall be dqg

ne by

means of the related flags and the composition time stamp, respectively, in the SL packet header (see 7.3.2.4).
The composition time indicates the point in time when an OD access unit becomes valid, i.e., when the
embedded OD commands shall be executed. Decoding and composition time for an OD access unit shall
always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In
that case it just modifies the persistent state of the object descriptor decoder. However, if an access unit
conveys the complete set of object descriptors required at a given point in time it shall set the
randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPointFlag shall be setto ‘0.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OD commands in it indicates that at the current
time instant no valid object descriptors exist.

26 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.5.3 Time Base for Object Descriptor Streams

The time base associated to an object descriptor stream shall be indicated by suitable means. This shall be
done by means of object clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or
by indicating the elementary stream from which this object descriptor stream inherits the time base (see
7.3.2.3). All time stamps in the SL-packetized object descriptor stream refer to this time base.

7.2.5.4 OD Decoder Configuration

The object descriptor decoder does not require additional configuration information.

7.2.5.

7.2.5,

Objedt descriptors and their components as defined in 7.2.6 shall always be conyeyed as part
OD ¢

more [object descriptors, ES_Descriptors or IPMP descriptors.
7.2.55.2 ObjectDescriptorUpdate
7.2.55.21 Syntax
clasgp ObjectDescriptorUpdate extends BaseCommand : bit(8)
tag=pPbjectDescrUpdateTag {
OfjectDescriptorBase OD[0 .. 255];

}

7.2.5,

The

descriptor is updated, the streams tefered to by the old object descriptor shall be closed ang
referdd to by the new object descriptor may be accessed by the content access procedure (see 7]

NOTE| - The ES_DescriptorUpdate or ES_DescriptorRemove commands may be used to add or ren

ES D

OD[]

one up to 255 elements.

7.2.5.

B~ OD Command Syntax and Semantics

5.1 Overview

5.2.2 Semantics

bjectDescriptorUpdate class conveys a list of new or updated object descriptors

pscriptors of an existing‘object descriptor.

— an array of ‘object descriptors as defined in 7.2.6.3 and 7.2.6.4. The array shall have a

5.3 (" ObjectDescriptorRemove

of one of the

ommands specified in this Subclause. The commands describe the action to be taken on the
comppnents conveyed with the command, specifically ‘update’ or ‘remove’.;Each command 3

ffects one or

If an object
the streams
.2.7.3.6.2).

ove individua

ny number of

7.2.5.531 Syntax

clas
tag=

s ObjectDescriptorRemove extends BaseCommand : bit(8)
ObjectDescrRemoveTag {

bit (10) objectDescriptorId[(sizeOfInstance*8)/10];

}

7.2.5.

5.3.2 Semantics

The ObjectDescriptorRemove class renders unavailable a set of object descriptors. The BIFS nodes
associated to these object descriptors shall have no reference any more to the elementary streams that have

© ISO/IEC 2010 — All rights reserved

27

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

been listed in the removed object descriptors. An objectDescriptorID that does not refer to a valid object
descriptor is ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated

OD.

ObjectDescriptorId[] — an array of ObjectDescriptorIDs that indicates the object descriptors that

are removed.

7.2.5.5.4

ES_DescriptorUpdate

7.2.5.5.4.1

class ES_TJ
bit (10)
ES_Desc1y

7.2.5.5.4.2

The ES_Des
objectDesd
scope shall b

To update the¢ characterstics of an elementary stream, it is required that its original ES_Descriptor be ren

and the chan

When an IPN
under the ne
valid (see 7.2

ES_Descrig
(see 7.2.6.3).

An elementa
correspondin

ES_Descrig

objectDesd

o &
Uylllql\

escriptorUpdate extends BaseCommand : bit(8) tag=ES_DescrUpdateTayg
objectDescriptorId;

riptor esDescr|[1 2557 ;

Semantics

FriptorUpdate class conveys a list of new ES_Descriptors(for the object descriptor 13
riptorID. ES Descriptors with ES_IDs that have already be€n received within the same
B ignored.

jed ES_Descriptor be conveyed.

IP stream is added, the affected elementary streams, as defined in 7.2.8.2, shall be proc
v IPMP conditions starting at the point in time-that this ES_DescriptorUpdate command beg
.5.2).

torUpdate shall not be applied\'on object descriptors that have set URL_Flag
y stream identified with a-given ES_ID may be attached to more than one object descript
] ES_Descriptors , efering to this ES_ID that are conveyed through

torUpdate or ObjectDescriptorUpdate commands shall have identical content.

riptorID - identifies the object descriptor for which ES_Descriptors are updated.

beled
name

hoved

bssed
omes

|1|

to

pr. All
either

If the

{

objectDescrigtorID does netirefer to any valid object descriptor, then this command is ignored.
esDescr[] |- an arrayof ES_Descriptors as defined in 7.2.6.5. The array shall have any number ¢f one
up to 255 elements.
7.2.5.5.5 ES_DescriptorRemove
7.2.5.5.51 Syntax
class ES_DescriptorRemove extends BaseCommand : bit(8) tag=ES_DescrRemoveTag
bit (10) objectDescriptorId;
aligned (8) bit(16) ES_ID[1..255];

28

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.5.5.5.2 Semantics

The ES_DescriptorRemove class removes the reference to an elementary stream from an object
descriptor and renders this stream unavailable for nodes referencing this object descriptor.

When an IPMP stream is removed, the affected elementary streams, as defined in 7.2.8.2, shall be processed
under the new IPMP conditions starting at the point in time that this ES_DescriptorRemove command
becomes valid (see 7.2.5.2).

ES_DescriptorRemove shall not be applied on object descriptors that have set URL_Flag to '1'
(see 7.2.6.3).

objeftDescriptorID - identifies the object descriptor from which ES_Descriptors arergmoved. If the
objeciDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES_IpI]1] - an array of ES_IDs that labels the ES_Descriptors ~to “be removed from
objeftDescriptorID. If any of the ES_IDs do not refer to an ES_Descriptor (eurrently refefenced by the
OD, then those ES_IDs are ignored. The array shall have any number of one upt6"255 elements|

7.255.6 IPMP_DescriptorUpdate

7.2.55.6.1 Syntax

clasgp IPMP_DescriptorUpdate extends BaseCommand(): bit(8) tag=IPMP_DescrlpdateTag
{

IHMP_Descriptor ipmpDescr[l..255];
}

7.2.5.5.6.2 Semantics

The [[PMP_DescriptorUpdate class\conveys a list of new or updated IPMP_Descyiptors. An
IPMP| Descriptor identified by an PMP_DescriptorID that has already been received within the same
name] scope shall be replaced by the_.néw descriptor.

Updajes to an IPMP_Descriptior shall be propagated at the time this IPMP_DescriptorUpdate becomes
valid | (see 7.2.5.2) to all ‘IPMP Systems that refer to this IPMP_Descriptor |[through an
IPMP| DescriptorPoifiter (see 7.2.6.13). The handling of the descriptors by the IPMP systems is not
normative.

IPMP| Descripters remain valid until they are replaced by another ITPMP_DescriptorUpdate command
or removed.

ipmppesc¥ [] —an array of IPMP_Descriptor as specified in 7.2.6.14.

7.25.5.7 IPMP_DescriptorRemove

7.2.5.5.71 Syntax

class IPMP_DescriptorRemove extends BaseCommand : bit(8) tag=IPMP_DescrRemoveTag

{
bit (8) IPMP_DescriptorID[1l..255];

}

© ISO/IEC 2010 — All rights reserved 29

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.5.5.7.2 Semantics

The IPMP_DescriptorRemove class conveys a list of IPMP_DescriptorsIDs that identify the
IPMP_Descriptors that shall be removed.

The removal of IPMP_Descriptors shall be notified to all IPMP systems at the time this
IPMP_DescriptorRemove becomes valid (see 7.2.5.2). The handling of the descriptors by the IPMP systems
is not normative.

IPMP_DescriptorID[] - is a list of IPMP_DescriptorIDs.

7.2.5.5.8 bjectDescriptorExecute

7.2.5.5.8.1 Syntax

class ObjdgctDescriptorExecute extends BaseCommand : bit(8) tag=
ObjectDesdriptorExecuteTag {

bit (1P) objectDescriptorId| (sizeOfInstance*8)/10];
}

7.2.5.5.8.2 Semantics

The ObjectpescriptorExecute class instructs the terminal that Elementary streams contained therein
shall be opemed as the server will transmit data on one or more~ef.the streams. Failure by the terminal to
comply may result in data loss and/or other undefined behavior.

7.2.6 Objegt Descriptor Components

7.2.6.1 OVerview

Object descriptors contain various additional descriptors as their components, in order to describe individual
elementary sfreams and their properties. They shall always be conveyed as part of one of the OD commands
specified in the previous Subclause. This Subclause defines the syntax and semantics of object desciriptors
and their component descriptors.

7.2.6.2 ObhjectDescriptorBase

7.2.6.21 Syntax

abstract dlass ObjeéectDescriptorBase extends BaseDescriptor : bit(8)
tag=[0ObjedtDesexTag. .InitialObjectDescrTag] {

// empty. |[To,be filled by classes extending this class.

}

7.2.6.2.2 Semantics
This is an abstract base class for the different types of object descriptor classes defined subsequently. The

term “object descriptor” is used to generically refer to any such derived object descriptor class or instance
thereof.

30 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.3 ObjectDescriptor

7.2.6.3.1 Syntax

class ObjectDescriptor extends ObjectDescriptorBase : bit(8) tag=ObjectDescrTag {
bit (10) ObjectDescriptorID;
bit (1) URL_Flag;
const bit(5) reserved=0bl111.1;
if (URL_Flag) {
bit (8) URLlength;
8)

bit(URLstring[URLlength];

} edse—
ES_Descriptor esDescr[l .. 255];
OCI_Descriptor ociDescr[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
IPMP_Descriptor ipmpDescr [0 .. 255];

}

ExtensionDescriptor extDescr[0 .. 255];

When an ObjectDescriptor is used in the OD track of an MP4 file,\ the ObjectDescrTag is| replaced by
MP4 |OD_Tag.

7.2.6.3.2 Semantics

The dbjectDescriptor consists of three different parts:
The fjrst part uniquely labels the object descriptor within its name scope (see 7.2.7.2.4) by Imeans of an
objeftDescriptorId. Nodes in the scene deseription use objectDescriptorID to referfto the related
object descriptor. An optional URLstring indicates that the actual object descriptor resideg at a remote
locatipn.
The second part consists of a list of ES.Descriptors, each providing parameters for a single glementary as
well as an optional set of object tontent information descriptors and pointers to IPMP descifiptors for the

contepts for elementary stream.content described in this object descriptor.

The third part is a set of_Optional descriptors that support the inclusion of future extensions gs well as the
transport of private datarin'a backward compatible way.

objeftDescriptorId — This syntax element uniquely identifies the ObjectDescriptor within its name
scopq. The valué/0-is forbidden and the value 1023 is reserved.

URL_Flag =~ a flag that indicates the presence of a URLstring.

URL1 bretsh tha lanath of tha csithcaauant TTRT a2 -~ 1N hvtac
SRSt tHE1E RGO HEe-SURBSequeHt oS T T Rg—BYtesS:

URLstring[] — A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
ObjectDescriptor. Only the content of this object descriptor shall be returned by the delivery entity upon
access to this URL. Within the current name scope, the new object descriptor shall be referenced by the
objectDescriptorId of the object descriptor carrying the URLstring. On name scopes see 7.2.7.2.4.
Permissible URLs may be constrained by profile and levels as well as by specific delivery layers.

esDescr[] —an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one
up to 255 elements.

ociDescr[] — an array of OCI_Descriptors, as defined in 7.2.6.18.2, that relates to the audio-visual
object(s) described by this object descriptor. The array shall have any number of zero up to 255 elements.

© ISO/IEC 2010 — All rights reserved 31

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

ipmpDescrPtr[] — an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the

IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall
have any number of zero up to 255 elements.

ipmpDescr[] — a list of 1PMP_Descriptors that may be referenced by streams declared in esbescr. The
array shall have any number of zero up to 255 elements. The following scope and usage rules apply:

i. Entries in the ipmpDescr table define IPMP System/Tools that can be referenced by
IPMP_DescriptorPointers located in the OD itself or ESDs declared in this OD.

ii. OD contained TPMP_Descriptors have scope within the given OD only and shall not
be referenced by subsequently dectared 10DS, OD3, streams nor avaltabie for upglating
via IPMP_DescriptorUpdates.

iii. The OD contained IPMP_Descriptors shall not be referenced by |ODs, OPs or
streams declared in OD declared OD or Scene streams.

extDescr[]| — an array of ExtensionDescriptors as defined in 7.2.6.16. The\\array shall have any
number of zefo up to 255 elements.

7.2.6.4 InitialObjectDescriptor

7.2.6.41 Syntax

class InifialObjectDescriptor extends ObjectDescriptorBase : bit(8)
tag=InitiglObjectDescrTag {
bit (10) |ObjectDescriptorID;
bit (1) YRL_Flag;
bit (1) 1ncludeInlineProfilelLevelFlag;
const blt(4) reserved=0blll1l;
if (URL]Flag) {
bit (8) URLlength;
bit (8) URLstring[URLlength];
} else
(8) ODProfileLevelIndication;
bit (8) sceneProfileLevelIndication;
(8) audioProfileLevelIndication;
(8) wvisualProfilelLevelIndication;
bit (8) graphicsProfilelevelIndication;
ES_Depcriptor esDesgcr[l .. 255];
OCI_Dgkscriptor«o¢iDescr[0 .. 255];
IPMP_pescripterPointer ipmpDescrPtr[0 .. 255];
IPMP_pescriptor ipmpDescr [0 .. 255];
IPMP_[rootrListDescriptor toolListDescr[0 .. 1];
}

ExtensienRescriptor extDegcr [0 25517 -

When an InitialObjectDescriptor is used in the OD track in an MP4 file, the InitialObjectDescrTag is replaced
by MP4_10D_Tag.

7.2.6.4.2 Semantics

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous

Subclause that allows to signal profile and level information for the content refered by it. It shall be used to
gain initial access to ISO/IEC 14496 content (see 7.2.7.3).

32 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Profile and level information indicated in the InitialObjectDescriptor indicates the profile and level
supported by at least the first base layer stream (i.e. an elementary stream with a streamDependenceFlag
set to 0) in each object descriptor depending on this initial object descriptor.

objectDescriptorId — This syntax element uniquely identifies the TnitialObjectDescriptor within
its name scope (see 7.2.7.2.4). The value 0 is forbidden and the value 1023 is reserved.

URL_Flag - aflag that indicates the presence of a URLstring.

includeInlineProfileLevelFlag — a flag that, if set to one, indicates that the subsequent profile
indications take into account the resources needed to process any content that might be inlined.

URL1pngth — the length of the subsequent URLstring in bytes.

URLskring[] — A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
InitfialObjectDescriptor. Only the content of this object descriptor shall bejréturned by the delivery
entity|lupon access to this URL. Within the current name scope, the new object descriptor shall e referenced
by thg objectDescriptorId of the object descriptor carrying the URLstring, On name scopes|see 7.2.7.2.4.
Permissible URLs may be constrained by profile and levels as well as by specific delivery layers.

ODPrpfileLevelIndication — an indication as defined in Table 3.0f'the object descriptor prefile and level
required to process the content associated with this ITnitialObjegetbéscriptor.

Table 3 — ODProfileLevellndication Values

Value Profile Level

0x00 Forbidden -

0x01 Reserved for ISO use (no Sleextension) -

0x02-0x7F Reserved for ISO use (Sk extension) -

0x03-0x7F Reserved for ISO use

0x80-0xFD user private -

OxFE No OD profile specified -

OxFF No OD capability required -

NOTE — Usage of the value 0XFE indicates that the content described by this InitialObjectDescriptor does not pomply
to any OD profile specified in ISO/IEC 14496-1. Usage of the value OxFF indicates that none of the OD| profile
capabilities are required.for this content. Usage of the value 0x01 also indicates that the SL extension mechapism is
not present .

scenpProfilelievelIndication — an indication as defined in ISO/IEC 14496-11 of the|scene graph
profilg and. level required to process the content associated with this InitialObjectDescriptor.

audipProfilelLevelIndication — an indication as defined in ISO/IEC 14496-3 of the audjo profile and
level required to process the content associated with this InitialObjectDescriptor.

visualProfileLevelIndication — an indication as defined in ISO/IEC 14496-2 and in Table 4 of the
visual profile and level required to process the content associated with this ITnitialObjectDescriptor.

© ISO/IEC 2010 — Al rights reserved 33

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Table 4 — visualProfileLevellndication Values

Value Profile Level

0x00-0x7E defined in ISO/IEC 14496-2 Annex G -

Ox7F ISO/IEC 14496-10 Advanced Video Coding -

0x80-0xFD defined in ISO/IEC 14496-2 Annex G -

OxFE no visual profile specified -

OxFF no visual capability required

NOTE 1___Usage of the value Ox7F indicates the use of any profile and level of ISO/IEC 14496-10 AVC, For the real
profile fand level numbers for ISO/IEC 14496-10 refer to the DecoderSpecificInfo.

NOTE|2 Usage of the value OXFE indicates that the content described by this InitialObjectDescriptor does
not comply to any visual profile specified in ISO/IEC 14496-2 or -10. Usage of the value OxFF indicates that none of
the vispal profile capabilities are required for this content.

graphicsPr
profile and le

esDescr (]
up to 255 ele

ociDescr|[]

objects that @re described by this initial object descriptor. The array shall have any number of zero
255 elements.

ipmpDescrH
IPMP_Descri
have any nun

ipmpDescr
array shall hg

ofileLevelIndication — an indication as defined in ISO/IEC 14496-11 of the gra
el required to process the content associated with this ITnitialObjectDescriptor.

ments.

— an array of OCI_Descriptors as defined in 7.2.6.48 that relates to the set of audio-

tr[] — an array of IPMP_DescriptorPeinter, as defined in 7.2.6.13, that points
btors related to the elementary stream(s)‘described by this object descriptor. The array
hber of zero up to 255 elements.

ve any number of zero up to 255elements. The following scope and usage rules apply:

i. Entries in the ipmpDescr table define IPMP System/Tools that can be referenc

IOD contained 1PMP_Descriptors have scope within the given 10D only and shall
referenced’by subsequently declared 10Ds, ODs, streams nor available for updati
IPMB \DescriptorUpdates.

iii, . <The 10D contained I1PMP_Descriptors shall not be referenced by I0Ds, ODs, st
declared in IOD declared OD or Scene streams.

[1 — alist of 1PMP_Descriptors-that may be referenced by streams declared in esDescH.

IPMP_DescriptorPointers located in the IOD itself or ESDs declared in this 10D).

!

phics

— an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number ¢f one

visual
up to

o the
shall

The

bd by

ot be
g via

eams

toolListDescr — a list of all IPMP tools required for the processing of the content. The array shall have zero or

1 element.

extDescr[] — an array of ExtensionDescriptors as defined in 7.2.6.16. The array shall have any
number of zero up to 255 elements.

34

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

7.2.6.5

7.2.6.5.1

ES_Descriptor

Syntax

class ES_Descriptor extends BaseDescriptor

bi
bi
bi
bi
bi
if

t
t

(16) ES_ID;
(
t(
(
(

1) streamDependenceFlag;
1) URL_Flag;

1) OCRstreamFlag;

5) streamPriority;

(streamDependenceFlag)
'l«-x-(l—(’lﬁ)

t
t

davandeOn S TDH.
i ~ T g T

bit(8)

ISO/IEC 14496-1:2010(E)

tag=ES_DescrTag {

if]

(URL_Flag) {
bit (8) URLlength;
bit (8) URLstring[URLlengthl];

(OCRstreamFlag)
bit(16) OCR_ES_IdJ;
coderConfigDescriptor decConfigDescr;
(ODProfileLevelIndication==0x01)

SLConfigDescriptor slConfigDescr;
se
SLConfigDescriptor slConfigDescr;

I_DescrPointer ipiPtr[O0 171;
| ITdentificationDataSet ipIDSI[O0 255 ;
MP_DescriptorPointer ipmpDescrPtr{0
nguageDescriptor langDescr [0 2557 ;
S_Descriptor gosDescr [0 114
gistrationDescriptor regDesa[0
tensionDescriptor extDescr{0

11;
25571;

7.2.6.5.2

Semantics

//no SL extension.

// SL extemnmsion is possible.

2557;

The HS_Descriptor conveys all information related to a particular elementary stream and has three major

parts.

The flrst part consists of the ES_ID which is a unique reference to the elementary stream within its name

scop

(see 7.2-7<2°4), a mechanism to describe dependencies of elementary streams within thg

scope of the

parent object'descriptor and an optional URL string. Dependencies and usage of URLs are specjfied in 7.2.7.

The

cend part consists of the component descriptors which convey the parameters and requirements of the

e|eme||id|y stream:

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well
as the transport of private data in a backward compatible way.

ES_ID - This syntax element provides a unique label for each elementary stream within its name scope. The
values 0 and OxFFFF are reserved.

streamDependenceFlag - If set to one indicates that a dependson_ES_ID will follow.

URL_Flag —if setto 1 indicates that a URLstring will follow.

OCRstreamFlag — indicates that an OCR_ES_ID syntax element will follow.

© ISO/IEC 2010 — All rights reserved

35

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

streamPriority - indicates a relative measure for the priority of this elementary stream. An elementary stream with a
higher streamPriority is more important than one with a lower streamPriority. The absolute values of

streamPrior

ity are not normatively defined.

dependsOn_ES_ID —is the ES_ID of another elementary stream on which this elementary stream depends.
The stream with dependsOn_ES_1ID shall also be associated to the same object descriptor as the current
ES_Descriptor.

URLlength — the length of the subsequent URLstring in bytes.

URLstring[] — contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of an SL-

packetized st
fully specifieg
and levels as

OCR_ES_1ID
which the tin
are not permi

decConfigD

slConfigDg
is different fr
in7.2.6.8.

ipiPtr[] —
ipIDS[] —a

Each ES |
255 IP_Ide
each elemen

ipmpDescrH
IPMP_Descri
any number g

langDescr |
indicates the

NOTE — Mu

ISO/IEC 14494.

identifyable wit

gosDescr|[]

in this ES_Descriptor. See also 7.2.7.3.3. Permissible URLs may be constrained,by
well as by specific delivery layers.

- indicates the ES_ID of the elementary stream within the name scope (see.7.2.7.2.4
fted.
escr —is @ DecoderConfigDescriptor as specified in 7.2.6.6.

scr —is an SLConfigDescriptor as specified in 7.2.6.8. If (ODProfileLevelIndics

bm 0x01, it may be an extension of SLConfigDescriptor (is€-’and extended class) as d
an array of zero or one IPI_DescrPointer as specifiedin 7.2.6.12.

h array of zero or more IP_IdentificationDataSet as specifiedin 7.2.6.9.

Descriptor shall have either one IPI_DescrPointer or zero up
tificationDataSet elements. Thiswallows to unambiguously associate an IP Identifica
ary stream.

tr[] — an array of IPMP_DesériptorPointer, as defined in 7.2.6.13, that points
btors related to the elementary stream described by this ES_Descriptor. The array shal
f zero up to 255 elements.

] — an array of zerev'or one LanguageDescriptor structures as specified in 7.2.6.1

anguage attributed-to this elementary stream.

Itichannel audio streams may be treated as one elementary stream with one ES_Descrip
In that-ecase different languages present in different channels of the multichannel stream a
h a LanguageDescriptor.

<dn array of zero or one QoS_Descriptor as specified in 7.2.6.15.

o Tl + £ 4l ol l FH pu | 4 oot o o £, o 1D
calrm Uy Tialmic. TTIiC pardimiclClio UT U1 OLTYJAdUNTULZTU ouTdalll tuldl 1o TTUICVTU TTUINTT 1S Ut

L are
brofile

from

e base for this elementary stream is derived. Circular references between €lementary stfeams

tion
efined

to
ion to

o the
have

B.6. It

or by
Fe not

extDescr|[]

7.2.6.6

7.2.6.6.1

class DecoderConfigDescriptor extends BaseDescriptor

—an array of ExtensionDescriptor structures as specified in 7.2.6.16.

