

Edition 1.0 2009-08

INTERNATIONAL **STANDARD**

2 of 150 colour

Metallic communication cable test methods -Part 4-12: Electromagnetic compatibility (EMC) – Coupling attenuation or screening attenuation of connecting hardware - Absorbing clamp method

g hard ig hard

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2009 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch

About the IEC

Web: www.iec.ch

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Pease make sure that you have the latest edition, a corrigenda or an amendment might have been published.

■ Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

■ IEC Just Published: <u>www.iec.ch/online_news/justpub</u>

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

■ Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional anguages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: www.iec.ch/webstore/custserv

ECHORM. Click to If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

Edition 1.0 2009-08

INTERNATIONAL STANDARD

Metallic communication cable test methods — Part 4-12: Electromagnetic compatibility (EMC) — Coupling attenuation or screening attenuation of connecting hartware — Absorbing clamp method

Junpatibility

Junon of connecting has

Circle to view the

ECHORAL. Only.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

M

ICS 33.100; 33.120.20 ISBN 978-2-88910-639-4

CONTENTS

FO	REW	ORD		3		
1	Scor	e		5		
2	Norn	native re	eferences	5		
3			5			
4						
	4.1	⊑quipi 4.1.1				
		4.1.1	General Balun requirements	6		
		4.1.3	Test head and extension cable requirements	7		
		_	Test head and extension cable requirements	8		
	4.2	Tests	Impedance matchingampleLength of the extension cables	8		
		4.2.1	Length of the extension cables.	8		
		4.2.2	Tested length	8		
		4.2.3	Preparation of extension cable and test head			
		4.2.4	Delegand compating bandways	0		
	4.3	4.3 Calibration procedure				
	4.4	Calibration procedure Test set-up 4.4.1 General 4.4.2 Test set-up verification				
		4.4.1	General	9		
		4.4.2	Test set-up verification	10		
	4.5	Measu	ıring procedure	11		
5	Expr	ession (of test results	11		
6	Test	report	of test results	11		
	6.1	6.1 General				
	6.1 General					
Fig	jure 1	– Meas	urement of surface wave at near end of connecting hardware	6		
Fig	jure 2	– Termi	ination of extension cables	9		
Fic	ure 3	– Test s	set_up for a near end measurement of connecting hardware	10		
_			set-up for a near end measurement of connecting hardware			
		~	al measurement of screened connecting hardware			
_			al measurement of an unscreened balanced connecting hardy			
	<	1.	al measurement of an unscreened balanced connecting hardware			
				, 13		
Тэ	hla 1 _	Ralun	performance characteristics (30 MHz to 1 GHz)	7		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-12: Electromagnetic compatibility (EMC) – Coupling attenuation or screening attenuation of connecting hardware – Absorbing clamp method

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62153-4-12 has been prepared by IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and microwave passive components and accessories.

The text of this standard is based on the following documents:

CDV	Report on voting
46/312/CDV	46/328/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication is to be read in conjunction with IEC 62153-4-5 (2006).

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62153 series, under the general title: *Metallic communication cable test methods*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed.
- withdrawn,
- · replaced by a revised edition, or
- · amended.

A bilingual version may be issued at a later date.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-12: Electromagnetic compatibility (EMC) – Coupling attenuation or screening attenuation of connecting hardware – Absorbing clamp method

1 Scope

This part of IEC 62153 details the method of test to determine the coupling attenuation or screening attenuation for connecting hardware used in analogue and digital communication systems. The test method details means to test one part of a connecting hardware (e. g. wall outlet or plug alone) as well as testing a mated pair of connecting hardware.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-726, International Electrotechnical Vocabulary – Chapter 726: Transmission lines and waveguides

IEC 61196-1, Coaxial communication cables Part 1: Generic specification – General, definitions and requirements

IEC 62153-4-5:2006, Metallic communication cables test methods – Part 4-5: Electromagnetic compatibility (EMC) – Coupling or screening attenuation – Absorbing clamp method

