NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 62372

Première édition First edition 2006-02

Instrumentation nucléaire – Scintillateurs montés – Méthodes de mesures de lumière sortante et de résolution intrinsèque

Nuclear instrumentation – Housed scintillators – Measurement methods of light output and intrinsic resolution

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entreptis par le comité d'études qui a élaboré cette publication ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

• Site web de la CEI (www.iec.ch)

• Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de la CE (www.iec.ch/searchpub) yous permet de faire des recherches en utilisant de nombreux critères, comprenant des recherches textuelles par comité d'études ou date de publication. Des informations en ligne sont également disponibles sur les nouvelles publications, les publications remplacées ou retirées, ainsi que sur les carrigenda.

IEC Just Published

Ce résumé des dernières publications parues (www.ec.ch/online.news/justpub) est aussi disponible par courrier dectronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: <u>custserv@iec.ch</u>
Tél: +41 22 919 02 11
Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (<u>www.iec.ch</u>)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 62372

Première édition First edition 2006-02

Instrumentation nucléaire – Scintillateurs montés – Méthodes de mesures de lumière sortante et de résolution intrinsèque

Nuclear instrumentation – Housed scintillators – Measurement methods of light output and intrinsic resolution

© IEC 2006 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

CODE PRIX
PRICE CODE

SOMMAIRE

A۷	'ANT-I	PROPO	S	4		
1	Dom	aine d'a	application	8		
2			normatives			
3				_		
S		Termes, définitions, symboles et abréviations				
	3.1		es et définitions			
	3.2	-	bles et abréviations			
4			des scintillateurs montés			
5	Méth		e détermination des paramètres basiques des scintillateurs montès			
	5.1	Dispos	sitions générales	16		
		5.1.1	Mesures	16		
		5.1.2	Equipement et instrumentation de mesure	18		
	5.2 Définir la non-linéarité et la non-stabilité de l'assemblage pour détermin les paramètres des scintillateurs montés					
		5.2.1	ramètres des scintillateurs montés	20		
		5.2.2	/			
	5.3					
		5.3.1	Equipement et instrumentation de mésure			
		5.3.2	Préparation et réalisation des mesures			
		5.3.3	Traitement des resultats			
	5.4 Définition du rendement lumineux du scintillateur monté en utilisant la					
			de de comparaison avec l'étalon de travail			
			Géneralités			
		5.4.2	Equipement et instrumentation de mesure			
		5.4.3	Preparation et realisation des mesures			
		5.4.4		30		
	5.5 Définition de la résolution intrinsèque du scintillateur monté en utilis constante spectrométrique du PMT			32		
	<	5.5.1				
		/ / /	Determination de la résolution intrinsèque pour un scintillateur monté			

CONTENTS

FO	REW	ORD		5	
1	Scop	e		9	
2	Norm	native re	eferences	9	
3	Terms definitions, symbols and abbreviations				
	3.1	Terms	and definitions	9	
	3.2	Symbo	ols and abbreviations	13	
4	Hous	ed scin	tillator's parameters	17	
5	Methods for determination of basic parameters of housed scintillators				
	5.1	Gener	al provisions	17	
		5.1.1	Measurements	17	
		5.1.2	Equipment and measurement instrumentation	19	
	5.2 Defining non-l		ng non-linearity and non-stability of the setup for determination of	21	
		5.2.1	eters of housed scintillators Non-linearity definition	۱ ک 21	
		5.2.1	Non-stability definition	21 25	
	5.3	Determination of intrinsic resolution and light output of housed scintillator			
	0.0	and Pl	MT spectrometric constant using PMT parameters	27	
		5.3.1	Equipment and measurement instrumentation		
		5.3.2	Preparation and making measurements	27	
		5.3.3	Processing of results	27	
	5.4	Definir	Defining the housed scintillator light output using the method of comparison with the working standard		
		5.4.1	e working standard	20 29	
			Equipment and measurement instrumentation		
		5.4.3	Rreparation and making measurements		
		5.4.4	Processing of results		
	5.5	Determination of the intrinsic resolution of the housed scintillator using the			
		(pectrometric constant		
		5.5.1	Definition of the PMT spectrometric constant		
	<	5.5.2	Determination of the intrinsic resolution for housed scintillator	35	
		7			

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

INSTRUMENTATION NUCLÉAIRE – SCINTILLATEURS MONTÉS – MÉTHODES DE MESURES DE LUMIÈRE SORTANTE ET DE RÉSOLUTION INTRINSÈQUE

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications, la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doi ent s'assurer qu'ils cont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour toût préjudice cause en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 62372 a été établie par le comité d'études 45 de la CEI: Instrumentation nucléaire.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
45/610/FDIS	45/613/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

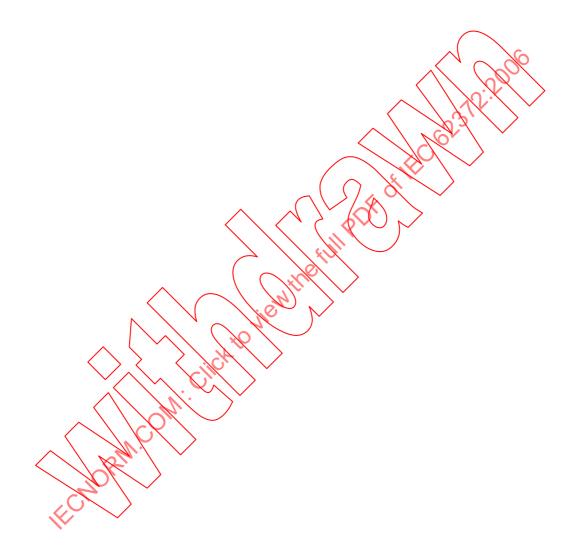
NUCLEAR INSTRUMENTATION – HOUSED SCINTILLATORS – MEASUREMENT METHODS OF LIGHT OUTPUT AND INTRINSIC RESOLUTION

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an EC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, emproyees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

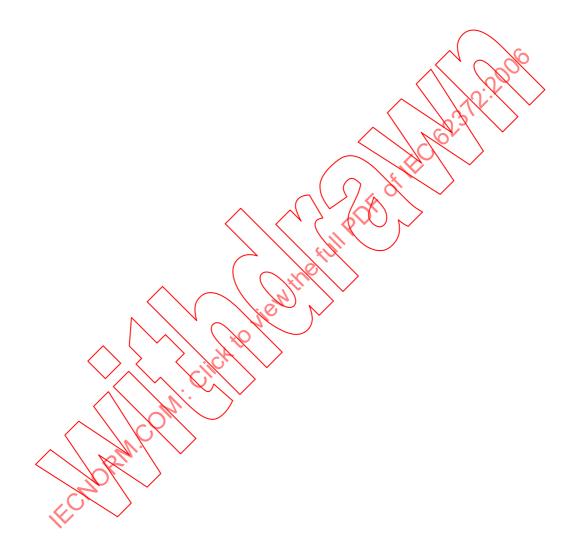
International Standard IEC 62372 has been prepared by IEC International Committee 45: Nuclear instrumentation.