DecoderConfigDescriptor

Syntax

bit(8)

tag=DecoderConfigDescrTag {

bit (8) objectTypeIndication;
bit(6) streamType;
bit (1) upStream;

const bit (1)

36

reserved=1;

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

ired decoder
to determine
stream while
set up of the

be supported

bit(24) bufferSizeDB;
bit (32) maxBitrate;
bit (32) avgBitrate;
DecoderSpecificInfo decSpecificInfol[0 .. 1];
profilelLevelIndicationIndexDescriptor profileLevelIndicationIndexDescr
[0..255];
}
7.2.6.6.2 Semantics
The Deceodertonfighbeseriptor—providesinformationaboutthedecodertype—and-thereas
resources needed for the associated elementary stream. This is needed at the receiving termina
whether it is able to decode the elementary stream. A stream type identifies the category ©f, the
the optional decoder specific information descriptor contains stream specific information’ for the
decoder in a stream specific format that is opaque to this layer.
ObjeftTypeIndication — an indication of the object or scene description typethat needs to
by thg decoder for this elementary stream as per Table 5.
Table 5 — objectTypelndication Values
Value ObjectTypeIndication Description
0x00 Forbidden
0x01 Systems ISO/IEC 14496-1 °
0x02 Systems ISO/IEC 14496-1 °
0x03 Interaction Stream
0x04 Systems ISO/IEC 14496-1Extended BIFS Configuration
0x05 Systems ISO/IEC 14496-1 AFX °
0x06 Font Data Stream
0x07 Synthesized Texture Stream
0x08 Streaming(Tiext Stream
0x09-0x1F reserved.for ISO use
0x20 Visual1SO/IEC 14496-2 °©
0x21 Visual ITU-T Recommendation H.264 | ISO/IEC 14496-10 f
0x22 Parameter Sets for ITU-T Recommendation H.264 | ISO/IEC 14496-10
0x23-0x3F reserved for ISO use
0x40 Audio ISO/IEC 14496-3 °
0x41-0xSE reserved for ISO use
0x60, Visual ISO/IEC 13818-2 Simple Profile
0x61 Visual ISO/IEC 13818-2 Main Profile
0x62 Visual ISO/IEC 13818-2 SNR Profile
0x63 Visual ISO/IEC 13818-2 Spatial Profile
0x64 Visual ISO/IEC 13818-2 High Profile
0x65 Visual ISO/IEC 13818-2 422 Profile
0x66 Audio ISO/IEC 13818-7 Main Profile
0x67 Audio ISO/IEC 13818-7 LowComplexity Profile
0x68 Audio ISO/IEC 13818-7 Scaleable Sampling Rate Profile
0x69 Audio ISO/IEC 13818-3
0x6A Visual ISO/IEC 11172-2
0x6B Audio ISO/IEC 11172-3
0x6C Visual ISO/IEC 10918-1
0x6D reserved for registration authority i

© ISO/IEC 2010 — All rights reserved

37

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Value ObjectTypeIndication Description
Ox6E Visual ISO/IEC 15444-1

Ox6F - Ox9F reserved for ISO use

0xAO - OxBF reserved for registration authority i

0xCO - OxEO user private

OxE1 reserved for registration authority i

OxE2 - OXxFE user private

OxFF no object type specified h

a

spec
b

BIFS
c
BIFS]
d

AFX
1ISO/I

f

Recd
amel|

g

1SO/I
subc

h

treatd

This type is used for all 14496-1 streams unless specifically indicated to the contrary. Scene Description
scenes, which are identified with StreamType=0x03, using this object type value shall use the BIFSConfig

fied in ISONIEC 14496-11.

[his object type shall be used, with StreamType=0x03, for Scene Description streams that use the
v2Config specified in ISO/IEC 14496-11. Its use with other StreamTypes is reserved.

[his object type shall be used, with StreamType=0x03, for Scene Description streams that use’ the
ConfigEx specified in 7.2.6.7 of this specification. Its use with other StreamTypes is reserved.

lhis object type shall be used, with StreamType=0x03, for Scene Description streamsthat use the
Config specified in 7.2.6.7 of this specification. Its use with other StreamTypes is reserved.

ncludes associated Amendment(s) and Corrigendum(a). The actual object ,types are defined in
EC 14496-2 and are conveyed in the DecoderSpecificinfo as specified in ISO/IEC 14496-2, Annex K.

ncludes associated Amendment(s) and Corrigendum(a). The actual object(types are defined in ITU-T
mmendation H.264 | ISO/IEC 14496-10 and are conveyed in the DecoderSpecificinfo as specified in this
dment, 1.2.

ncludes associated Amendment(s) and Corrigendum(a). The Jactual object types are defined in
EC 14496-3 and are conveyed in the DecoderSpecificinfo as¢Specified in ISO/IEC 14496-3 subpart 1
ause 6.2.1.

Streams with this value with a StreamType indicating a systéems stream (values 1,2,3, 6, 7, 8, 9) shall be
d as if the ObjectTypelndication had been set to 0x01.

he latest entries registered can be found at http://wwW:mp4ra.org/object.html.

When the ok
contain one (
Visual ISO/IH
carried in the

jectTypelndication value is 0x6C, (Visual ISO/IEC 10918-1, which is JPEG) the stream

C 10918-1). Note, that timing"and other Access Unit and packetization information is
transport layer such as the MPEG-4 Sync Layer.

may

r more Access Units, where one-Access Unit is defined to be a complete JPEG (as defiped in

to be

When the objectTypelndication value is Ox6E (Visual ISO/IEC 15444-1, which is JPEG 2000) the stream may
contain one gr more Access Units, where one Access Unit is defined to be a complete JPEG 2000 (as defined
in Visual ISQ/IEC 15444-1). Note, that timing and other Access Unit and packetization information is|to be
carried in the|transport layer 'such as the MPEG-4 Sync Layer.

NOTE The jormat.defined in ISO/IEC 15444-3 is preferred for the storage of JPEG 2000 sequences in file formaf of the
ISO/IEC 14494-12 family, including MP4.

streamType—c€OnNveys the typc of-this c=c|||c||ta|y stream-as Pt Table6-

38

© ISO/IEC 2010 — All rights reserved

http://www.mp4ra.org/object.html
https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Table 6 — streamType Values

streamType value Stream type description

0x00 Forbidden

0x01 ObjectDescriptorStream (see 7.2.5)

0x02 ClockReferenceStream (see 7.3.2.5)

0x03 SceneDescriptionStream (see ISO/IEC 14496-11)
0x04 VisualStream

0x05 AudioStream

0x06 MPEG7Stream

Ox6F PMPStreamtsee7+2-32)

0x08 ObjectContentinfoStream (see 7.2.4.2)
0x09 MPEGJStream

O0x0A Interaction Stream

0x0B IPMPToolStream (see [ISO/IEC 14496-13])
0x0C - Ox1F reserved for ISO use

0x20 - 0x3F user private

upStkeam - indicates that this stream is used for upstream information.
buffprSizeDB —is the size of the decoding buffer for this elementary stream in byte.

maxBfitrate — is the maximum bitrate in bits per second of this elementary stream in any tihe window of
one second duration.

avgBlitrate - is the average bitrate in bits per second of this elementary stream. For streamq with variable
bitratg this value shall be set to zero.

decSpecificInfo[] —an array of zero:0Fone decoder specific information classes as specifi¢d in 7.2.6.7.

ProffileLevelIndicationIndexDéscr [0..255] —an array of unique identifiers for a set|of profile and
level indications as carried in the'ExtensionProfileLevelDescr definedin 7.2.6.19.

7.2.6J7 DecoderSpecificinfo

7.2.6[7.1 Syntax

abstkact cldases- DecoderSpecificInfo extends BaseDescriptor : bit(8)

tag=pPecSpecificInfoTag

{
//| €mpty. To be filled by classes extending this class.

}

7.2.6.7.2 Semantics

The decoder specific information constitutes an opaque container with information for a specific media decoder.
The existence and semantics of decoder specific information depends on the values of
DecoderConfigDescriptor.streamType and DecoderConfigDescriptor.objectTypeIndication.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying
with ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of that
part.

© ISO/IEC 2010 — Al rights reserved 39

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying
with ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in subpart 1,
subclause 1.6 of that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to scene description

streams the s

emantics of decoder specific information is defined in ISO/IEC 14496-11.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of an ,adif header()* and an access unit is a
.faw_data_block()“ as defined in ISO/IEC 13818-7.

For values of
ISO/IEC 11171

Decoderconfgbescriptor-obectTypetmatcatom thatrefertostreamscomptyin
2-3 or ISO/IEC 13818-3 the decoder specific information is empty since all necessary.d

contained in fhe bitstream frames itself. The access units in this case are the ,frame() bitstream elemen

defined in 1S(

For values d
with ISO/IEC

class JPEQ

D/IEC 11172-3.

f DecoderConfigDescriptor.objectTypeIndication that refer to (Streams com
10918-1, the decoder specific information is:

| DecoderConfig extends DecoderSpecificInfo : bit(8)

tag=DecSpqcificInfoTag {
int (16) |headerLength;
int (16) |Xdensity;
int (16) |Ydensity;
int (8) npumComponents;
}
with
headerLendth —indicates the number of bytes to skip*from the beginning of the stream to find the firs
of the image.

Xdensity and Ydensity — specify the pixelaspect ratio.

numCompong
or 3.

For values o
the decoder g

class UICH
bit (8
bit (8
bit (8

f DecoderConfigbBéscriptor.objectTypelIndication that refer to interaction str
pecific information is:

nfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
devigeNamelength;

deviceName [deviceNamelength] ;

devSpecInfo[sizeOfInstance - deviceNamelength - 17;

g with
ata is
| as is

plying

pixel

nts — indicates whether thé.image has Y component only or is Y, Cr, Cb. It shall be equal to 1

eams,

3

with

deviceNameLength —indicates the number of bytes in the deviceName field

deviceName —indicates the name of the class of device, which allows the terminal to invoke the appropriate
interaction decoder.

devSpecInf

o —is a opaque container with information for a device specific handler.

For values of DecoderConfigDescriptor.objectTypeIndication that refers to extended BIFS

configuration

40

(0x04), the decoder specific information is:

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

class BIFSConfigEx extends DecoderSpecificInfo : bit (8) tag = DecSpecificInfoTag
{

ExtendedBIFSConfig extBIFSConfig;
}

abstract aligned(8) expandable (..) class ExtendedBIFSConfig : bit (8) tag =
0x01..0xFF {

//empty. To be filled by classes extending this class.
}

The class BIFSConfigEx contains an ExtendedBIFSConfig. ExtendedBIFSConfig is the base class for
new dlasses ment to hold decoder specific info. With this approach, new BIFS streams will have, streamType 3
and pbjectTypelndication 0x04, but will use decoder configuration depending on-'the| tag of the
ExtendedBIFSConfig.

For values of DecoderConfigDescriptor.objectTypeIndication that refers)to AFX stjeams (0x05),
the dgcoder specific information is:

clasp AFXConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfpTag {

AFXExtDescriptor afxext;
}
abstkact class AFXExtDescriptor extends BaseDescripter : bit(8) tag = 0}.100
{
}

AFXEktDescriptor is an abstract class used as a placeholder for an optional DecoderSpecifjcinfo defined
in table "DecoderSpecificinfo for AFX streams" in ISO/IEC 14496-16. The tag refers to a $pecific node
compfession scheme as defined in table "AFX object.code" in ISO/IEC 14496-16.

For values of DecoderConfigDescriptor ¥objectTypeIndication that refer to streamps complying
with IBO/IEC 15444-1, the decoder specific information is:

clasg JPEG2000_DecoderConfig ,extends DecoderSpecificInfo : bit(8)
tag=pPecSpecificInfoTag {
it (32) height;

it (32) width;
it (16) nc;
it (8) BPC;
int(8) C;

it (8) UnkC;
it (8) IPR;

The definition of the fields is extracted from ISO/IEC 15444-1 and is formulated as follows:

height: Image area height. The value of this parameter indicates the height of the image area. This field is
stored as a 4-byte big endian unsigned integer.

width: Image area width. The value of this parameter indicates the width of the image area. This field is
stored as a 4-byte big endian unsigned integer.

nc: Number of components. This parameter specifies the number of components in the codestream and is
stored as a 2-byte big endian unsigned integer. The value of this field shall be equal to the value of the Csiz
field in the SIZ marker in the codestream.

BPC: Bits per component. This parameter specifies the bit depth of the components in the codestream, minus
1, and is stored as a 1-byte field.

© ISO/IEC 2010 — Al rights reserved 41

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

C: Compression type. This parameter specifies the compression algorithm used to compress the image data.
The value of this field shall be 7. It is encoded as a 1-byte unsigned integer. Other values are reserved for ISO

use.

unkC: Colourspace Unknown. This field specifies if the actual colourspace of the image data in the
codestream is known. This field is encoded as a 1-byte unsigned integer. Legal values for this field are 0, if
the colourspace of the image is known and correctly specified in the Colourspace Specification boxes within
the file, or 1, if the colourspace of the image is not known. A value of 1 will be used in cases such as the
transcoding of legacy images where the actual colourspace of the image data is not known. In those cases,
while the colourspace interpretation methods specified in the file may not accurately reproduce the image with
respect to some original, the image should be treated as if the methods do accurately reproduce the image.

Values other[[jan-o-apd—l—exe-mued-bu&@-uae.—
IPR: Intellectual Property. This parameter indicates whether this JP2 file contains intellectual praperty

information. |
contain an IP
box as define

The set of p
setting up th
header box in

7.2.6.8 Sl
This descript
of this descrif

7269 IP

S

7.2.6.9.1 S
abstract d

: bit
{

// empty.

}

S

J

7.2.6.9.2

This class is

the value of this field is 0, this file does not contain rights information, and thus the file do
R box. If the value is 1, then the file does contain rights information and thus does contain 4
d in 1.6. Other values are reserved for ISO use.

brameters defined above may all be extracted from the JP2 header bex and are inform

e JPEG 2000 decoder. However, if any conflict occurs with parameters from the JPEG
the Access Unit, the later have precedence.

ConfigDescriptor

br defines the configuration of the sync layer header for/this’elementary stream. The specifi
tor is provided together with the specification of the sync layer in 7.3.2.3.

| IdentificationDataSet

yntax

lass IP_TIdentificationDataSet extends BaseDescriptor
(8) tag=ContentIdentDescrTag..SupplContentIdentDescrTag

y

To be filled by classes extending this class.

emantics

bn abstract base’class that is extended by the descriptor classes that implement IP identifig

rights
bs not
n IPR

al for
2000

Cation

ation.

A descriptor that allows{to-aggregate classes of type IP_ldentificationDataSet may actually aggregate @ny of

the classes th

7.2.6.10 Cqg

at extend_IP_ldentificationDataSet.

ntentldentificationDescriptor

7.2.6.10.1 Syntax

class ContentIdentificationDescriptor extends IP_IdentificationDataSet

: bit
{

const bit(2)

(8) tag=ContentIdentDescrTag

compatibility=0;

bit (1) contentTypeFlag;
bit (1) contentIdentifierFlag;
bit (1) protectedContent;
bit(3) reserved = 0blll;
if (contentTypeFlag)
bit (8) contentType;
42 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

if

ISO/IEC 14496-1:2010(E)

(contentIdentifierFlag) {
bit (8) contentIdentifierType;
bit(8) contentIdentifier[sizeOfInstance-2-contentTypeFlagl];

7.2.6.10.2 Semantics

The content identification descriptor is used to identify content. All types of elementary streams carrying
content can be identified using this mechanism. The content types include audio, visual and scene description
data. Multiple content identification descriptors may be associated to one elementary stream. These

descr
comp
cont
cont

prot
IP_Id

terminal compliant with the ISO/IEC 14496 specifications when processing such streams is unde

cont

cont
Table

ptors shall never be detached from the ES_Descriptor.
htibility — must be setto 0.
ent TypeFlag — flag to indicate if a definition of the type of content is available.

entIdentifierFlag — flag to indicate presence of creation ID.

cctedContent - if set to one indicates that the elementary streams that refer to this

pntificationDataSet are protected by a method outside the scope of ISO/IEC 14496. The b

entType — defines the type of content using one of the values specified in Table 7.

Table 7 — contentType Values

phavior of the
ined.

Audio-visual

Book

Serial

Text

Item or Contribution (e.gZarticle in book or serial)

Sheet music

Sound recording ormusic video

Still Picture

(N |D|WIN|=|O

Musical Work

9-254 Reserved for ISO use

255 Others

bntIdentifierType - defines a type of content identifier using one of the valueq specified in
8.
Table 8 — contentldentifierType Values
1 ISBN International Standard Book Number
2 ISSN International Standard Serial Number
3 SICI Serial Item and Contribution Identifier
4 BICI Book Iltem and Component Identifier
5 ISMN International Standard Music Number
6 ISRC International Standard Recording Code
7 ISWC-T International Standard Work Code (Tunes)
8 ISWC-L International Standard Work Code (Literature)
9 SPIFF Still Picture ID
10 DOI Digital Object Identifier
11-255 Reserved for ISO use
© ISO/IEC 2010 — All rights reserved 43

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

contentIdentifier

international code identifying the content according to the preceding

contentIdentifierType.

7.2.6.11 Su

pplementaryContentldentificationDescriptor

7.2.6.11.1 Syntax

class SupplementaryContentIdentificationDescriptor extends

IP_IdentificationDataSet bit (8) tag= SupplContentIdentDescrTag
{
bit(24) languageCode;
bit(8) $upplContentIdentifierTitlelLength;
bit(8) $upplContentIdentifierTitle[supplContentIdentifierTitlelLength];
bit(8) s$upplContentIdentifierValueLength;
bit(8) s$upplContentIdentifierValuel[supplContentIdentifierValueLengthl;
}
7.2.6.11.2 Semantics
The supplemgntary content identification descriptor is used to provide extensible‘identifiers for content that are

qualified by 4
one elementd

language code. Multiple supplementary content identification-descriptors may be associated to
ry stream. These descriptors shall never be detached from the-ES_Descriptor.

language dode — This 24 bits field contains the 1SO 639-2:1998¢ bibliographic three character language
code of the Ignguage of the following text fields.

supplementlaryContentIdentifierTitleLength —%\indicates the length of the subsdquent
supplementaryContentIdentifierTitle in bytes.

supplementlaryContentIdentifierTitle — identifies the title of a supplementary content identifigr that
may be used|when a numeric content identifier (s€e7.2.6.11) is not available.
supplementjaryContentIdentifierValuélLength — indicates the length of the subsdquent
supplementaryContentIdentifiexValue in bytes.

supplementy
associated to

7.2.6.12 IPI

S

~

7.2.6.12.1

class IPI_|

aryContentIdentifiervalue — identifies the value of a supplementary content idgntifer

the preceding suppleémentaryContentIdentifierTitle
| DescrPointer

yntax

DeSerPointer extends BaseDescriptor bit (8) tag=IPI_DescrPointerTalg

bit(16)
}

TPT—FES—To

7.2.6.12.2 Semantics

The IPI_DescrPointer class contains a reference to the elementary stream that includes the
IP_IdentificationDataSets that are valid for this stream. This indirect reference mechanism allows to
convey such descriptors only in one elementary stream while making references to it from any
ES_Descriptor that shares the same information.

44

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

ES_Descriptors for elementary streams that are intended to be accessible regardless of the availability of a
referred stream shall explicitly include their IP_TIdentificationDataSets instead of using an
IPI_DescrPointer.

IPI_ES_Id - the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information valid

for this elementary stream. If the ES_Descriptor for IPI_ES_Id is not available, the IPI status of this
elementary stream is undefined.

7.2.6.13 IPMP_DescriptorPointer

7.2.6.13.1_Syntax

clasp IPMP_DescriptorPointer extends BaseDescriptor :
bit (B) tag = IPMP_DescrPtrTag

{
bit (8) IPMP_DescriptorID;

if (IPMP_DescriptorID == 0xff) {
bit (16) IPMP_DescriptorIDEX;
bit(16) IPMP_ES_ID;

7.2.6/13.2 Semantics
The IJPMP_DescriptorPointer appears in the ipmpDésePtr section of an OD or ESD structpres.

The gresence of this descriptor in an object descriptor indicates that all streams referred to by embedded
ES_Dpscriptors are subject to protection and.management by the IPMP System or IPMP To¢l specified in
the referenced IPMP_Descriptor.

The presence of this descriptor in an.ES_Descriptor indicates that the stream associgted with this
descr|ptor is subject to protection and)ymanagement by the IPMP System or IPMP Tool spgcified in the
refergnced IPMP_Descriptor.

The 1PMP_DescriptorPointer supports the ability to identify which specific IPMP stream of streams the
IPMP| tools declared in thé\corresponding IPMP_Descriptor, identified by the TPMP_DescfiptorIDEx,
wish fo receive. MultipleTRMP tools may receive updates from the same stream.

IPMP| DescripteriD is the ID of the IPMP_Descriptor being referred to. The bit (8) field is to support
backward compatibility, for which support for extended IPMP stream association is not provided fpr.

IPMP| DescriptorIDEx is the ID of the IPMP_Descriptor being referred to. The bit (16) [field refers to
extenpion defined IPMP_Descriptors and also supporting the extended IPMP stream associatron.

IPMP_ES_ID is the id of an IPMP stream that may carry messages intended to the tool pointed to by
IPMP_DescriptorIDEx. In case more than one IPMP stream is needed to feed the IPMP tool, several
IPMP_DescriptorPointer can be given with the same IPMP_DescriptorIDEx and different
IPMP_ES_ID. If the I1PMP_ES_1ID is null, it means the IPMP tool does not require an IPMP stream. A value of
2M6-1 for IPMP_ES_ID indicates that this field should be ignored, meaning that the tool pointed to by
IPMP_DescriptorIDEx may receive messages from any IPMP stream within the presentation.

The list of IPMP streams identified by occurrences of the I1pPMP_ES_ 1D field (with a value different than 2416-
1) for a single IPMP DescriptorIDEx is exhaustive: the IPMP tool identified by the
IPMP_DescriptorIDEx may not receive messages from any other IPMP streams than the ones identified in
this list. In order to facilitate editing, the IPMP_DescriptorPointer must be modified when stored in a file:

© ISO/IEC 2010 — All rights reserved 45

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

the 1PMP_ES_1ID field must be replaced with the corresponding index in the OD track’s ‘mpod’ table as
defined in ISO/IEC 14496-14.

7.2.6.14

IPMP Descriptor

7.2.6.14.1 Syntax

class IPMP_Descriptor () extends BaseDescriptor bit (8) tag = IPMP_DescrTag
{
bit (8) IPMP_DescriptorID;
unsigned int(16) IPMPS_Type;
if (IHMP_DescriptorID == OxFF && IPMPS_Type == OXFFFF) {
bilt (16) IPMP_DescriptorIDEX;
bilt (128) IPMP_ToolID;
bilt (8) controlPointCode;
ifl (controlPointCode > 0x00)
bit (8) sequenceCode;
IHMP_Data_BaseClass IPMPX_ datall];
}
else ilf (IPMPS_Type == 0)
bilt (8) URLString[sizeOfInstance-3];
else
bilt (8) IPMP_datal[sizeOfInstance-3];
}
7.2.6.14.2 Semantics
The IPMP_De¢scriptor carries IPMP information for ong, or more IPMP System or IPMP Tool instanges. It
shall also corjtain optional instantiation information for gne.or more IPMP Tool instances.
IPMP_Descrliptors are conveyed in either initialZobject descriptors, object descriptors or object desgriptor
streams via [[PMP_DescriptorUpdate commands. Multiple definitions of the same IPMP_Descriptor
within a single IPMP_DescriptorUpdate ‘€ommand or a single decoder specific information structyre for
an IPMP str¢am are not allowed. The.beRavior in such a situation is undefined. Note that, however, an
IPMP_Descrliptor may be modified/updated through subsequent IPMP_DescriptorUpdate commands
received in|the OD stream. IPMP_Descriptors shall be referenced by object descriptofs or
ES_Descrigtors, using IPMP_BescriptorPointer.
IPMP_DescrliptorID - awuhique ID for this IPMP_Descriptor within its name scope. Values of “(x00"
and “0xFF/ are forbidden in the case of signaling an extension descriptor. The scope df the
IPMP_DescriptorIDi\is suggested to be the same as the OD, or IOD in which is it contpined.
IPMP_DescrliptorID is for use in systems conforming to the previous definition as well as a pignal
indicating theluse‘of IPMP_DescriptorIDEx for IPMP extensions.

Note 1: Although it is possible to implement an application supporting both the use of IPMP protection schemes defined
through the use of IPMP_Descriptors some of which contain IPMP_DescriptorID and some of which contain
IPMP_DescriptorIDEx to protect separate streams, the behavior of the association of a single stream to both types of
IPMP_Descriptors is undefined.

IPMP_DescriptorIDEx - a unique ID for this IPMP_Descriptor within its name scope. Values of
*0x0000” and “0xFFFF" are forbidden. The scope of the IPMP_DescriptorIDEx is suggested to be the
same as the OD, or IOD in which is it contained.

IPMP_ToolID —the IPMP_Tool1ID of the IPMP Tool described by this IPMP_Descriptor. A zero, “0” value
does not correspond to an IPMP Tool but is used to indicate the presence of a URL.

46 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

URLString[] - contains a UTF-8 encoded URL that shall point to the location of a remote
IPMP_Descriptor. If the IPMPS_Type of this IPMP_Descriptor is 0, another URL is referenced.
This process continues until an IPMP_Descriptor with a non-zero IPMPS_Type is accessed.

controlPointCode — specifies the IPMP control point at which the IPMP Tool resides, and is one of the
following values:

controlPointCode Description

0x00 No control point.

0x01 Control Point between the decode buffer and the decoder. This is between
the decode buftter and class loader tor MPEG-J streams.

0x02 Control Point between the decoder and the composition buffer.

0x03 Control Point between the composition buffer and the compositor:

0x04 BIFS Tree

0x05-0xDF ISO Reserved

OxEOQ-OxFE User defined

OxFF Forbidden

Note 4: The only difference between receiving composition units beforeythe CB and after the CB in the MHEG-4 Systems
decoder model is the order in which the units are received when thésassociated DTS is different from the CT'S; in this case
the dgcoding order is different from the composition order. For €xample, suppose that a watermark payload is embedded
in more than a single video frame; if the watermark payload“was embedded in decoding order, it has fo be extracted
beforg the CB; instead, if it was embedded in composition order, it has to be extracted after the CB.

Note 3: For streams of type “Ox01”, ObjectDeseriptor and of type “0x02”, ClockReferenceStream, only a
contyolPointCode of “0x00”, “Ox01” or the range “OXE0-OXFE” are meaningful.

sequpnceCode - The higher the sequence*code, the higher the sequencing priority of the IPMP [Tool instance
at thel given control point. Thus the tedDwith the highest sequenceCode for a given control point on a given
stream shall process data first forlthat control point for that stream. Two tools shall not hgve the same
sequgnce number at the same centrol point for the same stream.
IPMPK_data - The IPMP‘data that is extended from IPMP_Data_BaseClass, for the given IRMP tool.

IPMP| data - Data ©ofjunspecified format.

