INTERNATIONAL
STANDARD

ISO/IEC
10746-4

First edition
1998-12-15

Information technology — Open Distributed

Processing — Reference Model:

Architectural semantics

Technologies de l'information —Traitement distribué ouvert — Modéle de

référence: Sémantique architecturale

Reference number
ISO/IEC 10746-4:1998(E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4:1998(E)

Contents Page
SO I ittt oo e oo e ettt b e — oo oo e e et ettt ettt b aa s ———— 1141t £ £ttt b banan 1
N[0 g g = LAY SR (=] (=1 (=T (o1 SR 2
1Y 1] T o] 1= PRt 2
3.1 Definitions from ISO/IEC 8807 2
3.2 Definitions from ITU-T Recammendation Z 100
3.3| Definitions from the Z-Base Standard.............ccccccvvvieeeeeeiiiiii e e e e e e e e e rnsZe e 3
3.4 Definitions from ISO/IEC 9074oo o e e ee e e g] 3

4 Intdrpretation of MOdelliNg CONCEPLSuuuriiiiiiiiiiiieiie e e e e e e e e s L3S 3
4.1] Architectural semantics in LOTOS...........oooiiiiiiiiiiiiiiiiiererrerre e e e e e e e e a e e e 3
4.2 Architectural semantics iN ACT ONEoooiiiiiiiiiiiii e e N smmmabo e 9
4.3] Architectural semantics inN SDL-92...........cccciiiiiiiiiiierirerre e eae st Soaeeeneeeeeeeee e e s oo 15
4.41 Architectural SEMAaNtiCS IN Z.......ooovviiiiiiiiiii i S et 20
45| Architectural semantics in ESTELLE .25

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any forny ondgnanelectronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office Case postale 6CH-1211 Geneve 20 Switzerland
Printed in Switzerland

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

© ISO/IEC

Foreword

ISO/IEC 10746-4:1998(E)

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal
with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.

In the fig
Internatiq

as an International Standard requires approval by at least 75 % of the national bodies casting @yot¢g.

Internatiq

technology,Subcommittee SC 3®istributed application servicesn collaboration with ITU=T. The ide
publishe@l as ITU-T Recommendation X.904.

ISO/IEC

Processing — Reference Model:

— Part 1
— Part 2
— Part 3

— Part 4

nal Standards adopted by the joint technical committee are circulated to national bodies(f:

nal Standard ISO/IEC 10746-4 was prepared by Joint Technical CommitteeISO/IECI

10746 consists of the following parts, under the generallnitemation technology — Op¢q

- Overview
- Foundations
. Architecture

. Architectural semantics

O/IEC JTC 1. Draft
r voting. Publication

dfo@hiation
ntical text is

n Distributed

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

| SO/IEC 10746-4:1998(E) O ISO/IEC

I ntroduction

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalisation of the ODP modeling concepts defined in ITU-T Rec. X.902 O ISO/IEC 10746-2, clauses 8 and 9. The
formalisation is achieved by interpreting each concept in terms of the constructs of the different standardised formal
description techniques.

This Recommendation | International Standard is accompanied by an amendment and a technical report. The associated
amendment focuses on the formalisation of the computational viewpoint language contained in ITU-T Rec. X.903 |
ISO/IEC 10746-3. The associated technical report contains examples on how the formalisation of the ODP Reference
Model car] be applied to develop specifications.

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING -
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

1 Scope

The rapid|growth of distributed processing has lead to a need for a coordinating framework for the standanglization of
Open Digributed Processing (ODP). This Reference Model of ODP provides such a frameworky“t freates an
architecture within which support of distribution, interworking, interoperability and portability can bheintegrated.

The Basid Reference Model of Open Distributed Processing (RM-ODP), (see ITU-T Recs. X.901 to X.904|| ISO/IEC
10746), iq based on precise concepts derived from current distributed processing developments'and, as far gs possible,
on the uselof formal description techniques for specification of the architecture.

The RM-QDP consists of

- ITU-T Rec. X.901 | ISO/IEC 10746-Dverview: Contains a~motivational overview ofl ODP giving
scooping, justification and explanation of key concepts, and-an outline of ODP architgcture. This part is
not normative.

- ITU-T Rec. X.902 | ISO/IEC 10746-Foundations. Contains the definition of the g¢oncepts and

analytical framework and notation for normalized description of (arbitrary) distriquted processing
systems. This is only to a level of detail sufficient to support ITU-T Rec. X.903 | ISO/IE[C 10746-3 and to
establish requirements for new specification techniques. This part is normative.

- ITU-T Rec. X.903 | ISO/IEC 10746-3Architecture: Containsthe specification of the required

characteristics that qualify distributed\processing as open. These are the constraints to which ODP
standards must conform. It uses the: descriptive techniques from ITU-T Rec. X.902 ||ISO/IEC 10746-2.
This part is normative.

- ITU-T Rec. X.904 | ISO/IEC(20746-Architectural Semantics: Contains a formalisation| of the ODP
modeling concepts defined.in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, 4nd a formalisation
of the viewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalisatign is achieved by
interpreting each concept in terms of the constructs of the different standardized fformal description
techniques. This part is normative.

The purpose of this Recommendation | International Standard is to provide an architectural semgntics for ODP. This
essentially takes the form-of an interpretation of the basic modeling and specification concepts of [TU-T Rec. X.902 |
ISO/IEC [L0746-2 andiviewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the Various features of
different formal specification languages. An architectural semantics is developed in four different formal specification
languagep: LOTOS; ESTELLE, SDL and Z. The result is a formalization of ODP’s architecture. Thfough a process of
iterative ‘r:evelopment and feedback, this has improved the consistency of ITU-T Rec. X.902 | ISQ/IEC 10746-2 and

ITU-T RepsX.903 | ISO/IEC 10746-3.

An architectural semantics provides the additional benefits of:
— assisting the sound and uniform development of formal descriptions of ODP systems; and

— of permitting uniform and consistent comparison of formal descriptions of the same standard in different
formal specification languages.

Rather than provide a mapping from all the concepts of ITU-T Rec. X.902 | ISO/IEC 10746-2, this Recommendation |
International Standard focuses on the most basic. A semantics for the higher level architectural concepts is provided
indirectly through their definition in terms of the basic ODP concepts.

Examples of the use of some of the formal specification languages in this report can be found in TR 10167 (Guidelines
for the Application of ESTELLE, LOTOS and SDL).

In the following clauses, the concepts are numbered in accordance with the scheme used in ITU-T Rec. X.902 |
ISO/IEC 10746-2.

ITU-T Rec. X.904 (1997 E) 1

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

This Recommendation | International Standard specifies an architectural semantics for ODP. Thisis required to:

provide formalisation of the ODP modelling concepts;
— assist sound and uniform development of formal descriptions of standards for distributed systems;

— act as a bridge between the ODP modelling concepts and the semantic models of the specification
languages: LOTOS, SDL, ESTELLE and Z;

— provide a basis for uniform and consistent comparison between formal descriptions of the same standard
in specification languages that are used to develop an architectural semantics.

This part is normative.

2 Normative references

The folloyving Recommendations and International Standards contain provisions which, through-reference in this text,
constitutg provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valld. All Recommendations and Standards are subject to revision, and parties.,to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applyjng the most recent
edition off the Recommendations and Standards listed below. Members of IEC and.ISO maintain rggisters of currently
valid Intefnational Standards. The Telecommunication Standardization Bureau of\the ITU maintaing a list of currently
valid ITU{T Recommendations.

- ISO/IEC 8807:1989/nformation processing systems — Open Systems Interconnection — LOTOS — A
formal description technique based on the temporal ordering of-observational behaviour.

- ITU-T Recommendation Z.100 (1998)CITT Specification‘and Description Language (SDL).

- ISO/IEC TR 10167:199Nnformation technology — Open Systems Interconnection — Guidelifes for the
application of Estelle, LOTOS and SDL.

L ISO/IEC 13568, Information technology — Programming Languages their Environments dpd System
Software Interfaces, Z Specification language.

- The Z NotationA Reference Manual, J.M<Spivey, International Series in Computer Sciende, Second
Edition, Prentice-Hall International, 1992

- ISO/IEC 9074:1997 Information - technology — Open Systems Interconnection — Estelle:| A formal
description technique based on an“extended state transition model.

3 Definitions

3.1 Definitions from ISO/IEC 8807
This Recpmmendation | International Standard makes use of the following terms defined in ISO/IEC 8807:

action depotation, actualisation of parameters, behaviour expression, choice, conformance, disabling,| enabling,
enrichmet, equation,) event, extension, formal gate list, formal parameter list, gate, gate hiding, guard, indtantiation,
interleaving, internal observable event, operation, parallel composition, parameterised type definitiog, process
definition,|refuction, selection predicate, sort, synchronisation, type definition, value parameter list.

3.2 Definitions from ITU-T Recommendation Z.100
This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. Z.100:

action statement, active, atleast, block (type), call, channel, content parameter, continous signal, create, enabling
condition, export, exported procedure, exported variable, finalized, gate, import, imported variable, input, nextstate,
nodelay, now, output, procedure, process (type), provided, redefined, remote procedure, reset, return, revealed variable,
service (type), set, signal, signalroute, stop, system (type), task, time, timer, transition, view, viewed variable, virtual.

1) Currently at the stage of draft.

2 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

33 Definitions from the Z-Base Standard
This Recommendation | International Standard makes use of the following terms defined in the Z-Base Standard:

axiomatic description, conjunction, data refinement, invariant, operation refinement, overriding, postcondition,
precondition, schema (operation, state, framing), schema calculus, schema composition.