The text of this standard is based on the following documents:


FDIS	Report on voting
45/610/FDIS	45/613/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.


Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les données relatives à la publication recherchée. A cette date, la publication sera

- · reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed;
- withdrawn;
- · replaced by a revised edition, or
- amended.

INSTRUMENTATION NUCLÉAIRE – SCINTILLATEURS MONTÉS – MÉTHODES DE MESURES DE LUMIÈRE SORTANTE ET DE RÉSOLUTION INTRINSÈQUE

1 Domaine d'application

La présente Norme internationale est applicable aux scintillateurs montés utilisés pour l'enregistrement et la spectrométrie des radiations ionisantes (alpha, bêta, gamma, X et neutrons).

Leurs paramètres basiques, comme lumière sortante et résolution intrinsèque, sont établis. La Norme spécifie les exigences pour l'équipement et les méthodes de définition des paramètres basiques des scintillateurs montés, tels que:

- La méthode directe est destinée à la mesure de lumière sortante de scintillateurs sur la base d'un matériau de scintillateur donné. Le scintillateur certifié avec cette méthode peut servir de référence de travail pour les scintillateurs montés (plus loin étalon de travail) quand on utilise la méthode de comparaison.
- La méthode de comparaison avec l'étalon de travail est adaptée pour des scintillateurs montés ayant le même matériau scintillant que l'étalon de travail.

La Norme n'est pas applicable aux scintillateurs gazeux ou liquides ni aux scintillateurs de comptage et de mesure courante.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du tocument de référence s'applique (y compris les éventuels amendements).

IEC 60050(394):1995, Vocabulaire Electrotechnique International (VEI) – Chapitre 394: Instrumentation nucléaire Instruments

Guide pour l'expression de l'incertitude de mesure, ISO, 1995

3 Termes, définitions, symboles et abréviations

3.1 Termes et définitions

Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

3.1.1

scintillateur

quantité définie de matériau scintillant dans une forme adaptée

[VEI 394-10-17, modifiée]

3.1.2

scintillateur monté

scintillateur monté dans un conteneur avec réflecteur et fenêtre optique de sortie

NUCLEAR INSTRUMENTATION – HOUSED SCINTILLATORS – MEASUREMENT METHODS OF LIGHT OUTPUT AND INTRINSIC RESOLUTION

1 Scope

This International Standard is applicable to housed scintillators for registration and spectrometry of alpha-, beta-, gamma-, X-ray and neutron radiation.

Their basic parameters such as a light output and intrinsic resolution are established. This Standard specifies the requirements for the equipment and the methods of defining the basic parameters of housed scintillators, such as:

- The direct method is intended for light output measurement of scintillators on the base of any given scintillation material. The scintillators certified using this method can serve as a working standard of housed scintillators (hereinafter - working standard) when using the method of comparison.
- The method of comparison with the working standard is intended for housed scintillators based on the same scintillation material as the one of the working standard.

The standard does not apply to gas or liquid scintillators and scintillators for counting or current measurement.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, pnly the edition of the references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(394):1995, International Electrotechnical Vocabulary (IEV) – Chapter 394: Nuclear instrumentation: Instruments

Guide to the expression of uncertainty in measurement, ISO, 1995

3 Terms definitions, symbols and abbreviations

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1

scintillator

defined quantity of scintillating material in a suitable form

[IEV 394-10-17, modified]

3.1.2

housed scintillator

scintillator, housed in a container with a reflector and optical window

détecteur à scintillation

détecteur de rayonnement consistant d'un scintillateur généralement couplé optiquement à un dispositif photosensible, directement ou par l'intermédiaire de conduits de lumière

[VEI 394-07-01]

3.1.4

assemblage

chambre noire contenant un scintillateur monté, le photomultiplicateur, le diviseur de tension du photomultiplicateur

NOTE L'assemblage est utilisé pour l'essai du scintillateur monté.

3.1.5

rendement lumineux

η

quotient des photons de scintillation émis d'énergie $(E_{\rm p})$ par rapport à l'énergie (E) émise par la particule ionisante dans le scintillateur

$$\eta = \frac{E_{\mathsf{p}}}{E} \tag{1}$$

NOTE La valeur η dépend du type et de l'énergie de la particule ionisante.

3.1.6

lumière sortante

 \boldsymbol{C}

quotient de l'énergie totale $(L_{\rm ph})$ des photons de scintillation, traversant la fenêtre optique de sortie du scintillateur de radiation ionisante monté par rapport à l'énergie (E), déposée par la particule ionisante dans le scintillateur

$$C = \frac{L_{\text{ph}}}{E} \tag{2}$$

3.1.7

résolution intrinsèque du scintillateur de radiation ionisante monté

 R_{d}

composante, donnée par le scintillateur de radiation ionisante monté de la résolution en hauteur d'impulsion de l'assemblage de scintillation

NOTE On obtient la résolution R_d par la relation:

$$R_{\rm d} = \sqrt{R_{\rm a}^2 - R_{\rm pm}^2} \tag{3}$$

οù

 R_a est la résolution en hauteur d'impulsion de l'assemblage scintillateur;

 R_{pm} est la résolution intrinsèque en hauteur d'impulsion du PMT.

3.1.8

pic d'absorption totale

portion de la courbe de réponse spectrale correspondant à l'absorption totale de l'énergie du photon dans un détecteur de radiation

[VEI 394-18-82, modifiée]

scintillation detector

radiation detector consisting of a scintillator that is usually optically coupled to a photosensitive device, either directly or through light guides

[IEV 394-07-01]

3.1.4

assembly

a light protective chamber containing a housed scintillator, photomultiplier, photomultiplier voltage divider

NOTE Assembly is used for testing the housed scintillator.