7.2.614.3 IPMPR Tool List Specification

For each toal; this includes

1. IPMP Tool Identifier

2. Optional Parametric Description of the Tool.

3. Alternative Tools to the given Tool, any one of which replace the others without loss of functionality.
The Tool List shall be in the 10D, in an IPMP_ToolListDescriptor. Binary IPMP Tools are carried in

separate elementary streams associated with the IOD. The specification of the syntax for the Tool List is as
follows.

The IPMP_ToolListDescriptor conveys the list of IPMP tools required to access the content associated
with the ITnitialObjectDescriptor in which it is described, and may include a list of alternate IPMP tools
or parametric descriptions of tools required to access the content.

© ISO/IEC 2010 — Al rights reserved 47

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.14.3.1 IPMP_ToolListDescriptor

This Subclause defines syntax and semantics for the carriage of a list of IPMP Tools required for the

processing of the presentation.

7.2.6.14.3.1.1 Syntax

class IPMP_ToolListDescriptor extends BaseDescriptor :

bit (8) tag= IPMP_ToolsListDescrTag

{

IPMP_Tool ipmpTool[0

255];

}
7.2.6.14.3.1.

IPMP_Tool -

7.2.6.14.3.2

The IPMP Tg
for the IPMP
authority sha
tool for vari
representatio
tool), unless
shall be dired
values. Spec
terminal, and

Semantics

- a class describing a logical IPMP Tool required to access the content.

IPMP_Tool

ol Identifier (or IPMP_Too11ID) is 128-bits long, and shall contain a-unique identification n

h. The IPMP_ToolID identifies a specific IPMP Tool (notya specific implementation of

fic values within this 128-bit space are reserved forindicating parametric tools, the bitstrea
other special addresses. These values shall net be assigned to registered Tools.

Table 9 — Values of IPMP_ToolID

IRMP_ToollD Semantics
0x0000 Forbidden
0x0001 Content
0x0002 Terminal
0x0003 - 0x2000 Reserved for ISO use
0x2001 - OxFFFE Carry over from 14496-1 RA
0x10000 - Ox100FF Parametric Tools or Alternative Tools
Ox100FF <\2/4128-2 Open for registration
212841 Forbidden
7.2.6.14.3.2.1 Syntax

class IPMP_Tool extends BaseDescriptor

bit(8)
{
bit(128)
bit (1)
bit (1)

const bit(6)

tag= IPMP_ToolTag

IPMP_ToolID;

isAltGroup;

isParametric;
reserved=0b0000.00;

1f (isAltGroup) {

bit (8

48

) numAlternates;

mber

Tool. A registration authority for IPMP Tools that use a unique_ID.'i§ required. The regisfration
| maintain an optional association of the download URLSs for various implementations of the|given
pus platforms. These platforms will be described to adequate detail using a strugtured

ch a

n the reserved range for parametrically defined tools.<{Currently assigned 16-bit IPMPS_Types
tly mapped to a 128-bit ID by prepending with 112-zero bits; the RA will be initialized witH such

, the

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

}

ISO/IEC 14496-1:2010(E)

bit(128) specificToolID[numAlternates];

if (isParametric)

IPMP_ParamtericDescription toolParamDesc;

ByteArray ToolURLI[];

7.2.6.

Each

the Cpnten
throug

A uni
this ¢
and s

In all
actua
Term

A par
shall
the 1
IPMP,
only
IPMP

A list
IDs in

14.3.2.2 Semantics

instance of Class IPMP_Tool

h a parametric description.

nue implementation is indicated by the isAltGroup and isParametric fields both s
bse, the IPMP_ToolID shall be from the range reserved for specific implementations of
hall directly indicate the required Tool.

bther cases, the IPMP_ToolID serves as a Content-specific abstraction.for an IPMP Tog
IPMP Tool ID of the Tool is not known at the time of authoring the_Content, and will d
nal implementation at a given time for a given piece of Content.

pmetric description is indicated by setting the isParametxi@ field to one. In this case,
select an IPMP Tool that meets the criteria specified in the-fellowing parametric description
PMP_ToolID shall be from the range reserved for Rarametric Tools or Alternative Tool
Tool ID of the Tool that the terminal implementation selects to fulfill this parametric descrig
o the Terminal. All the Content, and other tools, will refer to this Tool, for this Cor
| ToolID specified. Note, this is not for message,addressing.

of alternative Tools is indicated by setting{the isaltGroup flag to "1”. The subsequent
dicate the Tools that are equivalent alterhatives to each other. If the isParametric field

one, any Tool that is selected under the conditions for parametric tools (as discussed in the para

shall
IDs. T
ID of

IPMP

isAl

numA

spec
conte

be considered by the Terminal to.be another equivalent alternative to those specified via
he Terminal shall choose one from these equivalent alternatives at its discretion. The acty
his Tool is known only to the Terminal.

| ToolID — the identifier of the IPMP Tool, as discussed above.

EGroup — if set tolone, this IPMP_Tool contains a list of alternate IPMP Tools.

| ternates,~the number of alternative IPMP Tools specified in IPMP_Tool.

i £icTenlID — an array of the IDs of specific alternative IPMP Tools that can allow consy
nt.

identifies one IPMP Tool that is required by the Terminal

to Consume
ternatives, or

et to zero. In
hn IPMP Tool

| ID since the
bpend on the

the Terminal

In this case,
5. The actual
tion is known
tent, via the

specific Tool
is also set to
graph above)
specific Tool
al IPMP Tool

mption of the

isParametric

IPMP_Tool contains a parametric description of an [IPMP Tool.

In this case,

IPMP_ToolID is an identifier for the parametrically described IPMP Tool, and the Terminal shall route
information specified in the bitstream for TPMP_Too1 1D to the specific IPMP Tool instantiated by the terminal.

ToolURL — An array of informative URLs from which one or more tools specified in IPMP_Tool may be
obtained in a manner defined outside the scope of these specifications.

7.2.6.14.3.3 IPMP_ParametricDescription

Using a parametric description, the content provider can now describe what type of IPMP tool is required to
playback the content, instead of using fixed tool IDs. For example, the content provider can specify that an
AES tool, with block size of 128 bits is required to decrypt video stream. The IPMP terminal, upon receiving
such description specifying this tool, can then choose an optimised AES tool from the embedded tools.

© ISO/IEC 2010 — All rights reserved 49

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

This Subclause contains an illustration of the hierarchy that a parametric description would follow. It does not
attempt to define any specific scheme for any specific Tool type. We anticipate that only a basic framework
will appear in the current version of the specification, and enhancements to the same will be left for future
addendums and/or versions.

1.

Optional comment

Version of parametric description syntax

Class of Tool

e.g. Decryption, Rights Language Parser

(S
g
g

a o oo

€
Sub-clasj
a.
b.

(S
(S

The paramet
type of tool.

7.2.6.14.3.3.1

class IPMH
bit(8) tad
{
ByteArrg
bit (8)
bit (8)
bit(32)
For
ByteA
ByteA
ByteA
ByteA
ByteA

7.2.6.14.3.3.2

(intg

Sub-classof Tool

.g. for Decryption: AES, DES, NESSIE etc

.g. for Watermarking: “Panos’s watermarking tool” etc

.g. for Rights Language Parser: “Fred’s Rights Parser”

.g. for Protocol Parser: “Mary’s Protocol Parser”

5-specific information

.g. for DES: number of bits, stream and/or block decipher capability.
.g. for Rights Language Parser : version

fic description is defined to allow a generic description of ‘@any type of IPMP tool, no matt|

Syntax

| ParamtericDescription extends IPMP:Data_BaseClass:
IPMP_ParamtericDescription_tag 0x10

descriptionComment ;

majorVersion;
minorVersion;
numOfDescriptions;

i = 0; i<numOfDescxiptions;

rray class;

rray subClass;

rray typeData;

rray type;

rray addedData;

24

1++) {

Semantics

er the

class - class of the parametrically described tool, for example, decryption.

subClass - sub-class of the parametrically described tool, for example, AES under decryption class.

typeData - specific type data to describe a particular type of tool, for example, Block_length, to further
specify a AES decryption tool.

type - value

addedbData -

50

of the type data above, for example, 128 for the Block_length.

Any additional data which may help to further describe the parametrically defined tool.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

7.2.6.

ISO/IEC 14496-1:2010(E)

14.3.4 ByteArray

This Subclause defines syntax and semantics to carry a generic string or array of bytes which is used
extensively throughout the IPMP specifications.

7.2.6.

14.3.4.1 Syntax

expandable class ByteArray

{

bit (8) datalsizeOfInstance()];

}

7.2.6.

data

7.2.6.
CISA
Regis
regist

The R

14.3.4.2 Semantics

- the string or array of bytes carried.

14.4 Implementation of a Registration Authority (RA)

C will serve as the JTC 1 Registration Authority for the IPMPS_Type as defined in this Su
tration Authority shall execute its duties in compliance with Annex E of the JTC1 D
bred IPMPS_Type is hereafter referred to as the Registered Identifier (RID).

egistration Management Group (RMG) will review appeals) filed by organizations whose 1

RID t¢ be used in conjunction with ISO/IEC 14496 has been.dénied by the Registration Authority

Anne

7.2.6.

7.2.6.
clas
bil
if

}

7.2.6.

The (

B provides information on the procedure for registering a unique IPMPS_Type value.
15 QoS_Descriptor

15.1 Syntax
E QoS_Descriptor extendsc<BaseDescriptor : bit(8) tag=QoS_DescrTag {
t(8) predefined;

(predefined==0) {
QoS_Qualifier qualifiers[];

15.2 Semantics

oS _descriptor conveys the requirements that the ES has on the transport channel and a

bclause. The
rectives. The

equest for an

Hescription of
alues can be

the trt‘ffic that this ES will generate. A set of predefined values is to be determined; customized

used

\Vi Qph‘ing the predefined field ta Q

predefined - a value different from zero indicates a predefined QoS profile according to Table 10.

Table 10 — Predefined QoS Profiles

predefined value description
0x00 Custom
0x01 - Oxff Reserved

qualifier —an array of one or more QoS_Qualifiers.

© ISO/IEC 2010 — All rights reserved

51

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.15.3 QoS_Qualifier

7.2.6.15.3.1 Syntax

abstract aligned(8) expandable(22®-1) class QoS_Qualifier : bit(8) tag=0x01l..0xff

{
// empty. To be filled by classes extending this class.

}

class QoS _Qualifier MAX DELAY extends QoS_Qualifier bit(8) tag=0x01 {
unsigned int(32) MAX_DELAY;

}

class QoS |Qualifier PREF_MAX DELAY extends QoS_Qualifier bit(8) tag=0xQ2 Y
unsigned int(32) PREF_MAX_ DELAY;

}

class QoS |Qualifier LOSS_PROB extends QoS_Qualifier bit(8) tag=0x03 {
double (32) LOSS_PROB;

}

class QoS |Qualifier MAX GAP_LOSS extends QoS_Qualifier b2t (8) tag=0x04 {
unsigned int(32) MAX_GAP_LOSS;

}

class QoS_|Qualifier MAX AU _SIZE extends QoS_Qualifier bit(8) tag=0x41 {
unsigned int(32) MAX_AU_SIZE;

}

class QoS |Qualifier AVG_AU _SIZE extends QoS-Qualifier bit(8) tag=0x42 {
unsigned int(32) AVG_AU_SIZE;

}

class QoS |Qualifier MAX AU RATE extends QoS_Qualifier bit(8) tag=0x43 {
unsigned int(32) MAX_AU_RATE;

}

class QoS_|Qualifier REBUFFERING_RATIO extends QoS_Qualifier bit(8) tag=0x44

bit (8) §

3
7.2.6.15.3.2

QoS qualifier
by means of

REBUFFERING_RATIO;

Semantics

5 are~defined as derived classes from the abstract QoS_Qualifier class. They are ide

from 0x80 up

MAX_DELAY —

htified
alues

heir class tag. Unused tag values up to and includi
; A h .

Maximum end to end delay for the stream in microseconds.

PREF_MAX_DELAY — Preferred end to end delay for the stream in microseconds.

LOSS_PROB —

Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.

MAX_GAP_L0SS — Maximum allowable number of consecutively lost AUs.

MAX_ AU_SIZ

AVG_AU_SIZ

52

E — Maximum size of an AU in bytes.

E — Average size of an AU in bytes.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

MAX_AU_RATE — Maximum arrival rate of AUs in AUs/second.

REBUFFERING_RATIO — Ratio of the decoding buffer that should be filled in case of prebuffering or
rebuffering. The ratio is expressed in percentage, with an integer value between 0 and 100. Values outside
that range are reserved.

7.2.6.

15.3.2.1 Rebuffering

In certain scenarios the System Decoder Model cannot be strictly observed. This is the case of e.g. file
retrieval scenarios in which the data is pulled from a remote server over a network with unpredictable
performances. In such a case prebuffering and/or rebuffering may be required in order to allow for a better

qualit
categ

An el
certai

An el

resunping fetching data waits until that buffer has been filled again up to a certain threshold.

In ord

1N the user experience. Note that scenarios involving real ume streaming servers do
Dry, since a streaming server presumably delivers content according to the appropriate time

bmentary stream is prebuffered when the decoder waits until the decodingBuffer;has’been
n threshold before starting fetching data from it.

bmentary stream is rebuffered when a decoder stops fetching data from the decodingBuff|

er to inform a receiver whether a certain elementary stream requires/prebuffering and/or r

ot fall in this
line.
filled up to a

br and before

ebuffering the

3

»]

not require

n future. The
A descriptor

s that extend
C 14496-1.

QoS_pualifier REBUFFERING_RATIO qualifier can be included in the Elementary Stream Descriptor
(see 1.2.6.15.3.1). By default, in the absence of such qualifier,, ah elementary stream doe
pre-buffering or rebuffering.
7.2.6/16 ExtensionDescriptor
7.2.6.16.1 Syntax
abstkact class ExtensionDescriptor extends BaseDescriptor
: bik(8) tag = ExtensionProfileLewvelDescrTag, ExtDescrTagStartRange ..
ExtDpscrTagEndRange {

//| empty. To be filled by ¢lasses extending this class.
}
7.2.6[16.2 Semantics
This ¢lass is an abstract’base class that may be extended for defining additional descriptors
availgble range of class tag values allow ISO defined extensions as well as private extensions
that gllows to aggregate ExtensionDescriptor classes may actually aggregate any of the classe
ExtensionDescriptor. Extension descriptors may be ignored by a terminal that conforms to ISO/IF
7.2.6.17/,'RegistrationDescriptor
The registration descriptor provides a method to uniquely and unambiguously identify formats of private data
streams.
7.2.6.17.1 Syntax

class RegistrationDescriptor extends BaseDescriptor

: bit(8)

tag=RegistrationDescrTag {

bit(32)
bit(8)

formatIdentifier;
additionalIdentificationInfo[sizeOfInstance-4];

© ISO/IEC 2010 — All rights reserved

53

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.17.2 Semantics

formatIdentifier - is avalue obtained from a Registration Authority as designated by ISO.

additionalIdentificationInfo — The meaning of additionalIdentificationInfo, if any, is
defined by the assignee of that formatIdentifier, and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry
elementary streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit
ISO/IEC 14496-1 to carry all types of data streams while providing for a method of unambiguous identification
of the characteristics of the underlying private data streams.

In the followi
private data fi

7.2.6.17.2.1

ISO/IEC JTC

of IEC in ofder to identify suitable organizations that will serve as the Registration Authority fg

formatldentifi
Authority. Th
JTC 1 Direct

Identifier (RID).

Upon selectig
Group (RMG
conjunction W

Annex B proV
7.2.6.18 OK

7.2.6.181 (C

This Subclau

either be inclfided in an 0CcI_Event ifh an OCI stream or be part of an object descriptor or ES_Descr]

as defined in

7.2.6.18.2 (

7.2.6.18.2.1

abstract d
: bit (8

brmat are outlined.

Implementation of a Registration Authority (RA)
1/SC 29 shall issue a call for nominations from Member Bodies of ISO orNational Comn
br as defined in this Subclause. The selected organization shall ‘serve as the Regist

b so-named Registration Authority shall execute its duties in compliance with Annex E
ves. The registered private data formatldentifier is hereafter_referred to as the Regi

~

n of the Registration Authority, JTC 1 shall require thé creation of a Registration Manag
) which will review appeals filed by organizations<whose request for an RID to be ug
ith ISO/IEC 14496-1 has been denied by the Registration Authority.

ides information on the procedure for registering a unique format identifier.
ject Content Information Descriptors

Jverview
se defines the descriptors that constitute the object content information. These descriptor:

7.2.6.
)CI_Descriptor Class

Syntax

lasg ©OCI_Descriptor extends BaseDescriptor
tag= OCIDescrTagStartRange .. OCIDescrTagEndRange

{

ng Subclause and Annex B, the benefits and responsibilities of all parties to the registratlon of

ittees
r the
ration
bf the
stered

bment
ed in

5 may
ptor

// empty. To be filled by classes extending this class.

}

7.2.6.18.2.2

Semantics

This class is an abstract base class that is extended by the classes specified in the subsequent Clauses. A
descriptor or an OCI_Event that allows to aggregate classes of type OCI_Descriptor may actually aggregate
any of the classes that extend OCI_Descriptor.

54

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

7.2.6.

7.2.6.

ISO/IEC 14496-1:2010(E)

18.3 Content classification descriptor

18.3.1 Syntax

class ContentClassificationDescriptor extends OCI_Descriptor

: bit(8) tag= ContentClassificationDescrTag {

bit(32) classificationEntity;
bit(16) classificationTable;
bit (8) contentClassificationDatal[sizeOfInstance-6];

7.2.6.

The
clas

have

clas
defing

clas
classi

cont
classi

7.2.6.

7.2.6.

clas
in
bil
bil
al
fg

18.3.2 Semantics
tontent classification descriptor provides one or more classifications of the event info
sificationEntity field indicates the organization that classifies the content. The po
0 be registered with a registration authority to be identified.
d by a registration authority to be identified.

sificationTable — indicates which classification table-'is) being used for the g

fication. The classification is defined by the corresponding classification entity. 0x00 is a res

fication table.
18.4 Key Word Descriptor

18.4.1 Syntax

5 KeyWordDescriptor extends\'OCI_Descriptor : bit(8) tag=KeyWordDesc
t 1i;

t(24) languageCode;

t (1) isUTF8_string;

igned(8) unsigned int (8) keyWordCount;

r (i=0; i<keyWonrdCount; i++) {
unsigned int (83 ~keyWordLength[[i]];
if (isUTF8_gtxing) then {

bit(8) kevWord[[il]l] [keyWordLength[i]];
} else {

bitf26) keyWord[[i]] [keyWordLength[i]];
}

rmation. The
ssible values

sificationEntity — indicates the content classification entity. The‘values of this fi¢ld are to be

orresponding
erved value.

entClassificationDatal[] — this array containsca classification data set using @ non-default

rTag {

7.2.6.

18.4.2 Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that characterize the
content. The choice of the key words is completely free but each time the key word descriptor appears, all the
key words given are for the language indicated in 1languageCode. This means that, for a certain event, the
key word descriptor must appear as many times as the number of languages for which key words are to be
provided.

languageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language

of the

following text fields.

© ISO/IEC 2010 — All rights reserved

55

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

isUTF8_string — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

keyWordCount - indicates the number of key words to be provided.

keyWordLength - specifies the length in characters of each key word.

keyWord[]

—a Unicode (ISO/IEC 10646-1) encoded string that specifies the key word.

7.2.6.18.5 Rating Descriptor

7.2.6.18.5.1

class Rati
bit (32)
bit (16)
bit (8)

}

7.2.6.18.5.2

This descript
country. The

have to be registered with a registration authority to be identified~Fhis registration authority shall mal

semantics of

ratingEnti
authority to b

Syntax

ngDescriptor extends OCI_Descriptor : bit(8) tag=RatingDescrTag,{
ratingEntity;
ratingCriteria;

ratingInfo[sizeOfInstance-6];

Semantics

Dr gives one or more ratings, originating from corresponding rating entities, valid for a spe
ratingEntity field indicates the organization which js rating the content. The possible

the rating descriptor publicly available.

ty — indicates the rating entity. The values*of this field are to be defined by a regist
b identified.

ratingCriferia — indicates which rating criteria-are being used for the corresponding rating entity.

value 0x00 is|reserved.

ratingInfd[] - this array contains the rating information.

7.2.6.18.6 Language Descriptor

7.2.6.18.6.1 Syntax

class LanguageDescriptor extends OCI_Descriptor : bit(8) tag=LanguageDescrTag
bit(24) | languageCode;

}

7.2.6.18.6.2 Semantics

cified
alues
e the

ration

The

This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

languageCode

corresponding audio/speech or text object that is being described.

56

— contains the ISO 639-2:1998 bibliographic three character language code of the

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.18.7 Short Textual Descriptor

7.2.6.18.71 Syntax

class ShortTextualDescriptor extends OCI_Descriptor : bit(8)
tag=ShortTextualDescrTag {
bit(24) languageCode;
bit (1) isUTF8_string;
aligned(8) unsigned int(8) nameLength;
if (isUTF8_string) then {
bit (8) eventName [nameLength];

nﬁS{gﬁ a -:ﬁ|—<Q> + £L ﬁg"]’\;
bit (8) eventText[textLength];
} lelse {

bit (16) eventName [nameLength];
unsigned int(8) textLength;
bit (16) eventText[textLength];

7.2.6[18.7.2 Semantics
The short textual descriptor provides the name of the event and ashort description of the event in text form.

langpageCode - contains the ISO 639-2:1998 bibliographic three character language code of|the language
of the|following text fields.

isUTF8_string — indicates that the subsequent string is encoded with one byte per character [UTF-8). Else
it is two byte per character.

namel.ength - specifies the length in characters of the event name.
evenfName []— a Unicode (ISO/IEC 10646-1) encoded string that specifies the event name.
textLength - specifies the length in characters of the following text describing the event.

evenfText[] —a Unicode(ISO/IEC 10646-1) encoded string that specifies the text description for the event.
7.2.6[18.8 Expanded-Textual Descriptor

7.2.6./18.8.1 Syntax

clasp ExpandedTextualDescriptor extends OCI_Descriptor : bit(8)
tag=ExpandedTextualDescrTag {
int 1i;
bit(24) languageCode;
bit (1) isUTF8_string;
aligned(8) unsigned int(8) itemCount;
for (i=0; i<itemCount; i++) {
unsigned int(8) itemDescriptionLength[[i]l];
if (isUTF8_string) then {

bit(8) itemDescription[[i]][itemDescriptionLength[i];
} else {
bit(16) itemDescription[[i]][itemDescriptionLength[i]];

}
unsigned int(8) itemLength[[i]];
if (isUTF8_string) then {

© ISO/IEC 2010 — All rights reserved 57

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

bit(8) itemText[[i]][itemLengthli]];
} else {
bit(16) itemText[[i]][itemLengthl[il];

}
}

unsigned int (8)

textLength;

int nonItemTextLength=0;

while (

textLength

255) {

nonItemTextLength += textLength;

bit (8
}

) textLength;

nonItemTextLength += textLength;

if (isU]

bit (8

} else
bit (1

3

7.2.6.18.8.2

The expande
or independe
pairs of desc
where for exz
producer.

languageCd
of the followir

1isUTF8_st1
it is two byte

itemCount

itemDescri

[F8_string) then {
nonItemText [nonItemTextLength] ;

b) nonItemText [nonItemTextLength];

Semantics
d textual descriptor provides a detailed description of an event; which may be used in addit

fiption and text may be provided. An example application(for this structure is to give a ca
mple the item description field might be “Producer” andhe item field would give the name

g text fields.

ing — indicates that the subsequent string is encoded with one byte per character (UTF-8
ber character.

— specifies the number of items to follow (itemised text).

ptionLength - specifiesjthe length in characters of the item description.

on to,

htly from, the short event descriptor. In addition to direct text,-structured information in teqms of

5t list,
of the

de - contains the 1SO 639-2:1998 bibliographic three character language code of the language

. Else

itemDescrijption[] —a Unicode (ISO/IEC 10646-1) encoded string that specifies the item descriptiop.
itemLengtH - specifies the length in characters of the item text.

itemText []| —a Unicode (ISO/IEC 10646-1) encoded string that specifies the item text.

textLength + specifies the length in characters of the non itemised expanded text. The value 255 i used
as an escapeé_cade, and it is followed by another rextT.ength field that contains the length in bytes Above
255. For lengths greater than 511 a third field is used, and so on.

nonItemText[] — a Unicode (ISO/IEC 10646-1) encoded string that specifies the non itemised expanded
text.

58 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.18.9 Content Creator Name Descriptor

7.2.6.18.91 Syntax

class ContentCreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreatorNameDescrTag {

int 1i;
unsigned int(8) contentCreatorCount;
for (i=0; i<contentCreatorCount; i++) {

bit(24) languageCode[[i]];

bit (1) isUTF8_stringl[[i]l];

I Igned (8 UnSIgned 1Nt (8) CONCENntCreatorLengtni i1 1

if (isUTF8_string[[i]l]) then {

bit (8) contentCreatorName[[i]] [contentCreatorLength[i]];
} else {

bit(16) contentCreatorName[[i]] [contentCreatorLength[i]];

}

7.2.6.118.9.2 Semantics

The gontent creator name descriptor indicates the name(s) of-the content creator(s). Each cgntent creator
name|{may be in a different language.

contpntCreatorCount - indicates the number of contént creator names to be provided.
langpageCode - contains the ISO 639-2:1998 bibliographic three character language code of|the language
of the| following text fields. Note that for languagées that only use Latin characters, just one byte |per character

is negded in Unicode (O/IEC 10646-1).

isUTF8_string — indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

contpntCreatorLength[[T \'— specifies the length in characters of each content creator ngme.

contpntCreatorName [«fi7]1[] — a Unicode (ISO/IEC 10646-1) encoded string that specifies the content
creatgr name.

