

Reference number
ISO/IEC 14496-1:2001/Amd.1:2001(E)

© ISO/IEC 2001

INTERNATIONAL
STANDARD

ISO/IEC
14496-1

Second edition
2001-10-01

AMENDMENT 1
2001-10-15

Information technology — Coding of
audio-visual objects —
Part 1:
Systems

AMENDMENT 1: Extended BIFS

Technologies de l'information — Codage des objets audiovisuels —

Partie 1: Systèmes

AMENDEMENT 1: BIFS étendus

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

ISO/IEC 14496-1:2001/Amd.1:2001(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

ISO/IEC 14496-1:2001/Amd.1:2001(E)

© ISO/IEC 2001 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this Amendment may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to International Standard ISO/IEC 14496-1:2001 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and
hypermedia information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

ISO/IEC 14496-1:2001/Amd.1:2001(E)

© ISO/IEC 2001 – All rights reserved 1

Information technology — Coding of audio-visual objects —

Part 1:
Systems

AMENDMENT 1: Extended BIFS

1) Add the following at the end of subclause 8.6.15.3.1:
"
class QoS_Qualifier_REBUFFERING_RATIO extends QoS_Qualifier : bit(8) tag=0x02 {

bit(8) REBUFFERING_RATIO;

}

"

2) Add the following at the end of subclause 8.6.15.3.2:
"

REBUFFERING_RATIO – Ratio of the decoding buffer that should be filled in case of prebuffering or
rebuffering. The ratio is expressed in percentage, with an integer value between 0 and 100. Values
outside that range are reserved.

8.6.15.3.2.1 Rebuffering

In certain scenarios the System Decoder Model cannot be strictly observed. This is the case of e.g. file
retrieval scenarios in which the data is pulled from a remote server over a network with unpredictable
performances. In such a case prebuffering and/or rebuffering may be required in order to allow for a
better quality in the user experience. Note that scenarios involving real time streaming servers do not fall
in this category, since a streaming server presumably delivers content according to the appropriate
timeline.

An elementary stream is prebuffered when the decoder waits until the decodingBuffer has been filled up
to a certain threshold before starting fetching data from it.

An elementary stream is rebuffered when a decoder stops fetching data from the decodingBuffer and
before resuming fetching data waits until that buffer has been filled again up to a certain threshold.

In order to inform a receiver whether a certain elementary stream requires prebuffering and/or
rebuffering the QoS_Qualifier_REBUFFERING_RATIO qualifier can be included in the Elementary
Stream Descriptor (see subclause 8.6.15.3.1). By default, in the absence of such qualifier, an elementary
stream does not require pre-buffering or rebuffering.

"

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved2

3) Replace Table 31 (Compensation process) in subclause 9.3.4 by the following:

"

Table 31 — Compensation process for multiple fields and BIFS-Anim

quantType animType Compensation Process

1,2,4,6,7,8,
9 (other than

SFVec3fType),
10 (other than

SFRotationType),
11,12,13

1,2,4,6,7,8
11,12,13

The components of
2
qv are:

vq2[i] = vq1[i] + vDelta[i]

The addition is first performed component by component and stored in a temporary array:

vqTemp[i] = vq1[i] + vDelta[i].

Let scale = 12)1,0max(
�

�nbBits
.

Let N the number of reduced components (2 for normals, 3 for rotations)

There are then three cases are to be considered:

For every index I,

scalevqTemp[i] �

2
qv is defined by,

vq2[i] = vqTemp[i]

orientation2= orientation1

direction2 = direction1 * inverse

2
qv is rescaled as if gliding on the faces of the mapping cube.

Let inv = 1 if vqTemp[k]>=0 and –1 else
Let dOri = k+1

The components of vq2 are computed as follows

dOri-Ni0 �� vq2[i] = inv*vqTemp[(i+dOri) mod N]

dOri-Ni � vq2[i] = inv*2*scale–vqTemp[dOri–1]

NidOri-N �� vq2[i] = inv*vqTemp[(i+dOri-1) mod N]

There is one and only one
index k such that

scalevqTemp[k] �

orientation2 = (orientation1 + dOri) mod (N+1)

direction2 = direction1 * inverse * inv

9 (SFVec3fType),
10 (SFRotation)

9,10

There are several indices
k such that

scalevqTemp[k] �

The result is undefined

Note: The BIFS-Anim process is identical to the process applied for optimal encoding of BIFS multiple
fields.