3.1.5

light yield

η

ratio of scintillation photons summed energy (E_p) to energy (E) lost by ionizing particle in the scintillator

$$\eta = \frac{E_{\mathsf{p}}}{E} \tag{1}$$

NOTE The value of η depends on the type and energy of the onizing particle

3.1.6

light output

C

ratio of total energy $(L_{\rm ph})$ of scintillation photons, which pass through the output window of the housed scintillator of ionizing radiation, to energy (E), lost by ionizing particle in the scintillator

$$C = \frac{L_{\text{ph}}}{E}$$
 (2)

3.1.7

intrinsic resolution of housed scintillator of ionizing radiation

 R_{d}

component, given by housed scintillator of ionizing radiation to energy resolution of the scintillation detector.

NOTE The intrinsic resolution R_d is defined from the relation:

$$R_{\rm d} = \sqrt{R_{\rm a}^2 - R_{\rm pm}^2} \tag{3}$$

where

 R_a is the energy resolution of the scintillation detector;

 $R_{\rm pm}$ is the PMT intrinsic resolution.

3.1.8

total absorption peak

that portion of the spectral response curve corresponding to the total absorption of photon energy in a radiation detector

[IEV 394-18-82, modified]

constante spectrométrique du tube photomultiplicateur

A

paramètre, caractérisant les propriétés du tube photomultiplicateur

NOTE Définie par la formule suivante:

$$A = (R_a^2 - R_d^2) \times C_{\rm ph} \tag{4}$$

où C_{ph} est le scintillateur monté, photons/MeV.

3.1.10

étalon de travail

scintillateur monté de référence qui est utilisé pour vérifier le système de mesure et pour mesurer la lumière sortante par la méthode de comparaison

3.1.11

Pleine largeur à mi-hauteur

FWHM

dans la courbe de distribution concernant un pic simple, la distance entre les abscisses des deux points de la courbe du pic qui se trouvent à la moitié de la hauteur du pic.

NOTE Si la courbe concerne plusieurs pics, une pleine largeur à mi-nauteur existe pour chaque pic.

3.1.12

incertitude étendue

quantité définissant un intervalle d'insertitude sur le résultat de mesure qui peut être considéré comme englobant une grande part de la distribution des valeurs pouvant raisonnablement être attribuées à la valeur mesure

NOTE L'incertitude étendue est définie par la formule suivante:

$$0 = k \times u_{q} \tag{5}$$

où u_c est l'incertitude combinée standard du résultat d'une mesure (n) quand ce résultat est calculé conformément à la formule:

$$u_{\rm C} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial a_i}\right)^2 u^2(a_i)} \tag{6}$$

k est le facteur de converture et est défini comme le facteur numérique à utiliser comme multiplicateur de l'incertitude de mesure standard combinée (voir Guide pour l'expression de l'incertitude de mesure (ISO 1995)).

3.1.13

incertitude relative étendue

quotient de l'incertitude étendue d'une mesure à sa valeur moyenne (a)

NOTE Elle exprime la grandeur relative de l'incertitude d'une mesure (sa précision).

3.2 Symboles et abréviations

A constante photométrique du tube photomultiplicateur;

a coefficient de transformation de l'assemblage avec le scintillateur monté;

 a_i valeur du coefficient de transformation mesurée à la valeur d'énergie E_i ;

 a_{max} valeur maximale de a_i ;

 a_{\min} valeur minimale de a_i ;

 Δa non-linéarité;

photomultiplier tube spectrometric constant

A

parameter, characterizing properties of the photomultiplier tube

NOTE Defined by the following formula:

$$A = (R_a^2 - R_d^2) \times C_{\text{ph}} \tag{4}$$

where C_{ph} is the light output, photons/MeV.

3.1.10

working standard

working standard of housed scintillator that is used to check the measuring system and to measure light output by a method of comparison

3.1.11

Full Width at Half Maximum

FWHM

in a distribution curve comprising a single peak, the distance between the abscissa of two points on the curve whose ordinates are half of the maximum ordinate of the peak

NOTE If the curve considered comprises several peaks, a full width at half maximum exists for each peak.

3.1.12

expanded uncertainty

quantity defining an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measured quantity

NOTE Expanded uncertainty is defined by the following formula:

$$D = k \times u_{\mathcal{C}} \tag{5}$$

where

uc is the combined standard uncertainty of a measurement (n) when that result is calculated according to the formula:

$$u_{\rm c} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial a_i}\right)^2 u^2(a_i)} \tag{6}$$

k is the coverage factor defined as the numerical factor used as a multiplier of the combined standard uncertainty (see Quide to the expression of uncertainty in measurement (ISO 1995)).

3 1 13

relative expanded uncertainty

the ratio of the expanded uncertainty of a measurement to average value of a

NOTE It expresses the relative size of the uncertainty of a measurement (its precision).

3.2 Symbols and abbreviations

A the photomultiplier tube spectrometric constant;

a the transformation coefficient of the setup with the housed scintillator;

 a_i value of transformation coefficient, measured at energy value of E_i ;

 a_{max} maximal value of a_i ;

 a_{\min} minimal value of a_i ;

 Δa non-linearity;

C lumière sortante, en unités relatives;

 $C_{\rm ph}$ lumière sortante, en photons/MeV;

 C_{pho} la lumière sortante pour l'étalon de référence, photons/MeV;

FWHM pleine largeur à mi-hauteur du pic;

E énergie perdue par la particule ionisante dans le scintillateur;

 E_{max} énergie maximale de la radiation gamma utilisée;

 E_{p} énergie cumulée des photons de scintillation, qui se sont développés dans le

scintillateur;

eps le point initial de la courbe de transfert du scintillateur, en unités d'énergie;

k facteur de couverture;

 k_a le coefficient de transfert de l'assemblage;

 $L_{
m ph}$ énergie totale des photons de scintillations, passés par la fenêtre de sortie du

scintillateur;

m coefficient de correspondance spectrale;

PMT tube photomultiplicateur;

Q sensitivité quantique de la photocathode du PMT;

 $S(\lambda)$ caractéristique spectrale de la photocathode du PMT;

R_a résolution en énergie du détecteur à scintillation,

 R_{a0} résolution en énergie du détecteur à scintillation avec l'étalon de travail;

 $R_{\rm d}$ résolution intrinsèque du détecteur monté mesuré;

 $R_{\rm et}$ résolution intrinsèque de l'éta on de travail,

 R_{pm} résolution intrinsèque du PMT;