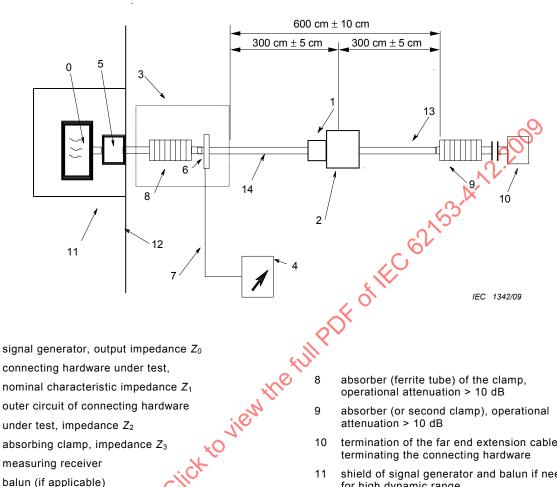
ITU-T Recommendation G.117.1996, Transmission aspects of unbalance about earth

ITU-T Recommendation Q9:1999, Measuring arrangements to assess the degree of unbalance about earth

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-726 and IEC 61196-1 apply.

In this document, connecting hardware is defined as a complete connecting device including compensating or matching networks (if any), connectors and cable terminations.


4 Test method

4.1 Equipment

4.1.1 General

See 5.1.1 of IEC 62153-4-5, and Figure 1 below.

The connecting hardware under test shall be terminated using the termination method and a cable type for which it is constructed. If only one part of the connecting hardware is under test, a test head shall be used to mate the part under test.

- 3 absorbing clamp, impedance Z₃
- 4 measuring receiver

Key 0

- balun (if applicable) 5
- current transformer of the clamp 6
- measuring receiver cable tose the same in measurement and calibration)

- termination of the far end extension cable terminating the connecting hardware
- shield of signal generator and balun if needed for high dynamic range
- reflector plate 12
- extension cable terminating the connecting hardware at far end
- extension cable terminating the test head or connecting hardware at near end

Figure 1 – Measurement of surface wave at near end of connecting hardware

4.1.2 **Balun requirements**

For measurement of balanced connecting hardware, a means for generating balanced signals shall be provided. If the generator is unbalanced, this may be performed by the use of a balun or 180° power splitter.

The minimum requirements for this device are specified in Table 1.

The attenuation of the balun shall be kept as low as possible because it will limit the dynamic range of the coupling attenuation or screening attenuation measurements.

Table 1 – Balun performance characteristics (30 MHz to 1 GHz)

Parameter	Value	
Impedance, primary ^a	50 $Ω$ (unbalanced)	
Impedance, secondary ^b	100 Ω or 150 Ω (balanced)	
Operational attenuation ^d (including matching pads if used)	≤ 10 dB	
Return loss, bi-directional	≥ 6 dB	
Power rating	To accommodate the power of the generator and amplifier (if applicable)	
Output signal balance ^c	≥ 50 dB from 30 MHz to 100 MHz	
	≥ 30 dB from 100 MHz to 1 GHz	

- ^a Primary impedance may differ, if necessary, to accommodate analyzer outputs other than 50 $\Omega_{
 m s}$
- Balanced outputs of the test baluns shall be matched to the nominal impedance of the balanced terminating cable pair. 100 Ω shall be used for termination of 120 Ω cabling.
- Measured per ITU-T Recommendations G.117 and O.9.
- ^d The operational attenuation of a balun shall be mathematically deduced from 3 operational attenuation measurements with 3 baluns back-to-back.

4.1.3 Test head and extension cable requirements

4.1.3.1 General requirements

Unscreened balanced test heads (if applicable) and extension cables shall be used for testing unscreened, balanced connecting hardware. Screened balanced test heads (if applicable) and extension cables shall be used for testing screened, balanced connecting hardware. Unbalanced (coaxial) test heads (if applicable) and extension cables shall be used for testing unbalanced connecting hardware.

The electrical transmission performance including electromagnetic screening and unbalance attenuation of the test head (if applicable) and the extension cable shall be better or equal to the performance of the connecting hardware under test. The choice of the extension cable should assure the minimum operational attenuation and reflection loss of the set-up possible.

The extension cables shall have the same nominal characteristic impedance as the connecting hardware under test. The velocity of propagation for the two extension cables, terminating the connecting hardware, shall be similar (same type of insulation, for example foamed or solid). The operational attenuation of the near end terminating cable including test head (if applicable) shall be less than 1 dB up to 100 MHz.

The extension cables shall have a balance (when measuring balanced patch cords) and shall have a screen (when measuring screened patch cords) as good as possible.

4.1.3.2 Testing one part of connecting hardware

Testing one part of connecting hardware requires a test head which mates the connecting hardware under test.