34 Definitions from ISO/IEC 9074
This Recommendation | International Standard makes use of the following terms defined in | SO/IEC 9074:

activity, assignment statement, attach, channel, channel definition, connect, control state, DELAY-Clause, detach,

disconnect, exported variable, external interaction point, FROM-Clause, function, init, instantiation, interaction,

interaction point, module body definition, module header definition, module instance, output, parent instance, primitive
IS AYAIAY

L DDA yall 1 7 4) + TO 1)
procedul e proceante—1T NOY T D=Clranse—1erease,—1rore,—Systemaciivity,—systemprocess— 1 O=Cianse; (ransition,

transition block, transition clause, WHEN-clause.

4 [nterpretation of modelling concepts

4.1 Architectural semantics in LOTOS

LOTOS i$ a standardized (ISO/IEC 8807) Formal Specification Language (FSL).<Futorial material is availgble in the
standard.

This clause explains how the fundamental modeling concepts can be expressed-in LOTOS (see | SO/IEC 8807]. It should
be pointegl out that there exist two main ways in LOTOS to model the eoncepts contained in ITU-T Rec. X.902 |
ISO/IEC 10746-2. These are based upon the process algebra part of the'language and the ACT ONE data typjng part of
the langupge. Since the ACT ONE formalisation of the concepts)is applicable to SDL-92 aso, the ACT ONE
formalizatjon is given in an independent clause. See 4.2.

To avoid fonfusion in the ODP and LOTOS terminology, the following clause uses italics to denote LOTQS specific
terms.

4.1.1 Basic modeling concepts

4.1.1.1 Dbject

An instanfiation of aLOTOS process definition which can be uniquely referenced.

4.1.1.2 Environment (of an object)

The part gf a model which is ot part of the object. In LOTOS, the environment of an object within a specification at a
given timg is given by the enyironment of the specification and by the other behaviour expressions that are{composed
with that gbject in the specification at that time.

NOTE |- The envirghment of a specification is empty if the specification is not parameterised.

4.1.1.3 Action

Actions inLLOTQOS are madeled as either infernal events or ohservahle events All events in 1| OTQOS are dgtomic. An
internal action may be given explicitly by the internal event symbol, i, or by an event occurrence whose associated gate
is hidden from the environment.

An interaction is represented in LOTOS by a synchronisation between two or more behaviour expressions associated
with objects at a common interaction point (gate). Interactions may be of the kind:

— puresynchronisation on a commoigate with no offer: No passing of values between objects occurs;
— land ! for puresynchronisation: No values are exchanged between the objects;

— land ? for value passing provided the ? event contains the ! event: Another way of considering this is that
the ! event selects a value from a choice of values for the ? event;

— ?and ? for value establishment: Here the effect is an agreement on a value from the intersection of the set
of values. If the intersection of the values is the empty set thesyme@ronisation and hence no
interaction occurs.

ITU-T Rec. X.904 (1997 E) 3

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

If anon-atomic granularity of actionsis required event refinement may be used. This will then enable non-instantaneous
and overlapping actions to be modelled. It should be noted that event refinement is a non-trivial problem, especially
when behavioural compatibility isto be maintained.

There exists no construct in LOTOS to express cause and effect relationships, although this might sometimes be possible
to represent informally.

4.1.1.4 Interface

An abstraction of the behaviour of an object that consists of a subset of the observable actions of that object. As all
observable actions of an object in LOTOS require gates with which to synchronise with the environment, the subset of
observable actions is usually achieved by partitioning the gates given in the process definition associated with the object.
In order to obtain an interface, hiding the gates not required for the interface under consideration can be achieved.
Alternatively, synchronising on only a subset of the gates associated with an object can be used. In this case, actions
Occurring gt those gazes inthe nrocess definition not in the set synchronised with —mayv be regarded as action internal to
the object jas far as the environment synchronising on those gates making up the interface is concerned.

It should pe noted that this definition requires that the interfaces of an object use different gate names, i.g. it is not
possible tg distinguish between interfaces that use the same gate.

4.1.1.5 Activity

An activity is a single-headed directed acyclic graph of actions, where each node in the graph represents a system state
and each grc represents an action. For an action to occur it must satisfy the preconditionsof the system state.

4.1.1.6 Behaviour (of an object)

The behayiour of an object is defined by the LOTOS behaviour expressién associated with the process definition that
constitutes the object template. A behaviour expression may consist of ,a sequence of both externaly visible eyent offers
and internpal events. The actual behaviour of an object as might be reeorded in atrace, is dependent upon the|behaviour
expression associated with the object and how this is configured with’the environment. The actual behaviour|the object
exhibits dgpends upon the behaviour expression of the object andshow this synchronises with its environment| An object
may exhiljit non-deterministic behaviour.

4.1.1.7 Btate (of an object)

The condition of an object that determines the set'‘of al sequences of actions in which the object can take| part. This
condition |s governed by the behaviour expression defined in the object template from which the object was dreated and
possibly by the current bindings of any existingtocal variables.

ommunication

ance of information_(ia value passing) between two or more interacting objects. It is not possije to write
se and effect relationships. It should aso be pointed out that the synchronisation itself may be cqnstrued as
ion.

directly,
communi

4.1.1.9 ocation in{space

LOTOS abstracts:away from the notion of location in space. It is only possible to equate space with the strugture of the
specification model. The location of an event — the structural location with respect to the specificatipn model — is given
by agate forinteractions in LOTOS. The notion of location in space at whiclw@mal event can occur is abstracted

away from in LOTOS. This abstraction is achieved implicitly using the LOA&... in construct which makegates

used internally within a process invisible to the environment of the process, or explicitly usingethel event
symbol,i.

It is possible for the same location in space to be used for more than one interaction point. This is made possible in
LOTOS by having a singlgate with differentaction denotations.

The location of an object is given by the union of the locations ofdle associated with that object, ithe union of
all of the locations of the actions in which that object may take part.

4.1.1.10 Location in time

LOTOS abstracts away from the concept of time, only considering temporal order so thetésslme location in
relative metric time. Location in time would be possible, however, if an extended form of LOTOS were used with time
aspects incorporated.

4 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4

4.1.1.11 Interaction point

A gate with apossibly empty list of associated values.

NOTE

— In a specification, changes in location may be reflected by changes in the associated values.

4.1.2 Specification concepts

4.1.2.1 Composition

— of objects: A composite object is an object described through the application of one

combination operators. These include:
e interleaving operator (|||);

e parallel composition operators (|| and fgate-list]|);

: 1998 (E)

or more LOTOS

e enabling operator (>>);
e disabling operator ([>);
e choice operator ([])

- of behaviours: The composition of théehaviour expressions associated with the compon
the creation of a composite object through composition. The operators for the compos
are the same as those for the composition of objects.

ENt objects in
ition of behaviours

4.1.2.2 (omposite object
An objedt described using one or more of therleaving, parallel cemposition, disabling, enabling and choice
operators of LOTOS.
4.1.2.3 Pecomposition
- of objects: The expression of a given object ‘asoaposite object. There may be more thah one way to
decompose a composite object, however;
- of behaviours: The expression of a given behaviour as a composite behaviour. There [may be more than
one way to decompose a compasite*behaviour.
NOTE |- It might also be considered that the~notion of decomposition of behaviours is inherently suppliqd by the ACT ONE
operatipns and equations associated withvaz) That is, theseperations and equations provide all possible combinations of

behavi
operati
compo|

4.1.2.4

In LOTOS$, specific theories have been developed to check for behaviour compatibility. There are no specif
language $yntactical features to construct and ensure behaviour compatibility generally. The LOTOS standard

developst]

In order t|
introduceq
where her

burs. Thus for example, sequential composition might be generated tlyaughions applied sequsg
n application in the sequence’must satisfy the necessary equations for occurrence. Whethe
Sition is debatable though, since dperations and equations already existed and defined all possible beh

Behavioural compatibility

he notion ef\conformance which provides a basis for consideration of behaviour compatibility.

D determine whether or not two object behaviours are compatible, the notion of conformance n

ntially. Each
this is behavioural
aviours.

c LOTOS
however,

peds to be

. .Conformance is concerned with assessing the functionality of an implementation against its sp¢

ification,

If P and Q are two LOTOS processes, then the statement Q conforms to P (written as Q conf P) signifies that Q isa
valid implementation of P. This means that if P can perform some trace o and then behave like some process P’, and if
Q can aso perform trace o and then behave like Q’ then the following conditions on P’ and Q’ must be met: whenever
Q’ can refuse to perform every event from a given set A of observable actions, then P’ must also be able to refuse to
perform every event of A.

Thus Q conf P if and only if, placed in any environment whose traces are limited to those of P, Q cannot deadlock when
P cannot deadlock. Another way of defining thisis Q has the deadlocks of P in an environment whose traces are limited
to those of P.

An object can be made behaviourally compatible with a second object after some modification to its behaviour, which
might include extending the object’'s behaviour (adding additional behaviour) eg¢daction of the object’'s behaviour
(restricting the object’s behaviour). This process of modification of an object is known as refinement (see 4.1.2.5).

ITU-T Rec. X.904 (1997 E)

5

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)
4.1.2.5 Refinement

Refinement is the process by which an object may be modified, either by extending or reducing its behaviour or a
combination of both, so that it conforms to another object. Letting P and Q be LOTOS processes, an extension of P by Q
(written as Q extends P) means that Q has no less traces than P, but in an environment whose traces are limited to those
of P, then Q has the same deadlocks. A reduction of P by Q (written as Q reduces P) means that Q has no more traces
than P, but in an environment whose traces are limited to those of Q, then P has the same deadlocks.