 U_{p} incertitude étendue;

u_c incertitude combinée standard

V valeur de hauteur d'impulsion du pie d'absorption totale dans le scintillateur mesuré;

 $V_{\rm d}$ point initial de la courbe de transfert du détecteur monté;

 $V_{\rm et}$ valeur de hauteur d'impulsion du pic d'absorption totale dans l'étalon de travail;

 V_i valeur de hauteur d'impulsion correspondant au sommet du pic d'absorption totale

pour une mesure individuelle;

 $V_{\rm in}$ hauteur d'impulsion à l'entrée de l'assemblage, en unité de nombre de canaux;

 $V_{\rm max}$ hauteur d'impulsion correspondant à $E_{\rm max}$, en unité de nombre de canaux;

 V_{o} point initial de la courbe de transfert de l'assemblage;

 $V_{\rm od}$ point initial de la courbe de transfert de l'assemblage, avec le scintillateur monté;

 V_{out} hauteur d'impulsion à la sortie de l'assemblage, en unité de nombre de canaux;

 ΔV la valeur de FWHM;

y₁ valeur moyenne du paramètre contrôlé en début de travail;

y₂ valeur moyenne du paramètre contrôlé en fin de travail;

 $y(\lambda)$ caractéristique spectrale du scintillateur;

 Δy valeur de la non-stabilité;

 η rendement lumineux.

C light output, in relative units;

 C_{ph} light output, in photons/MeV;

 C_{pho} the light output of the working standard, in photons/MeV;

FWHM full width at half maximum of peak;

E energy lost by ionizing particle in the scintillator;

 $E_{\mbox{\scriptsize max}}$ the maximal energy of used gamma radiation;

 $E_{\rm D}$ summed energy of scintillation photons, which have arisen in scintillator;

eps the initial point of housed scintillator transformation characteristic, in energy units;

k coverage factor;

 k_a the setup transformation coefficient;

 $L_{\rm ph}$ total energy of scintillation photons, which pass through the output window of the

housed scintillator;

m coefficient of spectral matching;

PMT photomultiplier tube;

Q the PMT photocathode quantum sensitivity;

 $S(\lambda)$ the PMT photocathode spectral characteristic;

 R_a the energy resolution of the scintillation detector;

 R_{a0} the energy resolution of scintillation detector with working standard;

 $R_{\rm d}$ the intrinsic resolution of the measured housed scintillator;

 $R_{\rm et}$ the intrinsic resolution of the working standard;

 R_{pm} PMT intrinsic resolution;

 $U_{\rm p}$ expanded uncertainty;

 $u_{\rm c}$ combined standard uncertainty;

V the value of pulse height corresponding to total absorption peak maximum of the

measured housed scintillator;

 $V_{\rm d}$ the initial point of housed scintillator transformation characteristic;

 $V_{
m et}$ the value of pulse height corresponding to total absorption peak maximum for the

working standard:

 V_i the value of pulse height corresponding to total absorption peak maximum for single measurement,

 $V_{\rm in}$ pulse height at the input of the setup, in number of channel units;

 $V_{
m max}$ the value of pulse height corresponding to $E_{
m max}$ and expressed by the channel

number;

 V_{o} the initial point of setup transformation characteristic;

 $V_{
m od}$ the initial point of transformation characteristic of the setup with the housed

scintillator;

 V_{out} pulse height at the output of the setup, in number of channel units;

 ΔV the value of FWHM;

 y_1 average value of controlled parameter in the beginning of the work;

 y_2 average value of controlled parameter at the end of the work;

 $y(\lambda)$ the scintillator's spectral characteristic;

 Δy non-stability value;

 η light yield.

4 Paramètres des scintillateurs montés

Les paramètres suivants sont communs pour les scintillateurs montés de qualité spectrométrique pour détection de rayonnements alpha, bêta, gamma, X et neutrons: lumière sortante, résolution intrinsèque, efficacité, bruit de fond intrinsèque.

La relation pic/vallée, la relation alpha/gamma sont les caractéristiques d'autres types de scintillateurs et ne sont pas considérées dans la présente Norme.

Lumière sortante et résolution intrinsèque sont les paramètres basiques des scintillateurs montés.

Les valeurs numériques de ces paramètres doivent être définies dans les spécifications des types particuliers de scintillateurs.

5 Méthodes de détermination des paramètres basiques des scintillateurs montés

5.1 Dispositions générales

5.1.1 Mesures

Les mesures sont faites dans les conditions normales, s'il n'y a pas d'autre indication dans les spécifications.

Les mesures ne doivent pas être faites moins de 30 min après la mise en route électrique, si il n'y a pas d'autre indication de temps dans les spécifications.

Avant les mesures, le scintillateur monté doit être gardé dans l'obscurité pendant la durée indiquée dans les spécifications du constructeur.

Avant les mesures, le PMT doit être gardé sous haute tension pendant le temps d'établissement de ses conditions de travail avant mesures.

Tous les paramètres sont mesurés en conservant le PMT et le scintillateur monté dans l'obscurité totale.

Le contact optique entre le scintillateur monté et le PMT est obtenu en utilisant le matériau optique indique dans les spécifications du fournisseur.

La condition suivante doit être observée pour le choix du PMT pour les mesures: la surface utile de la photocathode doit recouvrir la fenêtre de sortie du scintillateur, s'il n'y a pas d'autre indication dans les spécifications.

Il est permis d'utiliser un guide de lumière ou un assemblage de PMTs si les caractéristiques techniques et les conditions d'emploi du guide de lumière et de l'assemblage sont indiquées dans les spécifications du constructeur.

Le scintillateur monté mesuré est à installer en contact optique avec la photocathode du PMT, à moins qu'autre chose ne soit indiqué dans les spécifications.

Il est permis de placer la source à l'intérieur de la chambre d'obscurité.

La tension d'alimentation du PMT doit correspondre aux valeurs indiquées de fonctionnement normal.

4 Housed scintillator's parameters

The following parameters are common for the spectrometric quality of housed scintillators for alpha-, beta-, gamma-, X- and neutron radiation detection: light output, intrinsic resolution, registration efficiency, intrinsic background.

The relation of peak-valley and alpha/gamma-relation are the characteristics of separate types of housed scintillators and are not discussed in the present standard.

Light output and intrinsic resolution are basic parameters of housed scintillators.

Numerical values of parameters shall be defined in the specifications for the specific type of scintillators.