7.2.6.18.10 Content Creation Date Descriptor

7.2.6.18.10.1 Syntax

clasg ‘ContentCreationDateDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreationDateDescrTag ({
bit (40) contentCreationDate;

7.2.6.18.10.2 Semantics

This descriptor identifies the date of the content creation.

contentCreationDate — contains the content creation date of the data corresponding to the event in
question, in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex A). This field is

coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary
Coded Decimal (BCD). If the content creation date is undefined all bits of the field are set to 1.

© ISO/IEC 2010 — Al rights reserved 59

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.18.11 OCI Creator Name Descriptor

7.2.6.18.11.1
class OCIC

int 1i;

unsigned int (8)

Syntax

reatorNameDescriptor extends OCI_Descriptor
: bit(8) tag=0CICreatorNameDescrTag {

OCICreatorCount;

for (i=0; i<OCICreatorCount; i++) {
bit(24) languageCode[[1]];
bit (1) isUTF8_string;
align RI(Q) 11v\s-igv\ a -ivﬂ—(Q) QCTCvyaataoxrT wgi—'ln[[-i}};
if (ipUTF8_string) then {
bif(8) OCICreatorName[[i]][OCICreatorLength];
} elge {
bif(16) OCICreatorName[[i]] [OCICreatorLength];
}
}
}
7.2.6.18.11.2] Semantics
The name of OCI creators descriptor indicates the name(s) of the QCl -description creator(s). Eacl OCI

creator name
OCICreaton

languageCd
language of t

1sUTF8_st1
it is two byte

OCICreaton

OCICreator
7.2.6.18.12 C

7.2.6.18.12.1
class 0OCIdQ

bit (40)

may be in a different language.
Ccount - indicates the number of OCI creators.

de[[1]] — contains the ISO 639-2:1998 bibliographic three character language code
ne following text fields.

ing — indicates that the subsequent string is encoded with one byte per character (UTF-8
ber character.

Length[[1]] - specifies the length in characters of each OCI creator name.

Name[[1]] — a Unicode (ISO/IEC 10646-1) encoded string that specifies the OCI creator
)CI Creation Date'Descriptor

Syntax

reatienPateDescriptor extends OCI_Descriptor
:(bit (8) tag=0CICreationDateDescrTag {
OCiCreationDate;

}

bf the

. Else

name.

7.2.6.18.12.2

Semantics

This descriptor identifies the creation date of the OCI description.

OCICreationDate = This 40-bit field contains the OCI creation date for the OCI data corresponding to the
event in question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see Annex A). This
field is coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit
Binary Coded Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

60

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.6.18.13 SMPTE Camera Position Descriptor

7.2.6.18.13.1 Syntax

class SmpteCameraPositionDescriptor extends OCI_Descriptor : bit (8)
tag=SmpteCameraPositionDescrTag {
unsigned int (8) cameralD;
unsigned int (8) parameterCount;
for (i=0; i<parameterCount; i++) {
bit (8) parameterID;
bit (32) parameter;

7.2.618.13.2 Semantics

The $MPTE metadata descriptor provides metadata defined by the Proposed"SMPTE Standard 315M of
“camgra positioning information conveyed by ancillary data packets.” The SMPTE 315M defines|IDs and data
formats for the following parameters:

camera relative position

camera pan

camera tilt

camera roll

origin of world coordinate longitude

origin of world coordinate latitude

origin of world coordinate altitude

vertical angle of view

focus distance

lens opening (iris or F-value)

time address information

object relative paosition
camefalD - contains the b(0-7) of C-ID of the UDW in Figure 6.

parapetérCount - specifies the number of parameters and is equal to (the Data Count Word (PC) — 18) / 5.

parameterID - contains the b(U-7) oT I-In DN or the UDVV.

parameter - contains the i-th Parameter n of the UDW (b(0-7) of each word).

7.2.6.18.13.3 Packet structure defined by SMPTE 315M
Ancillary data packet and space format is defined by ANSI/SMPTE 291M. The SMPTE 315M is one of the

registered formats for a specific application of user data space defined by the 291M. The structure of binary-
type camera positioning data packets described in the SMPTE 315M is illustrated in Figure 6.

© ISO/IEC 2010 — All rights reserved 61

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

mo >
mQo >

F
A|D|D D LABEL o (_: | | Parameter| | | Parameter I
D(I|B C (16 words)| g | | | D 1 D 2 D n
FID|N MiD!l1 (4 words) | 2| (4 words) n

Parameter

(4 words)

no

| ubw

Figure 6 — Binary-type camera positioning data packets (SMPTE 315M)

Ancillary data is defined as 10-bit words. B(0-7), b8 and b9 represent actual data, even parity for b(0-7) and
not b8 respectively except ADF.

ADF:
DID:

DBN
DC:

UDW:

LABE
FOR
C-ID:
IDn:

Parameter n:

CS:

The 4 words
Word (FORM
(IDn) and pa
positioning da

Ancillary Data Flag (000 h, 3ff h, 3ff h)
Data Identification Word (2f0 h)

Data Block Number Word

Data Count Word

User Data Words (up to 255 words)

L: SMPTE label for metadata of class “camera positioning information” (16 words

M: Data Type Identification Flag Word (1 word)

Camera Identification Word (1 word)
Parameter Identification Word (1 word\for each parameter)
Parameter Data Words (4 words for each parameter)

Checksum Word

LABEL(8-11) of LABEL(0-15) shall~be set to ‘C’, ‘A’, ‘P’, ‘O’. The Data Type Identification Flag

) indicates the data type of the:camera identification word (C-ID), parameter identification

word

rameter data word (Paramgter n) contained in the packet. In case of binary-type camera

ta FORM(0-1) shall be set'to:0 h.

Tag

7.2.6.18.14 Segment Descriptor.
7.2.6.18.14.1 Syntax
class SegnmentDescriptor extends OCI_Descriptor : bit(8) tag=SegmentDescriptor]
{
double |start;
double |duration;
bit (8) SEgMENTtNamMe Leng tir;
bit(8) segmentName [segmentNamelLengthl];
Y
7.2.6.18.14.2 Semantics

The segment descriptor defines labeled segments within a media stream with respect to the media time line. A
segment for a given media stream is declared by conveying a segment descriptor with appropriate values as
part of the object descriptor that declares that media stream. Conversely, when a segment descriptor exists in
an object descriptor, it refers to all the media streams in that object descriptor. Segments can be referenced
from the scene description through url fields of media nodes.

62

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

In order to use segment descriptors for the declaration of segments within a media stream, the notion of a
media time line needs to be established. The media time line of a media stream may be defined through use
of media time descriptor (see 7.2.6.18.15.1). In the absence of such explicit definitions, media time of the first
composition unit of a media stream is assumed to be zero. In applications where random access into a media
stream is supported, the media time line is undefined unless the media time descriptor mechanism is used.

start - specifies the media time (in seconds) of the start of the segment within the media stream.

duration - specifies the duration of the segment in seconds. A negative value denotes an infinite duration.

SegmentNameLength - the length of the segmentName field in characters.

segm
segm
charg

7.2.6.

7.2.6.
clas

dg
Y

7.2.6.

Then
objec

entName — a Unicode [3] encoded string that labels the segment. The first cha
entName shall be an alphabetic character. The other characters may be alphanumeéric,
Cter.

18.15 MediaTimeDescriptor

18.15.1 Syntax

5 MediaTimeDescriptor extends OCI_Descriptor : bitY(8) tag=MediaTime
uble mediaTimeStamp;

18.15.2 Semantics

nedia time descriptor conveys a media time stamp. The descriptor establishes the mapping
time base and the media time line of a media stream. This descriptor shall only be conve

OCI gtream. The startingTime, absoluteTinieFlag and duration fields of the OCI even

descr|
defing

medi

ptor shall be set to 0. The association;bétween the OCI stream and the corresponding mé
d by an object descriptor that aggregates ES descriptors for both of them (see 7.2).

bTimeStamp - a time stamp.indicating the media time (MT, in seconds) of the assg

strean corresponding to the compasition time (CT) of the access unit conveying the media tin

Media
time (

MT(A

time values MT(AU,) of'ather access units of the media stream can be calculated from th
LT(AU,) for that access unit as follows:

U,) = CT(AU,) ~CT4 MT

with MIT and CT«eing the mediaTimeStamp and compositionTimeStamp (converted to sec
respegtively, for the access unit conveying the media time descriptor.

Note 4+ When/media time descriptor is used to associate a media time line with a media stream, the notion
zero” floes’not necessarily correspond to the notion of “beginning of the stream”.

acter of the
-, Or a space

DescrTag {

between the
yed within an
[carrying this
dia stream is

ciated media
e descriptor.
P composition

pnds) values,

of “media time

7.2.6.

7.2.6.

19 Extension Profile Level Descriptor

19.1 Syntax

class ExtensionProfileLevelDescriptor () extends ExtensionDescriptor : bit(8)
ExtensionProfilelLevelDescrTag {

bit (8) profileLevelIndicationIndex;

bit (8) ODProfileLevelIndication;

bit (8) sceneProfilelLevelIndication;
bit (8) audioProfileLevelIndication;
bit (8) wvisualProfileLevelIndication;
bit (8) graphicsProfileLevelIndication;

© ISO/IEC 2010 — All rights reserved

63

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

bit (8
bit (8
bit (8

)
)
)

MPEGJProfileLevelIndication;
TextProfileLevelIndication;
3DCProfileLevelIndication;

7.2.6.19.2 Semantics

The ExtensionProfilelLevelDescriptor conveys profile and

level extension information.

This

descriptor is used to signal a profile and level indication set and its unique index and can be extended by ISO
to signal any future set of profiles and levels.

profileLey
in this descrif

ODProfilell
streams ass
descriptor.

sceneProfil
graph nodes

this Extension Profile and Level descriptor.

audioProfi
associated w

visualProf
streams ass
descriptor.

graphicsPr
nodes within

Extension Profile and Level descriptor.

MPEGJProf i
required to p|
and Level de

elIndicationIndex — a unique identifier for the set of profile and level indications des
tor within the name scope defined by the IOD.

evelIndication — an indication of the profile and level required to process object des
pciated with the InitialObjectDescriptor containing this Extension Profile and

leLevelIndication — an indication of the profile and level required to process the
within scene description streams associated with the InitialObj&ctDescriptor cont

leLevelIndication — an indication of the profile and level required to process audio st

ileLevelIndication — an indication of the\ profile and level required to process
pciated with the InitialObjectDescriptior: containing this Extension Profile and

ofileLevelIndication — an indication of the profile and level required to process gra
scene description streams associated with the InitialObjectDescriptor containin

leLevelIndication —.afuindication as defined in Table 11 of the MPEG-J profile and
rocess the content associated with the InitialObjectDescriptor containing this Extension |
scriptor.

Table 11 — MPEGJProfileLevellndication Values

th the InitialObjectDescriptor containing this Extension Profile and Level descriptof.

Cribed

Criptor
Level

scene
hining

eams

visual
Level

phics
g this

level
Profile

Value Profile Level

0x00 Reserved for ISO use -

0x01 Personal profile L1

0x02 Main profile L1

0x03-0x7F reserved for ISO use -

0x80-0xFD user private -

OxFE no MPEG-J profile specified -

OxFF no MPEG-J capability required -

Note Usage of the value OxFE may indicate that the content described by this InitialObjectDescriptor does not
comply to any conformance point specified in ISO/IEC 14496-1

TextProfileLevelIndication — an indication as defined in Table 12, of the Text Profile and Level
specified in ISO/IEC 14496-18 and required to process the content associated with the InitialObjectDescriptor
containing this Text Profile and Level descriptor.

64

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Table 12 — TextProfileLevellndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Simple Text profile L1
0x02 Simple Text profile L2
0x03 Simple Text profile L3
0x04 Advanced Simple Text profile L1
0x05 Advanced Simple Text profile L2
0x06 Advanced Simple Text profile L3
Ox6F MaimFextprofite 4
0x08 Main Text profile L2
0x09 Main Text profile L3
0x0A-Ox7F reserved for ISO use -
0x80-0xFD user private -
OxFE no Text profile specified -
OxFF no text rendering capability required -
Note: Usage of the value OxFE may indicate that the content described by this’ descriptor does not comply to any
conformance point specified in ISO/IEC 14496-18.

3DCProfilelLevelIndication — an indication of the 3D Compression Profile and Leve| specified in
ISO/IEC 14496-16 and required to process the content associated with the InitialObjectDescriptor containing
this 3D Compression Profile and Level descriptor

7.2.620 Profile Level Indication Index Descriptor

7.2.6.20.1 Syntax

clasg ProfileLevelIndicationIndeXDescriptor () extends BaseDescriptor
bilt (8) ProfileLevelIndicationIndexDescrTag {
bilt (8) profileLevelIndicatidonIndex;

7.2.6.20.2 Semantics

proflileLevelIndic¢ationIndex — a unique identifier for the set of profile and level indicatipns described
in thid descriptor-within the name scope defined by the 10D.

7.2.7| Rules for Usage of the Object Description Framework

7.2.7.

72711 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be
associated to a single node of the scene description and that usually relate to a single audio-visual object. The
set of streams may convey a scaleable content representation as well as multiple alternative content
representations, e.g., multiple qualities or different languages. Additional streams with IPMP and object
content information may be attached.

These options are described by the ES Descriptor syntax elements streamDependenceFlag,

dependsOn_ES_1ID, as well as streamType. The semantic rules for the aggregation of elementary stream
descriptors within one object descriptor (OD) are specified in this Subclause.

© ISO/IEC 2010 — Al rights reserved 65

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)
7.2.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same streamType of either visualStream,
audioStream or SceneDescriptionStream. However, descriptors for streams with two of these types shall not

be mixed within one OD.

72713

Aggregation of Elementary Streams with Different streamTypes

In the following cases ESs with different streamType may be aggregated:

e An OD may aggregate zero or one additional ES Descriptor with streamType =
ObjectCantentinfoStream (see 7.2.4.2). This ObjectContentinfoStream shall be valid for the-cpntent
conveyed through the other visual, audio or scene description streams whose descriptors are aggrggated
in this OD).

e An OD| may aggregate zero or one additional ES Descriptors with @treamType =
ClockReferenceStream (see 7.3.2.5). This ClockReferenceStream shall be valid fer<the ES with|n the
name sc@pe that refer to the ES_ID of this ClockReferenceStream in their SLConfigDescriptor.

7.2.3.2).
descriptig

72714 A
An object des
may aggrega
ES Descriptd
do not contai

This means
descriptor. Th

72715 B

7.2.71.5.1

ES_Descriptg

SceneDescriptionStream that.have streamDependenceFlag=0 refer to independent elementary str

Such indeper

of these reprgsentationsshall be selected for use in the scene.

NOTE — Inde
first in the list

An OD may aggregate zero or more additional ES_Descriptors with streamType = IPMPStrean

['his IPMPStream shall be valid for the content conveyed through theother visual, audio or
n streams whose descriptors are aggregated in this OD.

ggregation of scene description streams and object déscriptor streams

criptor that aggregates one or more ES_Descriptors)of’'st reamType = SceneDescriptionS
te any number of additional ES_Descriptors \with streamType = ObjectDescriptorSt

h ES_Descriptors of streamType = SceneDescriptionStream.

that scene description and object deseriptor streams are always combined within one
e dependencies between these streams are defined in 7.2.7.1.5.2.

lementary Stream Dependencies

Independent elementary streams
rs within one QOD) with the same streamType of either audioStream, visualStres

dent elementary streams shall convey alternative representations of the same content. On

pbendént ESs should be ordered within an OD according to the content creator’s preference. The ES
of ES aggregated to one object descriptor should be preferable over an ES that follows later. In g

(see
scene

tream
ream.

rs of streamType = ObjectDescriptorStream‘shall not be aggregated in object descriptors that

bbject

m or
bams.
y one

that is
ase of

audio streams

however_the selection should far obvious reasons he done nr‘r‘nrding ta the prnfnrnd Inngllngn

of the

receiving terminal.

7.2.71.5.2

Dependent elementary streams

ES Descriptors within one OD with the same streamType of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have streamDependenceFlag=1 refer to
dependent elementary streams. The ES ID of the stream on which the dependent elementary stream
depends is indicated by dependsOn_ES_ID. The ES_Descriptor with this ES_ID shall be aggregated to the
same OD. One independent elementary stream per object descriptor and all its dependent elementary
streams may be selected for concurrent use in the scene.

Stream dependencies are governed by the following rules:

66 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

For dependent ES of streamType equal to either audioStream or visualStream the dependent ES shall

have the same streamType as the ES on which it depends. This implies that the dependent stream
contains enhancement information to the one it depends on. The precise semantic meaning of the
dependencies is opaque at this layer.

SceneDescriptionStream or ObjectDescriptorStream.

descriptors that are refered to by this SceneDescriptionStream.

S

7.2.7,

Somd
any)

L

formation to the one it depends on. The dependent SceneDescriptionStream shall depend
bjectDescriptorStream on which the other SceneDescriptionStream depends.

ES with a streamType of ObjectDescriptionStream shall only depend on an_ES with s
eneDescriptionStream or ObjectDescriptorStream.

ependency on a SceneDescriptorStream implies that there shall be one'or more ESs with
SceneDescriptionStream depending on this ObjectDescriptorStream.

ependency on an ObjectDescriptionStream implies that the dependent stream contains ad

An ES with a streamType of SceneDescriptionStream shall only depend on an ES with streamType of

Dependency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contains the object

enhancement
on the same

freamType of

b streamType

jitional object

scriptors comprising the presentation described by SceneDescriptionStreams which are aggregated in

e same object descriptor.

h ES that flows upstream, as indicated by DecoderConfigDescriptor.upStream = 1
bpend upon another ES that has the upStream flag set to zero. This implies that this
bsociated to the downstream it depends on.Nf the downstream is an ObjectDescrip
ceneDescriptionStream, the upstream shall be associated to all downstreams spe
bjectDescriptorStream or SceneDescriptionStream.

he availability of the dependent stream;is undefined if an ES_Descriptor for the stream it g
not available.

Linking Scene Description and Object Descriptors

2.1 Associating Object Descriptors to BIFS Nodes

BIFS nodes contain an url field. Such nodes are associated to their elementary stream
ia an object descriptor. The association is established by means of the objectbDescr]

specified in ISO/IEC*14496-11. The name scope for this ID is specified in 7.2.7.2.4.

Each
assod

BIFS<node requires a specific streamType (audio, visual, inlined scene description,
iated_elementary streams. The associated object descriptor shall contain ES_Descrip

strearp

Type. The behavior of the terminal is undefined if an object descriptor contains ES_De|

shall always
upstream is
torStream or
ified in that

epends upon

resources (if
iptorID, as

etc.) for its
ors with this
scriptors with

stream types that are incompatible with the associated BIFS node.

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or
removal of BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior
of the terminal is undefined if a BIFS node in the scene description references an object descriptor that is no
longer valid.

At times that the object descriptor is not available at the terminal, the terminal shall behave as if the the URL
referencing the object descriptor was empty. In the case of visual streams for which the object descriptor has
been deleted, the terminal shall render the last composition unit in the scene.

© ISO/IEC 2010 — All rights reserved

67

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the
primary access to content compliant with the ISO/IEC 14496 specifications (initial object descriptor)
aggregates as a minimum, one scene description stream and the corresponding object descriptor stream (if
additional elementary streams need to be referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams.
This allows a bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid
sequence of access units as defined in ISO/IEC 14496-11, and 7.2.5.2, respectively. All resulting scene
description streams and object descriptor streams shall remain aggregated in a single object descriptor. The

dependency

echanism shall ha Lisad to indicate how the streams annnd on-each-other.

All streams {
process, resf
the original o

NOTE — This
visible in the s

S

J

7.2.7.2.3

The BIFS sc
ISO/IEC 1444
additional sc
streams nee

hall continue to be processed by a single scene description and object descriptor, deq
ectively. The time stamps of the access units in different streams shall be used to|re-est
der of access units.

form of partitioning of the scene description and the object descriptor streams in \multiple streams
ene description itself.

cene and Object Description in Case of Inline Nodes

bne description allows to recursively partition a scene through the use of Inline nodes

oding
ablish

is not

(see

6-11). Each Inline node is associated to an object déscriptor that points to at least one

bne description stream as well as another object descriptor stream (if additional elem
i to be referenced). An example for such a hierafChical scene description can be fol

entary
nd in

7.2.7.3.8.2.

7.2.7.2.4 Name Scope of Identifiers

The scope df the objectDescriptorID, ES_IR\and IPMP_DescriptorID identifiers that labgl the
object descriptors, elementary stream descriptors,@nd IPMP descriptors, respectively, is defined as fdllows.
This definition is based on the restriction that associated scene description and object descriptor streamg shall
always be adgregated in a single object descriptor, as specified in 7.2.7.1.4. The following rule defings the
name scope:

to the
either
bbject

Two scer

e related identifiers (objéctDescriptorID, nodeID , ROUTEID or protolD) belong
same namne scope if and only:ifithese identifiers occur in elementary streams with a streamType of
ObjectDgscriptorStream of_SceneDescriptionStream that are aggregated in a single initial
descriptof or a single object descriptor associated to an Inline node.

Two stream related.identifiers (ES_ID or IPMP_DescriptorID) belong to the same name scope if an
if these jdentifiers“relate to streams that are attached to the same communication session t
establish¢d as described in 7.2.7.3.6.

4 only
nat is

NOTE 1 — Hehes;
description in multiple streams is that
name scope while an Inline node opens a new name scope.

NOTE 2 — This implies that a URL in an object descriptor opens a new name scope since it points to an object descriptor
that is not carried in the same ObjectDescriptorStream.

7.2.7.2.5 Reuse of identifiers
Within a single name scope an ES_ID identifier shall always refer to a single instance of an elementary stream.

Note: If two ES_Descriptors within two object descriptors reference a given ES_ID, this means that the second reference
may not receive the stream content from the beginning if the first reference has already started the stream.

68 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

For reasons of error resilience, it is recommended not to reuse objectDescriptorID and ES_ID
identifiers to identify more than one object or elementary stream, respectively, within one presentation. That
means, if an object descriptor or elementary stream descriptor is removed by means of an OD command and
later on reinstalled with another OD command, then it shall still point to the same content item as before.

7.2.7.3 ISO/IEC 14496 Content Access

7.2.7.31 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such
content is known through means outside the scope of ISO/IEC 14496. The subsequent content access

procedure is specified conceptually, using a number of walk throughs. Its precise definition de
chosgn delivery layer.

For
abstr
speci

The ¢
assod

specific ISO/IEC 14496 terminal is possible, either based on profiles\or“on inspection of the

descr

7.2.7,

Initial
ISO/I
the ¢

pplications that implement the DMIF Application Interface (DAI) specified in ISONEC 14
cts the delivery layer, a mapping of the conceptual content access procedure to calls
ied in 7.2.7.3.9.

ontent access procedure determines the set of required elementary streams, requests thei
iates them to the scene description. The selection of a subset of ‘elementary streams

ptors.

3.2 The Initial Object Descriptor
object descriptors convey information about the)profiles required by the terminal ¢

bmplexity of the content referenced directly ©r)indirectly through this initial object des

pends on the

1496-6 which
of the DAI is

r delivery and
suitable for a
set of object

bmpliant with

EC 14496 specifications to be able to process the:described content. This profile informatiop summarizes

riptor, i.e., it

indicdtes the overall terminal capabilities requiredc¢to decode and present this content. Thereforg initial object

descr

Therg

If
a

M
p

An in
acces
or mg

Contd
conte

ptors constitute self-contained access points'to content compliant with ISO/IEC 14496 speg
are two constraints to this general statéement:

the includeInlineProfilelievelFlag of the initial object descriptor is not set, the
Ny inlined content is not included in the profile indications.

addition to the elementary streams that are decodable by the terminal conforming to
ofiles, alternate content representations might be available. This is further explained in 7.2.

tial object descriptor may be conveyed by means not defined in ISO/IEC 14496. The co
sed starting from the elementary streams that are described by this initial object descripto
re scene-description streams and zero or more object descriptor streams.

ifications.

complexity of
the indicated
7.3.4.

ntent may be
r, usually one

nt refered to by an initial object descriptor may itself be referenced from another piece of 1§

OD_TI

O/IEC 14496

Nt dn this case, the initial object descriptor will be conveyed in an object descriptor stieam and the
. it o I : " e I) et I Iescope.

Ordinary object descriptors may be used as well to describe scene description and object descriptor streams.
However, since they do not carry profile information, they can only be used to access content if that
information is either not required by the terminal or is obtained by other means.

7.2.7.3.3 Usage of URLs in the Object Descriptor Framework

URLs in the object description framework serve to locate either inlined ISO/IEC 14496 content or the
elementary stream data associated to individual audio-visual objects.

© ISO/IEC 2010 — Al rights reserved 69

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

URLs in ES_Descriptors locate elementary stream data that shall be delivered as SL-packetized stream by
the delivery entity associated to the current name scope. The complete description of the stream (its
ES_Descriptor) is available locally.

URLs in object descriptors locate an object descriptor at a remote location. Only the content of this object
descriptor shall be returned by the delivery entity upon access to this URL. This implies that the description of
the resources for the associated BIFS node or the inlined content is only available at the remote location. Note,
however, that depending on the value of includeInlineProfileLevelFlag in the initial object descriptor,
the global resources needed may already be known (i.e., including remote, inlined portions).