"

4) Replace the reserved bit in subclause 9.3.5.3.1 by the following:

"

bit(1) usePredictiveMFField;

"

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 3

5) Insert the following in subclause 9.3.5.3.2 at the end of the second paragraph (on the
use3DmeshCoding):

"
The usePredictiveMFField flag is used to signal that the syntax for predictive MFField instead of the
non-predictive mode is used to encode IndexedFaceSet nodes. This flag is used for terminals supporting
this tool.
"

6) Replace subclause 9.3.7.2.4 (PROTOcode) by the following subclauses:
"
9.3.7.2.4 PROTOcode

9.3.7.2.4.1 Syntax

class PROTOcode(isedNodeData protoData) {

bit(1) isExtern

if (isExtern) {

MFUrl locations;

} else {

PROTOlist subProtos;

}

do {

SFNode node(SFWorldNodeType,protoData);

bit(1) moreNodes;

} while (moreNodes);

bit(1) hasROUTEs;

if (hasROUTEs) {

ROUTEs routes();

}

}

9.3.7.2.4.2 Semantics

First a flag signals whether the prototype is a PROTO, which then has his code included in the proto
declaration, or if is an EXTERNPROTO, in which case only an external reference is provided. The
EXTERNPROTO is an authoring facility that enables to distribute PROTOs in external libraries and be
reused across scenes. The EXTERNPROTO opens a BIFSCommand stream that contains a ReplaceScene
command with a BIFSScene with the PROTO definitions. The EXTERNPROTO code is found in the
PROTO in this new scene with the same ID in this scene. The nodes that may be contained in this scene
are ignored.
In case of a PROTO, the PROTOcode contains a (possibly empty) list of the sub-PROTOs of this
PROTO in subProtos, followed by the code to execute the PROTO. The code is specified as a set of
SFNodes, using a standard SFNode definition with the additional possibility to declare an IS field.
Moreover, the PROTO body may contain ROUTEs if the hasROUTE flag is set to 1.
"

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved4

7) Replace subclause 9.3.7.6 (Field) with the following subclauses:
"
9.3.7.6 Field

9.3.7.6.1 Syntax

class Field(FieldData field) {

if (isSF(field))

SFField svalue(field);

else {

if (BIFSConfig.usePredictiveMFField == 1) {

bit(1) usePredictive;

if (usePredictive)

PredictiveMFField mvalue(field);

else

MFField mvalue(field);

}

else {

MFField mvalue(field);

}

}

}

9.3.7.6.2 Semantics

A field is encoded according to its type: single (SFField) or multiple (MFField). A multiple field is a
collection of single fields.
"

8) Add the following as new subclauses after subclause 9.3.7.9 (MFVectorDescription):
"
9.3.7.10 PredictiveMFField

9.3.7.10.1 Syntax

class PredictiveMFField (FieldData field) {

AnimFieldQP aqp = new AnimFieldQP();

aqp.useDefault = FALSE;

field.aqp = aqp;

ArrayHeader header(field);

ArrayOfValues values(field);

}

9.3.7.10.2 Semantic

The array of data is composed of a Header, and an ArrayOfValues. Note that the FieldData structure is
filled as described in the BIFS-Scene quantization process (subclause 9.3.3.1 of ISO/IEC 14496-1:2001).

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 5

The process applied for optimal encoding of BIFS multiple fields is exactly identical to the BIFS-Anim
process (See Table 31):

1 Compensation on the P values
2 Inverse Quantization into single field values

The compensation process uses the quant type as well as Pmin and PNbBits, defined in the ArrayQP and
InitialArrayQP, and can be summarized in the following table.
The inverse quantization process uses the values of floatMax, floatMin, and NbBit as defined in the BIFS
quantization process and as defined by the QuantizationParameter node.