The test head, the extension cable and the connection between test head and the extension cable shall have a balance or screening or balance and screening as good as can be obtained. To further enhance the measurement sensitivity, the connection between the test head and the extension cable may be improved, since it does not form part of the device under test. It is not allowed to improve the contact between the test head and the connecting hardware under test and the extension cable, as this termination is part of the test. The measurement sensitivity shall

be 6 dB better than the specified requirement limit for the connecting hardware under test. See 4.4.2.1 for determination of the measurement sensitivity.

In case of doubt regarding the interoperability between the test head and the connecting hardware under test, it is recommended to use the mating connecting hardware specified or advised by the supplier of the connecting hardware under test.

4.1.3.3 Testing of a mated pair of connecting hardware

Testing of a mated pair of connecting hardware is performed by terminating the connecting hardware with extension cables as defined in 4.1.1.

No improvements of the terminations in excess of those specified by the manufacturer are allowed as these terminations are parts of the test.

For screened cables, the far end termination could already be included into the test head. In that way, the quality of the extension cable is not critical with respect to the test results.

4.1.4 Impedance matching

When measuring connecting hardware with another characteristic impedance than the impedance of the test system, impedance matching is only required when the return loss is less than 10 dB. The error that is introduced by the mismatch is maximum \pm 0.5 dB and thus negligible compared to the typical accuracy of the absorbing clamp test method.

4.2 Test sample

4.2.1 Length of the extension cables

The extension cable at the near end of the set-up (close to the reflector plate) shall be 4 m \pm 0,1 m. The extension cable at the far end of the test set-up shall be 10 m \pm 0,1 m.

4.2.2 Tested length

The effective test length of the test specimen is limited by the absorbing clamp and the ferrite tube, as shown in Figure 1. This length shall be 600 cm \pm 10 cm.

4.2.3 Preparation of extension cable and test head

The diameter of the extension cables must be selected to allow insertion in the bore of the absorbing clamp.

When a special type of socket interface is specified for termination of the connecting hardware such interface shall be used in the test head in question.

4.2.4 Balanced connecting hardware

4.2.4.1 General

Differential and common mode termination is required for each pair at the far end of the extension cable, see Figure 2.

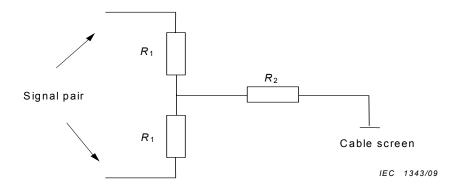


Figure 2 - Termination of extension cables

The values of the R_1 resistors shall be one half the nominal characteristic impedance of the extension cable.

NOTE For 100 Ω balanced cabling, the common mode impedance will be equal to 25 Ω when R_2 is short circuited. The common mode impedance of the termination may vary from 25 Ω (R_2 =0 Ω) to 100 Ω (R_2 =75 Ω).

In case of screened cables, the terminating resistors shall be screened.

The centre taps of the terminations shall be connected together. In the case of screened cables, the centre taps shall be connected to the screens.

4.2.4.2 Multi-conductor connecting hardware

Under consideration.

4.2.4.3 Coaxial connecting hardware

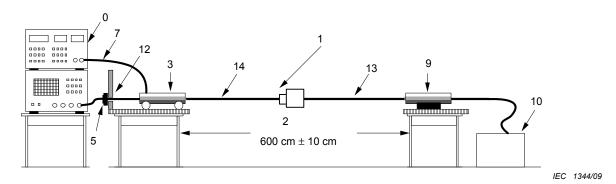
The far end extension cable shall be terminated with its nominal characteristic impedance.

4.3 Calibration procedure

See 5.3 of IEC 62153-4-5

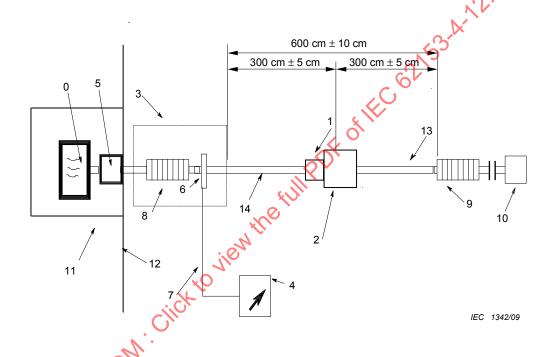
4.4 Test set-up

4.4.1 General


See 5.4 of IEC 62153-4-5.