7.2.7.3.4

Selection of Elementary Streams for an Audio-Visual Object

Elementary 1
cases, consti
ESs for each
descriptor. A
satisfy the ini

Additionally,
computing or|
capable of pr

In case initia
disregarded,
evaluate the
non-standard
constraints sy

NOTE — Som
streams share

72735 (

In an interact

treams are attached through their object descriptor to appropriate BIFS nodes which,\in
ute the representation of a single audio-visual object in the scene. The selection of.éne o
BIFS node may be governed by the profile indications that are conveyed in the initial

| object descriptors shall at least include one elementary stream with suitable object ty
ially signaled profiles.

pbject descriptors may aggregate ES_Descriptors for elementary streams that require
bandwidth resources. Those elementary streams may be used by, the) receiving terminal
bcessing them.

object descriptors do not indicate any profile and level or‘if)profile and level indicatior]

an alternative to the profile driven selection of streams<exists. The receiving termina
ES_Descriptors of all available elementary streams for, each BIFS node and choose by
zed way for which subset it has sufficient resources to decode them while observin
ecified in this Subclause.

e restrictions on the selection of and access to €lementary streams might exist if a set of elem
a single object time base (see 7.3.2.6).

ontent access in “push” and “pull’’ scenarios

ve, or “pull” scenario, the receiving terminal actively requests the establishment of session

the delivery ¢f content, i.e., streams. This\usually involves a session and channel set up protocol be

sender and r
the same in 4

In a broadcal
issuing reque
information th
outside the §
This allows th

7.27.3.6

pceiver. This protocol is notispecified here. However, the conceptual steps to be performg
Il cases and are specified.in the subsequent Clauses.

5t, or “push” scenario, the receiving terminal passively processes what it receives. Instg
sts for session ©r,channel set up the receiving terminal shall evaluate the relevant desc
at associates'ES_ IDs to their transport channel. The syntax and semantics of this informa|
cope of ISO/IEC 14496, however, it needs to be present in any delivery layer implemen
e terminal'to gain access to the elementary streams forming part of the content.

ontent access through a known Object Descriptor

most
more
bbject
pe to

more
if it is

s are

may
some
g the

entary

s and
ween
d are

ad of
fiptive
fion is
ation.

7.2.7.3.6.1

Pre-conditions

An object descriptor has been acquired. This may be an initial object descriptor.

description stream(s) using ES_IDs.

output.

70

A communication session to the source of these streams is established.

The object descriptor contains ES_Descriptors pointing to object descriptor stream(s) and scene

A mechanism exists to open a channel that takes user data as input and provides some returned data as

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.7.3.6.2 Content Access Procedure

The content access procedure shall be equivalent to the following:

1.

2.

The object descriptor is evaluated and the ES_ID for the streams that are to be opened are determined.

Requests for opening the selected ESs are made, using a suitable channel set up mechanism with the
ES_IDs as parameter.

3. Ege channel set up mechanism shall return handles to the streams that correspond to the requested list of
S.

4. Ragquests for delivery of the selected ESs are made.

5. Interactive scenarios: Delivery of streams starts. All scenarios: The streams now become-accgssible.

6. Sdene description and object descriptor stream are evaluated.

7. Fdrther streams are opened as needed with the same procedure, starting at step 1.

7.2.7B.7 Content access through a URL in an Object Desciptor

7.2.73.71 Pre-conditions

e A[URL to an object descriptor or an initial object descriptor has been acquired.

e Al mechanism exists to open a communication session that takes a URL as input and pfovides some
rgturned data as output.

7.273.7.2 Content access procedure

The cpontent access procedure shall be equivalent to the following:

1. A gonnection to the source of the URL is made, using a suitable service set up call.

2. The service set up call shall return data consisting of a single object descriptor.

3. Cagntinue at step 1in 7.2.7.3.6.2.

7.2.7B.8 Content access through a URL in an elementary stream descriptor

7.2.7.3.8.1 Pre-conditions

e Ah ES Descriptor pointing to a stream through a URL has been aquired. (Note that the HS Descriptor
fyllyispecifies the configuration of the stream.)

e A mechanism exists to open a communication session that takes a URL as input and provides some
returned data as output.

¢ A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

7.2.7.3.8.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. Arequest to open the communication session is made, using a suitable session set up mechanism with the
URL as parameter.

© ISO/IEC 2010 — All rights reserved

7

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

5.

6.

. The session set up mechanism shall return a handle to the session that corresponds to the requested URL.

Request to open the stream is made, using a suitable channel set up mechanism.

The channel set up mechanism shall return a handle to the stream that corresponds to the originally
requested URL.

Requests for delivery of the selected stream are made.

Interactive scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessible.

EXAMPLE — Access to Complex Content

The example in Figure 7 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The uppef: p*rt is a
scene accessdd through its initial object descriptor. It contains, among others a visual and an audio stream. A~seeo

d part

of the scene is|inlined and accessed through its initial object descriptor that is pointed to (via URL) in the object degcriptor
stream of the fjrst scene. Utilization of the initial object descriptor allows the signaling of profile information for the gecond
scene. Therefgre this scene may also be used without the first scene. The second scene contains;’among others, a
scaleably encdded visual object and an audio object. A third scene is inlined and accessed via the/ES_IDs of its|object
descriptor and| scene description streams. These ES_IDs are known from an object descriptor, eonveyed in the|object
descriptor strepm of the second scene. Note that this third scene is not accessed through ‘an initial object desgriptor.

Therefore the profile information for this scene need to be included in the profile information fon the second scene.

72

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

initial

ObjectDescriptoy

\ QbjectDescriptor]D

l ObjectDescriptor I

Initial
Object
t |Descriptor|

Descriptor|

ES_Descriptor

URL) ES ID
Visual Strea/
Audio Str#m
7
initial
ObjectDescripto.
ES_ID BIFS Command (Rep'lau Scene)
Scene Ddscription
Scene Description S\ream
S ID
ES _ID
Visual Strean/(e.g. b#e layer)
/ /
Visual Stre/m (c.g%em[mral enhancement)
/ /
.. Audio Strlam /
S
i BIFS Command (Re[);‘:('i_ce Scene))
Scene Ddscription
ES_ID v
ObjectDescriptor
Object Descriptor Stream: | Descriptor]
""""" ES_Descriptor
ES_ID

Audio Stream

© ISO/IEC 2010 — All rights reserved

Figure 7 — Complex content example

73

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.7.3.9

Mapping of Content Access Procedure to DAI calls

The following two DAI primitives, quoted from 10.4 of ISO/IEC 14496-6, are required to implement the content

access proce

dure described in 7.2.7.3.6 to 7.2.7.3.8:

DA_ServiceAttach (IN: URL, uuDatalnBuffer, uuDatalnLen;

OUT: response, serviceSessionld, uuDataOutBuffer, uuDataOutLen)

DA_ChannelAdd (IN: serviceSessionld, loop(qosDescriptor, direction, uuDatalnBuffer, uuDatalnLen);

OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 7.2.7.3.7.2. The URL shall be passed to the(INf URL
uDatalnBuffer shall remain empty. The returned serviceSessionld shall be kept~for future

parameter.
reference to

is URL. UuDataOutBuffer shall contain a single object descriptor.

DA _Channelf\dd is used to implement steps 0 and 3 of 7.2.7.3.6.2. serviceSessionld shall-be)the identifjer for
the service session that has supplied the object descriptor that includes the ES_Descriptor that is cufrently

processed.

upstream or downstream channels according to the DecoderConfigDes¢riptor.upstream

UuDatalnBuff
contain a vali

DA _Channel
the service s
processed. (
upstream or

UuDatalnBuffer shall contain the URL of this ES_Descriptor. On successful return, channelHandle

contain a vali

NOTE1 — It is
uuDatalnBuffe

NOTE2 — Stg
be implemente

The set up

osDescriptor shall be the QoS _Descriptor of this ES_Descriptor, idirection shall in

er shall contain the ES_ID of this ES_Descriptor. On successfulseturn, channelHandle
H, however, not normative handle to the accessible stream.

A\dd is used to implement steps 1 and 2 of 7.2.7.3.8.2. serviceSessionld shall be the identif

DosDescriptor shall be the QoS_Descriptor of this\‘ES_Descriptor, direction shall in
downstream channels according to the DedodérConfigDescriptor.upstream

H, however, not normative handle to the accessible stream.

a duty of the service to discriminate betweenthe two cases with either ES_ID or URL as parame]
in DA_ChannelAdd.

p4in7.2.7.3.6.2and step 3 in 7.2.7.3:8.2 are currently not mapped to a DAI call in a normative way.
d using the DA_UserCommand() primitive.

example in the followifig:'figure conveys an initial object descriptor that points tq

SceneDescri
SceneDescri
DA_Service

The ES_IDs
return handle|

tionStream, an optional ObjectDescriptorStream and additional ofl
tionStreams or @bjectDescriptorStreams. The first request to the DAI will
tach() with the content address as a parameter. This call will return an initial object desc
in the contained_ES_Descriptors will be used as parameters to a DA_ChannelAdd() th
to the corresponding channels.

Additional streams (if.any) that are identified when processing the content of the object descriptor stre
are subsequéntly’opened using the same procedure. The object descriptor stream is not required
present if no further audio- or visual streams or inlined scene description streams form part of the conten

Hicate
flag.
shall

er for

bssion that has supplied the object descriptor that includes the ES_Descriptor that is cufrently

Hicate
flag.
shall

ters to

It may

one
tional
be a
riptor.
at will

am(s)
to be
.

74

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

/ Content Address
Initial ES_descriptor (optional)
Object for ObjectDescriptorStream

Descriptor ES_descriptor
for SceneDescriptionStream
D L4 .
o °
o °

7.2.8| Usage of the IPMP System interface

7.2.8/1 Overview

A ES_1D_a ES_descriptor (optional)
for SceneDescriptionStream

or ObjectDescriptorStream

/.

ES_ID_b/
} handle for

ObjectDescriptorStream

/ / } handle for
SceneDeseriptionStream
ES_ID_x handle for

SceneDescriptionStream or
ObjectDescriptorStream

Figure 8 — Requesting stream delivery through the DAI

IPMP|elementary streams and descriptors may be used in a variety of ways. For instance, IPMP elementary

streams may convey time-variant IPMP information such as keys that change periodical
elemg@ntary stream may be associated with a given elementary stream or set of elementary strea
IPMP|descriptors may besused to convey time-invariant or slowly changing IPMP information as
a givgn elementary stream or set of elementary streams. This Subclause specifies methods hov
an IPMP system to_an’/elementary stream or a set of elementary streams. ISO/IEC 14496-13
followling IPMP tools:related methods:

y. An IPMP
ms. Similarly,
sociated with
to associate
specifies the

set of

a.~Indicate IPMP Tools required for the processing of a given MPEG-4 presentatiof.

b. Associate an IPMP Tool to a specified Control Point of an elementary stream or
elementary Streams.

c. Perform Mutual Authentication between IPMP Tools and between TPMP Tools and the
Terminal.

d. Request the instantiation of one or more IPMP Tools by another IPMP Tool.

e. Request and receive natification of the instantiation of IPMP Tools.

f. Provide a communication channel between IPMP Tools and the User.

7.2.8.2 Association of an IPMP System with ISO/IEC 14496 content

7.2.8.2.1 Association in the initial object descriptor

An IPMP System may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case
the initial object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object

© ISO/IEC 2010 — All rights reserved

75

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

descriptor streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This
implies that all the elementary streams that are described through this initial object descriptor are governed by
the one or more IPMP Systems that are identified within the one or more IPMP streams.

7.2.8.2.2 Association in other object descriptors
An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that
all the content elementary streams described through this object descriptor are governed by the one or more
IPMP Systenrs—that—are—dentifred—withimthre—omeormore PP —streams—Note—thatamES—Descriptgr that
describes an [[PMP stream may contain references to IPMP_Descriptors.

The second fnethod is to include one or more IPMP_DescriptorPointers in the object descriptor. [Fhis implies
that all contept elementary streams described by this object descriptor are governed by the IPMP System(s)
that is/are idgntified within the referenced IPMP descriptor(s).
The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this pbject

descriptor. This implies that the elementary stream referenced by such an ES_Déscriptor is controlled [by an
IPMP Systen.

7.2.8.3 IPMP of Object Descriptor streams

Object Descr|ptor streams shall not be affected by IPMP Systems, i¢e., they shall always be available without
protection by [IPMP Systems. However, management may be applied using IPMP Tools.

IPMP_Descriptors, which reference one or more IPMP Tools, ‘may be directly included in an Object Desgriptor
for use by elgmentary streams referenced within the same-Object Descriptor.

The scope of|the IPMP_Descriptors included and used in this way is limited to only the Object Descriptof itself
and the streams defined by reference within the”,Object Descriptor and may not be referenced by any
subsequent descriptors which may be included in-the streams referenced in the Object Descriptor.

Additionally, |PMP_Tools referenced in thistway shall not receive updates either by IPMP Streams or[IPMP
descriptor upglates.

7.2.8.4 IPMP of Scene Description streams
Scene description streams are._treated like any media stream, i.e. they may be managed by an IPMP Sygtem.

An IPMP_Dekcriptor associated with a scene description stream implies that the IPMP System contro|s this
scene description stream.

There are twp.Wways to protect part of a scene description (or to apply different IPMP Systems to diflferent
components fa U;VD‘II au:;lu:;).

The first method exploits the fact that it is permissible to have more than one scene description stream
associated with one object descriptor (see 7.2.7.2.2). Such a split of the scene description can be freely
designed by a content author, for example, putting a basic scene description into the first stream and adding
one or more additional scene description streams that enhance this basic scene using BIFS updates.

The second method is to structure the scene using one or more Inline nodes (see ISO/IEC 14496-11). Each

Inline node refers to one or more additional scene description streams, each of which might use a different
IPMP System.

76 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.2.8.5 Usage of URLs in managed and protected content

7.2.8.5.1 URLs in the BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an
object descriptor. Equally, no normative way to apply an IPMP System to such links exists. The behavior of an
IPMP-enabled terminal that encounters such links is undefined.

7.2.8.5.2 URLs in Object Descriptors

URLs in object descriptors point to other remote object descriptors. This merely constitutes an indirection and

shoul
descr

NOTE
action

7.2.8.

URLs
indire

through this remote object descriptor.

0 not adversely affect the behavior of the IPMP System that might be invoked through this
ptor.

— The only difference is that while the original site might be trusted, the referred one might.not. Fu
5 to guard against this condition are not in the scope of ISO/IEC 14496.

5.3 URLs in ES_Descriptors

in ES descriptors are used to access elementary streams remotely. This merely ¢
ction and therefore does not adversely affect the behavior of the \PMP System that mig

[emote object

[ther corrective

pnstitutes an
t be invoked

NOTE|— The only difference is that while the original site might be trusted, the referred one might not. Fufther corrective
actiong to guard against this condition are not in the scope of ISO/IEC 14496.
7.2.86 IPMP Decoding Process
COMTENT
STREAM | DMIF
CONTENT
MPEG-4 RELWEST L | AUDI AUDID AUDIO
COpTENT \ » ag " pecooe ™ s P
STREAM(=) o
o] vl
o CYIDED VIDED YIDED = i
bue — "o T ®™oecoce Y™ e Y™ o™ &
COMTEMT DELWERY g é
STREAM |-
(=) % " oD & oo > o
= - DB DECODE
: . a
s 1
BIFS BIFS BIFS BIF§ TREE / SCEME
s — - - o
o0 T * pecopE [cB > GRAPH
TOPL LIST
| ThoL D | (23 l
P 1325
i il NIEEE “MIE TERMIMAL
i DB IPMPIESSAGE ROUTER/TOOL MANAGER
e ETR I 3
DES]RIFTIGACE) ‘-| >
PP TOOLS LETTO0L ES [
TOOLESD
|—(TOOL MANAGER INTERFACE H MESSAGE ROUTER INTERFACE I

© IS0/

Chtain Missing
Tools

IPMP TOOL

e B

Tuls P P e
To0La | | TooLe | | TOoLc

Figure 9 — IPMP system in the ISO/IEC 14496 terminal architecture

IEC 2010 — All rights reserved

77

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Figure 9 depicts the injection of IPMP systems or tools with respect to the MPEG-4 terminal. IPMP specific
data is supplied to the IPMP systems or tools via IPMP streams and/or IPMP descriptors, and the IPMP
systems or tools releases protected content after the sync layer.

Each elementary stream under the control of IPMP systems or tools has the conceptual element of a stream
flow controller. Stream flow control can take place between the the SyncLayer decoder and the decoder buffer.
As the figure indicates, elements of IPMP control may take place at other points in the terminal including, after
decoding (as with some watermarking systems) or in the decoded BIFS stream, or after the composition
buffers have been written, or in the BIFS scene tree. Stream flow controllers either enable or disable
processing of an elementary stream in a non-normative way that depends on the status information provided
by the IPMP systems or tools.

Finally, the IH
1. Process th
2. Appropriat

The initializat
content acceg

7.3 Synch

7.3.1 Introg
This Subclau
The concept
information,
receiving terr
the needs o
in7.3.2.3.

On the sync
stream (SPS
elementary s
interface (ES
between laye|

SL-packetize
ISO/IEC 1444
whose sema
between the
mechanism s
reference po
described in]

MP systems or tools must at a minimum:
e |IPMP stream and descriptor
bly manage (e.g. decrypt and release) protected elementary streams.

on process of the IPMP systems or tools is not specified except that it shall' not unduly del
s process as specified in 7.2.7.3.

ronization of Elementary Streams

uction

e defines the tools to maintain temporal synchronisation within and among elementary str
lal elements that are required for this purpose; namely time stamps and clock refg
ave already been introduced in 7.1. The syntax and semantics to convey these element
ninal are embodied in the sync layer, specified in 7.3.2. This syntax is configurable to ad
different types of elementary streams.“The required configuration information is spe

layer, an elementary stream is<fmapped into a sequence of packets, called an SL-pack
). Packetization informationslhas to be exchanged between the entity that genera
fream and the sync layer.~Fhis relation may be described by a conceptual elementary

rs, however, need notiberaccessible in an implementation.

] streams are(cohveyed through a delivery mechanism that is outside the sco
6-1. This delivery mechanism is only described in terms of the DMIF Application Interface

ZE
I) between both layers (seée Annex G). The ESI is a concept to explain the informatio

by the

bams.
rence
5 to a
apt to
cified

btized
s an
ream

flow

be of
(DALI)

ntics are specified in ISO/IEC 14496-6. It specifies the information that needs to be exch
hall provide is the framing of the data packets generated by the sync layer. The D

.3.3.

nged

sync layer*and the delivery mechanism. The basic data transport feature that this deglivery

is a

ntthat need not be accessible in an implementation. The required properties of the DAl are

The items specified in this Clause are depicted in Figure 10 below.

78

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

7.3.2

7.3.2.
The g

is call
be p
synch

An S
mean
and a
timing
The S

An Sl
lower
not a

An S
(see]

the appropriate signalling means of-the delivery mechanism.

7.3.2,

7.3.2,

clas
al
al

thereE. Such a packet is called SL packet. The sequence of SL packets resulting:from one elem

ISO/IEC 14496-1:2010(E)

Elementary Streams Elementary Stream Interface

............. Sync Laver

SL-Packetized Streams DMIF Application Interface

Figure 10 — The Sync Layer

Sync Layer

U Overview
ync layer (SL) specifies a syntax for the packetization of elementary streamslinto access
d an SL-packetized stream (SPS). Access units are the only semantic entities at this laye
ronisation.
s for continuity checking in case of data loss and carries-the coded representation of the
ssociated information. The detailed semantics of the time stamps are specified in 7.1.3 th
aspects of the systems decoder model. The SL paeket header is configurable as specifi
L packet header itself is specified in 7.3.2.4.

packet does not contain an indication of its length. Therefore, SL packets must be framed

layer protocol using, e.g., the M4Mux tool specified in 7.4. Consequently, an SL-packeti
self-contained data stream that can be stored or decoded without such framing.

.2.6.5) in the SL packet headeft: Fhis association must be conveyed through a stream m3

2 SL Packet Specification
2.1 Syntax
5 SL_Packet' (SLConfigDescriptor SL) {

igned (8)\“SL_PacketHeader slPacketHeader (SL) ;
igned{8) SL_PacketPayload slPacketPayload;

units or parts
bntary stream
I that need to

served from end to end. Their content is opaque. Access uniis—are used as the basic unit for

L packet consists of an SL packet header and an SL packét payload. The SL packet header provides

time stamps
bt defines the
ed in 7.3.2.3.

by a suitable
red stream is

| -packetized stream does not provide identification of the ES_ID associated to the elemegntary stream

p table using

7.3.2.

2.2 Semantics

In order to properly parse an SIL._Packet, it is required that the SL.ConfigDescriptor for the elementary
stream to which the SL_Packet belongs is known, since the SLConfigDescriptor conveys the
configuration of the syntax of the SL packet header.

slPacketHeader - an SL_PacketHeader element as specified in 7.3.2.4.

slPacketPayload - an SL_PacketPayload that contains an opaque payload.

© ISO/IEC 2010 — All rights reserved

79

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.3.2.3 SL Packet Header Configuration

7.3.2.31 Syntax

class SLConfigDescriptor extends BaseDescriptor : bit(8) tag=SLConfigDescrTag {

bit (8) predefined;
if (predefined==0) {
bit(l) useAccessUnitStartFlag;

bit (1) useAccessUnitEndFlag;

bit (1) useRandomAccessPointFlag;

bit (1) hasRandomAccessUnitsOnlyFlag;
blt(l) EER=] D:AAI-:wgD'I S

bit (1) useTimeStampsFlag;

bit (1) useIdleFlag;

bit (1) durationFlag;

bit (3R) timeStampResolution;

bit (3R) OCRResolution;

bit (8) timeStampLength; // must be £ 64
bit (8) OCRLength; // must be < 64
bit (8) AU_Length; // must be < 32
bit (8) instantBitrateLength;

bit (4) degradationPriorityLength;

bit (5) AU_segNumLength; // must be < 16
bit (5) packetSegNumLength; // must be < 16
bit (2) reserved=0bll;

}
if (durgtionFlag) {

bit (3R) timeScale;

bit (1p) accessUnitDuration;

bit(1p) compositionUnitDuration;
}
if (!lus¢TimeStampsFlag) {

bit (timeStamplLength) startDecodingTimeStamp;

bit (timeStampLength) startCompositionTimeStamp;

3

class ExtgndedSLConfigDescriptor extends SLConfigDescriptor
tag=ExtSLJonfigDescrTag {
SLExtengionDescriptors.sglextDescr[1l..255];

3

7.3.2.3.2 Semantics

The SL pacKet.Header may be configured according to the needs of each individual elementary st

bit(8)

ream.

Parameters that can be selected include the presence, resolution and accuracy of time stamps and clock
references. This flexibility allows, for example, a low bitrate elementary stream to incur very little overhead on

SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfigDescriptor, which is part of the

associated ES_Descriptor within an object descriptor.

The configurable parameters in the SL packet header can be divided in two classes: those that apply to each
SL packet (e.g. OCR, sequenceNumber) and those that are strictly related to access units (e.g. time stamps,

accessUnitLength, instantBitrate, degradationPriority).

predefined - allows to default the values from a set of predefined parameter sets as detailed below.

80

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

NOTE — This table will be updated by amendments to ISO/IEC 14496 to include predefined configurations as required by
future profiles.

Table 13 — Overview of predefined SLConfigDescriptor values

Predefined field value Description
0x00 Custom
0x01 null SL packet header
0x02 Reserved for use in MP4 files
0x03 — OxFF Reserved for ISO use
Table 14 — Detailed predefined SLConfigDescriptor values
Predefined field value 0x01 0x02
UseAccessUnitStartFlag 0 0
UseAccessUnitEndFlag 0 0
UseRandomAccessPointFlag 0 0
UsePaddingFlag 0 0
UseTimeStampsFlag 0 1
UselIdleFlag 0 0
DurationFlag 0 0
TimeStampResolution 1000 -
OCRResolution - -
TimeStampLength 32 0
OCRlength - 0
AU_length 0 0
InstantBitrateLengtly - 0
DegradationPrionityLength 0 0
AU_segNumLength 0 0
PacketSegNumlLength 0 0
useAfcessUnitStartFlag — indicates that the accessUnitStartFlag is present in ea¢h SL packet
header of this elementary stream.
useAfbcessUritEndFlag — indicates that the accessUnitEndFlag is present in each SL padket header of
this elementary stream.
If neifher”useAccessUnitStartFlag nhor useAccessUnitEndFlag are set this implies fhat each SL

packet corresponds to a complete access unit.

useRandomAccessPointFlag - indicates that the RandomAccessPointFlag is present in each SL
packet header of this elementary stream.

hasRandomAccessUnitsOnlyFlag - indicates that each SL packet corresponds to a random access point.
In that case the randomAccessPointFlag need not be used.

usePaddingFlag - indicates that the paddingFlag is present in each SL packet header of this
elementary stream.

© ISO/IEC 2010 — All rights reserved 81

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

UseTimeStampsFlag: indicates that time stamps are used for synchronisation of this elementary stream.
They are conveyed in the SL packet headers. Otherwise, the parameters accessUnitDuration,
compositionUnitDuration, startDecodingTimeStamp and startCompositionTime-Stamp
conveyed in this SL packet header configuration shall be used for synchronisation.

NOTE — The use of start time stamps and durations (useTimeStampsFlag=0) may only be feasible under some
conditions, including an error free environment. Random access is not easily possible.

useIdleFlag — indicates that idleFlag is used in this elementary stream.

durationFlag - indicates that the constant duration of access units and composition units for this
elementary sfreamis—subsequentty-signated:

timeStampResolution — is the resolution of the time stamps in clock ticks per second.
OCRResolution —is the resolution of the object time base in cycles per second.

timeStampllength — is the length of the time stamp fields in SL packet headers. timeStampLengtH shall
take values between zero and 64 bit.

OCRlength t is the length of the objectClockReference field in SL packet’headers. A length of zero
indicates thal no objectClockReferences are present in this elementary_stream. If OCRstreamFllag is
set, OCRLength shall be zero. Else 0CR1ength shall take values between-zero and 64 bit.

