IEC 61691-8:2021-07(en) |EEE Std 1666.1-2016

< IEEE IEC 61691-8

Edition 1.0 2021-07

INTERNATIONAL IEEE Std 1666.1™
STANDARD

BehaVioural languages — Q
Part 8] Standard SystemC® Anang/Mixed-@nal Extensions Language
Refer¢ence Manual @s\



https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC Central Office

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2016 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the IEC Central Office. Any questions about IEEE copyright should be addressed to the
IEEE. Enquiries about obtaining additional rights to this publication and other information requests should be
addressed to the IEC or your local IEC member National Committee.

Institute of Electrical and Electronics Engineers, Inc.

3, rue de Varembé 3 Park Avenue

CH-1211 Geneva 20 New York, NY 10016-5997

Switzerland United States of America

Tel.: +41 22 919 02 11 stds.info@ieee.org

info@ie¢.ch www.ieee.org

www.ied.ch
About the|lEC
The Interpational Electrotechnical Commission (IEC) is the leading global organization that jprépares and|publishes
Internationjal Standards for all electrical, electronic and related technologies.
About IEG publications
The techn|cal content of IEC publications is kept under constant review by the IEC. Please make sure that yoli have the
latest editipn, a corrigendum or an amendment might have been published.
IEC publidations search - webstore.iec.ch/advsearchform IEC online collection\- oc.iec.ch
The advarjced search enables to find IEC publications by a Discover our powerful search engine and read frgely all the
variety of criteria (reference number, text, technical publications previews. With a subscription you Will always
committee] ...). It also gives information on projects, replaced have access to*up to date content tailored to your needs.
and withdrawn publications.

. . . . Electropedia - www.electropedia.org
IEC Just Rublished - webstore.iec.ch/justpublished The-world's leading online dictionary on electrotechnology,
Stay up tq date on all new IEC publications. Just Published  containing more than 22 000 terminological entried in English
details all [new public_:ations released. Available online and and French, with equivalent terms in 18 additional Janguages.
once a mofith by email. Also known as the International Electrotechnical Yocabulary
(IEV) online.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need furth¢r assistance, please contact the CustomerService
Centre: sales@iec.ch.



mailto:stds.info@ieee.org
mailto:info@iec.ch
http://www.ieee.org/
https://www.iec.ch/
https://webstore.iec.ch/advsearchform
https://webstore.iec.ch/justpublished
https://webstore.iec.ch/csc
mailto:sales@iec.ch
https://oc.iec.ch/
http://www.electropedia.org/
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

< IEEE IEC 61691-8

Edition 1.0 2021-07

INTERNATIONAL IEEE Std 1666.1™
STANDARD

, O
é
Behavioural languages — 1%
Part 8} Standard SystemC® Anang/Mixed@nal Extensions Language
Refer¢nce Manual QO

¥

O
D
&

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.01; 35.060 ISBN 978-2-8322-9951-7

Warning! Make sure that you obtained this publication from an authorized distributor.

® Registered trademark of the International Electrotechnical Commission


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

Contents
1. O VETVIEW ...ttt ettt ettt ettt ettt ettt et e s bt e et e s bt e a et e bt em bt eh e m et eh e et e e a e e bt eateabe e st e sbeeabesbeembesbeenbeebeenseebeenee 1
L B (o703 o1 OO OO OO PTUPRRTIN 1
1.2 PUIPOSE. ettt ettt ettt st et e ettt e st e e e e et e et e e tb e e bt e tae e b e e tee et e e saeenbeeesbeenteetaeenbaenreenn 1
1.3 SUDSEES. c.eutiiiieeieet ettt ettt ettt b e bbb b et b e 2
1.4 Relationship With Cuuiiiiiiiiciciicecie ettt a e e sreesaesaeesbesreesseesnens 2
1.5  Relationship With SYStEMC........ccieiiriieiirieieriee ettt sseeneesneennas 2
H6—Guidaneeforreaders——rre e e 2
2. NOTIMALIVE TEEEIEIICES. ....cvveueeuieiieiieiirtieierte ettt ettt ettt et see st b sae e e s ene oo e et ene e Jesrenan 4
3. [erminology and conventions used in this standard...........ccocevcevenenenenenenn NS e 5
B.1  TermMiNOLOZY.....ccveeeveiieiieieeieeierieeterte et eeae st eeesseesesneesesnee s ffTe et e s e sneenesseensessnenne|eveneens 5
3.1.1 Shall, should, may, Can..........ccccevevievienieciereeieseeiesest e e o 5
3.1.2 Implementation, appliCation...........ccoeceevvereerereenenitree N eeeeieeeeeesieeeeseeeeesseesne s o 5
3.1.3 Call, called from, derived from.......cccccoovviiiivcieee S 5
3.1.4 Specific technical termS..........ccvvverierieriee e B et ee e e 5
B.2  Syntactical CONVENTIONS. ......coouiiuiiriirieriiriieiiee e Bereententeentesteeeeseeentesieestesieesbesseenneennessee Joenueenne 6
3.2.1 Implementation-defined............ccooece. S0 iieiiieiiceeeee e | e 6
3.2.2 DiSABIE....cuiieiiiiiiiieeeee et s 6
3.2.3 EIIPSIS (cvn)eeeveevereenrerienieneentidienseensesseeeesseesesseessesseessesssessessasssesssessesssessesssesseessesdhossennes 6
3.2.4  Class NAMES.....ccouereeruereenbied ettt sttt st siee e saee e eseesneeee s doie i 6
325 PrEfIXeS.cueeueririieieie e ettt sttt ettt ettt st 7
B.3  Typographical CONVENTIONS .. ..erueeeieuieuieiieeeiieteete e eteete e seeieseeseeseeeeeeneeneeneenessessesneseesfesiesnens 7
B4 SemantiC COMVENMEIONST. Mt u e ureuieireieeiietertenteeteste sttt seestestete st eneeseeseeneenesnesnessesbesseseessensenseforveniens 7
3.4.1 Class definitions and the inheritance hierarchy...........ccocoooeieiiiiininininncecne e 7
3.4.2 Functien definitions and side-effects.........ccervrvierirciinieiirieeeeec e e 7
3.4.3 Functions whose return type is a reference or a pointer.........c..cecceveevenvenencenccsfereenne, 8
3.4.4 Namespaces and internal NaAmMIng............coecevvreeerercieneriienieieseeseseeveseeseeseessesfeeseennns 8
3.475,"Non-compliant applications and €ITOIS............c.cceerverierreseesreeeerreeeesreeeesreeeesees oo 9
B.5  ,~NOtes and eXamPIes.........ccevuiriieririiieieiieieie ettt sttt ssae e eesseennesseenness|enaennnas 9
4. Cote-langnagedefinitions—rrrrreerereeeeeeeeeeeeeeeee e 10
4.1 Class header fIlES......coeiiiiriiririniieeee ettt ettt e 10
4.1.1 #nclude “SYSTEIMC-AMS”.......ciuiitirierieieieteiet ettt ettt ettt ettt et te ettt ese e ebeseeseeeeas 10
4.1.2 #include “SystemcC-ams.h”..........ccoeriiiiiiieieieeeeee e 10
4.2 Base class defINTtONS. .....cooiiiiiirieieeee ettt sttt ettt seen 11
4.2.1 sca_core::SCa MOAUIC.......coiiiiiiiiieieciee ettt s seennense e 11
4.2.2 sCa_COTE::SCA INTETTACE......eitiiiiitiiiieieeet ettt 13
4.2.3 sca_core::sca_prim_Channel...........ccooieieriieiieieieeiec et 14

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

4.2.4  SCA COTEIISCA POTT.cutitieuiietientertiesteettenteette st e et e st e et esbees e e beestesbeenteebee et saee bt sseenbeeneesbeeneens 15

4.2.5 SCA _COTEIISCA LIIMIC...ueeuesuieeieeeieieeeieteetieteetesteetesseensesseensesseenseeseenseeseenseensesseensesseensessen 16

4.2.6 SCA_COTE:SCA MAX LIITIC....eertiiuietiritetieiietceiteeteenteettetesieentesstenbeestesbeestesbeentesbeentesbeeneeeae 16

4.2.7 sca_core::SCa_Parameter DASE.........ccccciereriererierierienieeeenseetesseesesseessesseessessessessensens 16

4.2.8 SCA_COTEIISCA PATAIMEGLET....ccvetiemtirtteteettetietenteenteettentesteetesueentesseenbesstesbeensenbeensesseeneenne 18