5 Methods for determination of basic parameters of boused scintillators

5.1 General provisions

5.1.1 Measurements

Measurements are made under normal conditions if there is no other indication in the specifications.

Measurements shall be started not earlier than 30 min after the last instrument is switched on, if there is no other time indication in the specifications.

The housed scintillator and RMT shall be kept in the dark during the time indicated in the specifications of the manufacturer before measurements.

PMT shall be kept under high voltage when it is switched to operating mode before the measurement.

All parameters are measured when PMT and housed scintillator are in complete darkness.

Optical contact between the housed scintillator and PMT is provided using optical material indicated in the manufacturer's specifications.

The following condition in choosing PMT for measurements should be reached: the photocathode working area shall overlap the scintillator's window, if there is no other indication in the specifications.

It is allowed to apply a light guide or an assembly of a number of PMT if technical characteristics and the use conditions of light guide and assembly are indicated in the manufacturer's specifications.

The measured housed scintillator is installed onto the PMT photocathode by optical contact, unless otherwise indicated in the specifications.

It is allowed to place the source of ionizing radiation inside the light protective chamber.

PMT voltage shall correspond to its attached data for normal operating conditions.

Le spectre d'amplitudes d'impulsions doit être mesuré dans les conditions fixées de fonctionnement de l'assemblage.

5.1.2 Equipement et instrumentation de mesure

5.1.2.1 Sources de rayonnement ionisant

Il faut utiliser comme sources de radiations alpha, bêta, gamma, X ou neutrons des sources scellées avec des radio nuclides à énergies bien connues.

A moins d'indication contraire dans les spécifications, la source de rayonnements sera choisie en fonction des applications du scintillateur monté mesuré:

Scintillateurs monté alpha: particules alpha des radio nuclides 39 Pu, 241 Am, 244 Cm

ou ²³⁷Np.

Scintillateurs monté bêta: électrons de conversion interne des radio fuclides ¹³⁷Cs

ou ²⁰⁷Bi.

Scintillateurs monté gamma: photons gamma des radio nuclides 3^{**}Cs.

Scintillateurs monté gamma et X: rayonnement photon des radio nuclides ⁵⁵Fe, ¹⁰⁹Cd,

²⁴¹Am et ⁵⁷Co.

Scintillateurs monté neutron: neutrons issus de sources 239 Put Be ou 241 Am +Be ou

²⁵²Cf.

La source de photons gamma ou rayons X doit être placée dans l'axe du scintillateur, à une distance de deux ou plus diamètres ou diagonales du scintillateur, à moins qu'une autre géométrie soit indiquée dans les spécifications.

La source de particules appla ou bêta doit être placée directement sur la fenêtre d'entrée du scintillateur monté, à moins qu'une autre géométrie soit indiquée dans les spécifications.

Quand des sources alpha ou bêta sont mesurées, il est permis de placer un collimateur simple trou ou multiples trous, si le diamètre de trous n'excède pas l'épaisseur du collimateur pour la mesure de sources alpha ou bêta

5.1.2.2 Assemblage

Le courant dans le diviseur doit dépasser au moins dix fois le courant moyen de l'anode du PMT.

L'alimentation electrique du PMT doit fournir une haute tension stabilisée à mieux que 0,05 % avec un courant supérieur à 0,5 mA dans le diviseur de tension.

Aux valeurs faiblement résistives des étages suivants de la partie «mesure» il est possible de travailler sans étage d'adaptation.

5.1.2.3 Unité de traitement des données

Les analyseurs multicanaux d'amplitudes qui ont un système d'enregistrement en sortie permettant la présentation du spectre sous une forme pratique pour son traitement doivent être utilisés pour enregistrer des spectres différentiels d'amplitudes d'impulsions.

The pulse height spectra shall be measured under the fixed operating conditions of the setup.

5.1.2 Equipment and measurement instrumentation

5.1.2.1 The sources of ionizing radiation

Sealed sources of alpha-, beta-, gamma-, X- and neutron radiation with known energies shall be used.

Unless otherwise indicated in the specifications, the source of radiation may be selected depending on the application of measured housed scintillator:

- For housed scintillators of alpha-radiation: alpha-radiation of radionuclides ²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm or ²³⁷Np.
- For housed scintillators of beta-radiation: internal conversion electrons of radionuclides ¹³⁷Cs or ²⁰⁷Bi.
- For housed scintillators of gamma-radiation: gamma-radiation of radionuclide 137 Cs
- For housed scintillators of gamma- and X-radiation: photon radiation of ⁵⁵Fe, ¹⁰⁹Cd, ²⁴¹Am and ⁵⁷Co radionuclides.
- For housed scintillators of neutron: neutron radiation of radionuclide sources ²³⁹Pu+Be, ²⁴¹Am+Be or ²⁵²Cf.

The source of gamma- or X-radiation shall be placed on the scintillator's axis at the distance of two or more diameters or diagonals of the scintillator, unless other geometry is indicated in the specifications.

The source of alpha- or beta-radiation shall be placed directly on the entrance window of the housed scintillator, unless other geometry is indicated in the specification.

One can apply a single-hole or multi-hole collimator, if the diameter of the hole does not exceed its thickness under the measurement with the alpha- or beta-sources.

5.1.2.2 Assembly

The current of the divider shall exceed PMT average anode current more than 10 times.

PMT power supplies shall provide a stabilization of the high voltage of better than 0,05 % and divider current of more than 0,5 mA.

At low-resistance inputs of subsequent stages of the measurement section, the measurements may be made without matching stage.

5.1.2.3 Data processing unit

For recording differential spectra of pulse heights, multichannel pulse analysers, which have an output recording device of any type that allows presentation of pulse height spectrum in the form convenient for processing, shall be used.

5.2 Définir la non-linéarité et la non-stabilité de l'assemblage pour déterminer les paramètres des scintillateurs montés

5.2.1 Définition de la non-linéarité

5.2.1.1 Généralités

La dépendance de l'amplitude d'impulsion ($V_{\rm out}$) à la sortie de l'assemblage sur le signal ($V_{\rm in}$) à l'entrée (fonction de transfert de l'assemblage) est définie par la formule suivante:

$$V_{\text{out}} = k_{\text{a}} \times V_{\text{in}} + V_{\text{o}} \tag{7}$$

οù

 k_a est le coefficient de transfert de l'assemblage,

 $V_{\rm o}$ est le point initial de la fonction de transfert de l'assemblage.