4.1.2.6 Trace

A trace of the behaviour of an object from its initial instantiated state to some other state is a recording of the finite
sequence of interactions (observable events) between the object and its environment.

4.1.2.7

Types thal can be written down explicitly in LOTOS for objects and interfaces are template types. There-ds ho explicit
construct jn LOTOS that will permit the modeling of action types as such. A LOTOS specification copsists of a
behaviour| expression which is itself composed of action denotations (action templates). These action templfates either
occur as part of the behaviour of the system, in which case their occurrence may loosely he‘regarded as|the action
template instantiation, or they do not occur, in which case the action template remains_uninstantiated. The action
templates themselves may be given by the internal event symbol, i, or event offers at gafes which may or may not have
finite sequence of value and/or variable declarations.

LOTOS dpes not offer facilities to characterise actions directly, however, a limited form of action charactérisation is
built into the synchronisation feature of LOTOS. That is, it might be considered that synchronised action denotations
plates) must satisfy the same action type in order for the action to occur. However, LOTOS does rot classify
the charagterising features of these arbitrary action denotations and thus-it is not possible to put a formal type to any
given actipn. It might be the case that informally the event offers involved in an interaction are given a causeland effect
role, but thisis generally not the case. See 4.1.1.8.

The interral event symbol may be used to represent an action.type, where the common characteristics of thig collection
of actionsjare that they have no characteristics.

It should be noted that by stating that the only predicate possible in LOTOS for objects (and interfaces) arg that they
satisfy thdir template type, the concepts of type.and template type as given in ITU-T Rec. X.902 | ISO/IEC 10746-2
reduce to the same modeling technique in LOTOS. Thus there is no distinction in LOTOS between a type in its broad
characterigation sense, and atemplate typein.its more restrictive sense of template instantiation.

4.1.2.8 (lass of an <X>

The notion of class is dependent,upon the characterising type predicate which the members of the class satisfy. Objects,
interfaces|and actions can satisfy many arbitrary characterising type predicates. A type that can be written|down is a
template type. When this is the case, the class of objects, interfaces and actions associated with that type is the template
class.

NOTE |- It sheuld be noted that by stating that the only classification possible in LOTOS for objects, interfades andthetions is
they satisfy(their template type, the concepts of class and template class as given in ITU-T Rec. X.902 | ISQ/IEC 10Zd6-2 redu
to the pame modeling technique in LOTOS. Thus there is no distinction in LOTOS between a class in its|general classification

sense, and a fnmplnfn class in its more restrictive sense as the set of instances aof a gi\lnn fnmpl:\fn fypn

4.1.2.9 Subtype/Supertype

As the types that can be written down in LOTOS for objects, interfaces and, to a lesser extent, actions, are template
types, a subtyperelation in LOTOS is arelation that may exist between template types. In LOTOS, however, there exists
no direct feature to write down subtyping relations directly. If subtyping is required then extension can be used to give a
subtype relation based on substitutability, however, thisis not afeature explicitly provided for in LOTOS.

4.1.2.10 Subclass/Superclass
As the types that can be written down in LOTOS for objects, interfaces and, to a lesser extent, actions, are template

types, a subclass relation exists between two classes when a subtyping relation exists between their corresponding
template types.

6 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4

4.1.2.11 <X> Template

Object Template: A process definition with some means by which it can be uniquely i

: 1998 (E)

dentified once

instantiated. If no value parameter list is given, then object identification will not be possible for more

than one object instantiated from the object template.

With regard to combination of object templates in LOTOS there are no existing combination operators

except for a limited form of scoping using the LOTG&hére” term.

interactions at a subset of theres associated with therocess definition. This subsetting of
achieved byiiding the gates not required for the interactions under consideration.

Interface Template: Any behaviour obtained from @rocess definition by considering only the

thgates is

With regard to combination of interface templates in LOTOS there are no existing combination operators

except for a limited form of scoping using the LOTG&hére” term.

NOTE
templal
to ana
require
exist in

Compq
two (o

the conmon characteristics of all of the action templates involved iythéronisation (composition).

4.1.2.12

An interfa
LOTOS b
with the el

4.1.2.13

4.1.2.14

Action Template: An action denotation where anaction denotation may be either anin

declarations.

— The definition here afction denotation is contrived as LOTOS does not really support“the cong
te. In LOTOS, possible behaviours are specified by gixirign denotations combined in somé)form. To re
tion denotation is the closest that can be achieved in LOTOS. However, the text of FTU-T Rec. X.902

isolation and it is not possible to collect them and apply a template to characterise them.

more) action templates agree on a common action template fgntheonisation to occur, i.e. an action

nterface signature

Ice signature as a set of action templates associated with the interactions of an interface is repr
aset of action denotations. The members of this set arethose action denotations that require synch
wironment in order to occur.

nstantiation (of an < X' > Template)

its initial state. This process invelves teualisation of the formal gate list andformal parar
process definition by a one-one, relabelling from a specified gate list and list of actual
features of the object created will be governed by the object template and any [
instantiate it.

of an Interface Template: The result of a process by which an interface is created f
template. The interface created can thereafter be used by the object it is associated
the environment.*The features of the interface created will be determined by the inte
any parameters used to instantiate it.

of an Action Template: This is given as action occurrence in LOTOS. This may involve
ACT(ONE expressions.

Role

symbol, a gate-identifier or a gate-identifier followed by a finite sequence of valui

tdrnal-event

and/or variable

ept of an action
ate a template
| ISO/IEC 10746-2

s an action template to group the characteristics of actions. This is not part of LOTOS as eventrisfteysnorations)

sition of action templates may loosely be likenegtohronisation with value Qassing or value generatign. In this case,

template with

esented in
ronisation

of an Object Template: The result of'a process which uses an object template to creaje a new object in

heters of a
parameters. The
arameters used to

om an interface
Wwith to interact with
rface template and

the rewriting of

A name associated with @ocess definition In the template for a composite object (i.e. LOTOS composition of
behaviour expressions). As such, roles cannot be used as parameters. However, it is possible to assign data values to

each role

in a composition in order to distinguish or address them specifically.

4.1.2.15 Creation (of an < .X>)

of an object: The instantiation of an object template as part of the behaviour of an existi

ng object.

of an interface: As objects and interfaces are modelled the same way in LOTOg-{¢ias definitions),

creation of objects corresponds to creation of interfaces. Thus the definition for interface creation is given

by the creation of objects.

4.1.2.16 Introduction (of an object)

Theinstantiation of the behaviour associated with a LOTOS specification.

ITU-T Rec. X.904 (1997 E)

7

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

4.1.2.17 Deletion (of an < X>)

of an object: The termination of a procesastantiation. This may be achieved through the use of the

LOTOS disabling operator, the LOTOS inactionstop) behaviour expression which does n

ot allow for

the passing of control, or the successful terminaéei) behaviour expression where passing of control

is possible via thenabling operator.

of an interface: The process by which the future behaviour of an object is limited to that behaviour

which did not require the participation of the given interface to be deleted.

4.1.2.18 Instance of a type

of an Object Template: An instance of a given object template is represented in
instantiation of that object template or an acceptable substitution for an instantiat

LOTOS by an
ion of that object

template. Here the acceptable substitute should capture the characteristics that identify this type. Thus an

nnnnn la

4.1.2.19

ol
actTpPTiorT

form of type satisfaction relation can be found which does not require all characteristic
given template to be included, but some subset of the total characteristics.

of an Interface Template: As an interface template is represented the.same way as &

(via aprocess definition in LOTOS), the above text applies equally well)(replace all oc
object with interface) for instance of an interface template.

sHbstittteright-be-arothertemplate-thatis-behavietraly-compatible-with+
be achieved throughxzension as defined in section 4.1.2.4. Using this relation .gual
characteristics of the type under consideration are included. It might be the case;)how

e first. This might
rantees that all
ever, that a weaker
5 associated with a

n object template
urrences of

of an Action Template: An instance of an action template-tion.dénotation) is representedl in LOTOS

by anothewction denotation offering an equivalent event offer;

[emplate type (of an < X>)

A predicgte expressing that ank<> is an instance of a given template, where ah>may be an object, a

an action

4.1.2.20

The temp
an object

NOTE
explicit

4.1.2.21

If the tem

lemplate class (of an < X>)

late class of an> is the set of all & >'s that are instances of that¥<> template, where an X
an interface or an action.

Derived class/Base class

late of aclassis an incremental modification of the template of a second class, then the first classi

class of thp second class, and the second class is a base class of the first.

LOTOSt

plates can be incrementally modified by extending, enriching and modifying the data types or by

the behavijour. Problems arise'with the behaviour modifications however, specifically:

subtyping: Non-determinism may be introduced into the system when the initials of the
and.its'modification are the same, thus subtyping cannot be guaranteed;

the need for a redirection of self-reference: Any reference to a derived template fron
should be redirected to the derived template, which is not always possible.

h interface or

£ > may be

— The notion of the template class of \af“action is limited in its application to LOTOS, as LOTOS does not provide
y for action templates, action template instantiations or action template types.

5 a derived

modifying

inherited template

a parent template

There is no satisfactory solution to these problems in standard LOTOS.

4.1.2.22 Invariant

In LOTOS, the only invariants which can be written downgateess definitions. There is no way to attach an invariant
to aprocess definition which is not therocess definition itself.

4.1.2.23 Precondition

A precondition is a predicate that a specification requires to be true in order for an action to occur and may be expressed
directly in LOTOS using one or more of:

sequencing of actions;

guards andselection predicates.

ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

4.1.2.24 Postcondition

In LOTOS, the occurrence of an action is independent of the state of the system after the occurrence of the action. As
such, LOTOS does not provide the means to directly express postconditions.

4.2 Architectural semantics in ACT ONE

This subclause provides a formalisation of the basic modelling and specification concepts contained in ITU-T
Rec. X.902 | ISO/IEC 10746-2. Whilst ACT ONE is not by itself a standardised FSL, it is used in the standardised FSLs
LOTOS and SDL-92 and provides an alternative way in which to formalise the aforementioned concepts. Therefore the
ACT ONE formalisation of the concepts contained in ITU-T Rec. X.902 | ISO/IEC 10746-2 is presented in its own
separate clause.

4.2.1 Basic modelling concepts

4.2.1.1 bject

An instange of asort which can be uniquely referenced. It should be pointed out that objects modelled'this way must be
specified $o that they have some form of existence. This can be achieved through a process algebra‘specificgtion style.
Examples|of this style include recursion in process definitions, where the object is an element of the value parpmeter list
associated with that process definition. Alternatively, let...in clauses can be used to model” objects with [a form of
existence.|In both these styles, guards and/or selection predicates are required to ensure’ that instantiatigns of sort
definitiong are unique.

The envirpnment of an object is not provided for in ACT ONE. This notion‘ean only be considered through the process

algebra the ACT ONE expressions that exist there. In effect, the environment of an object may be regarded as al of
the process algebra other than the ACT ONE expressions representing.the object in question and the operati¢ns on that
object. Thet is, the environment is used to cause operations on an-ebject to occur. This notion of environmet does not
require that the operations on an object are invoked by other objects. This has consequences on notions such as
interactiop, i.e. here interaction does not take place between objects but between an object and spme outside agency -

here the process algebra.

4.2.1.3 ction

An operafion occurrence. It should be noted that there is in general, no inherent distinction between an interaction and
an internal action purely from an ACT ONE _perspective. That is, possible actions are modelledcﬂmmkm in the
signaturel of an ACT ONEorz, and these-may or may not occur, depending upon the occurrence |of the ACT ONE
expressigns existing in the process.algebra. Thus internal actions are not explicitly catered for in AGT ONE. It might be
the case| however, that a form oftinternal action can be modelled thveugldefined locally in the progess algebra.
Alternativiely, alloperations declared in the process algebra may be regarded as interactions. Operafions used to satisfy
theseopeilations, i.e. in the equations associated with theperations under consideration, may be regargled as internal
actions. for example, if processes calbaeration pop2 which removes two elements from a queue apd this uses the
operation pop twice in itSrassociateehuations, thenpop2 may be regarded as an interaction, whitgt can pe regarded

as an internal action.~The problem with this treatment of internal action, however, is that thefe is no notion of
spontanepus transitions as such, asfor instance with thiazernal event symboli in the process algebra.

It should [be,pointed out that this form of interaction does not require that two or more objects intg¢ract in the process
algebra gense, i.throughsynchronisation on a commorgate. Rather, here interaction may be interpreted as something
which is caused indirectly by the environment but not necessarily caused by an objeat,hyeanother instance of a

sort modelling an object. Thus it might be the case that an event offer occurrence which does not involve ACT ONE
expressions causes an interaction to take placeheoggh an event offer occurrence which results indkentiation

of aprocess definition whosevalue parameter list contains amwperation (interaction) on an object (or objects).

4.2.1.4 Interface
Theoperations andequations associated with an object.

42.1.5 Activity

A sequence obperation applications on a givesort. Theseoperations must satisfy thequations associated with the
sort. Each operation in the sequence obperations that occurs, i.eeach operation in the activity, must have
preconditions that satisfy the postconditions of the prewpusation occurrence. Preconditions and postconditions on
operations are defined in 4.2.2.23 and 4.2.2.24 respectively.

ITU-T Rec. X.904 (1997 E) 9

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

4.2.1.6 Behaviour (of an object)

The behaviour of an object modelled in ACT ONE is dependent upon the operations associated with the object template
and the current value the state of the object is bound to. That is, the value the state of an object is bound to can be used
to limit the possible operations that can take place, e.g. through excluding certain operations from occurring whose
equations are not valid for that value of the state.

ACT ONE does not explicitly provide for constraints on operation occurrences such as sequencing, non-determinism,
concurrency and real-time constraints as such. Rather, ACT ONE provides operations and equations which in
themselves denote all possible constraints, i.e. al possible behaviours with their associated constraints.

There does not exist the feature in ACT ONE to model internal actions specifically. That is, there is no notion of
spontaneous transitions as might occur in the process algebra with the internal event symbol i for example.

It should be poi nted out that there is no real notlon of behavrour actuaJIy occurri ng solely in ACT ONE. The notion of

4.2.1.7 Btate (of an object)

The current value that an instance of a sort modelling an object is bound to. It should be(pginted out blhat a sort
modelling|an object should contain an identifier used to distinguish between different instaneesof the sort. The value of
this identifier does not represent part of the state though, i.e. this value should remain immutable in the operations and
equations jassociated with the sort.

4.2.1.8 (Communication

This notign is not supported in ACT ONE. It might be the case that an-abstract form of communicatior] might be
modelled |through a process algebra specification style. This does not. reflect the text of ITU-T Reg. X.902 |
ISO/IEC 10746-2, however, i.e. it is not the case that one object conveys information to another object. Rather, it is the
environmegnt (the process algebra) being used to communicate with ahd hot other objects.

4.2.1.9 Location in space

The notiom of alocation in space is not explicitly supportediin ACT ONE. If required, this notion can be engifeered into
the specification model, e.g. through a sort modelling alocation in space that is used in operations whose |ocation in
space is td be ascertained.

4.2.1.10 Location in time

The notion of alocation in time is not exphieitly supported. However, if the notion of time is related to the cirrent state
of agiven|object, i.e. to the state changesthat have occurred and those that can occur, then the location in tinje at which
agiven action can occur may be determined, to some extent, by the current state of a given object.

The location in time at which-an‘action can occur may also be engineered into the specification, e.g. through a sort
modelling|alocation in timethat’is used in operations whose location in time is to be ascertained.

4.2.1.11 Interaction point

This notign is not-directly supported in ACT ONE. It might be the case, however, that this concept can be ¢ngineered
into a specification. For example, through a sort used in the operations that are in the set of interfaces a the same
location. That/is, aII operations in the et of interfaces a the same Iocation requi rean input parameter (sort)|indicating

2 3 bxist at the
same Iocat|on Thrs could be achreved through an opemnon to create a Iocatlon sort that requrred several interaction
point sorts as inputs. The operations and equations associated with these sorts should enable identification of distinct
interaction points and locations.

4.2.2 Specification concepts

4.2.2.1 Composition

— of objects: It is not generallyhe case that two arbitrary objects can be combined in ACT ONE and have a
meaningful result, i.ea composite object with its own behaviour, etc. The most likely form of
composition in ACT ONE is through a constructgieration which has two or more objects as input
parameters and a means whereby it can be uniquely identified. Consider the following ACT ONE
constructompperation:

makeCO: Id, Obl, Ob2 -> CO

10 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

Here a composite object is being created from two other objects which have their own associated
operations and equations, i.e. their own behaviours. Whilst it is the case that co: CO = makeCO
(idl,0b1,0b2) is composed of objects ob] and 0b2, object co has no behaviour as such. That is the
behaviours associated with ob1 and ob2 are not applicable to instances of CO.

To solve this problem, the composite object can have additiona operations and equations specified. The
form of these operations and equations and their relationship to the component objects, then determines
the form of the composition. For example, if the operations and equations of the composite object simply
enable access to isolated component objects, then a form of delegation is achieved, with the component
object composition representing an aggregation. If the operations and equations of the composite object
are specified in such a way that they modify the behaviour of the component objects, then a form of
composition is achieved that more closely resembles the text of ITU-T Rec. X.902 | ISO/IEC 10746-2. It
should be pointed out, however, that the notion of composition given in ITU-T Rec. X.902 |
ISO/IEC 10746-2 does not require further specification to be made, i.e. it involves composing existing

nh} ects-and behaviours to gmornfn naas. thl ects-and hehaviaol KS; and-not $nmfy| Ag additional. behaviour

to enable the component object composition meaningful.

the notion of
that a form of

- of behaviours: Since ACT ONE does not provide specific composition operators
composition of behaviours is not explicitly provided for. It should be poigted out

composition does exist in ACT ONE: that @frichment. This may not be classified as
generally, however, as it does not provide explicit composition of behayiours (or object
enrichment by itself, i.e.without further specification, offers no compgsition features.

types exist independently wheenrichment is applied. It is only whervperations and equ
specified which use therts made available througénrichment, thaf\the notion of compo
applied. This may not adequately reflect the text of ITU-T Rec:xX.902 | ISO/IEC 10746
is not the case that two behaviours are simply combined. Further specification is requ
behaviours. It should be added thatichment does makesavailable all of the existinger,
equations of thesorts being combined though. Thus the-respecification necessary to co

composition

5) as such. Rather,
All of dive

ations are

Sition can be

-2 howetter, i.e.
red to combine the
tions and

mbine behaviours

does not include theperations andequations of thesorts introduced througlenrichment.