4.2.9 sca_core::sca_assign_from _proxyf ................................................................................. 20
4.2.10 sca_core::sca_assign_to _proxy’* .................................................................................... 21

5. Timed data flow model of COMPULALION.........cccverviiieriieieiieieeete et eee s 22
B.1  Class definitioNS. .......eerueriieieiieieeieeeee ettt see e nee e e e e e 22
5.1.1 sca_tdfiisca module.........ccovieiieiieiiiieiecieeeeee e b e e 22

5.1.2 sca_tdfi:sca signal ifi......ccocoiiiiiiiiiiiiieeeeeeeeeeeee e e e e 29

5.1.3 sca_tdfiisca_Signal........ccoccoeeeoiieieniieieiieieeeeeee e N e 30

5.1.4 sca_tdfi:sca default interpolator...........ccceoeveenenienenenen N 31

5.1.5 8Ca tAfiISCA IMiiiiiiiiiieieiieieeiteieetee ettt e e e et e st eneenneeneenneshaennas 32

5.1.6 sca_tdfiiSCa OUL.....ccooiiiiiieiiriiiericencececeeeese e 8 37

5.1.7 sca tdfiisca OUL<T>.....occiiiieiiieeceee e et seee b 39

5.1.8 sca_tdf::sca out<T, sca tdf::SCA CT CUT,ANTERP>........ccccocovnvinvnvnnnns e 44

5.1.9 sca tdfi:sca_out<T, sca_tdf::SCA DT CUT>"....ccoiiieiieieieieieeieneeeeeeeeee e b 50
5.1.10 sca_tdf::sca de::sca_in, sca tdfiiSC iM. 5o e 55

5.1.11 sca_tdfi::sca_de::sca_in<bool>, sca ¢¢df::sc_in<bool>..........ccccovvverreieneecreneecenc v 62

5.1.12 sca_tdf::sca_de::sca_in<sc_ dt::sc\logic>, sca tdfi:sc_in<sc dt::sc_logic>..........}...... 69

5.1.13 sca_tdfi:sca_de::sca_out, scartdfiiSC OUt....ccoveciirieciieieicieeeeeee e ] 75

5.1.14 sca_tdfi:sca trace variablet...........cocooveriiiiiniiiiiinieeeceecee e e e 82

.2 Hierarchical composition and“port binding.............ceceevveviercieneieienenienesreneecie e 83
5.3 Elaboration and SImMUatiOn. ..........ccceeiiriiiiiieiieieeecee e 83
5.3.1  ElaDOration.,.. 5 . ettt ettt ettt st e e 84

5.3.2 SIMUIATIOIL . ettt sttt e e st sae e | 85

.4  Embedded dinear dynamic €qUAtiONS..........cceecvervieieriersiereesiesieeiesieesesseesesseensesseessessnesseshuesns 87
5.4.1 SCAMAFSCA_CE PFOXY .o e 88

5.4, 2%sca_tdf::sca_ct_vector _proxyf ....................................................................................... 89

543 sca_tdfizsca Itf nd....ooooiiii e 91

5.4.4 sca tdfiiSCa Itf ZP.iooooiciicee e e 96

545 sca tdf-:sca ss e 102

6. Linear signal flow model of COmMPULAtION.........co.evuiriririirienieieieiecer s 110
LT O O P T 1<) 1113 1o o F OSSR 110
6.1.1 sca_1sfi:sca MOAUIC.......cccoviiiiiieieciceceeee e 110

6.1.2 sca_lsfiisca Signal Q..o 110

6.1.3  sca_ISi:SCA SIZNAL..c.iiciiiiiiieiicieeeee e ae s 111

6.1.4  SCA_ISTIISCA TMiuuiiiiiiieii ettt 111

6.1.5  SCA_ISTIISCA OUL..iiuiiiiieii ittt e e et e et enseeseenes 112

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

6.1.6 sca lIsf:
6.1.7 sca lIsf:
6.1.8 sca lIsf:
6.1.9 sca Isf:
6.1.10 sca_lsf:
6.1.11 sca_Isf:
6.1.12 sca_lsf:
6.1.13 sca_lsf:
6.1.14 sca_Isf:

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

288 AA. ..ttt 113
BTz 1D o TSRS 114
BTz o1 1 1 FO OO OO OO U T OU PR PURRPRRPO 115
Tz [0 SRS 115
BTz I 11 L) OSSOSO RPN 116
Tz s (<] SRR 117
8@ SOUTCR...euventienteteenteettenteettenteeutesteeneesbeentessee bt s btenbesst e bt ente bt eneesbeenteebeeneesae 118
T L oL« PO RS SRRS 119
18CA I Z i e 120

6.1.15 sca_lsf:
6.1.16 sca_lsf:
6.1.17 sca_lsf:
6.1.18 sca_lsf:
6.1.19 sca_lsf:
6.1.20 sca_lsf:
6.1.21 sca_lsf:
6.1.22 sca_lsf:
6.1.23 sca_lsf:
6.1.24 sca_lIsf:

ISCA. S uuuteuureauteeriteetee sttt et e e sttt e bt e s ate e bt e s ateeteeshbeebeesheeebeenatesnbeesatesseesnneeshees|oeens 121
:sca_tdfi:sca gain, sca lsfi:sca tdf gain........ccoooeiiinininin @i bt e 122
:sca_tdfi:sca_source, sca_lsfi:isca_tdf source.........cccevvvevvecieepec e e b 123
:sca_tdfi:sca_sink, sca Isfizsca tdf SinK......ococooevenencnc b2l 124
:sca_tdfizsca_mux, sca_lsfiisca tdf mMuX......ccooovvveec e Grmnitteneeeeneeceeneen e 125
:sca_tdfiisca_demux, sca Isfiisca tdf demuxX.........Ge. i ... 126
:sca_de::sca_gain, sca_Isfiisca de gain...........ehdiveeiinenecee e 127
:sca_de::sca_source, sca_lIsfiisca _de source:.....coooooiiniiiienienenenenn e 127
:sca_de::sca_sink, sca_lIsfi:isca_de sink,e...iooooiioieiiiciiniieeeeee e 128
:sca_de::sca_mux, sca_lsfizsca de miluXh..oooooeneeiiniiniiieeee 129

6.1.25 sca_lsf::sca_de::sca_demux, sca_Isfi:scasnde demuX.......ccecevvevvvvenenvenencenenns e 130
h.2  Hierarchical composition and port binding.. .. .coi i e 131
b.3  Elaboration and simulation............ccceeeo it 131
6.3.1  ElabOTAtiON....c..eoiiiieiieieieiiee sttt ettt ese s s et ebeseeseeseeseeseeneens|saene 131
6.3.2  SIMUIAtION. c..eviieieieiecee a3 e | 132
Flectrical linear networks modehof Computation...........c.ccceevviiieviiiieniieienececeeeeeeeee e e 134
[.1 Class defINItions. ... 5 ettt st ... 134
7.1.1 sca_eln:s0@ MOdUle.........co.iiiiiiiieeee e e 134
7.1.2 sca elnisca NOde ifi....ooiiiiieiiieiceeeeee e | 135
7.1.3 sca eln:isca terminal........o.coooiiiieiieiieieieeee e | e 135
7. LASCa_€INiiSCA NOUC.....oiieeieiieiieiieieeitete ettt ettt seaesseensesseensesneensesneenhonis 136
735 sca_eln:isca node Tefi.....ooiiiiiiiiiiieeee e e 137
T.1.6 SCA_CINIISCA Teuvreiieiieeieiieiieieete st eee st ete st eaesiee e eneeteesseseensesseensesseensesseensessnensenns|srens 138
717 sca eln:sca ¢ ... 138
71,8 SCA_CINIISCA Luiuiiiiiiiiieiieiee ettt sttt neenes 139
7119 SCA_EINIISCA VOVS..oiuiiuiiiiitiitieie ettt ettt ettt et ettt st ettt et st et e nte st e e enneneene 140
7.1.10 SCA_CINIISCA VCCS..ecuieiiruieieeeeteeiesttetestteteestesteestesseeseesseessesseensesseensesssenseessenseensenseenes 141
7111 SCA_EINIISCA COVS..uiiuiiuiiiiitiitiitietete ettt ettt ettt sttt st et ettt e st ese e st eneebesaeeneas 142
7.1.12 SCA_CINIISCA CCCS..uieuieruraieriieieeieetesttetesteestesseenteestesseeseesseeseesseensesseensessaensesseesensseseans 142
7.1.13 5ca_€INn::8Ca NMUILOT.....oiiieiiieeeeee ettt e 143
7.1.14 SCA_CINIISCA ZYTALOT..c..eeiietieiieeieteetieteeteteetesteetesteesaesseenaesseessesseensesseenseeseensesseensennes 144