Si la fonction de transfert du scintillateur monté est linéaire, la fonction de transfert de l'assemblage sera aussi linéaire:

$$V_{\text{out}} = a \times E + V_{\text{od}}$$

$$V_{\text{od}} = V_{\text{o}} + V_{\text{d}} = V_{\text{o}} + a \times eps$$
(8)

οù

E est l'énergie absorbée lors de l'ionisation de la particule dans le scintillateur,

est le coefficient de transfert de l'assemblage avez le scintillateur,

 $V_{\rm od}$ est le point initial de la fonction de transfert de l'assemblage avec le scintillateur monté,

 $V_{\rm d}$ est le point initial de la fonction de transfert du scintillateur monté,

eps est le point initial de la fonction de transfert du scintillateur monté, en unités d'énergie.

La non-linéarité (Δa), déterminée par l'erreur des points expérimentaux par rapport à la fonction de transferts, exprimée en pourcentage, est calculée par la formule:

$$\Delta a = \frac{(a_{\text{max}} - a_{\text{min}})}{(a_{\text{max}} + a_{\text{min}})} \times 100 \tag{9}$$

οù

 a_{max}

est la valeur maximale de a.

 a_{\min}

est la valeur minimale de a.

La valeur $V_{\rm od}$ est définie comme l'intersection de la fonction de transfert de l'assemblage avec scintillateur monté et de l'axe de coordonnées. La valeur $V_{\rm o}$ doit être calculée par l'équation (8).

La non-linéarité et le point initial de la fonction de transfert de l'arrangement seront définis en utilisant un scintillateur monté sur la base d'un mono-cristal en iodure de sodium dopé au thallium sous rayonnement gamma.

Les spectres d'amplitudes d'impulsions sont mesurés en utilisant des sources de rayonnement gamma mono-énergétiques ayant au moins cinq valeurs d'énergies comprises entre 300 et 1 500 keV.

5.2 Defining non-linearity and non-stability of the setup for determination of parameters of housed scintillators

5.2.1 Non-linearity definition

5.2.1.1 General

Dependence of pulse height ($V_{\rm out}$) at the output of the setup on the signal ($V_{\rm in}$) at the input of the setup (setup transformation characteristic) is defined according to formula:

$$V_{\text{out}} = k_{\text{a}} \times V_{\text{in}} + V_{\text{o}} \tag{7}$$

where

 k_a is the setup transformation coefficient;

 $V_{\rm o}$ is the initial point of the setup transformation characteristic.

If the housed scintillator transformation characteristic is linear, the transformation characteristic of the setup with the housed scintillator is also linear:

$$V_{\text{out}} = a \times E + V_{\text{od}}$$

Then

$$V_{\text{od}} = V_{\text{o}} + V_{\text{d}} = V_{\text{o}} + a \times eps \tag{8}$$

where

E is the energy lost by ionizing particle in the scintillator.

a is the transformation coefficient of the setup with the housed scintillator;

 $V_{
m od}$ is the initial point of transformation characteristic of the setup with the housed scintillator:

 $V_{\rm d}$ is the initial point of housed scintillator transformation characteristic;

eps is the initial point of housed scintillator transformation characteristic, in energy units.

Non-linearity (Δa) , is determined by the deviation of experimental points from transformation characteristic, in percentage terms, and calculated using the formula:

$$\Delta a = \frac{(a_{\text{max}} - a_{\text{min}})}{(a_{\text{max}} + a_{\text{min}})} \times 100 \tag{9}$$

where

 a_{max} is maximal value of a;

 a_{\min} is minimal value of a.

 $V_{\rm od}$ value is defined as the cutoff of the transformation characteristic of the setup with the housed scintillator on coordinate axis. The value $V_{\rm o}$ shall be calculated on the basis of the relation (see equation (8)).

Non-linearity and initial point of setup transformation characteristic shall be defined using a housed scintillator on the base of sodium iodide doped with thallium single crystals under gamma-radiation.

Pulse height spectra are measured using mono-energetic gamma-radiation sources with, in total, five or more values of energy within an interval between 300 and 1 500 keV.

Pour chaque niveau d'énergie, la position du sommet du pic d'absorption totale doit être localisée.

La lumière sortant d'un scintillateur monté peut être utilisée pour mesurer la non linéarité et le point initial de la fonction de transfert et dans d'autres cas, quand il est nécessaire de mesurer les paramètres des scintillateurs montés utilisant des scintillateurs à faible niveau de sortie lumineuse. Pour cela, le flux de lumière du scintillateur monté est affaibli à l'aide d'un filtre de lumière neutre. Les hauteurs d'impulsion à mesurer après atténuation doivent être compatibles avec la gamme de mesure des hauteurs d'impulsions du scintillateur testé.

Les absorbeurs de lumière neutres sont introduits après déconnexion de l'alimentation électrique du PMT et après ouverture de la chambre obscure de mesure. Après cette mise en place, la chambre est refermée, l'alimentation du PMT est remise en route et les mesures ne doivent pas commencer avant une exposition d'au moins une demi-heure.

La non-linéarité et la valeur V_0 sont mesurées avec le même facteur de gan que pour la mesure des paramètres du scintillateur monté testé. La non-linéarité et la valeur de V_0 doivent être mesurées une fois par mois ou plus fréquemment, et aussi après cemplacement ou réparation de l'assemblage du PMT.

5.2.1.2 Equipment et instrumentation de mesure

L'équipement pour la détermination des paramètres des scintillateurs montés est monté à partir d'éléments suivants les exigences de 5.1.2.2 et 5.02.3

5.2.1.3 Préparation et réalisation des mesures

L'ordre des mesures correspond à celui indiqué en 5, 1,1

La valeur d'amplitude des impulsions V correspondant au sommet du pic d'absorption totale est déterminée. Les mesures sont répètées trois fois et la valeur moyenne V est calculée.

Toutes les procédures mentionnées ci-dessus sont réitérées pour chaque valeur d'énergie E_i .

Il est permis d'accumuler les spectres d'amplitudes d'impulsions simultanément avec toutes les sources d'irradiation gamma du scintillateur monté.

5.2.1.4 Traitement des résultats

Les valeurs des coefficients de transfert (a) de l'assemblage avec le scintillateur monté dans chaque gamme d'énergie E_i sont calculées par la formule suivante:

$$a_i = \frac{(V_{\text{max}} - V_i)}{(E_{\text{max}} - E_i)} \tag{10}$$

οù

 $E_{\rm max}$ est l'énergie maximale du rayonnement gamma utilisé,

 V_{max} est l'amplitude d'impulsions correspondante.