A form o
These reguire théata type actualisations satisfy anyformal sorts, operations and equations of the data
actualised] This is the closest that can be achieved in ACT-ONE to capture the notion of composition jof behaviour as put
forward in ITU-T Rec. X.902 | ISO/IEC 10746-2. It-is’debatable whether this represents composition of behaviours
though, gince there can be no behaviour pframeterised data type until it has beenctualised, i.e. it is npt the case

that an instance of thiers can occur in the process:algebra apéerations applied.

composition of behaviours might also be achieved througlidhelisation of parameterised data types.
ype being

4.2.2.2 (omposite object
The result of a composition of objects.
4.2.2.3 Decomposition

- of objects: Objetts may be decomposed in ACT ONE provided dpatations exist in the signature
associated with/the object to permit the decomposition. For example the folldwingpd permits a
composite.object to be decomposed into its component objects.

type Zis X, Y, IdType
sorts Z
opns makeZ: Id, X, Y ->Z
getX: Z ->X
getV:Z.>Y
eqns forall x: X, y: Y, id: ID
ofsort X
getX (makeZ(id,x,y)) = x;
ofsort Y
getY (makeZ(id,x,y)) =y;
endtype (* Z *)

Thus givenz: Z = makeZ(idl,x,y), wherex andy are instances oforts modelling objects and/!/ is a

unique identifier, this can be decomposed mntndy, i.e.it's component objects, througferX(Z) and

getY(Z) respectively.
NOTE — This interpretation is based upon the idea of being able to separate out a composite object into its component parts
(objects). The text given in ITU-T Rec. X.902 | ISO/IEC 10746-2, however, requires only that decomposition specify a given
object as a combination of two or more objects,a.eomposition. In ACT ONE, it is always the case that composite objects are
specified from combinations of component objects. Hence the distinction between composition and decomposition as given in
ITU-T Rec. X.902 | ISO/IEC 10746-2 is somewhat blurred when represented in ACT ONE.

ITU-T Rec. X.904 (1997 E) 11

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

— of behaviours: The notion of decomposition of behaviours is dependent upon the specification of
behavioural composition. This concept is not explicitly provided for in ACT ONE (see 4.2.2.1). That is,
behaviours are represented &yyerations and equations acting on asort. It is not the case that two
arbitrarysort behaviours can be combined and a new behaviour yielded.

NOTE - It might also be considered that the notion of decomposition of behaviours is inherently supplied by the ACT ONE
operations and equations associated with aort. That is, theseperations and equations provide all possible combinations of
behaviours. Thus for example, sequential composition might be generated thyaughons applied sequentially. Each
operation application in the sequence must satisfy the necessanyrions for occurrence. Whether this is behavioural
composition is debatable though, sincedperations andequations already existed and defined all possible behaviours.

4.2.2.4 Behavioural compatibility

In LOTOS, behavioural equwalence of data types ls based on name equivalence of sorts and possi ny also by the value
that these por i r object in
some environment if the objects are obtai ned from different object templaﬁ% i.e. they are instances of dlfferent sorts. It
may sometimes be possible to replace one object with another object derived from a different object tefmplatd, however.
This requifres that the environment offer operations that are applicable to both sorts and the results of ‘these pperations
are the sgme. For example, sorts representing a stack of integers and a queue of integers might be behjaviouraly
compatible in some environment if the environment offers only a fop operation, and the queuéand stack have the same
number of| integers pushed onto them. That is, the result in both cases will be an integer. I1f-an environment offers a pop
or a push |operation, then behavioural compatibility will not exist between the objects,'asthe operations rgturn stack
sorts and fueue sorts. Since in general, the environment of an object may invoke any joperation in the signature, this
form of bghaviour compatibility islimited.

4.2.2.5 Refinement

notion of refinement has been explicitly provided for-in the process algebra of LOTOS, eg). through
conformance testing and equivalence relations, there has been little work done on refinement in ACT ONE. |ntuitively,
however, fefinement in ACT ONE might take many forms. For €xample, through extending the signature of apiven sor,
i.e. providing more operations. Thisform of refinement should.generate natural behaviour compatibility, i.e. the existing
operationy and equations remain unchanged. Other forms of,refinement might also be possible, e.g. modificgtion of the
ciated with the operations on a sort. Ensuring behaviour compatibility is unlikely to betrivial inthis case.

4.2.2.6 race

Since intgractions are not explicitly provided for in ACT ONE, the notion of a trace is limited, i.e. it |cannot be
guaranteeql not to contain internal actions. If interactions are considered as the operations that occur in the process
algebra arjd internal actions as the operations used to evaluate the equations associated with these operatiqns, then a
trace may] be modelled to a limited extent. In this case it corresponds to the sequence of operation applications
associated with an instance ofawors modelling an object. It should be pointed out that if the equations assogiated with
operationy modelling interactions are rewritten, then the record of an object’s interactiortbgiteace, is|likely to be
incorrect| For example, \theeration applications of gush followed by apop on aqueue are likely to be yewritten as
queue as ppposed tathe expressiam(push(x,q)). Hence the notion of a trace is limited in ACT ONE.

4.2.2.7 Type€ofan<X>

Objects, mierfaces and actions speciiied in ACT ONE can satisty many different arpirary characterising predicates.
Types that can be written down explicitly are template types.

4.2.2.8 Class of an <X>

The notion of class is dependent upon the characterising type predicate which the members of the class satisfy. Objects,
interfaces and actions can satisfy many arbitrary characterising type predicates. A type that can be written down is a
template type. When this is the case, the class of objects, interfaces and actions associated with that type is the template
class.

NOTE — It should be noted that by stating that the only classification possible in LOTOS for objects, interfaces andthaetions is
they satisfy their template type, the concepts of class and template class as given in ITU-T Rec. X.902 | ISO/IEC 10246-2 reduc
to the same modelling technique in LOTOS. Thus there is no distinction in LOTOS between a class in its general classification
sense, and a template class in its more restrictive sense as the set of instances of a given template type.

12 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

4.2.2.9 Subtype/Supertype

The notion of subtype and supertypeis not generally supported in ACT ONE since LOTOS uses name equivalence when
type checking. For example, two object types are only the same when they are represented by the same sort. Thusit is
not generally the case that one sort can be substituted for another sorz. It might be the case, however, that alimited form
of subtyping exists between two different sorts if the characterising type predicate is based on some aspect of the sorts
other than their name, e.g. this operation is valid on this sort and returns this result. This is a limited form of typing
though and is unlikely to exist in most cases.

4.2.2.10 Subclass/Superclass

The notion of subtypes and supertypes are only supported to a very limited extent in ACT ONE, i.e. where the
characterising type predicate is based upon some aspect of the sorz. As aresult the notions of subclass and superclass are
not fully supported in ACT ONE. If a subtype/supertype relationship does exist between two sorts, then a
subclass/superclass rel ationship also exists between the instances of the sorts in the process algebra

4.2.2.11 £X> Template

- Object Template: A sort definition with associatedperations andequations modelling.ah ohject.

4.2.2.12

Theopera

4.2.2.13

4.2.2.14

The notio
a behavi
accessibl

4.2.2.15

- Interface Template: The set oboperations andequations associated with sorz.definition m

object. It should be noted, that the notions of interface and object templates may be r
sinceoperations andequations must always act onsart definition. It is alse, the case that t
of an instance of aort in the process algebra has implicitly associated with it,ofwe
equations as specified in the ACT ONE part of the specification.

Action Template: An operation with associatedquations.

nterface signature

yions that apply to a variable declared as an instance@ftanodelling an object.

nstantiation (of an < X' > Template)

of an object template: Instantiation of an object'template requires the initialisationsofam
object to a valid initial state. Thisrz initialisation should ensure that therz instance can
referenced.

of an interface template: Instantiation of an interface template occurs when an ob
instantiated. As such, an object has a single interface given bydhgions andequations ac
sort from which the object is instantiated.

of an action template: The.occurrence of an ACT ONdperation in the process algebra. T
must satisfy thequations:associated with thaiperation.

Role

n of a role may best)be modelled througdyain ACT ONE. This is because a role represents
pur. That is, through the declaration e, the operations and equations that apply to thasor
e

Creation'(of an < X>)

of an object/interface: Since objects and interfaces only have a form of existence wh
used in conjunction with the process algebra, ACT ONE by itself may not be used

pdelling an

pgarded as identical
ne declaration

tions and

pdelling an
be uniquely

ject template is
ting on the

kigeration

Aan identifier for
are made

en ACT ONE is
o model creation.

ACT ONE USed n COI"IjUﬂC[iOI’] with the Process daigepra imay be used 10 model crea

ion of objects and

interfaces to a limited extent provided a certain specification style is followed. For examper@aivn
associated with grt modelling an object, i.@noperation on an already existing object, which results in

the generation of a new object. It should be possible to uniquely reference the newly generated object.
This new object should also be used in the process algebra so that it has some form of existence

(see 4.2.1.1 for further details on how this can be achieved.)

4.2.2.16 Introduction (of an object)

Introduction of an object may be achieved in several ways in ACT ONE when used in conjunction with the process

algebra. For example, through event offers occurring wlwosen denotations result in a new instance of sart

modelling an object being generated. These new instances should be in a valid initial state, be uniquely referenceable,
and have some form of existence in the process algebra. Alternatively, objects may be introducedethrough

clauses. Here too they should have a valid initial state, be used in the process algebra so that they have a form of
existence, and it should be possible to uniquely identify them.

ITU-T Rec. X.904 (1997 E) 13

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

4.2.2.17 Deletion (of an < X>)

of an object/interface: Deletion of an object or interface may be achieved in ACT ONE when used in
conjunction with the process algebra through the rewriting that occurs withuttsons associated with

the operations on sorts modelling objects. For example, aperation which removes an element from a
set can be used to model deletion, argobject with a certain identifier is removed (deleted) from the set
of instantiated objects existing as part of th&ie parameter list of a recursiverocess definition.