7.1.15 sca_eln::

sca_ideal tranSfOrmer.........cooeoiiiiiiiiiiicc e 145

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

7.1.16 sca_eln::sca_tranSmiSSION JINE..........ccveiieieiiiiiiise e 146
7.1.17 SCA_CINIISCA VSOUICE....cueeueeiieereetienteesieteeeteteetesseeneesseessesseessesseensenseanseeseesesnsessesnsesses 147
7.1.18 SCA_€IN:1ISCA TSOUICE...cueeueeueeuienieiieiceitettete ettt ettt sttt et e bt st ebeebesaesbenbeneeneenean 148
7.1.19 sca_eln::sca_tdfi:sca r, sca_eln:isca tdf Ie..ccoocoooeriiienieiicceeeeee e 149

7.1.20 sca_eln::sca_tdfi:sca c, sca_eln:isca tdf Co.ooceveveeriiniiienieicc e 150

7.1.21 sca_eln::sca_tdfiisca 1, sca_eln:isca tdf L. 151
7.1.22 sca_eln::sca_tdfi:sca rswitch, sca_eln::sca_tdf rswitCh........coccooeiiiiiniininiciin, 152

7.1.23 sca_eln::sca_tdfi:sca_vsource, sca_eln::sca tdf vSOUICE.......ccooovvvvevievieriieieciieieee, 153

7.1.24 sca_eln::sca_tdfi:sca isource, sca_eln::sca tdf iSOUICE........cccovererienieienieiceieiecee 154

7.1.25 sca_eln::sca_tdfi:sca_vsink, sca_eln::sca_tdf vsinK........ccocoevvvieiinienencenenipn oo 155

7.1.26 sca_eln::sca_tdfi:sca isink, sca_eln::sca tdf isinK..........cccoovvnvinvnnvncc @bt 156

7.1.27 sca_eln::sca_de::sca 1, sca_eln::sca de T.occocvecvevireenenienieeieeeespme e e b o 157

7.1.28 sca_eln::sca_de::sca_c, sca_eln:isca de C...coceveveveevieieieiecceecee B L 158

7.1.29 sca_eln::sca_de::sca 1, sca eln::isca de lo...coocorieirieeiieecc G e ... 159
7.1.30 sca_eln::sca_de::sca rswitch, sca_eln::sca_de rswitch.......(ay oo e 160

7.1.31 sca_eln::sca_de::sca_vsource, sca_eln::sca_de vsource:.h..le.cccoeereeveneveceeneeen o 161
7.1.32 sca_eln::sca_de::sca_isource, sca_eln::sca_de iSOURCEN...coieieierieieiececece] e 162

7.1.33 sca_eln::sca_de::sca_vsink, sca_eln::sca_de VSINKS....cooveierieeieniieiecieieeienn ... 162
7.1.34 sca_eln::sca_de::sca _isink, sca_eln::sca_de_qSiBK........ccooeveieeneieieiiiniccn e 163

/.2 Hierarchical composition and port binding.......... % cceeiererierinieeeiereeeseeeeeeee e | 164
.3 Elaboration and SIMulation............cceeeeeeeee 50ttt e 164
7.3.1  ElabOTation....c..cccccueiiieirinenee 8 ettt ettt | e 165

7.3.2 SIMUIAtION. ...ttt et | 165

8. Predefined ANalySEs.......ccveieriieiere ettt st e e st snnessesntesseensesneensenneesfennns 167
B.1  Time-domain analySiSsiated .o e mererererieieieieeiiecet ettt sttt et neeneene | eeees 167
8.1.1 Elaboration aned’/simulation..........c.ccoueouerueieirinerenieneninieseresecreseee et ... 167

8.1.2 Running:elaboration and simulation............ccceeeeiririninienineneseseeeeeeeee e 167

B.2  Small-signal frequency-domain analyses............ccoeeevverierierieniesienieeieieeeese e eee e o 167
8.2.1 Elaboration and SIMUIAtION. .........ecerierieiieieiieieeeieeteee e ... 168
8.2,2/Running elaboration and sIMUIAtioN..........cccveeieriecierierieriee e e 168

8.2:3 Small-signal frequency-domain analysis of TDF descriptions..........ccccceceeeveneeccfonne 169

8.2.4 Small-signal frequency-domain analysis of LSF descriptions........c..ccccecevvenencnifennee 173

825 Small-signal frequency-domain analysis of EI.N descriptions ... 173

9. L0 8 A 13 0 1 o TSR 174
0.1 TTACE FI1ES. ettt ettt ettt sttt s et st e b bt e b e et ent e b 174
9.1.1  Class defINItIONS......c.cecurueruiriirieriintinterientet ettt ettt ettt ettt s st sa e ene 174

9.1.2  Function deClarations.............eierueruerierieieieieteit ettt ettt sttt eee s e e e 177

9.2 Data types and CONSLANLS.........c.ccieriirieriieietieierteetesteetesseesaesseesesseessesseenseeseeseeseesseensesseenses 180
9.2.1 Class definition and function declarations............cc.ceeererierieierieieieeececeeee e 180

9.2.2 Definition 0f CONSANTS......c..coueriiiiiiiriiriinieree sttt ettt 188

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

9.3 Reporting iNfOrmMation..........ceueriiiiiieie ettt et st st 189

9.3.1 Class definition and function declarations..............ceccevereeerircieneriieneriereee e 189

9.3.2 MasK defINItIONS. ......cotiuiiiitiiteieieee ettt ettt be et eaesae e 190

9.4 Version and COPYTIZNL......ccviieiiiriieiieieeieieett ettt sttt sb st e teesaesteensenseensenseenes 191

9.4.1 MaCTO dEfINILIONS. ....cueiuiitietiitiiti ettt ettt ettt et eeeebeene e 191

9.4.2 CONSLANLS.....eeiiiiiiiieie ettt ettt ettt ettt sttt ean e s bt e ene s bt e sae et saeeneeae 193

9.4.3 Function deClarations.............eeeiueruerierieieieietet ettt ettt es e eee e 193

Annex A (informative) Introduction to the SystemC Analog/Mixed-Signal extensions............cccceeeerueenee. 195
Annex [B (informative) GLOSSAIY.......ccueiuieiiriieiiieiieieeiee ettt seeeeesee e pe g s 208
Annex |C (informative) PartiCIPants ..........ccoeeeviirieriiieieieeeest e et e e ....210
£ 0T 1o N OO OO OO OSSOSO SO SURRURRPRURUPTURURPTPRTRS S\ FOLUUOURRRURROTN IO 211

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

1)

2)

3)

4)

5)

6)
7)

8)

9)

Behavioural languages —
Part 8: Standard SystemC® Analog/Mixed-Signal
Extensions Language Reference Manual

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publi P "). Their
prepatation is entrusted to technical committees; any IEC National Committee interested in the subject [dealt with
may phrticipate in this preparatory work. International, governmental and non-governmental orgapizatiops liaising
with the IEC also participate in this preparation.

IEEE $tandards documents are developed within IEEE Societies and Standards Coordinating)Committges of the
IEEE Ptandards Association (IEEE SA) Standards Board. IEEE develops its standards\through a qonsensus
develdpment process, approved by the American National Standards Institute, which-brings together Jolunteers
represjenting varied viewpoints and interests to achieve the final product. Volunteersjare’not necessarilyymembers
of IEEE and serve without compensation. While IEEE administers the process andwestablishes rules tp promote
fairnegs in the consensus development process, IEEE does not independently evaluate, test, or perify the
accurgcy of any of the information contained in its standards. Use of IEEE-Standards documents|is wholly
voluntpry. IEEE documents are made available for use subject to important\iotices and legal disclaifners (see
http://$tandards.ieee.org/ipr/disclaimers.html for more information).

IEC co¢llaborates closely with IEEE in accordance with conditions determined by agreement betweep the two
organifgations. This Dual Logo International Standard was jointly developed by the IEC and IEEE under|the terms
of thaff agreement.