AU_Length + is the length of the accessUnitLength fields in SL.packet headers for this elementary sfream.
AU_Length $hall take values between zero and 32 bit.

instantBifrateLength — is the length of the instantBitrate field in SL packet headers fqr this
elementary sfream.

degradatidnPriorityLength — is the length ofithe degradationPriority field in SL packet hgaders
for this elemgntary stream.

AU_segNumllength — is the length of the“AU sequenceNumber field in SL packet headers fdr this
elementary sfream.

packetSegNumLength — is the length of the packetSegquenceNumber field in SL packet headers for this
elementary s{fream.

timeScale |- used to express the duration of access units and composition units. One second is gvenly
divided in timeScale parts.

accessUnifgDuration — the duration of an access unit is accessUnitDuration * 1/timeScale sefonds.

compositidnlmitDuration — the duration of a compasition unit is compositioniinithuration
1/timeScale seconds.

startDecodingTimeStamp — conveys the time at which the first access unit of this elementary stream shall
be decoded. It is conveyed in the resolution specified by t imeStampResolution.

startCompositionTimeStamp — conveys the time at which the composition unit corresponding to the first
access unit of this elementary stream shall be decoded. It is conveyed in the resolution specified by

timeStampResolution.

slextDescr — is an array of ExtensionDescriptors defined for ExtendedSLConfigDescriptor as
specified in 7.3.2.3.1.

82 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

7.3.2.

ISO/IEC 14496-1:2010(E)

3.3 SLExtentionDescriptor Syntax

abstract class SLExtensionDescriptor : bit(8) tag=0 {

}

class DependencyPointer extends SLExtensionDescriptor: bit(8) tag=
DependencyPointerTag {

bit (6) reserved;

bit (1) mode;

bit (1) hasESID;

bit (8) dependencyLength;
if (hasESID)

{
}

clas
tag=

in
7.3.2.

SLEXx

7.3.2.

Depe
on an

If modgle equals 0, the latter stream can be identified through the ESID field or if no ESID is pres

depe

stream.

If mogle equals 1, access units fropiithis stream will convey identifiers, for which the system (e.g

are rg

In bot

If mog

7.3.2,

MarkerDescriptor extends SLExtensionDescriptor and allows to tag access units so as to be a

them

bit(16) ESID;

5 MarkerDescriptor extends SLExtensionDescriptor: bit(8)
DependencyMarkerTag {
t (8) markerLength;

3.4 SLExtentionDescriptor Semantics

ensionDescriptor is an abstract class specified so as to be the base class of sl extensions.

3.4.1 DependencyPointer Semantics

ndencyPointer extends SLExtensionDescriptor. and specifies that access units from this st
pther stream.

hdsOn_ES_ID ESID, and access units from this stream will point to the decodingTimeS

sponsible to know whether'dependent resources (e.g. keys) are available.

h cases, the length of'this pointer or identifier is dependencyLength.

e is 0 then dependencyLength shall be the length of the decodingTimeStamp.

3.4.2 MarkerDescriptor Semantics

ndépendently from their decodingTimeStamp.

ream depend

bnt, using the
famps of that

. IPMP tools)

ble to refer to

markerLength - is the length for identifiers tagging access units.

7.3.2.4 SL Packet Header Specification

7.3.2.41 Syntax

aligned(8) class SL_PacketHeader (SLConfigDescriptor SL) {

if

if

if

(SL.useAccessUnitStartFlag)
bit(l) accessUnitStartFlag;
(SL.useAccessUnitEndFlag)
bit (1) accessUnitEndFlag;

(SL.OCRLength>0)

© ISO/IEC 2010 — All rights reserved

83

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

bit (1) OCRflag;

if (SL.useIdleFlag)
bit (1) idleFlag;

if (SL.usePaddingFlag)
bit (1) paddingFlag;

if (paddingFlag)
bit(3) paddingBits;

if (!idleFlag && (!paddingFlag || paddingBits!=0)) {
if (SL.packetSegNumLength>0)
bit (SL.packetSegNumLength) packetSequenceNumber ;
if (SL.degradationPriorityLength>0)
bi{d(I) DegPrioflag;
if (DegPrioflag)
bif(SL.degradationPriorityLength) degradationPriority;
if (OLRflag)
bif (SL.OCRLength) objectClockReference;

if (afpcessUnitStartFlag) {
if |(SL.useRandomAccessPointFlag)
bit (1) randomAccessPointFlag;
if | (SL.AU_segNumLength >0)
bit (SL.AU_segNumLength) AU_sequenceNumber;
if |(SL.useTimeStampsFlag) {
Pit (1) decodingTimeStampFlag;
Pbit (1) compositionTimeStampFlag;

if |(SL.instantBitrateLength>0)

Pit (1) instantBitrateFlag;

if |(decodingTimeStampFlag)

bit (SL.timeStamplLength) decodingTimeStamp;

if |(compositionTimeStampFlag)

bit (SL.timeStamplLength) compogdtionTimeStamp;
if |(SL.AU_Length > 0)

Pbit (SL.AU_Length) accessWUnitLength;

if |(instantBitrateFlag)

Pbit (SL.instantBitrateLength) instantBitrate;

if (SL.tag == ExtSLConfigDescrTag)
for (int 1=0; i<SL¢slextDescr.length;i++)
swiltch (SL.slextDescr[i] . tag)

rase DeépendencyPointerTag:
Marker (SL.slextDescr[i] .dependencyLength) wvalue;
break;

rag€ DependencyMarkerTag:
Marker (SL.slextDescr[i] .markerLength) value;
break;

default:

break;

aligned expandable class Marker (int length) {
bit(length) wvalue;
}

84 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.3.24.2 Semantics

accessUnitStartFlag — when set to one indicates that the first byte of the payload of this SL packet is the
start of an access unit. If this syntax element is omitted from the SL packet header configuration its default
value is known from the previous SL packet with the following rule:

accessUnitStartFlag = (previous-SL packet has accessUnitEndFlag==1)?1:0.
accessUnitEndFlag — when set to one indicates that the last byte of the SL packet payload is the last byte
of the current access unit. If this syntax element is omitted from the SL packet header configuration its default
value is only known after reception of the subsequent SL packet with the following rule:

ccessUnitEndFlag = (subsequent-SL packet has accessUnitStartFlag==1) 2.1\0

a

et header this
tartFlag

If neither AccessUnitStartFlag nor AccessUnitEndFlag are configured into the\SL pack
impligs that each SL packet corresponds to a single access unit, hence both agcessUnitg
accepsUnitEndFlag 1.

NOTE
nore 4
subse

UnitEndFlag
Linit before the

— When the SL packet header is configured to use accessUnitStartFlag but neither access
ccessUnitLength, it is not guaranteed that the terminal can determine the end of an access
juent one is received.

OCRE ault value for
OCRE

lag — when set to one indicates that an objectClockReference will follow. The def]
lag is zero.

indetermined
hd erroneous

idle
perio(
abser

F1lag — indicates that this elementary stream willdbevidle (i.e., not produce data) for an
of time. This flag may be used by the decoder to discriminate between deliberate a
ce of subsequent SL packets.

padd dingFlag is

zero.

ingFlag — indicates the presence of padding in this SL packet. The default value for pad

padd ult value for

padd

ingBits — indicate the modecof padding to be used in this SL packet. The defg
ingBits is zero.

idingFlag is set and paddingBits is zero, this indicates that the subsequent paylopd of this SL
t consists of padding: bytes only. accessUnitStartFlag, randomAccessPointFlag and
Lag shall not be setifpaddingFlag is set and paddingBits is zero.

If pag
packs
OCRE
ldingFlag Jsiset and paddingBits is greater than zero, this indicates that the paylopd of this SL
t is followedby paddingBits of zero stuffing bits for byte alignment of the payload.

If pag
packs

pack
count

ct SequenceNumber - if present, it shall be continuously incremented for each SL packe
er{ A discontinuity at the decoder corresponds to one or more missing SL packets. In that ¢

shall

l as a modulo
ase, an error

cket header

he' sianalled to the svne laver user If this suntax glament is omitted from the S| n
2 ighRaHea—o0—h YVRAC—ayer—dse—H—HH VRtax—e+emehRt— mHea—Hoem—h =—p

configuration, continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of SL packets: elementary streams that have a sequenceNumber field in their SL packet
headers may use duplication of SL packets for error resilience. The duplicated SL packet(s) shall immediately
follow the original. The packetSequenceNumber of duplicated SL packets shall have the same value and
each byte of the original SL packet shall be duplicated, with the exception of an objectClockReference
field, if present, which shall encode a valid value for the duplicated SL packet.

degPrioFlag - when set to one indicates that degradationPriority is presentin this packet.

© ISO/IEC 2010 — Al rights reserved 85

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

degradationPriority — indicates the importance of the payload of this SL packet. The streamPriority
defines the base priority of an ES. degradationPriority defines a decrease in priority for this SL packet
relative to the base priority. The priority for this SL packet is given by:

SL_PacketPriority = streamPriority —degradationPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful
degradation by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer
instance. The relative amount of complexity degradation among SL packets of different elementary streams

increases as

SL_PacketPriority decreases.

objectClod
reconstructed

(o

kReference — contains an Object Clock Reference time stamp. Ihe OIB time valu
from this OCR time stamp according to the following formula:

bjectClockReference/SL.0OCRResolution)+ k*(25:-OCRlerdth /o1, OCRResolution)

where k is thg number of times that the objectClockReference counter has wrapped areund.

objectClod
NOTE — ltis g

The following
explicitly sign|

randomAccs
stream is po
this syntax €
SLConfigDg

AU_sequend
the value be

kReference is only present in the SL packet header if OCRf1ag is set.
ossible to convey just an OCR value and no payload within an SL packet,

is the semantics of the syntax elements that are only present\at the start of an access unit
pled by accessUnitStartFlag in the bitstream:

ssPointFlag — when set to one indicates that random access to the content of this elem
ssible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is
lement is omitted from the SL packet header-Configuration, its default value is the va
scriptor.hasRandomAccessUnitsOnlyFlag for this elementary stream.

eNumber - if present, successive acg¢ess units shall either have the same sequence num

one or more missing access units. In that case(_an error shall be signaled to the sync layer user.

Duplication
preceding AU
access unit,
be added to 4
whilst not dis
with the sam
same key st
known to the
network.

of access units: Access:uhits sent using the same sequence number as the immeq
shall be ignored if and only if the second access unit is a random access point. Such a rep
vhere the first did notthave RAP set but the repeated one does, allows random access po
broadcast stream;-permitting clients to enter the stream at defined points during its transm|
rupting clients already receiving the stream. On the other hand, reception of two access
sequence number, when the second is not a RAP, means that the two access units refer
e of the seene. l.e. the second access unit can be safely processed by the decoder even
decoder’that one or more access units that originally existed between the two were lost (

decodingTil

et is

when

entary
set. If
ue of

ber or

continuously incremented as a modulo counter. A discontinuity at the decoder corresponds to

iately
eated
nts to
ission,
units
to the
if it is
n the

meStampFlag — indicates that a decoding time stamp is present in this packet.

compositionTimeStampFlag — indicates that a composition time stamp is present in this packet.

accessUnitLengthFlag — indicates that the length of this access unit is present in this packet.

instantBitrateFlag — indicates that an instantBitrate is present in this packet.

86

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

decodingTimeStamp — is a decoding time stamp as configured in the associated SLConfigDescriptor.
The decoding time td of this access unit is reconstructed from this decoding time stamp according to the
formula:

td = (decodingTimeStamp/SL.timeStampResolution + k*
28t timeStamplength/gr, t+imeStampResolution

where k is the number of times that the decodingTimeStamp counter has wrapped around.

A decodingTimeStamp shall only be present if the decoding time is different from the composition time for
this access unit.

comppsitionTimeStamp — is a composition time stamp as configured in_hthg associated
SLCohfigDescriptor. The composition time tc of the first composition unit resulting from this access unit
is recpnstructed from this composition time stamp according to the formula:

td = (compositionTimeStamp/SL.timeStampResolution + k*
28t tipeStamplength/gr, +imeStampResolution

wherg k is the number of times that the compositionTimeStamp countef has wrapped around,

accepsUnitLength — is the length of the access unit in bytes. If-this syntax element is not pfesent or has
the value zero, the length of the access unit is unknown.

instpntBitrate — is the instantaneous bit rate in bits pér'second of this elementary stream [until the next
insthntBitrate field is found.

If the SLConfigDescriptor is an ExtendedSLConfigDescriptor (i.e. ts tag is

ExtS[L.ConfigDescrTag), then descriptors assSociated with the array of SLExtensionDesclriptors are
appended to the end of the SLPacket Header,

Note ¢ Since those descriptors conveying the extended SL information; carry their size, they can be skipped by a decoder.
DepepdencyPointerDescriptor andMarkerDescriptor define their associated descriptors as follows :

For DependencyPointerDescriptor a Marker of length dependencyLength will be encoded. It|shall resolve
eitherjto an identifier or to.a\decodingTimeStamp as specified in 7.3.2.3.4.1.

For MarkerDescriptor'a marker of length markerLength is encoded.

7.3.25 Clock‘Reference Stream

An elementary stream of streamType = ClockReferenceStream may be declared by means|of the object
descriptors It is used for the sole purpose of conveying Object Clock Reference time stamps. Multiple
elememm;eans of the
OCR_ES_ID syntax element in the SLConfigDescriptor to avoid redundant transmission of Clock

Reference information. Note, however, that circular references between elementary streams using
OCR_ES_ID are not permitted.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-
packetized stream such that only OCR values of the required OCRresolution and OCRlength are present
in the SL packet header.

There shall not be any SL packet payload present in an SL-packetized stream of streamType =
ClockReferenceStream.

© ISO/IEC 2010 — All rights reserved 87

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

In the DecoderConfigbescriptor for a clock reference stream ObjectTypeIndication shall be set to
'OxFF', hasRandomAccessUnitsOnlyFlag toone and bufferSizeDBto'0'.

The following indicates recommended values for the SL.ConfigbDescriptor of a Clock Reference Stream:

Table 15 — SLConfigDescriptor parameter values for a ClockReferenceStream

useAccessUnitStartFlag

useAccessUnitEndFlag

useRandomAccessPointFlag

usebPaddingFlag

useTimeStampsFlag

useIdleFlag

durationFlag

timeStampResolution

timeStampLength

AU_length

degradationPriorityLength

[} ol ol foll Jol Noll HNoll No i N |l Noll No }l No)

AU_segNumLength

7.3.2.6 Restrictions for elementary streams sharing the same)object time base

While it is possible to share an object time base between multiple elementary streams through OCR_ES_|ID, a
number of restrictions for the access to and processing of these elementary streams exist as follows:

1. When seyeral elementary streams share a single object time base, the elementary streams without
embedded object clock reference information shall not be used by the player, even if accessible, urftil the
elementarly stream carrying the object clock reference information becomes accessible (see 7.2.7.3 for the
stream acfess procedure).

2. If an elementary stream without embedded object clock reference information is made available {o the
terminal at a later point in time than-the elementary stream carrying the object clock reference information,
it shall be[delivered in synchronization with the other stream(s). Note that this implies that such a stream
might not start playing from its\beginning, depending on the current value of the object time base.

3. When an| elementary_siream carrying object clock reference information becomes unavailable|or is
otherwise |manipulated.in its delivery (e.g., paused), all other elementary streams which use the [same
object tim¢ base shallfollow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an [elementary stream without embedded object clock reference information becomes unavailable
this has n¢ influence on the other elementary streams that share the same object time base.

7.3.2.7 Usage of configuration options for object clock reference and time stamp values

7.3.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of objectClockReference values these time stamps may be ambiguous. The
OTB time value can be reconstructed each time an objectClockReference is transmitted in the headers of
an SL packet according to the following formula:

toTs_reconstructed=(0bjectClockReference/SL.OCRResolution)+k*(25"-0°Rtendth /g1, OCRResolution)

88 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

with k being an integer value denoting the number of wrap-arounds. The resulting time base tors_reconstructed iS
measured in seconds.

When the first objectClockReference for an elementary stream is acquired, the value k shall be set to
one. For each subsequent occurence of objectClockReference the value k is estimated as follows:

The terminal shall implement a mechanism to estimate the value of the object time base for any time instant.

Each time an objectClockReference is received, the current estimated value of the OTB torg estimatea Shall
be sampled. Then, tors rec(K) is evaluated for different values of k. The value k that minimizes the term |
toTs_estimated - toTs_rec(K)| Shall be assumed to yield the correct value of torg reconstructea- This value may be used

n appropriate
y of insertion
epend on the
b transmitting

and receiving terminal.

7.3.2[7.2 Resolution of ambiguity in time stamp recovery

Due tp the limited length of decodingTimeStamp and compositioenTimeStamp values thesg time stamps
may hecome ambiguous according to the following formula:

ti(M)F(TimeStamp/SL. timeStampResolution)+m*(25L SmesStamplength /o1, + imeStampResoflution)

with TimeStamp being either a decodingTimeStamp* or a compositionTimeStamp and m being an
integgr value denoting the number of wrap-arounds.

The correct value timestamp Of the time stamp can<be estimated as follows:

Each|time a TimeStamp is received, the current estimated value of the OTB torg estimated Shall be sampled.
ts(m)[is evaluated for different values of\m. The value m that minimizes the term | torg_estimated — tls(M)| shall be
assumed to yield the correct value of timestamp-

The gpplication may choose, separately for every individual elementary stream, the length and resolution of
time gtamps so as to match its requirements on unambiguous positioning of time events. This choice depends
on th¢ maximum time thatian SL packet with a TimeStamp may be sent prior to the point in timg¢ indicated by
the T{meStamp as well'as the required precision of temporal positioning.

7.3.2)7.3 Usage considerations for object clock references and time stamps

The
1/SL .|JoeRResolution.
by th icati

ime Jline* of an object time base allows to discriminate two time instants separated Qy more than
OCRResolution should be chosen sufficiently high to match the acciracy needed

The decoding and composition time stamp allow to discriminate two time instants separated by more than
1/SL. timeStampResolution. timeStampResolution should be chosen sufficiently high to match the
accuracy needed by the application in terms of positioning of access units for a given elementary stream.

A TimeStampResolution higher than the OCRResolution will not achieve better discrimination between
events. If TimeStampResolution is lower than the OCRResolution, events for this specific stream
cannot be positioned with the maximum precision possible with this given OCRResolution.

The parameter OCRLength is signaled in the SL header configuration. 25%-0Cflendth /o1, OCRResolution is
the time interval covered by the objectClockReference counter before it wraps around. OCRLength

© ISO/IEC 2010 — Al rights reserved 89

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

should be chosen sufficiently high to match the application needs for unambiguous positioning of time events
from a set of elementary streams.

When an application knows the value k defined in 7.3.2.7.1, the OTB time line is unambiguous for any time
value. When the application cannot reconstruct the k factor, as for example in any application that permits
random access without additional side information, the OTB time line is ambiguous modulo
28L-0CRLength /o1, OCRResolution. Therefore, any time stamp refering to this OTB is ambiguous. Therefore,
any time stamp refering to this OTB is ambiguous. It may, however, be considered unambiguous within an
application environment through knowledge about the maximum expected delivery jitter and constraints on the
time by which an access unit can be sent prior to its decoding time.

o

Note that eleprentary-streams—that choose-the-timeinterygl RS- timeStamplength /gy 44 magt ampR Iytion

higher than
smaller of thg

In cases, wh
unpredictablg

EXAMPLE —
OCRResoluf
then equal to 1

The applicati
need therefo
which is the

The applicati
The OCRLeng

Let's assumg
precision of
between tw
TimeStampR

The applicati

composition ime. The timeStampLengthris therefore chosen as

2SL .timeStamplLdg

7.3.3 DMIF

The DMIF A
between the
mechanism i
packet.

pSL-OCRLength /o1 OCRResolution can still only position time events unambiguously
two intervals.

ere k and m can not be estimated correctly, the buffer model may be violated, result
performance of the decoder.

Let's assume an application that wants to synchronize elementary streams 'with a precision of
ion should be chosen equal to or higher than 1000 (the time between two Successive ticks of the (
ms). Let's assume OCRResolution=2000.

bn assumes a drift between the STB and the OTB of 0.1% (i.e; Tms every second). The

recision constraint). Let's assume that objectClockReference are sent every 1s.

bn wants to have an unambiguous OTB time line of 24h without need to reconstruct the k 1
rth is therefore chosen accordingly such that 251:0¢Rten9th /51, OCRResolution=24h.

now that the application wants to synchronize events within a single elementary stream
10 ms. TimeStampResolution shouldvbe chosen equal to or higher than 100 (the
b successive ticks of the TimeStamp is then equal to 10ms). Let's as

esolution=200.

bn wants to be able to send\access units at maximum 1 minute ahead of their decod

n9th /g1, timeStampResolution = 2 minutes.

Application Interface

5ync layer-and the delivery mechanism. Communication between the sync layer and the dg
ncludes* SL-packetized data as well as additional information to convey the length of ea

n the

ng in

1 ms.
DCR is

clocks

e to be adjusted at least every second (i.e. in the worst case, the clocks will have drifted 1ms

actor.

vith a
time
sume

ng or

pplication-Intérface is a conceptual interface that specifies which data need to be exchanged

livery
ch SL

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal
compliant with ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to
receive the SL packets that constitute an SL-packetized stream. Specifically, the delivery mechanism below
the sync layer shall supply a method to frame or otherwise encode the length of the SL packets transported
through it.

The DMIF Application Interface specified in ISO/IEC 14496-6 embodies a superset of the required data
delivery functionality. The DAI has data primitives to receive and send data, which include indication of the
data size. With this interface, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL
packet between the sync layer and the delivery mechanism below.

90 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.4 Multiplexing of Elementary Streams

7.4.1 Introduction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF
Application Interface, as specified in 7.3. Multiplexing procedures and the architecture of the delivery protocol
layers are outside the scope of ISO/IEC 14496-1. However, care has been taken to define the sync layer
syntax and semantics such that SL-packetized streams can be easily embedded in various transport protocol
stacks.

The analysis of existing transport protocol stacks has shown that, for stacks with fixed length packets (e.g.,

MPE(

5=

have |a generic, low complexity multiplexing tool that allows interleaving of data with low over

delay| This is particularly important for low bit rate applications. Such a multiplex tool (is) specified in this
Subclause. Its use is optional.

7.4.2| M4Mux Tool

7.421 Overview

The IM4Mux tool is a flexible multiplexer that accommodates interleaving of SL-packetized |streams with

varyirn
length
this S

g instantaneous bit rate. The basic data entity of the M4Mux-is-a M4Mux packet, which h
. One or more SL packets are embedded in a M4Mux packet as specified in detail in the

as a variable
remainder of

ubclause. The M4Mux tool provides identification of SL (packets originating from differe

streams by means of M4Mux Channel numbers. Each SlL-packetized stream is mapped int

Chan
interlq

A M4

framing of M4Mux packets by the underlying layeris required for random access or error recover

requir
under
mech

Two ¢

are cglled Simple Mode and MuxCode Mode. A M4Mux Stream may contain an arbitrary mixty

packs

below.

The d
This
stamy

7.4.2.

hel.

Mux Stream retrieved from storage or transmission may be parsed as a single data stre
ement to frame each individual M4Mux packet. The M4Mux also requires reliable error de
lying layer. This design has been:chosen acknowledging the fact that framing and e
Anisms are in many cases provided by the transport protocol stack below the M4Mux.
ifferent modes of operation of'the M4Mux providing different features and complexity are
ts using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes|
elivery timing of\the M4Mux Stream can be conveyed by means of M4Mux clock reference

unctionality ‘may be used to establish a multiplex buffer model on the delivery layer.
s and the. MuxCode Mode require out-of-band configuration prior to usage.

P _ (Simple Mode

t elementary
one M4Mux

M4Mux packets with data from different Sk:packetized streams can therefore |be arbitrarily
aved. The sequence of M4AMux packets that are.interleaved into one stream are called a MAMux Stream.

m. However,
y. There is no
ection by the
ror detection

Hefined. They
re of M4Mux
are specified

time stamps.
Both the time

In the simple mode one SL packet i1s encapsulated in one M4Mux packet and tagged by an index which is
equal to the M4Mux Channel number as indicated in Figure 11. This mode does not require any configuration

orma

intenance of state by the receiving terminal.

M4Mux-Packet

index | length SL-Packet

Header Payload

Figure 11 — Structure of M4Mux packet in simple mode

© ISO/IEC 2010 — All rights reserved

91

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.4.2.3

In the MuxCode mode one or more SL packets are encapsulated in one M4Mux packet as indicated in Figure
12. This mode requires configuration and maintenance of state by the receiving terminal. The configuration
describes how M4Mux packets are shared between multiple SL packets. In this mode the index value is
used to dereference configuration information that defines the allocation of the M4Mux packet payload to

MuxCode mode

different M4AMux Channels.