4.2.2.18 Instance of a type

of an Object/Interface/Action Template: An instance of a type depends upon the

characterising

predicate defining the type. If the type predicate is the template type for objects and interfaces, an instance
of the object or interface type corresponds to an occurrence ofothenodelling the objects and
interfaces under consideration in the process algebra. Similarly, if the type predicate is the template type

for actions, an instance of an action type is given by the occurrencevpéranon modelling

4.2.2.19

4.2.2.20

4.2.2.21

Derived ¢
given thr

type under consideration in the process algebra.

emplate type (of an < X'>)

of an Object/Interface: A predicate on instantiations of thers used to. model an
instantiations (occurrences) of the templatersf in the process algebraxhave thgerd
equations that are associated with thatz. Since a template for an object, and an interfag
the same way, i.day asort definition with associatedperations andequations, the templat
object and the template type of the interface to that object are- synonymous in ACT
both correspond to an occurrence ebe in the process algebra:

of an Action: A predicate oroperation occurrences in the_process algebra. That is, @
(occurrences) of the templatepération) in the process. algebra must fulfill the requir
template, i.ethey must have the same inputs and,prfoduce the same results as give
definition, and theperation evaluation is governed-by. theuations associated with thaipera

lemplate class (of an < X>)
bf an Object: The set of instances of a givesrygmodelling an object in the process algebra.
bf an Interface: The set of instances of a.givesr modelling an interface to an object in the pr

pf an Action: The set of instances of-a'giveperation in the process algebra.

Derived class/Base class

lasses and base classes‘are not supported in ACT ONE. This is because classes in ACT (
pugh template classes, f@. objects, the set of instances of a giverr modelling an object in|

algebra. It is not the case thatis can be incrementally modified. That ssyzs and the labels that are atta

i.e.the ng
equations

It should
features
case that

can exist

me of theort, donotallow reference to another, i.e. self-reference always exists. Thus tper
associated with agivearz are only applicable to thabr and not anothesorz.

also be peinted out that the notiorualialisation of parameterised classes, whilst intuitively
bf derived/base class relationships, do not in effect represent such a relationship. This is
instances of a parameterised class can occur in the process algeteyamiest beicrualised so that a class

the action

object. All

tions and

e are modelled

e type of an

DNE. That is, they

ll instantiations
ements of the
oy citien

fion.

bcess algebra.

NE are normally only
the process

ched to them,

ations and

possessing the
because it is not the

4.2.2.22 Invariant

This notion is implicit within ACT ONE, i.eobjects must always satisfy tlperations and equations that apply to

them.

4.2.2.23 Precondition

In ACT ONE alloperations must satisfy alequations (and any associategliards) that apply to them before they can

occur.

4.2.2.24 Postcondition

This notion is implicit within ACT ONE, i.ethe occurrence of a givesperation (action) requires the associated
equations to be defined (true).

14

ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

4.3 Architectural semantics in SDL-92

SDL-92 is a standardised FSL. Tutorial material is annexed to the ITU-T Rec. Z.100. A number of SDL textbooks exist
as well as commercial tools, which support different aspects of SDL from graphics handling to analysis and generation
of programming code based on SDL.

SDL models a system as a set of extended finite state machines communicating by messages, called signals. The data
concept of SDL is based on ACT ONE. The state machines are extended in that they may define local variables to hold
part of their history. The signals are communicated asynchronously, thereby offering loose coupling between
components in a distributed system.

This subclause expresses one way in which modelling concepts can be expressed in SDL. The representation is not
regarded as unique. However it establishes that almost all of the fundamental concepts can be expressed in SDL. It
should be pointed out here that an alternative approach to modelling many of the concepts given here also exists. This
focuses on the use of ACT ONE. Details of this approach may be foundin 4.2.

The versjtl)n used is SDL-92, as defined in the ITU-T Rec. Z.100. SDL-92 contains a number of extensiohg compared
with SDL{88. The most important ones are:

- object-oriented constructs;
- possible nondelayingiannels;
- non-determinism;

- possible inclusion of alternate data conceptéremote procedure calls,

The most significant feature of the alternate data typing is that they enable*combined usage of ACT ONE and ASN.1
within SOL. The semantics of the combination of SDL-92 with ASN.1 iscdefined in the ITU-T Rec. Z.405.

To avoid onfusionitalics have been used in the text to indicate SDLcconcepts, whenever it has been|felt necessary.
4.3.1 Basic modelling concepts

43.1.1 OPbject

Objects in SDL are instances gfstem type, block type,‘process type, service type, timer, channel, and signalroute.
These ingtances are characterised by a state and a‘behaviour.

Each insfance is encapsulated, i.e. any changédn its state can only occur as a result of an internal pction or as a result o
an interag¢tion with its environment.

Referencgs for some kind of objects have to be provided explicitly.

4.3.1.2 Environment (of an object)

The envifonment of an objecttdepends on the object kind. See Table 1.

Table 1 — Object environment

Object kipd Environment constraints
system — incomingsignals of channels
block — global datatypes

— incomingsignals of channels

— calls ofexported procedures

— imported variables

process — global datatypes

— incomingsignals of implicit or explicit signalroutes
— calls ofexported procedures

— viewed/imported variables

— time constraints foput actions

service — global variablesimers/datatypes, shared signal buffer (owned by enclogingess instance)
— incomingsignals of implicit or explicit signalroutes
— calls ofexported procedures

— viewed/imported variables

— time constraints foinput actions

timer — calls ofser andreset, stop of the owneprocess
channel — incomingsignals from the connectetllocks (resp.system environment env)
signalroute — incomingsignals from the connectegrocess/service instances

ITU-T Rec. X.904 (1997 E) 15

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

4.3.1.3 Action

An action in SDL is a single input or save, an action statement, a whole transition or the complete execution of a
procedure. Possible single action statements are:

— task, import, export, view,
- output;

— create;

— set, reset, active;

— procedure call;

— stop/return;

- nextstate.

The trangmission of aignal by a channel or asignalroute is an action also, as is the generation)ginger signal.
Interactions are th&put/output of asignal, the call and thereturn action of aremote procedure, and the uge of shared
variables| (globaprocess variables ofservices, revealed/viewed and import/export of process variables).|The action
sequence of sending, conveying and eventually receivingighal (output-input) can be considered as orle interaction.

4.3.1.4 Interface
Dependinjg on the kind of an object there are different means in SDL to describe interfaces, as showp in Table 2.

In case of &lock object the set ofemote procedures exported/imported tolfrom.the outside of thelock as|well as the

set ofsigmuls sent/received byrocesses of thatblock should be encapsulated-in one or more processes] ftveseses

then act as the interfaces of #eck object. With those interface descriptions only the potential interacjons of an object
are defingd, where each interface describes a subset of potential,interactions of an object.

Table 2 — Object Interfaces

Object kihd Interfaceis characterised by
system — system gates With their signal lists

— ingoing/outgoing channels with their signal lists
block — block gates with their signal lists

— ingoing/outgoing channels withiheir signal lists

— ingoing/outgoing signalroutes with their signal lists

— set of remote procedures'(exported/imported tolfrom outside of block)
— set of remote variables\(exported/imported tolfrom outside of block)
process — process gates Withtheit signal lists

— setof al valid input/output signals

— set of al exported/imported procedures

— set of shared\variables (revealed/viewed tolfrom outside of process)
service — service gates with their signal lists

— setof(dlvalid input/output signals

— settef Al exported/imported procedures

timer — _inier identification
channel —sets of al signals carried in each direction
signalrofte ~_/ setsof al signals carried in each direction

4.3.1.5 Activity
In general an activity cannot be denoted explicitly, since it may span several objects.

One special case of an activity is the execution of a locaaste procedure with the call action being the head of the
activity and the potential return actions being the tail actions.

4.3.1.6 Behaviour (of an object)

The behaviour of arocess/service is the set of all transitions of thatrocess/service. The input actions provide
constraints on the circumstances in which the transitions may occur. Additional constraints can be introduced using the
provide construct or theontinuous signal construct. An object may exhibit non-deterministic behaviour.

The behaviour of &alock is aggregated from the behaviour of fhecesses contained in thablock. The behaviour of a
system is aggregated from the behaviour oftheks contained in thagystem.

16 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

The behaviour of a channel or a signalroute is the conveyance of signals (instantaneously or delayed when specified).

The behaviour of a timer is predefined in SDL in the sense of an alarm clock.

4.3.1.7 State (of an object)

The set of all sequences of actions in which an object can take part at a given instant in time is determined in case of a
process/service by the current SDL state at that time, the values of the local variables, and the content of the input port.

The state of a block or a system is the total of the states of all contained processes, blocks plus all contained channels or
signalroutes.

The state of a channel is given implicitly or explicitly by a block. The state depends whether the channel has a delay
property or not.

The state @isienatronte-ts-obwaysgiverHmpherthy-

The state pf a timer is active or not active. The state of an active timer is determined by the remaining-time delay for
sending afimeout signal.

4.3.1.8 Communication

The convgyance of information between two or more objects is done by explicit or(implicit (in case [of remote
procedurels Or imported/exported variables) channels or signalroutes. Information is carriedhby signals.

4.3.1.9 Location in space

Actions gccur within process instances and service instances. TransmiSsion actions occur within cAannels or
signalroutes.

4.3.1.10 Location in time

Each actipn is characterized by a date when the action begins‘and a date when the action ends. Actigns can be
instantanepus. The duration of an action cannot be denoted explicitly. Actions can be scheduled for a concrgte date or
after a specified delay.