The fqrmal decisions of IEC on technical matters express, as,nearly as possible, an international congensus of
opiniop on the relevant subjects since each technical committee has representation from all inter¢sted IEC
Natiorlal Committees. The formal decisions of IEEE on téchnical matters, once consensus within IEEE|Societies
and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially
interegted parties who indicate interest in reviewingithe proposed standard. Final approval of the IEEE ptandards
docunjent is given by the IEEE Standards Association (IEEE SA) Standards Board.

IEC/IHEE Publications have the form of recommendations for international use and are accepted by IE¢ National
Comnittees/IEEE Societies in that sensexWhile all reasonable efforts are made to ensure that the|technical
content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in which they
are used or for any misinterpretationby_any end user.

In order to promote international\uniformity, IEC National Committees undertake to apply IEC Publications
(incluqing IEC/IEEE Publications),transparently to the maximum extent possible in their national ang regional
publichtions. Any divergence.between any IEC/IEEE Publication and the corresponding national of regional
publicption shall be clearly/indicated in the latter.

IEC apd IEEE do not provide any attestation of conformity. Independent certification bodies provide gonformity
assesgment services.and, in some areas, access to IEC marks of conformity. IEC and IEEE are not relsponsible
for any services carried out by independent certification bodies.

All usérs should\ensure that they have the latest edition of this publication.

No liapility(shall attach to IEC or IEEE or their directors, employees, servants or agents including |[individual
experts and,members of technical committees and IEC National Committees, or volunteers of IEEE Sodjeties and
the Stendards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Boaid, for any
personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for
costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE
Publication or any other IEC or IEEE Publications.

Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of material
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or
scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with
submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory.
Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk
of infringement of such rights, is entirely their own responsibility.

IEC 61691-8/IEEE Std 1666.1 was processed through IEC technical committee 91: Electronics
assembly technology, under the IEC/IEEE Dual Logo Agreement. Itis an International Standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


http://standards.ieee.org/ipr/disclaimers.html
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

The text of this International Standard is based on the following documents:

IEEE Std FDIS Report on voting
1666.1 (2016) 91/1712/FDIS 91/1724/RVD

Full information on the voting for its approval can be found in the report on voting indicated in
the above table.

The language used for the development of this International Standard is English.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents
of this document will remain unchanged until the stability date indicated on the IEC website
under webstore.iec.ch in the data related to the specific document. At this date, the document
will be

e reconfirmed,
e withdrawn,
o replaced by a revised edition, or

e amehded.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


http://webstore.iec.ch/
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1™-2016

|IEEE Standard for Standard SystemCP®

An

Lapguage Reference Manual

Sponspr

Desigin Automation Standards Committee

of the

IEEE Computer Society

Appro

IEEE-SA Standards Board

alog/Mixed-Signal Extensions

ed 29 January 2016

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

Abstract: The SystemC® Analog/Mixed-Signal (AMS) extensions are defined in this standard.
SystemC AMS is an ANSI standard C++ class library for electronic system-level design and modeling
for use by system architects and engineers who need to address complex heterogeneous systems
that are a hybrid between analog, digital and software components. This standard provides a precise
and complete definition of the SystemC AMS class library so that a SystemC AMS implementation
can be developed with reference to this standard alone. The primary audiences for this standard are
the implementors of the SystemC AMS class library, the implementors of tools supporting the class
library, and the users of the class library.

Keywords: analog mixed signal, behavioral modeling, C++, computer languages, data flow
simulation, d|g|tal systems d|screte event S|mulat|on eIectromc deS|gn automat|on eIectromc

i ) ardware
design, hardware verlflca'uon, IEEE 1666“" IEEE 1666 1™, mixed-signal modellng, SystemC,
SystemC AMS, signal flow modeling, system modeling, system-on-chip

Ackngwledgment: Grateful acknowledgment is made to the Accellera Systems’ Ihitiative ffor the

permigsion to use the following source material: Standard SystemC® AMS extensions 2.0 Larjguage
Refergnce Manual.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These

notices

and disclaimers, or a reference to this page, appear in all standards and may be found under the heading

“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards recommended practlces and guldes) both full-use and trial-use,

voluntders representing varied viewpoints and interests to achieve the final product. Velunteers
necessqgrily members of the Institute and participate without compensation from IEEE. While TEEE adm
the profess and establishes rules to promote fairness in the consensus development-process, IEEE d
indepeidently evaluate, test, or verify the accuracy of any of the information or the séundness of any jud
containged in its standards.

indards
nsensus
pgether
are not
inisters
oes not
gments

IEEE does not warrant or represent the accuracy or content of the material”contained in its standands, and

expresgly disclaims all warranties (express, implied and statutory) not inicluded in this or any other do
relating to the standard, including, but not limited to, the warranties.of; merchantability; fitness for a p4
purpos¢; non-infringement; and quality, accuracy, effectiveness) ‘edrrency, or completeness of matg
additiof, IEEE disclaims any and all conditions relating to: résults; and workmanlike effort. IEEE st
documgnts are supplied “AS IS” and “WITH ALL FAULTS:?

Use offan IEEE standard is wholly voluntary. The eXistence of an IEEE standard does not imply th
are no pther ways to produce, test, measure, purchase, market, or provide other goods and services re|
the scope of the IEEE standard. Furthermore, the.viewpoint expressed at the time a standard is approy
issued {s subject to change brought about through developments in the state of the art and comments r
from ugers of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional
servicep for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed|
other pgrson or entity to another: Any person utilizing any IEEE Standards document, should rely upo|
her own independent judgient in the exercise of reasonable care in any given circumstances or, as appr|
seek the advice of a competent professional in determining the appropriateness of a given IEEE stand

IN NO EVENI )SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDH
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITI
PROCYUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PR]

cument
rticular
rial. In
hindards

ht there
lated to
bed and
bceived

r other
by any
nh his or
ppriate,
hrd.

INTAL,
ED TO:
DFITS;

ILITY,

WHETHER IN CONTRACT STRICT LIABILITY OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND

REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

Translations
The IEEE consensus development process involves the review of documents in English only. In the event that

an IEEE standard is translated, only the English version published by IEEE should be considered the approved
IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations
Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall

not be comcadarad 0 o rlha raliad taman oo o ool oocitioan L TEED At looteac  oyzoanacia anat ars. or
PORSTHE TG00 0o oo e aHp o st ar P oSO Ot rOCTr oSSy PO Stas SOt N

educatipnal courses, an individual presenting information on IEEE standards shall make it clear that his or her
views ghould be considered the personal views of that individual rather than the formal position of AEEE.

Comments on standards

Commg¢nts for revision of IEEE Standards documents are welcome from any(interested party, regardless
of membership affiliation with IEEE. However, IEEE does not provide cofisulting information or| advice
pertainjng to IEEE Standards documents. Suggestions for changes in documents should be in the foym of a
propos¢d change of text, together with appropriate supporting comments. Since IEEE standards repfesent a
consengus of concerned interests, it is important that any responses¢to comments and questions also [receive
the confurrence of a balance of interests. For this reason, IEEE and th¢ members of its societies and Standards
Coordipating Committees are not able to provide an instant, response to comments or questions except in
those cpses where the matter has previously been addressed."For the same reason, IEEE does not respond to
interpr¢tation requests. Any person who would like to participate in revisions to an IEEE standard is welcome
to join the relevant IEEE working group.

Commg¢nts on standards should be submitted to:the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws|and regulations

Users ¢f IEEE Standards documents should consult all applicable laws and regulations. Complianfe with
the provisions of any-IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatpry réquirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
complifinée with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They
are made available by IEEE and are adopted for a wide variety of both public and private uses. These include
both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the
promotion of engineering practices and methods. By making these documents available for use and adoption
by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy
portions of any individual standard for company or organizational internal use or individual, noncommercial
use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer
Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions
of any individual standard for educational classroom use can also be obtained through the Copyright Clearance
Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded.atahy time
by the ssuance of new editions or may be amended from time to time through the issuance of amén¢lments,
corrigehda, or errata. An official IEEE document at any point in time consists of the currentledition of the
documg¢nt together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document’is more than tdn years
old and has not undergone a revision process, it is reasonable to conclude that it§)contents, althoughl still of
some vplue, do not wholly reflect the present state of the art. Users are cautionéd to check to determjne that
they hajve the latest edition of any IEEE standard.