A partir d'un ensemble de a_i on doit choisir les valeurs minimale a_{\min} et maximale a_{\max} .

En accord avec la formule (voir équation 9) la valeur de non-linéarité de l'assemblage, en pourcentage, sera calculée.

For each energy value, the total absorption peak maximum position shall be defined.

Light output of housed scintillator may be used for the determination of non-linearity and initial point of setup transformation characteristic and in other cases, when it is necessary to measure parameters of housed scintillators with low light output. For that, light flux of the housed scintillator is weakened with the help of neutral light filter. Pulse heights which were measured after attenuation shall be in accord with the working range of pulse heights of the tested scintillator.

Neutral light absorbers are introduced after switching off PMT power supply and opening the light protective chamber. After replacing the light absorber, the chamber is closed, PMT power supply is turned on and measurements are taken after not less than half an hour's exposure.

Non-linearity and V_0 values are measured at the same gain factor which is used when measuring the parameters of tested housed scintillator. Non-linearity and V_0 shall be measured once per month or more frequently, and also after PMT replacement or setup repair.

5.2.1.2 Equipment and measurement instrumentation

Equipment for determination of scintillation parameters of housed scintillators is mounted from the elements meeting the requirements of 5.1.2.2 and 5.1.2.3.

5.2.1.3 Preparation and making measurements

The measurement order corresponds to that specified in 5.1.1

The value of pulse heights K corresponding to total absorption peak maximum is determined. The measurements are repeated three times and average value V is calculated.

All above-mentioned procedures are repeated for every value of energy E_i .

The pulse height spectra may be accumulated simultaneously from all the gamma-emitting sources being used to irradiate the housed scintillator.

5.2.1.4 Processing of results

The values of transformation coefficients (a) of the setup with the housed scintillator in each energy range (E) are calculated according to the formula:

$$a_i = \frac{(V_{\mathsf{max}} - V_i)}{(E_{\mathsf{max}} - E_i)} \tag{10}$$

where

 E_{max} is the maximal energy of gamma-radiation used;

 $V_{\rm max}$ is the pulse height which is corresponding $E_{\rm max}$, in number of channel units.

From the set of a_i values minimal a_{min} and maximal a_{max} shall be selected.

In accordance with formula (see equation 9) the setup non-linearity value, in percentage, may be calculated.

La valeur moyenne du coefficient de transfert (a) est calculée en utilisant la formule suivante:

$$a = \frac{1}{n-1} \sum_{i=1}^{n-1} a_i$$

où n est le nombre d'énergies utilisées.

La valeur du point initial de la fonction de transfert de l'assemblage avec le scintillateur monté (en nombre de canaux) est calculée par la formule suivante:

$$V_{\text{od}} = \frac{1}{n} \left(\sum_{i=1}^{n} V_i - a \sum_{i=1}^{n} E_i \right)$$
 (11)

La valeur du point initial de la fonction de transfert de l'assemblage est calculée en accord avec l'équation (8):

- L'incertitude relative totale de mesure de la non-linéarité de l'assemblage, au niveau de confiance 0.95 (k = 2.6), ne doit pas dépasser ± 0.03 .
- L'incertitude relative totale de mesure du point initial de la forction de transfert de l'assemblage, au niveau de confiance 0,95 (// = 2,6), pe doit pas dépasser deux canaux.

5.2.2 Définition de la non-stabilité

5.2.2.1 Généralités

La non-stabilité de l'assemblage doit être calculée en utilisant les variations en temps du paramètre défini ou d'un paramètre intermédiaire s'il est utilisé pour calculer le paramètre défini.

A la mesure de la lumière sortant du scintillateur, la non-stabilité est déterminée par le changement de temps de l'amplitude d'impulsion.

Quand on mesure la résolution intrinsèque du scintillateur, la non-stabilité est déterminée par le changement de temps de l'amplitude d'impulsion et de la résolution en hauteur d'impulsion de l'assemblage.

La non-stabilité de l'assemblage peut être calculée en utilisant le scintillateur monté sur la base du même type de scintillateur et avec les mêmes types de rayonnement utilisés pour le scintillateur testé.

5.2.2.2 Equipement et instrumentation de mesure

Equipement et instrumentation de mesure comme en 5.2.1.2.

5.2.2.3 Préparation et réalisation des mesures

La préparation et la réalisation des mesures doivent être faites en accord avec 5.2.1.3.

Avant le début et la fin du travail on doit faire trois mesures.

Average value of transformation coefficient (a) is calculated using the formula as follows:

$$a = \frac{1}{n-1} \sum_{i=1}^{n-1} a_i$$

where n is the number of used values of energy.

The value of the initial point of transformation characteristic of the setup with the housed scintillator (in number of channel units) is calculated according to the formula:

$$V_{\text{od}} = \frac{1}{n} \left(\sum_{i=1}^{n} V_i - a \sum_{i=1}^{n} E_i \right)$$
 (11)

The value of initial point of setup transformation characteristic is calculated in accordance with equation (8).

- Expanded uncertainty of setup non-linearity shall not exceed ± 0.03 with a level of confidence of 0.95 (k = 2.6).
- Expanded uncertainty of initial point measurement of setup transformation characteristic shall not exceed two channels with a level of confidence of 0.95 (k = 2.6).

5.2.2 Non-stability definition

5.2.2.1 **General**

The non-stability of the setup shall be calculated by using the change in time of the defined parameter or an intermediate parameter which is used to calculate the defined parameter.

At the measurement of the light output of the housed scintillator, the non-stability is determined by the change in time of the pulse height.

When the intrinsic resolution of the housed scintillator is measured, the non-stability is determined by the change in time of the pulse height and the energy resolution of the scintillation detector.

The non-stability of the setup may be determined using the housed scintillator on the base of the same scintillator type and by the same radiation type as used for the tested housed scintillator.

5.2.2.2 Equipment and measurement instrumentation

Equipment and measurement instrumentation as described in 5.2.1.2.

5.2.2.3 Preparation and making measurements

Preparation and measurements shall be done in accordance with 5.2.1.3.

Three measurements shall be made before the start and at the finish of the work.