9.3.7.11 ArrayHeader

9.3.7.11.1 Syntax

class ArrayHeader(FieldData field){

uint(5) NbBits;

int(NbBits) numberOfFields;

bit(2) intraMode;

InitialArrayQP qp(intraMode,field);

}

9.3.7.11.2 Semantic

The array header contains first information to specify the number of fields (NbBits is the number of bits
used to code the numberOfFields). Then the Intra/Predictive policy (intraMode) is specified as
follows:
• 0 : Only one Intra value at the beginning and then only predictive coded values
• 1 : An Intra every given number of predictive values
• 2 : A bit for each value to determine whether the value is an Intra or predictive value
Lastly, the InitialArrayQP is coded.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved6

9.3.7.12 InitialArrayQP

9.3.7.12.1 Syntax

class InitialArrayQP(int intraMode, FieldData field){

switch (intraMode)

case 1 :

unsigned int(5) NbBits;

unsigned int(NbBits) intraInterval;

// no break

case 0 :

case 2 :

int(5) CompNbBits;

for (int i=0;i<getNbComp(field);i++) {

int(field.NbBits+1) vq;

field.aqp.Pmin[i] = vq-2^field.NbBits;

}

}

// no break

case 3:

break;

}

9.3.7.12.2 Semantic

If intraMode is 1, the size of the interval between two intras is first specified. Independent of the
intraMode, the number of Bits used in Predictive mode CompNbBits and the CompMins are coded. The
function getNbComp() is a function that returns the number of components of the quantizing bounds, and
depends on the object. For instance it returns 3 for 3D positions, 2 for 2D positions, and 3 for rotations.
See Table 17 (Return values of getNbComp) in ISO/IEC 14496-1:2001. CompNbBits and CompMin are
stored in the field.aqp AnimationQP structure, and are used for the compensation process as defined in
Table 31 (Compensation process for multiple fields and BIFS-Anim) and subclause 9.3.4 of ISO/IEC
14496-1:2001.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 7

9.3.7.13 ArrayQP

9.3.7.13.1 Syntax

class ArrayQP(int intraMode, FieldData field){

switch (intraMode)

case 1 :

int NbBits;

int(NbBits) intraInterval;

// no break

case 0 :

case 2 :

boolean(1) hasCompNbBits

if (hasCompNbBits)

int(5) CompNbBits;

boolean(1) hasCompMin

if (hasCompMin) {

for (int i=0;i<NbComp(field)) {

int(field.NbBits+1) vq;

field.aqp.Pmin[i] = vq-2^field.NbBits;

}

}

case 3:

break;

}

9.3.7.13.2 Semantic

ArrayQP fulfills the same purpose as InitialArrayQP, but in this case, the parameters are optionnaly set.
If they are not set in the stream, they are set by default, in reference to the InitialArrayQP or the latest
received value of the parameter.
If IntraMode is 1, the size of the interval between two intras is first specified. In any case, the number
of Bits used in Predictive mode (CompNbBits) and the CompMins are coded. The function
getNbComp() is a function that returns the number of components of the quantizing bounds, and depends
on the object. For instance it returns 3 for 3D positions, 2 for 2D positions, and 3 for rotations. See Table
17 in ISO/IEC 14496-1:2001. CompNbBits and CompMin are stored in the field.aqp AnimationQP
structure, and are used for the compensation process as defined in Table 31 and subclause 9.3.4 of
ISO/IEC 14496-1:2001.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved8

9.3.7.14 ArrayOfValues

9.3.7.14.1 Syntax

class ArrayOfValues(FieldData field) {

ArrayIValue value[0];

for (int i=1; i < numberOfFields;i++)

{

Switch (intraMode) {

case 0:

ArrayPValue value(field);

break;

case 1:

if ((i % intraInterval) == 0) {

bit(1) hasQP;

if (hasQP)

ArrayQP qp(field);

ArrayIValue value(field);

} else {

ArrayPvalue value(field);

}

break;

case 2:

bit (1) isIntra;

if (isIntra) {

bit(1) hasQP;

if (hasQP)

ArrayQP qp(field);

ArrayIValue value;

} else {

ArrayPvalue value;