7.4.2.4

M4Mux-Packet

- - I D 1 I D 1 fahd D
Tmdex T tengthrversionSEPacket StPacket T— St=Packet

|H | Pay1d|H| Payload| |H| Payload

Figure 12 — Structure of M4AMux packet in MuxCode mode

M4Mux packet specification

7.4.241 Syntax

class M4MuxPacket (MuxCodeTableEntry mctl[],

92

M4MuxTimingDescriptor FM,
M4MuxIDDescriptor mde)

unsigned int(8) index;

if

}

(mde == NULL | mde.Muxtype == 0) {
bit (8) length;
else 1f (mde.Muxtype == 1) {

length = 0;

bit (1) nextByte;
bit(7) length;
while|(nextByte) {

bifg (1) nextByte;
bif(7) sizeByte;
lergth = length<<7 | sizkByte;

if (ipdex<238) {

if [(length!=0) A

b1, Packet sPayload;

else {

bit (5N<FMC_version_number;
const-bit (3) reserved=0blll;

elsp Nf (index == 238) {

bi (FII.FCR_Lcugth) e Cluk,}chch_ciu,c,
bit (FM. fmxRatelLength) fmxRate;
for (i=0; i< (length-FM.FCR_Length-FM.fmxRateLength); i++)
M4Mux_descriptor ()
}
} else if (index == 239) {
bit(8) stuffingl[length];
else {
bit(4) version;
const bit(4) reserved=0bllll;
multiple_SI,_ Packet mPayload (mct[index-240]) ;

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.4.2.4.2 Semantics

length — the length of the M4Mux packet payload in bytes. This is equal to the length of the single
encapsulated SL packet in Simple Mode and to the total length of the multiple encapsulated SL packets in
MuxCode Mode. If the M4AMuxIDDescriptor is not used, or if it is used and if the Muxtype is designing the first
M4Mux tool, the length field is on one byte. If the M4MuxIDDescriptor is used and if the Muxtype is designing
the second M4Mux tool, the length calculation relies on the combination of the nextByte and sizeByte
fields that can be spread over several bytes. In Simple Mode, when this length is equal to zero, the M4Mux
packet carries one byte that contains the FMC_version_number field. In Simple Mode, M4Mux packets with a
length equal to zero (each carrying a FMC_version_number)can be duplicated.

FMC_persTormrTumber— this5bit-fietdHndicatesthe—current-versiomof the vdtuxChanmetbes Criptor that is
applidable. FMC_version_number is used for error resilience purposes. If this version number does not
match the version of the referenced M4MuxChannelDescriptor that has most recently. been [received, the
following M4Mux packets belonging to the same M4Mux Channel cannot be parsed.,The’ implementation is
free tp either wait until the required version of M4AMuxChannelDescriptor becomes available or {o discard the
following M4Mux packets belonging to the same M4Mux Channel. In Simple Made; the valug given to the
FMC_ypersion_number field is identical in subsequent duplicated M4Mux packets'with a length gqual to zero.

7.4.25 Configuration and usage of MuxCode Mode

7.4.25.1 Syntax

alighed(8) class MuxCodeTableEntry {

int i, k;

bilt (8) length;

bilt (4) MuxCode;

bilt (4) version;

bilt (8) substructureCount;

fgr (i=0; i<substructureCount; i+H)* {

bit(5) slotCount;

bit (3) repetitionCount;

for (k=0; k<slotCount; k++){
bit (8) md4MuxChannel[VY] [[k
bit (8) numberOfBytesf[i]]I[I[

11;
k11;

7.4.25.2 Semantics

The donfiguration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The transport of the
MuxCpdeTableEntry shall be defined during the design of the transport protocol stack that makes use of
the M@MUax tool. Part 6 of this Final Committee Draft of International Standard defines a method {o convey this
infornratiomrusing the DN_"TransmuxConfig primitive:

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely
manner. However, no specific performance bounds are required for this control channel since version
numbers allow to detect M4Mux packets that cannot currently be decoded and, hence, trigger suitable action
in the receiving terminal.

length —the length in bytes of the remainder of the MuxCodeTableEntry following the 1ength element.
MuxCode — the number through which this MuxCode table entry is referenced.

version - indicates the version of the MuxCodeTableEntry. Only the latest received version of a
MuxCodeTableEntry is valid.

© ISO/IEC 2010 — Al rights reserved 93

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

substructu

reCount - the number of substructures of this MuxCodeTableEntry.

slotCount — the number of slots with data from different M4Mux Channels that are described by this

substructure.

repetitionCount - indicates how often this substructure is to be repeated. A repetitionCount zero
indicates that this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the
last substructure of a MuxCodeTableEntry.

M4MuxChannel [i] [k] —the M4Mux Channel to which the data in this slot belongs.

numberOfBytesTi] [K] — the number of data bytes In this SIot associated 10 m4MuxChannel [1] [k]]. This
number of byfes corresponds to one SL packet.

7.4.25.3 Usage

The MuxCodpTableEntry describes how a M4Mux packet is partitioned into slots that carry datg from
different M4Nlux Channels. This is used as a template for parsing M4Mux packets, \If a M4Mux padket is
longer than me template, parsing shall resume from the beginning of the template. If a M4Mux padket is
shorter than the template, the remainder of the template is ignored.

Note that the lusage of MuxCode mode may not be efficient if SL packets for.a-given elementary stream ¢lo not
have a constant length. Given the overhead for an update of the associated MuxCodeTableEntry, usage of
simple mode |might be more efficient.

Note further that data for a single M4Mux channel may be conveyed through an arbitrary sequence of M4Mux
packets with poth simple mode and MuxCode mode.

EXAMPLE —

In this exampl¢ we assume the presence of three substructures. Each one has a different slot count as well as repetition
count. The exdct parameters are as follows:

substructureCount =3

slotCountli] = 2, 3, 2 (for the corresponding ‘'substructure)

repetitionQountl[i] =3, 2, 1 (for the corrésponding substructure)

We further asgume that each slot configures channel number FMCn (m4MuxChannel) with a number of bytes Bytesn
(numberOfBytes). This configuration-would result in a splitting of the M4Mux packet payload to:

FMC1 (Bytes1), FMC2 (Bytes2) repeated 3 times, then

FMC3 (Bytes3), FMC4 (Bytes4), FMC5 (Bytes5) repeated 2 times, then

FMCG6 (Bytes6), FMC7 (Bytes7) repeated once

The layout of the corresponding M4Mux packet would be as shown in Figure 13.

M4Mux-Packet

oo oS —
50 B0 —

O k!
N
O k!
N O
-~ ™

F
M
C
2

wAA<Zgo
~0L ™
wA ™
wAAZLo
A0
nwun <
an<Zm™m
N

5 0 = ®»n = 0o <

94

Figure 13 — Example for a M4Mux packet in MuxCode mode

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

7.4.2.

7.4.2.

ISO/IEC 14496-1:2010(E)

6 Configuration and usage of M4AMux clock references

6.1 Syntax

aligned(8) class M4MuxTimingDescriptor {

bit(16) FCR_ES_ID;
bit (32) FCRResolution;
bit (8) FCRLength;
bit (8) FmxRateLength;

7.4.26.2 Semantics

The g$equence of fmxClockReference time stamps in a M4Mux stream constitutes”a clq

strea
base
SLCo
of the,

7.4.2,

The M4Mux clock reference time stamps may be used to establish”and verify a multiplex buffe

fmxC
the fo

whereg:

7.4.2,

7.4.2,

, albeit with a different syntax as specified in 7.3. Elementary streams shall be’ associatg

established by this clock reference by referencing the FCR_ES_ID as-their OCR_H
hfigDescriptor. The transport of the M4MuxTimingDescriptor shallbe defined duri
transport protocol stack that makes use of the M4Mux tool.

6.3 Usage

lockReference information determines the arrival time (i) of individual bytes i of the M4
lowing way:

i) = FCR(@") N i—i"
FCRResolution fmxRate(i)

i is the index of any byte(in the M4Mux stream for i" <i <’

i" is the index of the'byte containing the last bit of the most recent fmxClockRef
in the M4Mux stream

FCR(i") is the time'encoded in the fmxClockReference in units of FCRResolution
fmxRate(i)indicates the rate specified by the fmxRate field for byte i
7 M4Mux buffer descriptor

7:1</ Syntax

ck reference
d to the time
S_ID in the
hg the design

r model. The
lux stream in

crence field

aligned(8) class M4MuxBufferDescriptor {

bi
bi

7.4.2.

t (8) mdMuxChannel;
t(24) FB_BufferSize;

7.2 Semantics

The size of multiplex buffers for each M4Mux channel is signaled by M4MuxBufferDescriptors. One
descriptor per M4Mux channel is required unless the DefaultM4MuxBufferDescriptor is used. The
transport of the M4MuxBufferDescriptors shall be defined during the design of the transport protocol

stack

that makes use of the M4Mux tool.

© ISO/IEC 2010 — All rights reserved

95

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

m4MuxChannel -the number of a M4Mux channel

FB_BufferSize - the size of the M4Mux buffer for this M4Mux channel in bytes.
7.4.2.8 Default MAMux buffer descriptor

7.4.2.81 Syntax

aligned(8) class DefaultM4MuxBufferDescriptor ({
bit(24) FB_DefaultBufferSize;
}

7.4.2.8.2 Yemantics
The default size of multiplex buffers for each individual channel in a M4Mux stream AsCsignaled Qy the
DefaultM4MuxBufferDescriptor. M4AMux channels that use a different buffer size may signal this|using

the M4MuxBulf ferDescriptor. The transport of the DefaultM4MuxBufferDescriptor shall be defined
during the depign of the transport protocol stack that makes use of the M4Mux tool:

FB_DefaultfBufferSize -the default size of M4Mux buffers for this M4AMux-stream in bytes.

7.4.2.9 M4Mux buffer model

4§
[
M
o)
N

FB

FB, is thel M4Mux bufferfar'the elementary stream in M4Mux channel n

Rbx is the|rate at which data enters the M4Mux buffers.

The M4Mux buffer model applies to M4Mux streams that utilize M4Mux Clock reference channel packets to
define the deliverytiming-of-the-M4Mux—siream—TFhe-M4Mux—stream—entersthe-M4Mux—butfermodelat the
rate and timing as defined by the fmxClockReference and fmxRate fields. There may be some periods of time
during which there are no bytes at the input of the M4Mux buffer model, but the bytes of all MAMux packets
that preceed the next M4Mux Clock reference channel packet shall be delivered to the M4Mux buffer model
prior to the delivery of any byte of the next M4Mux Clock reference channel packet.

For each M4Mux channel i the M4Mux packet is stored in M4Mux Buffer FB;. The bytes in buffer FBi are
removed at a rate specified by the InstantRate field in the SL header of the contained SL-packetized stream.
Upon removal each byte enters the elementary stream buffer DB;. The M4Mux stream shall be constructed so
that the following condition is met :

e Buffer FBi shall not overflow.

96 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.4.210 M4MuxID Descriptor

7.4.2.10.1 Syntax

aligned(8) class M4MuxIDDescriptor {
bit(8) MuxID;
bit (4) Muxtype;
bit(4) Muxmanagement;

7.4.2.10.2 Semantics

MuxIp - the ID of the M4Mux stream.

Muxtype — the type of the Multiplexing tool used to generate the M4Mux stream. Indicatéd type value shall
comply with the following Table 16 — Multiplexing type table.

Muxmpnagement — the mode of management used by the Multiplexing tool, to\generate the MMux stream.
Indicdted mode value shall comply with Table 17 — Multiplexing management mode table.

Table 16 — Multiplexing type table

Type Multiplexing tool

0 M4Mux tool

1 M4Mux €2 tool

2-7 ISO/EE 14496-1 Reserved
8-15 User Private

Table 17 — Multiplexing management mode table

Type management mode

0 Static

1 Dynamic

2-7 ISO/IEC 14496-1 Reserved
8-15 User Private

7.4.3| M4Mux Descriptors

Direclly derived~\from the M4Mux descriptor classes, hereafter are defined the M4Mux descriptdrs pointed to
by the “List ef:Class Tags for Descriptors” table.

7.4.34 M4MuxChannelDescriptor

74311 Syntax

class M4MuxChannelDescriptor extends BaseDescriptor
: bit(8) tag= M4MuxChannelDescrTag {
bit (5) version_number;
bit (1) current_next_indicator;
const bit(2) reserved=0bll;
for (i=0; i<(sizeOfInstance-2); i += 3) {
bit(16) ES_ID;
bit (8) M4MuxChannel;
}

© ISO/IEC 2010 — All rights reserved 97

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.4.3.1.2

Semantics

version_number -- This 5 bit field is the version number of the complete M4MuxChannelDescriptor.
The version number shall be incremented by 1 whenever the definition of the M4MuxChannelDescriptor
changes. Upon reaching the value 31, it wraps around to 0. When the current_next_indicator is set to
1", then the version_number shall be that of the currently applicable M4MuxChannelDescriptor. When
the current_next_indicator is set to '0', then the version_number shall be that of the next applicable
M4MuxChannelDescriptor.

current_next_indicator

-- A 1 bit indicator, which when set to '1' indicates that the received

M4MuxChannelDescriptor is currently applicable. When the bit is set to '0', it indicates that the received

M4MuxChann
become valid

A validity per
only within

version_num
M4MuxChann

The validity {
with the cu
M4MuxChann

An empty
sizeOfInsY

ES_ID - this

M4MuxChann
stream.

7432 M/

7.43.21

J

class M4Mu

elDescriptor IS not yet applicable and shall be the next M4MuxChannelDescript

od of time is associated with each version_number of a M4MuxChannelDescriptod]
hat validity period of time, that M4Mux packets refer to the version identified by
pber. The validity period of time of one version starts as soon as the
elDescriptor is sent with the current_next_indicator

eriod of time of one version ends as soon as an empty M4MuxCHannelDescriptor i
rrent_next_indicator 1, meaning that the assignements of that version ¢
elDescriptor are notany more relevant.

M4MuxChannelDescriptor is a M4MuxChannelDescriptor shall be sent

ance 1, such that there are no elementary streams described.

16-bit field specifies the identifier of an ISO/IEC 44496-1 SL-packetized stream.

el - This 8-bit field specifies the number-6f’the M4Mux channel used for this SL-pack

MuxBufferSize Descriptor

yntax

xBufferSizeDescriptor extends BaseDescriptor
bit(8) tag=.MAMuxBufferSizeDescrTag {
DefaultM4MukBufferDescriptor ()
for (i=0; i< (sizeOfInstance-3);
M4AMuxBufferDescriptor ()

i += 4)

{

}

or to

- It is
that
first

5 sent
f the

with

btized

S

~J

7.43.2.2

lemantics

DefaultM4MuxBufferDescriptor - the default size of multiplex buffers for each individual channel in a
M4Mux stream is signalled by the DefaultM4MuxBufferDescriptor class.

M4MuxBuf ferDescriptor - the exact size of multiplex buffers for each channel in a M4Mux stream can be
signalled by the M4MuxBufferDescriptor class.

98

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

7.4.3.3 M4MuxTiming Descriptor

7.4.3.3.1 Syntax

class M4MuxTimingDescriptor extends BaseDescriptor

: bit(8) tag= M4AMuxTimingDescrTag {
M4MuxTimingDescriptor ()

7.4.3.3.2 Semantics

M4Mu
FmxR

7.4.3.

7.4.3.

clas

kTimingDescriptor — This descriptor class defines FCR_ES_ID, FCRResolutibmn
hteLength.

1 M4MuxCodeTable Descriptor

4.1 Syntax

5 MAMuxCodeTableDescriptor extends BaseDescriptor
: bit(8) tag= M4MuxCodeTableDescrTag {

{
MuxCodeTableEntry ()

3

7.4.34.2 Semantics

MuxG

odeTableEntry () — This class defines the M4Mux configuration of one M4Mux channel.

Sevefal M4MuxCodeTableDescriptéy may be used with different instances of the MuxCode

class

7.4.3.

7.43.

clas

5 M4Muxlident Descriptor

5.1 Syntax

5 M4AMuxIdentDescriptor extends BaseDescriptor
A bit(8) tag= M4MuxIdentDescrTag {
M4MuxIDDescriptor ()

for(i =0; 1 < sizeOfInstance; i += sizeef (MuxCodeTableEnty

FCRLength,

TableEntry

7.4.3.

5.2 Semantics

M4MuxIDDescriptor — This class defines MuxID, Muxtype, Muxmanagement.

8 Syntactic Description Language

8.1

Introduction

This Subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This
mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic

© ISO/IEC 2010 — All rights reserved

99

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

description rules. It directly extends the C-like syntax used in ISO/IEC 11172-1:1993 and
ISO/IEC 13818-1:2007 into a well-defined framework that lends itself to object-oriented data representations.
In particular, SDL assumes an object-oriented underlying framework in which bitstream units consist of
“classes.” This framework is based on the typing system of the C++ and Java programming languages. SDL
extends the typing system by providing facilities for defining bitstream-level quantities, and how they should be
parsed.

The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic
and logical expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow
control is needed to take into account context-sensitive data. Several examples are used to clarify the
structure.

8.2 EIemelntary Data Types

8.2.1 Introduction

The SDL usep the following elementary data types:

1. Constant- e the

encoded V

ength direct representation bit fields or Fixed Length Codes — ELCs. These describ
alue exactly as it is to be used by the appropriate decoding process:

. Variable Igngth direct representation bit fields, or parametric FLCs. Thesenare FLCs for which the pactual

length is determined by the context of the bitstream (e.g., the value of anether parameter).

Constant-length indirect representation bit fields. These require an exira lookup into an appropriate tgble or

variable td obtain the desired value or set of values.

4. Variable-lg¢ngth indirect representation bit fields (e.g., Huffman codes).

These elemeptary data types are described in more detail inithe Clauses to follow immediately.

All quantities most

significant bit

shall be represented in the bitstream with\the most significant byte first, and also with the
first.

8.2.2 Constant-Length Direct Representation Bit Fields

Constant-lengith direct representation bit-fields shall be represented as:

Rule E.1: Elgmentary Data Types

[aligned] type[(length)] element_name [= value]; /| C++-style comments allowed

The type ma
for floating pq
as it is actua

y be any-of the following: int for signed integer, unsigned int for unsigned integer, dq
int, and bit for raw binary data. The length attribute indicates the length of the element i
Iy stored in the bitstream. Note that a data type equal to double shall only use 32 or

uble
N bits,
64 bit

lengths. The Vaitie attribute shall be present onty when the vatue 1S fixed (€.g., start codes or object 1DS), and
it may also indicate a range of values (i.e., ‘'0x01..0xAF’). The type and the optional length attributes are
always present, except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword
aligned indicates that the data is aligned on a byte boundary. As an example, a start code would be
represented as:
aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), may be used to signify alignment on other than byte
boundary. Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value
‘0’. An entity such as temporal reference would be represented as:

unsigned int(5) temporal_reference;

100 © ISO/IEC 2010 — Al rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

where unsigned int (5) indicates that the element shall be interpreted as a 5-bit unsigned integer. By
default, data shall be represented with the most significant bit first, and the most significant byte first.

The value of parsable variables with declarations that fall outside the flow of declarations shall be set to 0.

Constants shall be defined using the keyword const.

EXAM

PLE —

const int SOME_VALUE=255; // non-parsable constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To dg
period
0b00(

In se
actua
paren

signate binary values, the 0b prefix shall be used, similar to the 0x prefix for hexadecima
() may be optionally placed after every four digits for readability. Hence 0x0Pb is
0.1111.

eral instances, it may be desirable to examine the immediately following bit§ in the bitst
ly consuming these bits. To support this behavior, a ‘*’ character shall be”placed after t
theses to modify the parse size semantics.

| numbers. A
equivalent to

eam, without
e parse size

Rule

F.2: Look-ahead parsing

[aligned] type (length) * element_name;

For e
advar

alig

8.23

This ¢
non-p

EXAMPLE —

unsig
int (g

8.24

Indire|
bitstrg
toat

kample, the value of next 32 bits in the bitstream.-Can be checked to be an unsigned in
cing the current position in the bitstream using the fellowing representation:

ned unsigned int (32)* next_code;

Variable Length Direct Representation Bit Fields

ase is covered by Rule E.1, by allowing the length attribute to be a variable included in th
arsable variable, or an expressioninvolving such variables.

ned int(3) precisions
recision) DC;

Constant-Length Indirect Representation Bit Fields

teger without

b bitstream, a

ct representation indicates that the actual value of the element at hand is indirectly sp
am through the use of a table or map. In other words, the value extracted from the bitstre

cified by the
is an index

bble from which the final desired value is extracted. This indirection may be expressed by defining the

map i

self:

Rule E.3: Maps

map MapName (output _type) {
index, {value_1, ... value_M},

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input
type of a map (the index specified in the first column) shall always be bit. The output type entry shall be
either a predefined type or a defined class (classes are defined in 8.3.1). The map is defined as a set of pairs

© ISO/IEC 2010 — All rights reserved

101

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

of such indices and values. Keys are binary string constants while values are output_type constants. Values

shall be specified as aggregates surrounded by curly braces, similar to C or C++ structures.

EXAMPLE —

class YUVblocks {// classes are fully defined later on
int Yblocks;
int Ublocks;
int Vblocks;

}

// a table
// per sign

that relates the chroma format with the number of blocks
al component

map blocks_|]
0b00, {4,
0b01, {4,
0b10, {4,

The next rule

per_component (YUVDIOCKSs) {

1, 1}, // 4:2:0
2, 2y, // 4:2:2
4, 4y // 4:4:4

describes the use of such a map.

Rule E.4: Mapped Data Types

type

MapName) name;

The type of

EXAMPLE —
YUVblocks (I

Using the 34
chroma_form

8.2.5 Varia

For a variable
fixed length ¢

class val
unsigne
int bar

3

he variable shall be identical to the type returned from the map.

locks_per_component) chroma_format;

bove declaration, the cor

at . Ublocks.

a particular value of “the map may be accessed using

ble Length Indirect Representation Bit Fields

length element utilizing a-Huffman or variable length code table, an identical specification
pse shall be used:

{

i int foo;

struct:

to the

map samplg vle - map (val) {
0b0000.00Z, {0, 5},
0b0000.0001T, {1, -14}

The only difference is that the indices of the map are now of variable length. The variable-length codewords
are (as before) binary strings, expressed by default in ‘Ob’ or ‘0x’ format, optionally using the period (") every

four digits for

readability.

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it
may be inefficient to keep using variable length codewords for all possible values. This necessitates the use of
escape codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To
allow for such exceptions, parsable type declarations are allowed for map values.

102

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

EXAM

map sample_map_with_esc

0b
0b
0b
0b

ISO/IEC 1449

PLE — This example uses the class type ‘val’ as defined above.

(val) {
{0, 5},

-14}%,
{5, int(32)},

{0, -20}

0000.001,
0000.0001, {1,
0000.0000.1,
0000.0000.0,

6-1:2010(E)

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first
element (val.foo). The following 32 bits are parsed and assigned as the value of the second element

bar). Note that, in case more than one element utilizes a parsable type declaration

(val
signif
matck

8.3

8.3.1

Class
is as 1

cant and is the order in which elements are parsed. In addition, the type within the map de
the type used in the class declaration associated with the map’s return type.

Composite Data Types

Classes

es are the mechanism with which definitions of composite types or.objects is performed. T
ollows.

the order is
Claration shall

heir definition

Rule

C.1: Classes

[aligned] [abstract] [expandable[(maxClassSizé)]] class object name [extends
[: bit (length) [id_name=] object _id | id_range/)yextended_id_range] {
[element; ...] /] zero or more elements

}

parent class]

The d
discu

The d
that a
all su

The g
which
value
comb
objec

If the

ifferent elements within the curly bracés are the definitions of the elementary bitstream
5sed in 12.2 or control flow elements\that will be discussed in a subsequent Subclause.

ptional keyword extends specifies that the class is “derived” from another class. Deri
| information present in the.base class is also present in the derived class, and that, in
Ch information precedes any additional bitstream syntax declarations specified in the new ¢

ptional attribute id"name allows to assign an object _id, and, if present, is the key demult
allows differentiation between base and derived objects. It is also possible to have a rang
5: the id_rangenis specified as start_id .. end_id, inclusive of both bounds. It is also possi
nation of 4d-range and object id: the extended _id_range is specified as a comma-sep
[id and range_id; for example, id_name=object_id1, object id2, start_id .. end_id.

attribute id_name is used, a derived class may appear at any point in the bitstream w

clas
actua
T

B is" specified in the syntax This allows to express polymaorphism in the SDI syntax des

components

ation implies
he bitstream,
Lass.

plexing entity
e of possible
ble to have a
arated list of

here its base

| class to be parsed is determined as follows:

he base class declaration shall assign a constant value or range of values to object_id.

or set of values shall correspond to legal object id value(s) for the base class.

scription. The

Each derived class declaration shall assign a constant value or ranges of values to object_id. This value

NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes

may n

ot replace their base class in the bitstream.

NOTE 2 — Derived classes may use the same object_id value as the base class. In that case classes can only be
discriminated through context information.

© IS0/

IEC 2010 — All rights reserved

103

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

EXAMPLE —

class slice

// here we get vertical_size_extension,
(scalable_mode==DATA_PARTITIONING)
unsigned int (7)

if

}

}

class foo {
int (3)

}

slice_start_code=0x00000101
if present

: aligned bit(32) 0x000001AF {

{

priority_breakpoint;

aj;

class bar ¢
int (5) Y
int (10)

xtends foo {
; // this b is preceded by the 3 bits of a
C ;

The order of de¢claration of the bitstream components is important: it is the same order in which the elements appeag in the
bitstream. In the above examples, bar .b immediately precedes bar. c in the bitstream.

Objects may plso be encapsulated within other objects. In this case, the elementin Rule C.1 is an object|itself.
8.3.2 Abstract Classes

When the abstract keyword is used in the class declarationsit jndicates that only derived classes ¢f this
class shall he present in the bitstream. This implies that the derived classes may use the entire range pf IDs
available. Th¢ declaration of the abstract class requires a declaration of an ID, with the value 0.

EXAMPLE —

abstract cllass Foo : bit(l) id=0 { // the malue 0 is not really used

}

// derived |classes are free to use the entire range of IDs
class FooO |extends Foo : bit(1l) ,4d=0 {

}

class Fool |extends Foo :.bit (1) id=1 {

}

le {
/ cam=only be Foo0 or Fool, not Foo

class Examp
Foo f;
}

8.3.3 Expandable classes

When the expandable keyword is used in the class declaration, it indicates that the class may contain
implicit arrays or undefined trailing data, called the "expansion". In this case the class encodes its own size
in bytes explicitly. This may be used for classes that require future compatible extension or that may include
private data. A legacy device is able to decode an expandable class up to the last parsable variable that has
been defined for a given revision of this class. Using the size information, the parser shall skip the class
data following the last known syntax element. Anywhere in the syntax where a set of expandable classes with
object_id is expected it is permissible to intersperse expandable classes with unknown object id values.
These classes shall be skipped, using the size information.