In ordef to determine whether a given document is the current editionnd whether it has been amended through
the issyance of amendments, corrigenda, or errata, visit the IEEE:SA Website at http://ieeexplore.i¢ee.org/
expel/sfandards.jsp or contact IEEE at the address listed previously. For more information about the IHREE-SA
or [OWA’s standards development process, visit the [IEEE<SA"Website at http://standards.ieee.org.

Errata

Errata, [if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL}: http:/
standarfs.ieee.org/findstds/errata/index.html-Users are encouraged to check this URL for errata periodically.

Patenits

Attentipn is called to the possibility that implementation of this standard may require use of subjec{ matter
covered by patent rights.\By publication of this standard, no position is taken by the IEEE with respeqt to the
existenfe or validity«efiahy patent rights in connection therewith. If a patent holder or patent applidant has
filed a ptatement of@ssurance via an Accepted Letter of Assurance, then the statement is listed on th¢ IEEE-
SA Wqbsite at'http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may fndicate
whether theSubmitter is willing or unwilling to grant licenses under patent rights without compgnsation
or und¢r, ¥€asonable rates, with reasonable terms and conditions that are demonstrably free of any unfair

di L RO + 1. ted o 4 Tt 1.
1SCrImMatton to-apprreants aCsirmgtoootanT SuCi IICenses:

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE
is not responsible for identifying Essential Patent Claims for which a license may be required, for
conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing
terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any
licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their
own responsibility. Further information may be obtained from the IEEE Standards Association.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


http://ieeexplore.ieee.org/expel/standards.jsp
http://ieeexplore.ieee.org/expel/standards.jsp
http://standards.ieee.org
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

Introduction

This introduction is not part of IEEE Std 1666.1™-2016, IEEE Standard for Standard SystemC® Analog/Mixed-Signal
Extensions Language Reference Manual.

This document defines the SystemC Analog/Mixed-Signal (AMS) extensions, which is a C++ class library.

As the electronics industry builds more complex heterogeneous systems involving large numbers of
components including analog, digital and software, there is an increasing need for a modeling language that
can manage the complexity, heterogeneity, and size of these systems. SystemC AMS provides a mechanism
for managing this complexity with its facility for modeling hardware and software together at multiple levels
of abstfaction. This capability 1s not available in traditional hardware description languages.

Stakeh¢lders in SystemC AMS include Electronic Design Automation (EDA) companies who implement
SystemlC AMS class libraries and tools, integrated circuit (IC) suppliers who extend thoseclass libragies and
use SyytemC AMS to model their intellectual property, and end users who use SystemCAMS to model their
systems.

This sthndard is not intended to serve as a user’s guide or to provide an introduction to System( AMS.
Readerp requiring a SystemC AMS tutorial or information on the intended us€ of-SystemC AMS should|consult
the Acgellera Systems Initiative Web site (http://www.accellera.org) to locate the supplemental matetial and
training classes available.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


http://www.accellera.org
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

|IEEE Standard for Standard SystemC®

An -
Lapguage Reference Manual

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, hed
envirogmental protection, or ensure against interference with or from other devices or né
Implementers of IEEE Standards documents are responsible for determining and complying

Ith, or
tworks.
vith all

appropyiate safety, security, environmental, health, and interference protection practices and all applicable

laws and regulations.

This IKEE document is made available for use subject to important notices and legal disclaimers| These

notices|and disclaimers appear in all publications containingthis’ document and may be found un
“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents
can alsp be obtained on request from IEEE or viewed at http://standards.iece.org/IPR/disclaimers. |

der the
” They
utml.

1. Ovierview

1.1 S¢ope

This standard defines the Analog/Mixed-Signal extensions for SystemC®1, as an ANSI standard C+
library pased on SystemC for.System and hardware design including analog/mixed-signal elements.

1.2 Pyrpose

The gemeral purpose of the SystemC AMS extensions is to provide a C++ standard for designers and ard
who neled to.address complex heterogeneous systems that are a hybrid between hardware and softwa

+ class

hitects,
re. This
ds it to

standarfdi$Built on the IEEE Std 1666™-2011> (SystemC Language Reference Manual) and exten

create analog/mixed-signal, multi-disciplinary models to simulate continuous-time, discrete-time, and
event behavior simultaneously.

The specific purpose of this standard is to provide a precise and complete definition of the AMS class

iscrete-

library,

so that a SystemC AMS implementation can be developed with reference to this standard alone. This standard
is neither intended to serve as a user’s guide nor to provide an introduction to AMS extensions in SystemC,

but does contain useful information for end users.

1 . . s
SystemC® is a registered trademark of the Accellera Systems Initiative.
Information on references can be found in Clause 2.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


http://standards.ieee.org/IPR/disclaimers.html
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-2- IEEE Std 1666.1™-2016

1.3 Subsets

It is anticipated that tool vendors will create implementations that support only a subset of this standard or
that impose further constraints on the use of this standard. Such implementations are not fully compliant with
this standard but may nevertheless claim partial compliance with this standard and may use the name SystemC
AMS extensions.

1.4 Relationship with C++

This standard is closely related to the C++ programming language and adheres to the terminology used in
ISO/IE 48822003 —This-standard-doesnet-seek—torestrict-the-usase-ofthe programinetansgage; an
applicafion using the SystemC AMS extensions may use any of the facilities provided by C++, whiely in turn
may usp any of the facilities provided by C. However, where the facilities provided by this standard ate used,
they shhpll be used in accordance with the rules and constraints set out in this standard.

This stgndard defines the public interface to the SystemC AMS class library and the caonstraints on how those
classesjmay be used. The SystemC AMS class library may be implemented in any mantier whatsoever, pfovided
only thht the obligations imposed by this standard are honored.

A C++lclass library may be extended using the mechanisms provided by the €4+ language. Implemenfors and
users afe free to extend SystemC AMS extensions in this way, provided-that they do not violate this standard.

NOTE—It is possible to create a well-formed C++ program that is legal according to the C++ programming lhnguage
standard but that violates this standard. An implementation is not obliged to detect every violation of this standarfl.>

1.5 Relationship with SystemC

This sthndard is built on IEEE Std 1666-2011. and® extends it using the mechanisms provided by the C++
language, to provide an additional layer of analog/mixed-signal constructs. Consequently, an implemgntation
and apglication may use the SystemC core language and predefined channels defined in the namespace §c_core
and the] SystemC data types defined in the-namespace sc_dt, unless stated otherwise.

Any SystemC compliant application-shall behave the same in the presence of the SystemC AMS extepsions.

1.6 Gliidance for readers

Readerp who are not-entirely familiar with the SystemC AMS extensions should start with Annex Al which
providgs a briefiinformal summary of the subject intended to aid in the understanding of the nofmative
definitipns. Such readers may also find it helpful to scan the examples embedded in the normative definitions
and to §ee/Annex B.

Readers should pay close attention to Clause 3. An understanding of the terminology and conventions defined
in that clause is necessary for a precise interpretation of this standard.

The semantic definitions given in the subsequent clauses detailing the individual classes are built upon the
foundations laid in Clause 4.

Clause 5, Clause 6 and Clause 7 define the public interface to the SystemC AMS class library defining the
predefined models of computation.

3Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -3-

The following information is listed for each class:
a) A brief class description.
b) A C++ source code listing of the class definition.
¢) A statement of any constraints on the use of the class and its members.
d) A statement of the semantics of the class and its members.

e) For certain classes, a description of functions, typedefs, macros, and template parameters associated
with the class.

For each predefined model of computation, the execution semantics for elaboration and simulation are defined.

Reader} should bear in mind that the primary obligation of a tool vendor is to implement the abstract'semantics
defined in Clause 5, Clause 6, and Clause 7, using the framework and constraints provided-by’ the class
definitipns starting in Clause 4.

Annex A is intended to aid the reader in the understanding of the structure and intent-of‘the System{C AMS
class library.

Annex B is giving informal descriptions of the terms used in this standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-4 IEEE Std 1666.1™-2016

2. Normative references

The following referenced documents are indispensable for the applications of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained) For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments or corrigenda) applies.

This standard shall be used in conjunction with the following publications:

ISO/IEC 14882:2003, Programming Languages—C++4

IEEE Std 1666 ™-201T1: IEEE Standard Tor Standard SystemC Language Reference Manual

“ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Geneve 20,
Switzerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.conv/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
WWWw.ansi.org/).