}

break;

}

}

9.3.7.14.2 Semantic

The array of values first codes a first intra value, and then according to the IntraMode, codes Intra and
Predictive values. In P only mode, no more intra values are coded. In the second mode, a bit decides of
the P or I mode at each value. In that case, a QP can be sent for Intra values. If a QP is sent, the statistics
of the arithmetic encoder are reset. In the third mode, an Intra is sent every intraInterval values.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 9

9.3.7.15 ArrayIValue

9.3.7.15.1 Syntax

class ArrayIValue(FieldData field) {

switch (field.quantType) {

case 9: // Normal

int(1) direction

case 10: // Rotation

int(2) orientation

break;

default:

break;

}

for (j=0;j<getNbComp(field);j++)

int(field.nbBits) vq[j];

}

9.3.7.15.2 Semantic

The ArrayIValue represents the quantized intra value of a field. The value is coded following the
quantization process described in the quantization section, and according to the type of the field. For
normals the direction and orientation values specified in the quantization process are first coded. For
rotations only the orientation value is coded. If the bit representing the direction is 0, the normal’s
direction is set to 1, if the bit is 1, the normal’s direction is set to –1. The value of the orientation is coded
as an unsigned integer using 2 bits. The compressed components �q[i] of the field’s value are then coded
as a sequence of unsigned integers using the number of bits specified in the field data structure. The
decoding process in intra mode computes the animation values by applying the inverse quantization
process.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved10

9.3.7.16 ArrayPValue

9.3.7.16.1 Syntax

class ArrayPValue(FieldData field) {

switch (field.quantType) {

case 9: // Normal

int(1) inverse

break;

default:

break;

}

for (j=0;j<getNbComp(field);j++)

int(aacNbBits) vqDelta[j];

}

9.3.7.16.2 Semantic

The ArrayPValue represents the difference between the previously received quantized value and the
current quantized value of a field. The value is coded using the compensation process as described above.
The values are decoded from the adaptive arithmetic coder bitstream with the procedure �_aac =
aa_decode(model). The model is updated with the procedure model_update(model, �_aac). For normals
the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model.
The compensation values �qDelta[i] are then decoded one by one. Let �q(t-1) the quantized value
decoded at the previous frame and �_aac(t) the value decoded by the frame’s Adaptive Arithmetic
Decoder at instant t with the field’s models. The value a time t is obtained from the previous value as
follows :
�Delta(t) = v_acc(t) + Pmin

�q(t) = AddDelta(�q(t-1), vDelta(t))

�(t) = InvQuant(�q(t))

The field’s models are updated each time a value is decoded through the adaptive arithmetic coder. If the
animType is 1 (Position3D) or 2 (Position2D), each component of the field’s value is using its own
model and offset PMin[i]. In all other cases the same model and offset PMin[0] is used for all the
components.
"

9) Modify the subclause numbers in 9.3.7.10 to 9.3.8.10 after the insertion of ArrayPValue
subclause.

10) Insert the following as a new subclause after subclause 9.4.2.92 (Script):
"
9.4.2.93 ServerCommand

The ServerCommand in BIFS enables the application signaling in MPEG-4 Systems. The application-
signaling framework allows an application to communicate the application signaling messages or
commands to a server(s). Commands are sent to servers upon the occurrence of events (synchronous
events specified in the scene description or asynchronous events as a result of user interaction). The
ServerCommand framework consists of two elements; a ServerCommand node, and a

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 11

ServerCommandRequest structure. While the ServerCommand enables event routing to the server, the
ServerCommandRequest structure specifies the syntax for the messages communicated to the server over
a back channel.

9.4.2.93.1 Node Interface

ServerCommand {

eventIn SFBool trigger

exposedField SFBool enable FALSE

exposedField MFString url []

exposedField SFString command ""

}

9.4.2.93.2 Functionality and Semantics

This node is used to communicate application-signaling messages (commands) from the client back to
the server. The ServerCommand is processed only when trigger receives a TRUE event and enable is
TRUE. When the ServerCommand is processed, the command is sent to the servers indicated by the
specified url. A url identifies the object descriptor that contains an elementary stream that flows from
the terminal back to the server. If that object descriptor has more than one such elementary stream, then
the one specified will be used. The command field contains the information that is transmitted back to
the server. The syntax and semantics of the command string are application specific and not specified.
The syntax of the ServerCommandRequest structures used to communicate the command to a
server is specified below.