104 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

The size encoding precedes any parsable variables of the class. If the class has an object id, the encoding
of the object id precedes the size encoding. The size information shall not include the number of bytes
needed for the size and the object_id encoding. Instances of expandable classes shall always have a size
corresponding to an integer number of bytes. The size information is accessible within the class as class
instance variable sizeOfInstance.

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size
of this class in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:

int przeoftimstarce —10~
bit (L) nextByte;
bit([)) sizeOfInstance;
whilp (nextByte) ({
bilt (1) nextByte;
bilt (7) sizeByte;
silzeOfInstance = sizeOfInstance<<7 | sizeByte;

8.3.4| Parameter types

A parpmeter type defines a class with parameters. This is to address cases where the data stfucture of the
clasg depends on variables of one or more other objects.(Since SDL follows a declarative approach,
refergnces to other objects, in such cases, cannot be performed directly (none is instantiateq). Parameter
types|provide placeholders for such references, in the same-way as the arguments in a C functioh declaration.
The slyntax of a class definition with parameters is as-follows.

Rule C.2: Class Parameter Types
[aligned] [abstract] class object name [(parameter list)] [extends parent class]
[: bit (length) [id_name=] object id | idd_range] {
[element; ...] /| zero or more elements

The parameter list is a list 6f type names and variable name pairs separated by commas. Any glement of the
bitstrgam, or value deriyed-from the bitstream with a variable-length codeword, or a constant, cgn be passed
as a parameter.

A CIrIss that uses-parameter types is dependent on the objects in its parameter list, whether dlass objects
or siniple variables. When instantiating such a class into an object, the parameters have to bg instantiated
objects of their corresponding classes or types.

EXAMBPLE —

class A {
// class body

unsigned int(4) format;

}

class B (A a, int 1) { // B uses parameter types
unsigned int (i) bar;

if(a.format == SOME_FORMAT) {

}

© ISO/IEC 2010 — Al rights reserved 105

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

class C {

int(2) 1i;

A a;

B foo(a, I); // instantiated parameters are required
}
8.3.5 Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can
depend on run-time parameters such as other bitstream values or expressions that involve such values. The

array declara

ion Is applicable to both elementary as well as composite objects.

Rule A.1: Ar

types

ays

pec name [lengthl;

typespec i$ a type specification (including bitstream representation information, e.g. ‘int (2)’)) The
attribute namg is the name of the array, and length is its length.
EXAMPLE —
unsigned inlt (4) al5];
int (10) b;
int (2) clblf;
Here ‘@’ is an|array of 5 elements, each of which is represented-lsing 4 bits in the bitstream and interpreted|as an
unsigned integer. In the case of ‘c’, its length depends on the aGtual value of ‘b’. Multi-dimensional arrays are allowed as
well. The parsing order from the bitstream corresponds to scanning the array by incrementing first the right-most irfdex of
the array, then|the second, and so on .
8.3.6 Partigl Arrays
In several sityiations, it is desirable to loadthe values of an array one by one, in order to check, for example, a
terminating of other condition. For this purpose, an extended array declaration is allowed in which individual
elements of the array may be accessed.
Rule A.2: Partial Arrays

typespec nameflindexl1;
Here index i the element of the array that is defined. Several such partial definitions may be given, but they

shall all agree on’the type specification. This notation is also valid for multidimensional arrays. |

EXAMPLE —
int(4) all3
indicates the el

int (4) al3]

1100511
ement a(5, 3) of the array (the element in the 6" row and the 4™ column), while
[[511;

indicates the entire sixth column of the array, and

int(4) all[3

11051

indicates the entire fourth row of the array, with a length of 5 elements.

NOTE — a[5]

106

means that the array has five elements, whereas a[[5]] implies that there are at least six.

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

8.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the
same type as that of the base class. Let us assume that a set of polymorphic classes is defined, derived
from the base class Foo (may or may not be abstract):

class Foo : int(16) id = 0 {

of sue cts- oHeithy —exa g validity of the
clasg ID. Objects are inserted in the array as long as the ID can be properly resolved to.onhe of the IDs
defingd in the base (if not abstract) or its derived classes. This behavior is indicated by anyarray declaration
witholit a length specification.

EXAMPLE 1 —

clasg Example {
Fop fIl1; // length implicitly obtained wvia ID resolution
}

To limjt the minimum and maximum length of the array, a range specification may be inserted in the spegification of the
length
EXAMPLE 2 —

clasg Example {
Fop f£[1 .. 255]; // at least 1, at most 255~elements
}

In thisjexample, ‘f may have at least 1 and at most 255 elements.

8.4 |Arithmetic and Logical Expressions

All standard arithmetic and logical operatars of C++ are allowed, including their precedence rules|

8.5 |Non-Parsable Variables

In orger to accommodate complex syntactic constructs, in which context information cann¢t be directly
obtained from the bitstream. but only as a result of a non-trivial computation, non-parsable |variables are
allowg¢d. These are strigily of local scope to the class they are defined in. They may be used in expressions
and cpnditions in the saime way as bitstream-level variables. In the following example, the numbIr of non-zero
elemg@nts of an array.is computed.

unsigned Int/A6) size;
int (f) arraylsizel;

int b+ thig ig 3 temporary non-parsable vzariable
for (i=0, n=0; i<size; i++) {
if (arrayl[[i]]!=0)
n++;

}

int (3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

© ISO/IEC 2010 — All rights reserved 107

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

8.6 Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as
repetitive parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++,
zero corresponds to false, and non-zero corresponds to true.

Rule FC.1: Flow Control Using If-Then-Else

if (condition) {

} [else if (condition) {

3] [elJe {
}]
EXAMPLE 1 —
class condifjtional_object {
unsigned|int (3) foo;
bit(l) bar_flag;
if (bar_flag) {
unsigrled int(8) bar;
}
unsigned|int (32) more_foo;

}

Here the prese

EXAMPLE 2 —

class condi
unsigned
bit(1l) b
if (bar_
unsigy
} else {
unsigy

}
unsigned

}

Here we allow
another entity
that the use of
(as in the exan

In order to fa

nce of the entity ‘bar’ is determined by the ‘bar_flag’.

tional_object {
int (3) foo;
hr_flag;
Flag) {
ed int(8) bar;

ed int (some_vlc_table) bar;

int (32) more_foo;

two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally we
nstead of the segond-version (the variable length one) of ‘bar’ (another object, or another variable
a flag necessitates’its declaration before the conditional is encountered. Also, if a variable appears
ple above), the-types shall be identical.

ilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

| have
. Note
twice

Rule FC.2: F

ow.Control Using Switch

switch (condition) {

[case labell: ..]
[default:]

108

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

The same category of context-sensitive objects also includes iterative definitions of objects. These simply
imply the repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the
conditional repetition that implies context, but fixed repetitions are obviously treated the same way). The
familiar structures of ‘for’, ‘while’, and ‘do’ loops can be used for this purpose.

Rule FC.3: Flow Control Using For

for (expressiont; expression2; expression3) {

expregsioni— sted-priorte-starting-the-repetiions—Hhen—expressiorZis—evalgated—and—hit is non-zero
(true)|the declarations within the braces are executed, followed by the execution of expression3| The process
repeats until expression2 evaluates to zero (false).

Note that it is not allowed to include a variable declaration in expression1 (in contrast.to C++).

Rule FC.4: Flow Control Using Do
do {

} while (condition);

Here [the block of statements is executed until condition~evaluates to false. Note that the |block will be
execyted at least once.

Rule FC.5: Flow Control Using While
while (condition) {

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

8.7 (Built-In Operators

The fopllowing builtzintoperators are defined.

Rule P.1: lengthof() Operator

lengthof (variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of
bits that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were
parsed for this variable.

8.8 Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables.

© ISO/IEC 2010 — Al rights reserved 109

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by
curly braces: {' and ‘}). In particular, only variables declared in class scope are considered class member
variables, and are thus available in objects of that particular type.

9 Profiles

9.11

Introduction

This Subclause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496.
Each profile at a given level constitutes a subset of this part of ISO/IEC 14496 to which system manufacturers

and content g

The object de
the sync laye

Profile definit
capabilities 3

profile. Level
bound.

91.2 ODP

9.1.21 OV

The object dg
layer tool tha
sync layer toqg

descriptor pr
amount of pe

9.1.2.2 Of
The following
e Object de
Sync layg
Object cq

Intellectu

reators can claim conformance in order to ensure interoperability.
scriptor profiles (OD profiles) specify the allowed configurations of the object descriptor to

F tool.

nd the resources needed for a presentation. For this reason, levels are<defined within

rofile Definitions

erview

scriptor profiles (OD profiles) specify the configurations of the object descriptor tool and thg
I are allowed. The object descriptor tool provides:a structure for all descriptive information
| provides the syntax to convey, among othersitiming information for elementary streams.

'manent storage.

) Profiles Tools

tools are available to construct-OD profiles:
scriptor (OD) tool as defined in 7.2.5.

r (SL) tool as defined-in 7.3.2

ntent information (OCI) tool as defined in 7.2.4.

bl propefty)management and protection (IPMP) tool as defined in 7.2.3.

bl and

ons, by themselves, are not sufficient to provide a full characterization of a‘receiving ternpinal’s

each

5 constrain the values of parameters in a given profile in order to specify an upper complexity

sync
. The
bbject

pfiles are used, in particular, to reduce the.@mount of asynchronous operations as well as the

110

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

9.1.2.3 OD Profiles

ISO/IEC 14496-1:2010(E)

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the
tools. No additional profiles are foreseen at the moment, but the possibility of adding Profiles through

amendments is left open.

Table 18 — OD Profiles

OD Profiles
OD Tools Core
SC X
oD X
OClI X
IPMP X

Decodglers that claim compliance to a given profile shall implement all the to0ls with an ‘X’ entry fo

9.1.24 OD Profiles@Levels

9.1.24.1 Levels for the Core Profile

No leyels are defined yet for the OD Core profile. Future definition of Levels is anticipated; this

meanps of an amendment to this part of the standard.

r that profile.

ill happen by

© ISO/IEC 2010 — All rights reserved

111

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

Annex A
(informative)

Time Base Reconstruction

A.1 Time Base Reconstruction

The time ste
composition
reconstructin
applications).
at a conceptu

A1.1 Adjus

Each elemen
base (OTB).
local OTB to
for each data

A.1.2 Mapq

The OTBs of
method is ne
This step ma

Note that the
bases.

The composi
calculated fro
terminal, by 4

mps present in the sync layer are the means to synchronize events related to dee
and overall buffer management. In particular, the clock references are the sole~meg
j the sending terminal’s clock at the receiving terminal, when required (e.g., for,“brog
A normative method for this reconstruction is not specified. The following describes the pr
al level.

sting the Receiving Terminal’s OTB

fary stream may be generated by an encoder at the sending terminal’with a different objed
For each stream that conveys OCR information, it is possible for'the receiving terminal to ag
he sending terminals’ OTB. This is done by using well-known‘PLL techniques. The notion ¢
stream can therefore be recovered at the receiving end.

ing Time Stamps to the STB

all data streams may run at a different speed than'the STB of the receiving terminal. Theref
pded to map the value of time stamps expressed in any OTB to the STB of the receiving ter
be done jointly with the recovery of individual OTB’s as described in the previous Subclau

receiving terminals’ system time basé need not be locked to any of the available objec
ion time tsct of a compositionunit, expressed in terms of STB of the receiving terminal, G

m the composition time stamp value toct, expressed in terms of the OTB of the relevant se
linear transformation:

bding,
ns of
dcast
bcess

t time
just a
f time

ore, a
Mminal.
5e.

t time

an be
nding

¢ _ AtSTB .t _ AtSTB . +1
SCT — A ocT A OTB-START STB-START
tOTB tOTB
with:
Loor cpmposition time of a composition unit measured in units of ..,
Lorp current time in the receiving terminal’s STB
Yocr composition time of a composition unit measured in units of 7.,
Lors current time in the data stream’s OTB, conveyed by an OCR
tors_starr Value of receiving terminal’s STB when the first byte of the OCR time stamp of the data stream is
encountered
112

© ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

tors_srarr Value of the first OCR time stamp of the data stream

Atorp =tors = tors-srarr

AtSTB = tSTB - ZLSTB—START

The quotient At /At is the instantaneous scaling factor between the two time bases. In cases where the
clock speed and resolution of the sending terminal and of the receiving terminal are nominally identical, this
quotient is_very near 1. To avoid long term rounding errors, the quotient At.., /Af,., should always be

recalgulated whenever the formula is applied to a newly received composition time stamp. Thg quotient can
be updated each time an OCR time stamp is encountered.

A simijilar formula can be derived for decoding times by replacing composition time stamps with decoding time
stamps. If time stamps for some access units or composition units are only known-implicitly, &.g., given by
knowh update rates, these have to be mapped with the same mechanism.

With this procedure it is possible to synchronize the STB at a receiving(terminal to several DTBs so that
corre¢t decoding and composition from several data streams is possible.

A.1.3 Adjusting the STB to an OTB

When all data streams in a presentation use the same OTB; it'is possible to lock the STB at|the receiving
terminal to this OTB using well-known PLL techniques. IA this case the mapping described in| the previous
Subclause is not necessary and the following mapping may be used.

Lsrs—drarr = Lorp—start
At gl = Al

Lser F locr
A.1.4 System Operation without Object Time Base

If a time base for an elementary stream is neither conveyed by OCR information nor derived [from another
elemgntary stream, time stamps can still be used by a receiving terminal but not in applicationg that require
flow-dontrol. For example) file-based playback may not require time base reconstruction: time gtamps alone
are sufficient for synchronization if a single time base is assumed for all the data streams.

In thg absencefof-time stamps, the receiving terminal may only operate under the assumptfon that each
acceds unit is to/be decoded and presented as soon as it is received. In this case the systems decoder model
does hot apply and cannot be used as a model for the terminal’s behavior.

In thelcase that a universal clock is available which can be shared between peer terminals, it md y be used as

a common time base. It is then possible to use the systems decoder model without explicit OCR transmission.
The procedures for doing so are application-dependent and are not defined in ISO/IEC 14496-1.

A.2 Temporal aliasing and audio resampling

A receiving terminal compliant with ISO/IEC 14496 is not required to synchronize decoding of AUs and
composition of CUs. In other words, its STB does not have to be identical to any of the OTBs of received data
streams. The number of decoded and actually presented (displayed/played back) units per second may
therefore differ. Temporal aliasing may then manifest itself as composition units being either presented
multiple times or skipped.

© ISO/IEC 2010 — All rights reserved 113

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

ISO/IEC 14496-1:2010(E)

If audio signals are encoded on a system with an OTB different from the STB of the receiving terminal, even
nominally identical sampling rates of the audio samples may not match exactly, so that audio samples may be
dropped or repeated.

Proper re-sampling techniques may of course in both cases be applied at the receiving terminal.

A.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough

The different steps to reconstruct a synchronized scene are as follows:

1. The time pase for each data stream 15 recovered enther from the OCR conveyed with the SL-packetized
elementarly stream of this data stream or from another data stream present in the presentation.

2. Object time stamps are mapped to the STB of the receiving terminal according to a suitable algerithm| (e.g.,
the one detailed above).

3. Received pccess units are placed in the decoding buffer.
4. Each accgss unit is instantaneously decoded by the decoder at instants of time)(in terms of the regeiver
terminal’s |STB) corresponding to its implicit or explicit DTS and the resulting-0re or more composition) units

are placeq in the composition memory.

The compositor may access each CU at time instants between the one _corresponding its CTS and the one
corresponding to the CTS of the subsequent CU.

114 © ISO/IEC 2010 — All rights reserved

https://iecnorm.com/api/?name=f43cb7874ea7c66bc8333c15505a72d6

	Overview
	Architecture
	Terminal Model: Systems Decoder Model
	Timing Model
	Buffer Model

	Multiplexing of Streams: The Delivery Layer
	Synchronization of Streams: The Sync Layer
	The Compression Layer
	Object Description Framework
	Intellectual Property Management and Protection
	Object Content Information

	Scene Description Streams
	Audio-visual Streams
	Upchannel Streams
	Interaction Streams
	Text and Font data Streams

	Application Engine
	Extensible MPEG-4 Textual Format (XMT)
	Patent Rights
	Scope
	Normative references
	Additional references
	Terms and definitions
	Abbreviated terms
	Conventions
	Streaming Framework
	Systems Decoder Model
	Introduction
	Concepts of the systems decoder model
	DMIF Application Interface (DAI)
	SL-Packetized Stream (SPS)
	Access Units (AU)
	Decoding Buffer (DB)
	Elementary Streams (ES)
	Elementary Stream Interface (ESI)
	Decoder
	Composition Units (CU)
	Composition Memory (CM)
	Compositor

	Timing Model Specification
	System Time Base (STB)
	Object Time Base (OTB)
	Object Clock Reference (OCR)
	Decoding Time Stamp (DTS)
	Composition Time Stamp (CTS)
	Occurrence and Precision of Timing Information in Elementary
	Time Stamps for Dependent Elementary Streams

	Buffer Model Specification
	Elementary Decoder Model
	Assumptions
	Constant end-to-end delay
	Demultiplexer
	Decoding Buffer
	Decoder
	Composition Memory
	Compositor

	Managing Buffers: A Walkthrough

	Object Description Framework
	Introduction
	Common data structures
	Overview
	BaseDescriptor
	Syntax
	Semantics

	BaseCommand
	Syntax
	Semantics

	Intellectual Property Management and Protection Framework (I
	Overview
	IPMP Streams
	Structure of the IPMP Stream
	Access Unit Definition
	Time Base for IPMP Streams
	IPMP Decoder Configuration
	Syntax
	Semantics

	IPMP message syntax and semantics
	Syntax
	Semantics

	Extension tags for the IPMP_Data_BaseClass
	IPMP_Data_BaseClass
	Syntax
	Semantics

	Object Content Information (OCI)
	Overview
	OCI Streams
	Structure of the OCI Stream
	Access Unit Definition
	Time Base for OCI Streams
	OCI Decoder Configuration
	Syntax
	Semantics

	OCI_Events syntax and semantics
	Syntax
	Semantics

	Object Descriptor Stream
	Structure of the Object Descriptor Stream
	Access Unit Definition
	Time Base for Object Descriptor Streams
	OD Decoder Configuration
	OD Command Syntax and Semantics
	Overview
	ObjectDescriptorUpdate
	Syntax
	Semantics

	ObjectDescriptorRemove
	Syntax
	Semantics

	ES_DescriptorUpdate
	Syntax
	Semantics

	ES_DescriptorRemove
	Syntax
	Semantics

	IPMP_DescriptorUpdate
	Syntax
	Semantics

	IPMP_DescriptorRemove
	Syntax
	Semantics

	ObjectDescriptorExecute
	Syntax
	Semantics

	Object Descriptor Components
	Overview
	ObjectDescriptorBase
	Syntax
	Semantics

	ObjectDescriptor
	Syntax
	Semantics

	InitialObjectDescriptor
	Syntax
	Semantics

	ES_Descriptor
	Syntax
	Semantics

	DecoderConfigDescriptor
	Syntax
	Semantics

	DecoderSpecificInfo
	Syntax
	Semantics

	SLConfigDescriptor
	IP_IdentificationDataSet
	Syntax
	Semantics

	ContentIdentificationDescriptor
	Syntax
	Semantics

	SupplementaryContentIdentificationDescriptor
	Syntax
	Semantics

	IPI_DescrPointer
	Syntax
	Semantics

	IPMP_DescriptorPointer
	Syntax
	Semantics

	IPMP Descriptor
	Syntax
	Semantics
	IPMP Tool List Specification
	IPMP_ToolListDescriptor
	IPMP_Tool
	7.2.6.14.3.2.1 Syntax
	7.2.6.14.3.2.2 Semantics

	IPMP_ParametricDescription
	7.2.6.14.3.3.1 Syntax
	7.2.6.14.3.3.2 Semantics

	ByteArray
	7.2.6.14.3.4.1 Syntax
	7.2.6.14.3.4.2 Semantics

	Implementation of a Registration Authority (RA)

	QoS_Descriptor
	Syntax
	Semantics
	QoS_Qualifier
	Syntax
	Semantics
	7.2.6.15.3.2.1 Rebuffering

	ExtensionDescriptor
	Syntax
	Semantics

	RegistrationDescriptor
	Syntax
	Semantics
	Implementation of a Registration Authority (RA)

	Object Content Information Descriptors
	Overview
	OCI_Descriptor Class
	Syntax
	Semantics

	Content classification descriptor
	Syntax
	Semantics

	Key Word Descriptor
	Syntax
	Semantics

	Rating Descriptor
	Syntax
	Semantics

	Language Descriptor
	Syntax
	Semantics

	Short Textual Descriptor
	Syntax
	Semantics

	Expanded Textual Descriptor
	Syntax
	Semantics

	Content Creator Name Descriptor
	Syntax
	Semantics

	Content Creation Date Descriptor
	Syntax
	Semantics

	OCI Creator Name Descriptor
	Syntax
	Semantics

	OCI Creation Date Descriptor
	Syntax
	Semantics

	SMPTE Camera Position Descriptor
	Syntax
	Semantics
	Packet structure defined by SMPTE 315M

	Segment Descriptor
	Syntax
	Semantics

	MediaTimeDescriptor
	Syntax
	Semantics

	Extension Profile Level Descriptor
	Syntax
	Semantics

	Profile Level Indication Index Descriptor
	Syntax
	Semantics

	Rules for Usage of the Object Description Framework
	Aggregation of Elementary Stream Descriptors in a Single Obj
	Overview
	Aggregation of Elementary Streams with the same streamType
	Aggregation of Elementary Streams with Different streamTypes
	Aggregation of scene description streams and object descript
	Elementary Stream Dependencies
	Independent elementary streams
	Dependent elementary streams

	Linking Scene Description and Object Descriptors
	Associating Object Descriptors to BIFS Nodes
	Multiple scene description and object description streams
	Scene and Object Description in Case of Inline Nodes
	Name Scope of Identifiers
	Reuse of identifiers

	ISO/IEC 14496 Content Access
	Introduction
	The Initial Object Descriptor
	Usage of URLs in the Object Descriptor Framework
	Selection of Elementary Streams for an Audio-Visual Object
	Content access in “push” and “pull” scenarios
	Content access through a known Object Descriptor
	Pre-conditions
	Content Access Procedure

	Content access through a URL in an Object Desciptor
	Pre-conditions
	Content access procedure

	Content access through a URL in an elementary stream descrip
	Pre-conditions
	Content access procedure

	Mapping of Content Access Procedure to DAI calls

	Usage of the IPMP System interface
	Overview
	Association of an IPMP System with ISO/IEC 14496 content
	Association in the initial object descriptor
	Association in other object descriptors

	IPMP of Object Descriptor streams
	IPMP of Scene Description streams
	Usage of URLs in managed and protected content
	URLs in the BIFS Scene Description
	URLs in Object Descriptors
	URLs in ES_Descriptors

	IPMP Decoding Process

	Synchronization of Elementary Streams
	Introduction
	Sync Layer
	Overview
	SL Packet Specification
	Syntax
	Semantics

	SL Packet Header Configuration
	Syntax
	Semantics
	SLExtentionDescriptor Syntax
	SLExtentionDescriptor Semantics
	DependencyPointer Semantics
	MarkerDescriptor Semantics

	SL Packet Header Specification
	Syntax
	Semantics

	Clock Reference Stream
	Restrictions for elementary streams sharing the same object
	Usage of configuration options for object clock reference an
	Resolution of ambiguity in object time base recovery
	Resolution of ambiguity in time stamp recovery
	Usage considerations for object clock references and time st

	DMIF Application Interface

	Multiplexing of Elementary Streams
	Introduction
	M4Mux Tool
	Overview
	Simple Mode
	MuxCode mode
	M4Mux packet specification
	Syntax
	Semantics

	Configuration and usage of MuxCode Mode
	Syntax
	Semantics
	Usage

	Configuration and usage of M4Mux clock references
	Syntax
	Semantics
	Usage

	M4Mux buffer descriptor
	Syntax
	Semantics

	Default M4Mux buffer descriptor
	Syntax
	Semantics

	M4Mux buffer model
	M4MuxID Descriptor
	Syntax
	Semantics

	M4Mux Descriptors
	M4MuxChannelDescriptor
	Syntax
	Semantics

	M4MuxBufferSize Descriptor
	Syntax
	Semantics

	M4MuxTiming Descriptor
	Syntax
	Semantics

	M4MuxCodeTable Descriptor
	Syntax
	Semantics

	M4MuxIdent Descriptor
	Syntax
	Semantics

	Syntactic Description Language
	Introduction
	Elementary Data Types
	Introduction
	Constant-Length Direct Representation Bit Fields
	Variable Length Direct Representation Bit Fields
	Constant-Length Indirect Representation Bit Fields
	Variable Length Indirect Representation Bit Fields

	Composite Data Types
	Classes
	Abstract Classes
	Expandable classes
	Parameter types
	Arrays
	Partial Arrays
	Implicit Arrays

	Arithmetic and Logical Expressions
	Non-Parsable Variables
	Syntactic Flow Control
	Built-In Operators
	Scoping Rules

	Profiles
	Introduction
	OD Profile Definitions
	Overview
	OD Profiles Tools
	OD Profiles
	OD Profiles@Levels
	Levels for the Core Profile