The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.
°IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331, USA (http://standards.ieee.org/).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


http://www.iso.ch/
http://global.ihs.com/
http://www.ansi.org/
http://www.ansi.org/
http://standards.ieee.org/
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -5-

3. Terminology and conventions used in this standard

3.1 Terminology

3.1.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but does not impose any obligation.

The wq

The wd

In som
or an i

3.1.21

The wd

1 - 1 4 1 111 MW | - %l 1 - 1 11 11 1
jyes I’lu}/ IS USUU U 1IITall Sliall Uv lJCllllll,lCU \HTUHIC STLIST UL UCIIIB lcsau_y dlluwTd).
rd can is used to mean shall be able to (in the sense of being technically possible).

p cases, word usage is qualified to indicate on whom the obligation falls, such as an-applicati
hplementation shall.

mplementation, application

rd implementation is used to mean any specific implementation of the\full SystemC AMS clasg

as defiged in this standard, only the public interface of which need be exposed to the application.

The wo
library,

3.1.3 ¢

The ter
which 1

rd application is used to mean a C++ program, written by,an'end user, that uses the SystemC AM
that is, it uses the classes, functions, or macros defined.in‘this standard.

Lall, called from, derived from

m call is taken to mean call directly or inditeetly. Call indirectly means call an intermediate f]
n turn calls the function in question, where-the chain of function calls may be extended indefiy

Similadly, called from means called fromditectly or indirectly.

Except
Derive

3.1.4 3

The spg
the foll

A modq

where explicitly qualified, theyterm derived from is taken to mean derived directly or indirectl
| indirectly from meansderived from one or more intermediate base classes.

pecific technicalterms

cific technieal terms as defined in IEEE Std 1666-2011 also apply for the AMS extensions. In a
bwing technical terms are defined:

! of computation (MoC) is a set of rules defining the behavior and interaction between AMS pi

moduld

on may

library

IS class

unction
itely.

y from.

Hdition,

imitive

s.‘The defined models of computation in this standard are: timed data flow (TDF), linear sign

al flow

(LSF) and electrical linear networks (ELN).

A cluster is a set of AMS primitive modules connected by channels via AMS ports, which have no defined
decoupling semantics. All modules have to be associated with the same model of computation.

An AMS primitive module is a class derived from the class sca_core::sca_module and associated with a model
of computation. A primitive module cannot be hierarchically decomposed and contains no child modules or
channels. A TDF module is a primitive module derived from class sca_tdf::sca_module. An LSF module is
a primitive module derived from class sca_Isf::sca_module. An ELN module is a primitive module derived

from cl

ass sca_eln::sca_module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-6-— IEEE Std 1666.1™-2016

An AMS port is a class derived from the class sca_core::sca_port and associated with a model of computation.
A primitive port is a port of a primitive module.

An AMS terminal is a class derived from the class sca_core::sca_port and associated with the electrical linear
networks model of computation.

An AMS interface is a class derived from the class sca_core::sca_interface and associated with a model of
computation.

An AMS interface proper is an abstract class derived from the class sca_core::sca_interface and associated
with a model of computation.

An AMS channel is a non-abstract class derived from one or more interfaces and associated with\d model
of computation.

An AMS node is an object of the class sca_eln::sca_node or sca_eln::sca_node_ref and is-an AMS ¢hannel
associated with the electrical linear networks model of computation.

An AMS signal is an object of the class sca_tdf::sca_signal or sca_lsf::sca_sighal and is an AMS ¢hannel
associafed with the timed data flow or linear signal flow model of computation, tespectively.

3.2 Syntactical conventions
3.2.1 Implementation-defined
The italicized term implementation-defined is used where part of a C++ definition is omitted from this standard.
In such| cases, an implementation shall provide an appropriate definition that honors the semantics defined in
this stapdard.
3.2.2 Disabled
The italicized term disabled is used within a C++ class definition to indicate a group of member functipns that
shall bg disabled by the implementdtion so that they cannot be called by an application. The disabled hember
functiohs are typically the default constructor, the copy constructor, or the assignment operator.

3.2.3 Hllipsis (...)

An ellipsis, which eensists of three consecutive dots (...), is used to indicate that irrelevant or repetitiye parts
of a CH+ code listing or example have been omitted for clarity.

3.2.4 Class.names

Class names italicized and annotated with a superscript dagger (") should not be used explicitly within an
application. Moreover, an application shall not create an object of such a class. An implementation is strongly
recommended to use the given class name. However, an implementation may substitute an alternative class
name in place of every occurrence of a particular daggered class name.

Only the class name is being considered here. Whether any part of the definition of the class is implementation-
defined is a separate issue.

The class names in question are the following:

sca_core::sca_assi gn_from_proxyf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -7-

sca_core::sca_assi gn_to_proxyf

sca_tdf::sca ct _proxy‘Jr

sca_tdf::sca_ct vector _proxyf

sca_util::sca_in formation_maskf

sca_util: :scaitraceableiobject’*

3.2.5 Prefixes

The AMS extensions are denoted with the prefix sca_ for namespaces, classes, functions, global definitions
and variables and with the prefix SCA__ for macros and enumeration values.

An app
macros|

3.3 Ty

The following typographical conventions are used in this standard:

a)

b)

The c9
typogrdg

3.4 S¢
3.4.1(

An imf
classes
inheritd
standar

lication shall not make use of these prefixes for namespaces, functions, global definitions,)va
and classes derived from the classes defined in this standard.

pographical conventions

The italic font is used for:

1) Cross references to terms defined in 3.1, 3.2, and Annex B.

2) Arguments of member functions in class definitions and in the text that are generally subj
with real values by the implementation or application.

The bold font is used for all reserved keywords of SystemC and the AMS extensions as de
namespaces, macros, constants, enum literals, classes,-member functions, data members and ty

The constant-width (Courier) font is used:

1) For the SystemC AMS class definition in¢ltiding its member functions, data members aj
types.

2) To illustrate SystemC AMS languagesexamples when the exact usage is depicted.

3) For references to the SystemC AMSanguage syntax and headers.

nventions listed previously aresfor ease of reading only. Editorial inconsistencies in the
phy are unintentional and have\no normative meaning in this standard.

rmantic conventions
llass definitions and the inheritance hierarchy

lementation may differ from this standard in that an implementation may introduce additior
class-iembers, and friends to the classes defined in this standard. An implementation may mo
ncé hierarchy by moving class members defined by this standard into base classes not defined
d.'Stch additions and modifications may be made as necessary in order to implement the sej

riables,

stituted

fined in
pes.

nd data

use of

al base
dify the
by this
mantics

defined by this standard or in order to introduce additional functionality not defined by this standard.

3.4.2 Function definitions and side-effects

This standard explicitly defines the semantics of the C++ functions for the AMS class library for SystemC.
Such functions shall not have any side-effects that would contradict the behavior explicitly mandated by this
standard. In general, the reader should assume the common-sense rule that if it is explicitly stated that a function
shall perform action A, that function shall not perform any action other than A, either directly or by calling

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-8- IEEE Std 1666.1™-2016

another function defined in this standard. However, a function may, and indeed in certain circumstances shall,
perform any tasks necessary for resource management, performance optimization, or to support any ancillary
features of an implementation. As an example of resource management, it is presumed that a destructor will
perform any tasks necessary to release the resources allocated by the corresponding constructor.

3.4.3 Functions whose return type is a reference or a pointer
Many functions in this standard return a reference to an object or a pointer to an object; that is, the return type

of the function is a reference or a pointer. This subclause gives some general rules defining the lifetime and
the validity of such objects.

An ObJ UL IUlulllCd flUlll d fuuuiuu ‘Uy pUilllCl Ul ‘Uy leClClle ib baid W :JC Vclli(,‘l dl,uiug dlly pPcCl IUL‘l il Wthh
the objgct is not deleted and the value or behavior of the object remains accessible to the applieatiop. If an
application refers to the returned object after it ceases to be valid, the behavior of the implementatign shall
be und¢fined.

3.4.3.1 Functions that return *this or an actual argument

In certdin cases, the object returned is either an object (*this) returned by reference from its own member
functioh (for example, the assignment operators) or is an object that was passed by reference as an actual
argumdnt to the function being called [for example, std::ostream& operator<<(std::ostream&, const T&)].
In eithdr case, the function call itself places no additional obligations anythe implementation concerring the
lifetim¢ and validity of the object following return from the function¢all.