As shown on Figure 3, the near end coupling attenuation or screening attenuation test set-up is as follows.

The absorbing clamp is placed on a non-metallic test support with the sensor side maximum 50 mm from the edge of the test support and 300 cm \pm 5 cm from the surface of the connecting hardware.


The absorber is placed on a non-metallic test support positioned maximum 50 mm from the edge of the support. The distance between the absorbing clamp and the absorber shall be 600 cm \pm 10 cm (see 4.2.2).

The cabling in the tested length shall be suspended in free air. The minimum distance to any metallic or non-metallic objects shall be 60 cm.

NOTE The identification of the keys is given in Figure 1.

Figure 3 – Test set-up for a near end measurement of connecting hardware

NOTE The identification of the keys is given in Figure 1.

Figure 4 Test set-up for a near end measurement of connecting hardware

Figure 3 and Figure 4 show near end measurements. For far end measurements, the positions of the absorbing clamp and the absorbers are interchanged.

4.4.2 Test set-up verification

4.4.2.1 Determination of measurement sensitivity of the set-up

Before measurements are performed, the measurement sensitivity of the test set-up shall be determined.

The best value (measurement sensitivity) of coupling attenuation or screening attenuation, which can be measured by the set-up, is dependent of the properties of the test-head (if applicable) and the extension cables.

The measurement sensitivity for measuring one part of a connecting hardware shall be determined by measuring the coupling or screening attenuation of the test head mated with a set-

up validation connector. The set-up validation connector shall be either unscreened or screened, balanced or unbalanced in accordance with the connecting hardware under test.

The measurement sensitivity for measuring mated pair connecting hardware shall be determined by measuring the coupling attenuation or screening attenuation of the extension cable.

Measurement sensitivity shall be measured according to 4.5 and expressed according to Clause 5.

It is advisable to optimise the set-up to get the highest possible measurement sensitivity. This is done by selecting well balanced, well screened or well balanced and screened test head, extension cables and set-up validation connector.

4.4.2.2 Verification of test set-up calibration

See 5.4.1 of IEC 62153-4-5.

4.4.2.3 Pulling force on connecting hardware

The maximum pulling force shall be 20 N.

4.5 Measuring procedure

The coupling or screening attenuation of the patch cord under test is measured as described in 5.6 of IEC 62153-4-5. ick to view the full PDF 5.6 of IEC 62153-4-5.

Expression of test results 5

See Clause 6 of IEC 62153-4-5.

Test report

6.1 General

If the measurement sensitivity is 6 dB higher than the measured coupling or screening attenuation, the measured value shall be reported as the test result. Otherwise the report shall state that the coupling or screening attenuation of the connecting hardware under test is equal to or better than the measured coupling or screening attenuation.

The screening or coupling attenuation normally increases with frequency.

If required in the relevant connecting hardware specification, the worst case (near end or far end measurement) recording of a_c versus frequency in any specified frequency range shall be reported.

6.2 **Evaluation of test results**

For both unbalanced and balanced connecting hardware, the worst case value, A, expressed in dB, may be deduced by superimposing a boundary curve on the plotted coupling attenuation results. The boundary curve should be adjusted vertically until it intersects the first valley in the coupling attenuation results. The boundary curve is derived as follows:

For 30 MHz $\leq f \leq$ 100 MHz:

 $A = A_{result}$

For 100 MHz $\leq f \leq$ 1 000 MHz:

$$A = A_{result} - 20 \times log_{10} \left(\frac{f}{100} \right)$$

where

f is the frequency expressed in MHz;

A_{result} is given by the coupling attenuation corresponding to the first valley.

See examples in Figures 5, 6 and 7.

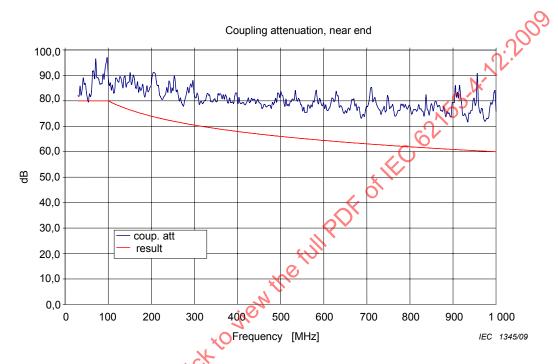


Figure 5 – Typical measurement of screened connecting hardware