5.2.2.4 Traitement des résultats

La valeur de non-stabilité (Δy), en pourcentage, est calculée en accord avec la formule suivante:

$$\Delta y = \frac{(y_1 - y_2)}{(y_1 + y_2)} \times 100 \tag{12}$$

οù

 y_1 est la valeur moyenne du paramètre de contrôle au début du travail;

 y_2 est la valeur moyenne du paramètre de contrôle à la fin du travail.

La non-stabilité d'amplitudes d'impulsions ne doit pas excéder 2 %.

La non-stabilité de la résolution en amplitudes d'impulsions ne doit pas excéder 3 %.

5.3 Définition de la résolution intrinsèque et de la lumière sortante du scintillateur monté, et de la constante spectrométrique du PMT en utilisant ses paramètres

5.3.1 Equipement et instrumentation de mesure

Les mesures sont faites en utilisant l'assemblage de mesure des paramètres de scintillation des scintillateurs, comme décrit en 5.2.1.1. Un PMT de caractéristique spectrale $S(\lambda)$ et de réponse quantique Q bien connues est utilisé.

La non-linéarité et le point initial de la fonction de transfert de l'assemblage sont mesurés comme décrit en 5.2.1.

L'assemblage est reternu comme bon pour faire les mesures si sa non-linéarité n'excède pas 3 %.

La non-stabilité de l'assemblage est estimée comme décrit en 5.2.2. L'assemblage est retenu comme bon pour faire les mesures si sa non-stabilité n'excède pas 2 %.

5.3.2 Préparation et réalisation des mesures

Le scintillateur teste est placé en contact optique sur la photocathode du PMT et le spectre d'amplitudes d'impulsions est mesuré en accord avec 5.1.1.

Le nombre de canaux (V) correspondant au sommet du pic d'absorption totale est défini en considération avec le point initial de la fonction de transfert de l'assemblage.

La valeur de FWHM (ΔV) est déterminée.

Les mesures sont faites comme décrit plus haut, en plaçant à chaque fois des filtres neutres de différentes densités optiques entre la fenêtre de sortie du scintillateur et la photocathode du PMT et en obtenant les valeurs correspondantes de V et ΔV .

5.3.3 Traitement des résultats

Les valeurs de résolution en énergie du détecteur à scintillation R_a pour chacune des n mesures (n étant le nombre des filtres de densités optiques différentes et devant être au moins égal à 5) sont calculées par la formule:

$$R_{\mathsf{a}} = \frac{\Delta V}{V} \tag{13}$$

5.2.2.4 Processing of results

The non-stability value (Δy) , in percentage, is calculated as follows:

$$\Delta y = \frac{(y_1 - y_2)}{(y_1 + y_2)} \times 100 \tag{12}$$

where

 y_1 is the average value of controlled parameter in the beginning of the work;

 y_2 is the average value of controlled parameter at the end of the work.

Pulse height non-stability shall not exceed 2 %.

Energy resolution non-stability shall not exceed 3 %.

5.3 Determination of intrinsic resolution and light output of housed scintillator and PMT spectrometric constant using PMT parameters

5.3.1 Equipment and measurement instrumentation

The measurements are made using the arrangement for the measurement scintillation parameters of the housed scintillators according to 5.2.41. A PMT with known spectral characteristic $S(\lambda)$ and quantum sensitivity Q is used:

Non-linearity and the initial point of setup transformation characteristic is measured as specified in 5.2.1.

The setup is qualified as useful for making measurements if its non-linearity does not exceed 3 %.

Non-stability of the setup is assessed as specified in 5.2.2. The setup is qualified as useful for making measurements it its non-stability does not exceed 2 %.

5.3.2 Preparation and making measurements

The tested housed scintillator is placed on PMT photocathode providing optical coupling with it, and the pulse height spectrum is measured as specified in 5.1.1.

The number of channels (V) corresponding to the total absorption peak maximum is defined considering the initial point of setup transformation characteristic.

The value of FWHM (ΔV) is determined.

The measurements are made as described above, every time placing neutral light filters of different optical density between the housed scintillator output window and PMT photocathode and obtaining V and ΔV values.

5.3.3 Processing of results

Values of the energy resolution of the scintillation detector $R_{\rm a}$ for each of n measurements (n is number of filters of different optical density and should be not less then 5) are calculated according to the formula:

$$R_{\mathsf{a}} = \frac{\Delta V}{V} \tag{13}$$

Le graphe de dépendance est fait sur la base de n résultats: $R_{\rm a}^2=f\left(\frac{1}{V}\right)$. Il est nécessaire de tracer une ligne droite à travers les points expérimentaux. Elle peut être approximée par la dépendance, comme suit:

$$R_{\rm a}^2 = \sqrt{R_{\rm d}^2 + \frac{A}{V}} \tag{14}$$

La ligne droite intercepte sur l'axe x la valeur $R_{\rm d}^2$, qui correspond à la résolution intrinsèque du scintillateur mesuré $(R_{\rm d})$.

La résolution intrinsèque du PMT est calculée par la formule:

$$R_{pm} = \sqrt{(R_a^2 - R_d^2)}$$
 (15)

La lumière sortante, en unités «photons/MeV», est définie par la formule:

$$C_{\text{ph}} = \frac{2,36^2}{R_{\text{pm}}^2 \times Q \times m \times E} \tag{16}$$

οù

Q est la sensibilité quantique de la photocathode du PMT,

m est le coefficient de concordance spectrale qui est calculé en accord avec la formule,

$$\int y(\lambda) \times y(\lambda) d\lambda \tag{17}$$

οù

 $S(\lambda)$ est la caractéristique spectrale de la photocathode du PMT,

 $y(\lambda)$ est la caracteristique spectrale du scintillateur.

Les scintillateurs certifiés selon cette méthode peuvent être utilisés comme étalon de travail pour comparaison avec les scintillateurs montés.

5.4 Définition du rendement lumineux du scintillateur monté en utilisant la méthode de comparaison avec l'étalon de travail

5.4.1 Généralités

La méthode de comparaison avec l'étalon de travail peut être utilisée si les scintillateurs en test et de référence sont faits sur la base du même matériau de scintillation.

5.4.2 Equipement et instrumentation de mesure

Les mesures sont faites en utilisant l'assemblage de mesure des paramètres de scintillation des scintillateurs montés, comme décrit en 5.2.1.2.

La non-linéarité et le point initial de la fonction de transfert de l'assemblage doivent être mesurés comme indiqué en 5.2.1.

L'équipement est certifié bon pour les mesures si sa non-linéarité ne dépasse pas 3 %.