3.4.3.4 Functions that return const char*
Certain| functions have the return type const char®; that i§};they return a pointer to a null-terminated claracter
string. The const char* pointer shall remain valid for the whole lifetime of the object associated to the hember
functiop, which returns this pointer.

3.4.4 Namespaces and internal naming

An implementation shall place every:declaration and definition specified by this standard within on¢ of the
followihg namespaces: sca_core, sca) tdf, sca_Isf, sca_eln, sca_ac_analysis, or sca_util.

The cofe language base classes:shall be placed in the namespace sca_core.

For the|predefined models of computation, the following namespaces shall be used:
— [The predefined classes for timed data flow shall be placed in the namespace sca_tdf.
— |The predefined classes for linear signal flow shall be placed in the namespace sca_Isf.

— |The,predefined classes for electrical linear networks shall be placed in the namespace sca_eln

The predefined classes for small-signal frequency-domain analyses shall be placed in the namespace
sca_ac_analysis. The utilities shall be placed in the namespace sca_util.

It is recommended that an implementation uses nested namespaces within sca_core, sca_tdf, sca_lsf, sca_eln,
sca_ac_analysis, and sca_util to reduce to a minimum the number of implementation-defined names in these
namespaces.

For predefined primitive modules, which use ports to connect to a different model of computation, the
namespace associated with the connected model of computation shall be used as nested namespace. The nested
namespace sca_de shall be used for modules or ports, which are used to connect to SystemC discrete-event
channels or ports.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -9-

In general, the choice of internal, implementation-specific names within an implementation can cause naming
conflicts within an application. It is up to the implementor to choose names that are unlikely to cause naming
conflicts within an application.

3.4.5 Non-compliant applications and errors

In the case where an application fails to meet an obligation imposed by this standard, the behavior of the
SystemC AMS implementation shall be undefined in general. When this results in the violation of a diagnosable
rule of the C++ standard, the C++ implementation shall issue a diagnostic message in conformance with the
C++ standard.

When i o ot rtthe—firit : ot e obtremtion

or a wa
sc_cor
with a
report

Animp
becaus

set_actions of class sc_core::sc_report_handler to take no action for gertain categories of repd

applical
this sta
on the

error o

rning, the SystemC AMS implementation shall generate a diagnostic message by calling the ]
::sc_report_handler::report. In the case of an error, the implementation shall call funstion
severity of sc_core::SC_ERROR. In the case of a warning, the implementation shall call f]
with a severity of sc_core::SC_WARNING.

lementation or an application may choose to suppress run-time error checking and diagnostic m
b of considerations of efficiency or practicality. For example, an applicationimay call member f]

Lion that fails to meet the obligations imposed by this standard remains’in error. There are case
ndard states explicitly that a certain behavior or result is undefinedy This standard places no obl
mplementation in such a circumstance. In particular, such a.gifcumstance may or may not resy
I a warning being issued.

3.5N

Notes gppear at the end of certain subclauses, designated by the uppercase word NOTE. Notes often ¢
the consequences of rules defined elsewhere in this standard. Certain subclauses include examples co

of frag
official

tes and examples

ents of C++ source code. Such notes and examples are informative to help the reader but arg
part of this standard.

n error
unction
report
unction

essages
unction
rts. An
b where
gations
It in an

escribe
hsisting
not an

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

—-10 -

4. Core language definitions

4.1 Class header files

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

To use the AMS class library features, an application shall include either of the C++ header files specified in
this subclause at appropriate positions in the source code as required by the scope and linkage rules of C++.

4.1.1 #include “systemc-ams”

The header file named systemc-ams shall add the names sca_core, sca_tdf, sca_Isf, sca_eln, sca_ac_analysis,

and scq—utibas-wetras-themamesdefmed-mHEEE-Std1666-26+for-theheader-fitemanred-systenrs, to the

declara]
region,
librarie]

It 1s red
ams.h.

4.1.2 4

L

D>.

The he|

include “systemc-ams.h”

nder file named systemc-ams.h shall add names from the namespace sca_core, sca_ac_a

live region in which it is included. The header file systemc-ams shall not introduce into the-deéclarative
in which it is included, any other names from this standard or any names from the standayd’Cor C++

ommended that applications include the header file systeme-ams rather than théyheader file systeme-

alysis,

sca_util, and sca_tdf as defined in this subclause to the declarative region, in which it is inclyded. It
is recommended that an implementation keeps the number ofyadditional implementation-specific| names
introduped by this header file to a minimum.

The hegder file systeme-ams.h shall include at least the following:

// Usi
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using

"systemc.h"

g declarations

"systemc-ams"

a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_ac_analysis;:
a_ac_analysis:s
a_ac_analysis:
a_ac_analysis:
a_ac_analysis:
a_a¢_analysis:
alac analysis:
a\ac_analysis:

for the following Ra@m@s in the sca ac analysis namespace
:sca_ac_start;
:sca_ac_noise_start;
:sca_ac;
:sca_ac_is_rupning;
:sca_ac noise;
:sca_ac_poise_is_running;
:scaf ag °f;

:sca jac_w;

:sca_ac_s;

ySca_ac_z;

:sca_ac_delay;
:sca_ac_1ltf nd;
:sca_ac_1ltf zp;
:sca_ac_ss;

:SCA_LOG;

:SCA;LIN;

// Usin

g declarations

for the following names in the sca util namespace

using
using
using
using
using
using
using
using
using
using
using
using
using
using

sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:

:sca_trace_file;

:sca_trace;
:sca_create_tabular_ trace file;
:sca_close_tabular_trace_file;
:sca_create_vcd_trace_file;
:sca_close_vcd_trace_file;
:sca_write_comment;
:sca_complex;

:sca_matrix;

:sca_vector;
:sca_create_vector;
:sca_information_on;
:sca_information_ off;
:SCA_AC_REAL_IMAG;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -11-

using sca_util::SCA_AC_MAG_RAD;
using sca_util::SCA_AC_DB_DEG;

using sca_util::SCA_NOISE_SUM;

using sca_util::SCA_NOISE_ALL;

using sca_util::SCA_INTERPOLATE;
using sca_util::SCA_DONT_ INTERPOLATE;
using sca_util::SCA_HOLD_SAMPLE;
using sca_util::sca_ac_format;

using sca_util::sca_noise_format;
using sca_util::sca_decimation;
using sca_util::sca_sampling;
using sca_util::sca_multirate;
using sca_util::SCA_COMPLEX_J;
using sca_util::SCA_INFINITY;
using sca_util::SCA_UNDEFINED;

info:

using a_core::sca_parameter;
using a_core::sca_time;
using a_core::sca_max_time;
using a_core: :sca_copyright;
using a_core::sca_version;
using a_core::sca_release;

// Usirjg declarations for the following names in the sca tdf namespace

using
using
using

a_tdf::SCA;CT_CUT;
a_tdf::SCA_DT_CUT;
a_ tdf::SCA_NO_CUT;

NOTE—{-The header file systemc-ams.h is provided for backward compatibility with earlier versions of the §
AMS extensions and may be deprecated in future versions of this standapd:

4.2 Base class definitions
All names used in the base class definitions shall be:placed in the namespace sca_core.
4.2.1 4ca_core::sca_module

4.2.1.1 Description

The clgss sca_core::sca_module shall define the base class to derive primitive modules for the pre
models|of computation.

4.2.1.4 Class definition

namespgce sca_core {

class| sca(module : public sc_core::sc_module

{
publfick

ystemC

defined

virtual const char* kind() const;

virtual void set_timestep( const sca_core::sca_times );

virtual void set_timestep( double, sc_core::sc_time_unit );
virtual void set_max_timestep( const sca_core::sca_times );
virtual void set_max_timestep( double, sc_core::sc_time_unit );

protected:
sca_module () ;
virtual ~sca_module();
bi

#define SCA_CTOR (name) implementation-defined name ( sc_core::sc_module name )

} // namespace sca core

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-12- IEEE Std 1666.1™-2016

4.2.1.3 Constraints on usage

Any primitive module as defined in Clause 5, Clause 6 and Clause 7 shall be publicly derived from class
sca_core::sca_module.

Objects of class sca_core::sca_module can only be constructed during elaboration. It shall be an error to
instantiate a primitive module during simulation.

Although class sca_core::sca_module is derived from class sc_core::sc_module, the use of classes, member
functions, and functions, which have direct access to the SystemC kernel shall not be allowed in the context
of a module derived from class sca_core::sca_module.