NOTE |-
a) Tlhere is a global time in SDL accessibleby,>Nothing is said about the time units.
b) Two consecutive actions anda2, hold the relatiomow(al) <= now(a2).

c) The only ways to address explicitly time are the set actiondereaand the application ofow in enabling copditions and
cpntinuous signals. Scheduling of actions for a fixed point in time should be avoided.

4.3.1.11 Interaction point

Interaction points are the gates-of block/process/service instances and the endpoints of (possibly implicit) chgnnels and
signal-roftes. Shared variables-are interaction points too. They have a location. An object can have severa |nteraction
points.

4.3.2 Bpecification concepts

4.3.2.1 (Composition

folhiantc,
OToOojicts.

a) asystem object may be a concurrent compositionbifck objects which may be interconnected by
channels;

b) ablock object may be a concurrent compositionbifck objects (which may be interconnected by
channels) or a concurrent composition pfocess objects, which may be connectedsynalroutes;

C) aprocess object may be an interleaving compositiors@fvice objects;
d) achannel may be a composition éfocks interconnected byhannels;
— of behaviour
a) the behaviour of gstem is a concurrent composition of the behaviour obitscks;

db) the behaviour of &lock is a concurrent composition of the behaviour ofsitg-blocks or of its
processes,

ITU-T Rec. X.904 (1997 E) 17

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

¢) the behaviour of a process is an interleaving composition of the behaviour of its services or a
sequential composition of the actions of its process graph;

d) the behaviour of aservice isasequential composition of the actions of its service graph;

€) the behaviour of a channel may be a composition of the behaviour of the blocks it consists of and of
the channels interconnecting them.

4.3.2.2 Composite object

According to 4.3.2.1 the following objects can be expressed as a composition:

— Ssystem;
— block;
— process;
- channel.
4.3.2.3 Pecomposition
- of objects: The specification of a given object as a composition.
- of behaviours: The specification of a given behaviour as a composition.
4.3.2.4 Behavioural compatibility
There is po general means to describe behavioural compatibility in SDL expliCitly, however the senpantical basis of the
language]in terms of transition systems allows for the definition of behavieural compatibility and its vérification.
An instance of a derived class can be considered restricted behavioural compatible with an instance] of the corresponding
base clags and an instance ob@efined type can be considered restricted behavioural compatible with an instance of
the correspondingirtual type. Atleast-clauses can be used to require a restricted behavioural compatibjlity.
4.3.2.5 Refinement
There arg two ways to refine an SDL specification of anyobject:
- substructuring (oh/ock or system level);
- use of the object-oriented features-(inheritance, virtuality and generic parameters).
4.3.2.6 Trace
There is no explicit means to specifystraces in SDL. Traces can be obtained as the result of the intgrpretation of an SDL
specificafion according to the dynamic semantics of SDL.
NOTE |- Message Sequence:Charts (MSC) provide an appropriate syntax and semantics for the representation of traces of SDL
specifitations. There is a tight relation between the syntax and semantics of MSC and the syntax and semgntics of SDL. MSC are

defined and standardised in ITU-T Rec. Z.120.

4.3.2.7

Thereisn

[ype (of an{=<X>)
h generalexplicit predicatein SDL.

4.3.2.8

Class’(of <X>)

This concept is not supported in general, only for template types.

4.3.2.9 Subtype/Supertype

This concept is not supported in general.

4.3.2.10 Subclass/Superclass

This concept is not supported in general, only for template types.

4.3.2.11 <X> Template

— Object Template: Object templates are type definitions for the appropriate object kind (system, block,

18

process, service). For timers, channels and signalroutes, the object templates are the corresponding
declarations.

ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

— Interface Template: Dependingon the interface kind, an interface template can be given implicitly by a

declarationchannel, signalroutes) or explicitly by a type definition for arocess (see 4.3.1.4).

— Action Template: An action template is specified by the definition opracess/ procedure/ service
graph. Atomic action templates ateput, output, save, set, reset, create, task, stop, return, nextstate, call,
import, export, view.

Templates may be specified using parameters (formal parameters or formal context parameters). Parameters may have

constraints. Templates may be combined (i.e. a type definition may contain other type definitions).

4.3.2.12 Interface signature

The set okignal types andremote procedure types which are valid for the interface.

4.3.2.13 Instantiation (of an <X> template)

There arg two ways in SDL to instantiate templates:

- implicit instantiation {ystem, block, channels, signalroutes, processes, services) iscdoneg by object
declaration;

- explicit instantiation usingreate (only for processes).

Instantiatjons are always the result of an action to instantiate a template. Formal context parameters|have to be actualized

before th¢ instantiation can be obtained (pyaess type specialization or grocess declaration).

4.3.2.14 Role
There is mo general means to specify roles.

Roles may be described as formal context parameters.
NOTE |-4tleast-clauses can be used for a further qualification of a rolé.

4.3.2.15 (reation (of an <X>)

There are fwo kinds of creation (see 4.3.2.13):
- implicit instantiation;
- explicit instantiation — interpretation«Qk2eate action.

4.3.2.16 Deletion (of an <X>)

Only process objectscan be deleted. progess can delete only itself. This is done through the interpretation ofrdpe

action. If|aservice interprets astop action it results in the deletion of thigrvice, the deletion of all otheservices

belonging to the samegocess and the_deletion of therocess.
NOTE

a) Tlhe deletion of ongrocess by anotherprocess can be modelled using thewput of a specialsignal which eventually
cpnsumption by the receiver causes the receiver to interprgt.a

b) Tlhe deletion of.albrocesses of ablock can be considered as a deletion of tiatk.

4.3.2.17 Introduction (of an object)

The impligit instantiation (see 4.3.2.13) can be considered asintroduction.

4.3.2.18 Instanceofatype

An object is an instance of a system type, block type, process type or service type X, if there is an explicit or implicit
instantiation for that X or a substitute of X. A substitute is an instance of atype template which is atype speciaization in
SDL.

4.3.2.19 Template type (of an <X>)

The fact that an <X> is an instantiation of an <X> template can be expressed for processes, services, blocks and systems
by the denotation that the object is an SDL instance of the type definition.

4.3.2.20 Template class (of an <X>)

Thereis no general explicit notation to characterise the template class of an <X>, however the template classis the set of
al processes, blocks, services or systems instances from a process type definition, block type definition, service type
definition or system type definition respectively.

ITU-T Rec. X.904 (1997 E) 19

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/TEC 10746-4 : 1998 (E)

4.3.2.21 Derived class/Base class

A type definition may be derived from another type definition by specialisation, which may comprise:

— binding of context parameters and addition of new context parameters;

— inheriting definitions;

— redefinition of virtual components;

— addition of further definitions.

Constraints may be applied using thizast andfinalised constructs.

NOTE

— Multiple inheritance is not supported.

4.3.2.22 Invariant

Thereisnp notation for invariantsin SDL.
4.3.2.23 Precondition
Enabling ¢onditions, continuous signals and signals can be used to specify the preconditions of atransition.
4.3.2.24 Postcondition
There is np notation for postconditionsin SDL.
4.4 Architectural semantics in Z
The Z notgtion is a specification notation based on strongly typed set theory ‘and first order predicate calculys. Z is not
yet an ISQ FSL but a standard is being prepared by SO SC22 WG19. Thelatest version of the Standard is contained in
the Z-Basg Standard. See clause 2.
A de-factp standard for Z exists (Spivey’s Z Notation). See\clause 4. This version of the notation is gtable and very close
to the Z-Base Standard, and tool support exists for syntax and static semantics checking. This versign of the notation will
be used fpr the architectural semantics of RM-ODP until an ISO version of the documentation is widgly available.
To avoid confusion in ODP and Z terminology, italics’are used in the following subclauses to denote [Z-specific terms.
4.4.1 Basic modelling concepts
44.1.1 Object
An objec| may be described in Z by a collection of specification fragments. These fragments should|contain a collection
of operation schemas (representing the interface to the object) including appropsiate schema(s). These state
schemas|may include predicates which are used to represent (fragments of) the invariants of the object. The specification
fragment$ should also have some means whereby they can be uniquely referenced (representing the identity of the
object). This can be achieved through having an identifier isedeschema(s) of the object that remains gonstant in all
operations defined ferithat object. Finally, there must exist a valid initial state for that object. This can be achieved
through gn initialisation schema that gives legal bindings to the variables declaredzinethe@iema with & predicate
that ensuyes the-object is unique within the specification.

NOTE { Care/has to be taken when specifying objects in Z, since the language does not possess fedtures of encapsulation

(essentialfor describing objects) as discussed in the Note of 4.4.1.3.

4.4.1.2 Environment (of an object)

The environment of an object in a Z specification is described in terms of its input and output. Input to an object comes
from the environment. Output of an object goes to the environment. The environment of an object can either be specified
directly or left unspecified. If it is unspecified, then the occurrence of operation schemas producing outputs or requiring
inputs may occur with the environment either providing the inputs or recelving the outputs respectively. If the
environment of an object is specified, however, then this implies that for each operation schema associated with the
object, there exists another operation schema (possibly associated with another object) that requires inputs or outputs of
the same type as the object under consideration. These two operation schemas are then conjoined with one another with
the inputs/outputs of the operation under consideration being renamed as the outputs/inputs of the operation representing
the environment respectively.

The environment of an object may also be given by variables referenced by an object that have a global scope, e.g. those
found in axiomatic descriptions.