9.4.2.93.3 ServerCommandRequest

When the ServerCommand is processed the associated command is communicated to the servers
specified in the url using the ServerCommandRequest structures. The ServerCommandRequest is
encapsulated into SL packets, using the SLConfigDescriptor contained in the ESDescriptor of the
upchannel elementary stream that carries the commands. If a timestamp is provided in the SL layer
(either decoding or composition) then it is directly derived from the System Time Base of the terminal.

Syntax

class ServerCommandRequest(BIFSConfig cfg) {

bit(cfg.nodeIDbits) nodeID;

SFString command;

}

where nodeID is node ID of the ServerCommand node that trigger the command (all such nodes must
have IDs in order to route events into them), and command is the string contained in the
ServerCommand node's command field.
"

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved12

11) Modify the subclause numbers in 9.4.2.93 to 9.4.2.99 after the insertion of ServerCommand node
subclause.

12) Insert the following as a new subclause after subclause 9.4.2.99 (Switch):
"

9.4.2.100 TemporalGroup

The TemporalGroup node carries the temporal constraints of its child nodes that will be used by the
FlexTime model (or Advanced Synchronization Model). The FlexTime Model supports synchronization
of objects from multiple sources with possibly different time bases. The FlexTime Model specifies timing
using a flexible, constraint-based timing model. In this model, media objects can be linked to one another
in a time graph using relationship constraints such as "CoStart", "CoEnd", or "Meet". And, in addition, to
allow some flexibility to meet these constraints, each object may have a flexible duration with specific
stretch and shrink mode preferences that may be applied.

The FlexTime model is based upon a so-called "spring" metaphor. A spring has a set of three constants:
the minimum length below which it will not shrink, the maximum length beyond which it will break, and
the optimal length at which it rests comfortably being neither compressed nor extended. Following this
spring model, the temporal playback of media objects can be viewed as springs, with a set of playback
durations corresponding to these three spring constants. The optimal playback duration (optimal spring
length) can be viewed as the author’s preferred choice of playback duration for the media object. A
player should, where possible, keep the playback length as close to the optimal duration as the
presentation allows but may choose any duration between the minimum and maximum durations as
specified by the author. Note, that whereas stretching or shrinking the duration continuous media, e.g. for
video, implies respectively slowing down or speeding up playback, for discrete media such as a still
image, shrinking or stretching is merely adjusting the rendering period to be shorter or longer.

The FlexTime model requires a small change to the MPEG-4 buffer model in terms of media delivery
and decoding. Decoding may be delayed on the client, beyond the standard decoding time, by an amount
determined by the flexibility expressed in the relationships. The buffer model for FlexTime can thus be
specified as follows: “At any time from the instant of time corresponding to its DTS up to a time limit
specified by FlexTime, and AU is instantaneously decoded and removed from the decoding buffer.”

To support synchronization of nodes within the scene to a media stream, or part thereof, a new node
supporting flexible transformation to scene time is introduced. This grouping node is the
TemporalTransform and can flexibly support the slowing down, speeding up, freezing or shifting of
the scene time for rendering of nodes contained within. This transform node is also a grouping node and
provides the flexible component for the FlexTime model.

The TemporalGroup provides the constraint for the FlexTime model and gives it the tools it needs to
align in time both nodes and media streams with nodes in the scene graph. TemporalGroup can
examine the temporal properties of its children, check for the availability of media in the composition
buffer, and consequently decide which temporal transformation parameters to apply to each of its child
nodes.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 13

9.4.2.100.1 Node Interface

TemporalGroup {

eventIn MFNode addChildren

eventIn MFNode removeChildren

exposedField MFNode children

field SFBool costart

field SFBool coend

field SFBool meet

exposedField MFFloat priority []

eventOut SFBool isActive

eventOut SFInt32 activeChild
}

9.4.2.100.2 Functionality and semantics

The TemporalGroup node specifies the temporal relationship between a given number of
TemporalTransform nodes.