20 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)

4.4.1.3 Action

An action is modelled in Z by the performance of an operation specified in an operation schema. The effect is the
instantaneous change in state (or the null change) of the objects with which that action is associated. An action may
produce a non-deterministic result.

Since there is no explicit notion of encapsulation in Z, it is not usual to determine whether an action is observable or
internal in Z, hence the distinction between interactions and internal actions is not clearly defined. This
Recommendation | International Standard will use the convention that an operation schema representing an action which
has either inputs, outputs or variables global to the specification interacts with its environment. The environment may or
may not be specified (see 4.4.1.2). Actions requiring inputs from an unspecified environment that produce no outputs
may be regarded as externaly invoked non-observable actions. Actions producing outputs going to an unspecified
environment may be regarded as internally invoked (spontaneous) observable actions. Actions that require inputs from
an unspecified environment and produce outputs going to that environment may be regarded as externally invoked
observable actions,

If the environment of an object is specified, however, then this implies that for each operation schema reguifing inputs
or outputg that is associated with an interface to an object, i.e. an observable action, there exists another| operation
schema (fossibly associated with another object) that requires inputs or outputs of the same type.as the olject under
consideratjon. These two operation schemas are then conjoined with one another with the inputs/outputs of the operation
under congideration being renamed as the outputs/inputs of the operation representing the envirenment respect(vely.

Alternatively the occurrence of operations that reference variables that are global throughoeut the specificatjon can be
regarded gs interactions.

All operatjons in Z are atomic. That is, operation schemas in Z either happen in their entirety or do not hagpen at al.
Thus, it is|not possible in Z to have actions that are not atomic.

An object] interacting with itself can be modelled informally by composition of Z operation schemas. Fof example,
operation [OpA with output a!: 4 can be composed with operation OpB, With input 4?: 4, and a predicate cpnjunction
added to gate that a/ = b?.

The notion of cause and effect relationships are not strictly within the scope of Z. However, if an operation fequires an
input to ofcur, then this might be considered as the environment causing this operation to occur, i.e. the erfjvironment
acts as thg producer and the operation schema as the consumer. Similarly, if an operation schema produces|an output,
then this might be considered as the environment acting.as the consumer and the operation as the producer.|If a given
operation|schema requires both inputs and gives outputs, or has no inputs or outputs, then it is not possibl¢ to give a
cause and jeffect relationship to that particular action:

NOTE |- It should be noted that this syntactiC convention for distinguishing internal and observable actions ig limitextesiisce th

no serpantic distinction between operations which are to be interpreted as spontaneous or internal, and those which require

enviropmental participation; this can.only be achieved using the natural language commentary which ghould accompany all

Z specffications. As a consequence of this, the above definition treats a lossy queue as a subtype of a qugue. Clehdy though t
intentign of the extra lose operation‘in a lossy queue is that it should occur non-deterministically.

4.4.1.4 nterface

An abstragtion of the behaviodr of an object obtained by identifying the operations associated with that object|that are to
form the pubstance of+the interface. In al remaining operation schemas @l inputs and outputs are hiddg¢n and the
occurrence of the operations defined in these operation schemas are regarded as internal actions, i.e. they do ot require
or involvg the participation of the environment of the object. The resulting Z text representing that object is an interface
template. fAny instance of the interface template is an interface.

4.4.15 Activity

The notion of an activity as a single headed directed acyclic graph of actions does not exist directly in the Z language.
However, the concept of an activity may be modelled to some extent by noting that if action x precedes action y in some
activity, then the postcondition of action x must imply the precondition for action y.

4.4.1.6 Behaviour (of an object)

The behaviour of an object in a given state is the set of all possible activities that may occur from that state. The actual
sequence of actions that may occur may be affected by the environment of the object and the constraints expressed in the
preconditions.

4.4.1.7 State (of an object)

A binding of the state variables declared in the state schema(s) associated with the object template used for calculating
preconditions.

ITU-T Rec. X.904 (1997 E) 21

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

ISO/IEC 10746-4 : 1998 (E)
4.4.1.8 Communication

Communication may be modelled in Z through inputs and outputs to operations. Inputs to and outputs from operation
schemas are normally considered as communications with the environment of an object. Since communication occurs
between objects, the environment of an object (see 4.4.1.2) must be specified to model communication. Communication
is then achieved by firstly normalising the operation schemas associated with the interacting objects and then conjoining
them, with the outputs of one operation being renamed as the inputs to the other operation schema. This modelling of
communication requires that the inputs and outputs of the associated operation schemas are of the same type.

Alternatively, the occurrence of operation schemas that reference variables global to the specification represent

communications, with the value of the global variable following the operation occurrence being communicated with all
other operation schemas referencing that variable.

4.4.1.9 Location in space

The concapt of space is not considered primitive in Z. The location in space at which an action occurs can on|ly be given
in Z in terns of the specification model rather than the real world system being modelled. Thus a location)in space might
be introduced as a Z type. Through this, relations can be specified associating operation schemas with given Ipcationsin
space. This then makes it possible to reason about locations in space at which actions can occur.

4.4.1.10 Location in time

The concegpt of time is not considered primitive in Z. The location in time at which an action occurs can only lhe given in
Z intermd of the specification model rather than the real world system being modeliéd. Thus a location in time might be
introduced as a Z type that can be associated with given actions, e.g. through some relation. Through this, quantification
over the time at which actions can occur, can be achieved.

4.4.1.11 Interaction point

The concegpt of interaction point depends upon the definitions of.interaction and locations in space and time. Jee 4.4.1.3,
4.4.1.9 angl 4.4.1.10.

4.4.2 bpecification concepts

4.4.2.1 (Composition

- of Objects: Composition ofgbjects is not a feature explicitly offered by the Z languape, due amongst
other things to the lack>of encapsulation. However, it is possible to model some|characteristics of
composition through schema inclusion and redefinition of operations through promotiory.

- of Behaviours: As.a behaviour in its most degenerate case may be considered an actign, and an action in
Z is the performance of an operation defined byaration schema, composition of actior|s equates to
the combination” obperation schemas in Z. Operation schemes may be combined in seyeral ways in Z.
such as:

. schema calculus;

¢ schema composition (),

° averridina (1)
S \—7
Generally, characteristics of the resulting behaviour may be derived from the composition which may not be derived

from the individual behaviours being combined. In addition, irrelevant details of the behaviours being combined may be
suppressed.

4.4.2.2 Composite object
See interpretation of composition above.

4.4.2.3 Decomposition
— of objects: See interpretation of composition of objects above.

— of behaviours: See interpretation of composition of behaviours above.

22 ITU-T Rec. X.904 (1997 E)

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

4.4.2.4

ISO/IEC 10746-4

Behavioural compatibility

: 1998 (E)

Behaviour compatibility is based upon the notion of substitutability in a given environment. Extension is one possible
way of achieving this. An extension of a base template may have extra components in the associated state schema, a
stronger state invariant, stronger initial conditions and more operation schemas. The operation schemas associated with
the extension of the template type may have weaker preconditions and stronger postconditions than the corresponding

operation

4.4.2.5

schemas in the base template type.

Refinement

Refinement is the process of transforming one specification into a more detailed specification. Since Z deals with
abstractions of systems where data and operations on that data are used to represent the given system under
consideration, two main forms of refinement have been identified:

In order tp refine a specification, the refinement must ensure behaviour compatibility between the 5

refineme
detailed

specificafion is that any circumstance acceptable to the specification must be acceptable to the refi
condition|on the refinement of a specification is that for any circumstance acceptable to the specifig
of the refinement must be allowed by the specification.

The safety and liveness conditions need to apply to both the operation and data refinements.

4.4.2.6

The mod
secondly

4.4.2.7

An objec}, interface or action can have many different ODP types. ODP types correspond to s
characterjsing predicate is given by set membership.

4.4.2.8

The set of all <X >’s such that the set:membership predicatetheeODP type, is true.

4.4.2.9

Subtypeq and supertypesin-@DP correspond to subsets and supersets respectively in Z.

4.4.2.10

Subclassps and:superclasses in ODP correspond to the subset and superset relationships respectiv

4.4.2.11

onerationretivement—and
i 7 y

- data refinement.

mt. To account for this, certain conditions exist to ensure that a Z specification refinement p
specification. These are thefery and liveness conditions. The safety condition on the re

I'race

blling of a trace in Z is limited for two reasons. Firstly, there is no direct way to record an ¢

['ype (of an < X>)

Class (of < X'>’s)

Subtype/Supertype

Bubclass/Superclass

pecification and the
oduces a valid more
finement of a
nement. The liveness
ation, the behaviour

bjects actions, and

there is no semantic distinction between internal and observable actions as discussed in tihe Note in 4.4.1.3.

bts in Z, where the

ply in Z.

KX> Template

Object Template: Fragments of a specification that represent the common features of the objects

possible states, have a unique (immutable) identity that can be referenced, and associaiger-sgbof

schemas that act on that state. If the object template is a generic one, the precise for
only be given when the type of the parameterising parameters is given.

in the way described under the interpretation of interface (see 4.4.1.4). If the object te

m of template will

Interface Template: A set ofoperation schemas derived from the Z text representing an object template

mplate is a generic

one, the precise form of interface template will only be given when the type of the parameterising

parameters are given. Interface templates may be combined using the Z oper
combination.

ations for schema

Action Template: An operation schema. Action templates may be combined using the Z operations for

schema combination. If the action template is a generic one, the precise form of action template will only

be given when the type of the parameterising parameters are given.

ITU-T Rec. X.904 (1997 E)

23

https://iecnorm.com/api/?name=f2fd30932f2c292b7433a03077b65a28