The children field specifies the list of TemporalTransform or TemporalGroup nodes on which the
constraint is applied.

The costart, coend and meet fields specify the temporal relationships amongst the node’s children.
If costart is TRUE, all child nodes must be activated (start) together. If coend is TRUE, all child
nodes must be deactivated (end) together. When meet is TRUE, the child nodes are activated one after
another in a row. When one node ends, the next node in the list needs to start. If either costart or
coend are set to TRUE the meet field is ignored.

The priority field specifies the list of priority numbers that determines the preferred scaling direction
when two child nodes need to meet a constraint. The list of priorities is in the same order as the
children field. More than one child can have the same value. In the case of coend the highest priority
object will determine the end and cause all other objects to end at that time, providing all objects have at
least reached their minimum durations. If the field is empty all nodes are assumed to have equal priority.

The isActive eventOut is triggered at the following events.

• If costart is true a TRUE value will be sent when the co-start constraint is met.
• If coend is true a FALSE value will be sent when the co-end constraint is met.
• If meet is true a TRUE value will be sent when the first child is activated, and a FALSE value will be

sent when the last one finishes.

The activeChild eventOut is sent when a new child is activated under a meet constant and will indicate
the index of that child. The first child is index 0.

9.4.2.101 TemporalTransform

TemporalTransform is a grouping node that assigns temporal properties, and applies temporal
transformation, to scene nodes and elementary streams.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved14

9.4.2.101.1 Node Interface

TemporalTransform {

eventIn MFNode addChildren

eventIn MFNode removeChildren

exposedField MFNode children

exposedField MFString url []

exposedField SFTime startTime -1.0

exposedField SFTime optimalDuration -1.0

exposedField SFBool active FALSE

exposedField SFFloat speed 1.0

exposedField SFVec2F scalability [1.0, 1.0]

exposedField MFInt32 stretchMode [0]

exposedField MFInt32 shrinkMode [0]

exposedField SFTime maxDelay 0

eventOut SFTime actualDuration
}

9.4.2.101.2 Functionality and semantics

The TemporalTransform node serves two purposes:

o To apply temporal transformation to media objects.

o To hold properties that will be used when the node has as a parent a TemporalGroup node.

The node operates on two types of objects. Its children field may contain a list of nodes of the type
SF3DNode. In addition, it has a url field that may reference an elementary stream. In the first case, the
node has the effect of slowing down, speeding up, freezing or shifting the time base of the compositor
when it renders the child nodes that are transformed by the node. In the second case, the node affects the
time base of the stream. Note that a Route between two nodes whose time bases are different, because
one or both are affected by a TemporalTransform, will have undefined behavior.

The startTime specifies the starting point of the media stream relative to the composition time of the
first access unit received from the url that is controlled by this node. If startTime is negative, the entire
media referred by this url is controlled.

The optimalDuration field specifies the nominal duration of the objects that are controlled by this
node. This is also the optimal duration, which the FlexTime model opts for when scaling this node. If
optimalDuration is negative, or outside the bounds defined by the scalability field, optimal duration
is not available.

The active field determines whether the node, its children, and the stream controlled by the node are
active. When the node is inactive, the time base of the compositor is frozen when the child nodes are
composed. This means that:

• The nodes are not visible and the stream is not played.
• Timed nodes, e.g. TimeSensor, do not have their time running.
• Node fields such as startTime and stopTime are processed as if the time is not running.
• Nodes that react to user interaction, such as TouchSensor, or to their spatial position, such as

ProximitySensors cannot be activated.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved 15

However operations that would normally be performed at that time are still performed, even if the node is
frozen. For instance:

• Script nodes are executed if activated.
• ROUTEs are executed.
• eventIns are processed (with no rendering).
• DMIF (network stack) methods are called if necessary. Therefore the delivery of streams, if

required, will be requested, even though their sync layer time base is frozen.

Another field that affects the temporal transformation is speed. When the value of this field is not 1 and
the node is active, the scene time base of the node, its children, and the time base of the stream will slow
down or speed up according to this factor. If speed is set to zero, the node remains active but its time
stops. Therefore time-related operations behave as if time is constant, and audio rendering pauses.

The other fields of the TemporalTransform node have no effect on the execution of the node, but are
used by a parent TemporalGroup node to determine the temporal layout of the node in relation to other
TemporalTransform objects.

The scalability field specifies the maximum ratios by which this object is allowed to shrink or stretch.
If a nominal duration is known, either from optimalDuration or the stream length, the ratio determines
the absolute values of the minimum and maximum duration. Otherwise, for unknown duration, the field
dictates either the ratio by which the time bases controlled by the node are allowed to scale; or, when
optimalDuration lies outside the bound of the values calculated, they are minimum and maximum
durations (optimal duration unknown).

The stretchMode field specifies an ordered list of the preferred modes of stretching according to the
table below.

The shrinkMode field specifies an ordered list of the preferred modes of shrinking according to the
table below.

Table 39 — Preferred Mode of Stretch/Shrink Values

StretchMode

Value

StretchMode

Description

ShrinkMode

Value

ShrinkMode

Description

0 Hold rendering of the
last Access Unit

0 Stop rendering

1 Linear Composition Unit
rendering rate decrease

1 Linear Composition Unit
rendering rate increase

2 Repeat

The maxDelay field specifies how long the FlexTime model can wait for the stream specified by the url
field. If this time elapses before the stream is available, the model behaves as if the node starts at that
time, but the player will not render the children of this node and will discard the stream if it arrives later.

The actualDuration eventOut is triggered when the node is activated and sends the value of the
estimated actual play duration of the node.
"

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

© ISO/IEC 2001 – All rights reserved16

13) Modify the table numbers 39 to 60 after the insertion of TemporalTransform node subclause.

14) Modify the subclause numbers 9.4.2.100 to 9.4.2.111 after the insertion of TemporalTransform
node subclause.

15) Insert the following item as the last bullet item in subclause 15.3.2 (Scene Graph Profiles Tools):
"

• 3D audio scene graph profile as defined in 15.3.3.3.

"

16) Add the following subclause as a new subclause at the end of subclause 15.3.3.2:
"
15.3.3.3 3D Audio Scene Graph Profile

The 3D Audio Scene Graph profile provides tools for three-dimensional sound positioning in relation
either with acoustic parameters of the scene or its perceptual attributes. The user can interact with the
scene by changing the position of the sound source, changing the room effect or by moving the listening
point.

The following list defines the 3D Audio Profile scene graph profiles:
AcousticScene, Anchor, AudioBuffer, AudioClip, AudioDelay, AudioFX, AudioMix, AudioSource,
AudioSwitch, Billboard, Conditional, DirectiveSound, Group, Inline, ListeningPoint, LOD,
NavigationInfo, OrderedGroup, PerceptualParameters, QuantizationParameter, Sound, Sound2D, Switch,
Transform, Viewpoint, WorldInfo, Node Update, Route Update, Scene Update, AnimationStream, Script,
CoordinateInterpolator, OrientationInterpolator, PositionInterpolator, PositionInterpolator2D,
ProximitySensor, ROUTE, TermCap, TimeSensor, TouchSensor, VisibilitySensor, Valuator.
"

17) Replace subclause 15.3.4.1.2 (Levels) by the following subclause:
"
15.3.4.1.2 3D Audio Profile Level Definitions

In the following table, levels definitions for the 3D Audio profile are given. The levels are based on
sampling rate of 44100 Hz at 16-bit resolution. Their complexities depend on
- The maximum number of spatialized sources per scene (these spatialized sources can include discrete

reflections that are perceptually equivalent to individual sound sources)
- The number of temporal sections whose levels and time limits can be controlled individually for each

source
- The maximum number of independent late reverberation processes per scene
- The maximum number of control frequencies in reverberation process filters, source directivity filters,

and material filters.

ISO/IEC 14496-1:2001/Amd.1:2001(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:20

01
/AMD1:2

00
1

https://iecnorm.com/api/?name=9c5f567b4b1fe9f829e7ecb289a381f9