The folllowing member functions of class sc_core::sc_module shall not be called in the context of a module
derived from class sca_core::sca_module:

a) [All forms of member function sc_core::sc_module::wait.

b) |All forms of member function sc_core::sc_module::next_trigger.

¢) |All forms of member function sc_core::sc_module::reset_signal is.

d) [All forms of member function sc_core::sc_module::async_reset_signal_is.
e) [Member function sc_core::sc_module::dont_initialize.

f) [Member function s¢_core::sc_module::set_stack_size.

The following macros shall not be used in the context of a module derived from class sca_core::sca_module:
a) [Macro SC_CTOR.
b) |Macro SC_HAS PROCESS.
¢) [Macro SC_METHOD.
d) [Macro SC_THREAD.
e) [Macro SC_CTHREAD.
f) [Macro SC_FORK.
g) [Macro SC_JOIN.

The folJowing functions shall ndtbé used in the context of a module derived from class sca_core::sca_module:
a) |All forms of function sc¢_core::wait.
b) |All forms of fuhction sc_core::next_trigger.
c) [Function s¢\«cere::sc_time_stamp.
d) [Functiom:$¢ core::sc_delta_count.
e) |Function sc_core::sc_get current_process handle.

N Funetionse—eorersespawi-

Objects of the following classes shall not be created in the context of modules derived from class
sca_core::sca_module:

a) Objects of class sc_core::sc_event.

b) Objects of class sc_core::sc_process_handle.

c) All objects which are derived from class sc_core::sc_export_base.
d) All objects which are derived from class sc_core::sc_interface.

e) All objects which are derived from class sc_core::sc_module.

f)  All objects which are derived from class sc_core::sc_port_base and not from sca_core::sca_port.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -13-

An application shall not derive from class sca_core::sca_module directly, but shall use the primitive modules
defined in Clause 5, Clause 6, and Clause 7.

4.2.1.4kind

virtual

const char* kind() const;

The member function kind shall return the string “sca_core::sca_module”.

4.2.1.5 set_timestep

virtual]

virtual]

The m
semant
is not
the ass
sc_cor
set_att

4.2.1.6

virtual]

virtual]

The m

time after elaboration of the module according to the execution semantics of the associated pre

model

maxim
this fur
the con|
sca_td

NOTE-
4.2.1.7%

’The md
derived

void set timestep( const sca_core::sca_times );

void set_ timestep( double, sc_core::sc_time unit );

bmber function set_timestep shall define the timestep of the module according to the ex
cs of the associated predefined model of computation (see 5.3, 6.3, 7.3). Af“the member f
Called, the current timestep of the module is computed as defined in the,execution semai
pciated predefined model of computation. It shall be an error to call this function after
p::sc_module::end_of elaboration callback has been executed, excépt-in the context of the cg

set_max_timestep

void set_max_ timestep( const sca_core::sca_times V)7

void set max_timestep( double, sc_core::sc_‘time_unit );

bmber function set_max_timestep shall\define the maximum timestep or the latest first ac

bf computation (see 5.3, 6.3, 7.3).If'set_ max_timestep is not called, an implementation shall
hm timestep to the value returned by function sca_core::sca_max_time. It shall be an errof
ction after the first sc_core::sc_module::end_of elaboration callback has been executed, e
text of the callbacks set, attributes and change_attributes of the current module derived fro
::sca_module (see 5-131116).

-The propagated maXimum timestep defined by the member function set_max_timestep is always respe
SCA_CTOR

cre SCA_CTOR is provided for convenience when declaring or defining a constructor for a
from class sca core::sca_ module. The macro shall only be used at a place where the rules

ecution
unction
ntics of
he first
Ilbacks

ributes and change_attributes of the current module derived from.Class sca_tdf::sca_module (see
5.1.1.6).

ivation
defined
set the
to call
(cept in
m class

bted.

module
of C++

permit a constructor to be declared and can be used as the declarator of a constructor declaration or a constructor
definition. The name of the module class being constructed shall be passed as the argument to the macro.

4.2.2 sca_core::sca_interface

4.2.2.1 Description

The class sca_core::sca_interface shall define the base class for deriving interfaces for the predefined models
of computation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 14 - IEEE Std 1666.1™-2016

4.2.2.2 Class definition

namespace sca_core {

class sca_interface : public sc_core::sc_interface
{

protected:

sca_interface();

private:
// Disabled
sca_interface( const sca_core::sca_interfaces );
sca_core::sca_interfaced operator= ( const sca_core::sca_interfaces );
}i

} // ndmespace sca_core

4.2.2.3 Constraints on usage

An application shall not use class sca_core::sca_interface as the direct base class for any class otHer than
an inteffface proper.

4.2.3 4ca_core::sca_prim_channel
4.2.3.1 Description

The class sca_core::sca_prim_channel shall be used as base €lass to derive primitive channels |for the
predefined models of computation.

4.2.3.4 Class definition

namespgce sca_core {

classl sca_prim channel : public sc_core::sc\object,
public sca_util: :scaﬁtraceableﬁobjectf
{
publfic:

virtual const char* kind() consts

protlected:

scal prim channel () ;

explicit sca_prim channel(\const char* );
virftual ~sca_prim_channel () ;

privipte:

// \Pisabled

sca_prim_channel( const sca_core: :sca_prim_channel& ) 8

sca core::sca prim channel& operator= ( const sca_core::sca_prim channels );
i

} // name§pace sca core

4.2.3.3 Constraints on usage

Any primitive channel as defined in Clause 5, Clause 6, and Clause 7 shall be publicly derived from class
sca_core::sca_prim_channel.

Objects of class sca_core::sca_prim_channel can only be constructed during elaboration. It shall be an error
to instantiate a primitive channel during simulation.

NOTE—Since the constructors are protected, class sca_core::sca_prim_channel cannot be instantiated directly. An
application shall use only the channels defined in Clause 5, Clause 6, and Clause 7 and shall not directly derive any channel
from this class.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

4.2.3.4 Constructors

sca_prim channel () ;

explicit sca_prim channel( const char* );

—15 -

The constructor for class sca_core::sca_prim_channel shall pass the character string argument (if such
argument exists) through to the constructor belonging to the base class sc_core::sc_object to set the string

name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_prim_channel”) to generate

a uniqpe—string—name—tha chall thes
sc_corg::sc_object.

4.2.3.9kind

virtuall const char* kind() const;

The mgmber function kind shall return the string “sca_core::sca_prim_channel™

4.2.4 4ca_core::sca_port

4.2.4.1 Description

The clgss sca_core::sca_port shall define the base class o, derive ports for the predefined mo
computfation. It shall implement the interface of class sca_util::sca_traceable_objectf in such a way

channe|, to which the port is bound, can be traced.

4.2.4.4 Class definition

namespgce sca_core {

templlate <class IF>

class| sca_port : public sc_coreyrseiport<IF, 1, sc_core
public sca_util::scaﬁtraceableﬁobjectf

{
publfic:
virtual const char* kipad{() const;

protlected:
scal port();
expllicit sca_port.( const char* );
virftual ~sca port();

}i

} // ndmespaee sca core

: :SC_ONE_OR_MORE_BOUND >,

ase class

dels of
that the

4.2.4.3 Template parameter IF

The argument passed to template sca_core::sca_port shall be the name of an interface proper. The interface

shall be derived from class s¢_core::sc_interface.

4.2.4.4 Constraints on usage

An application shall not use class sca_core::sca_port to instantiate ports, but shall use the ports defined in

Clause 5, Clause 6, and Clause 7.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-16 - IEEE Std 1666.1™-2016

4.2.4.5 Constructors

sca_port();

explicit sca_port( const char* );

The constructor for class sca_core::sca_port shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(*

sca_port”) to generate a unique
baseclass-se—corense—port.

4.2.4.9kind

virtuall const char* kind() const;

The mgmber function kind shall return the string “sca_core::sca_port”.
4.2.5 4ca_core::sca_time
The class sca_core::sca_time shall be used to represent simulation timé for the AMS extensions.

namespajce sca_core { typedef sc_core::sc_time sca_ time; }

NOTE |—The typedef sca_core::sca_time has been introduced to facilitate future extensions to decouple the time
resolutign used in the AMS extensions from the time resolution‘ds defined in IEEE Std 1666-2011.

NOTE P—Since typedef sca_core::sca_time is an calias to sc_core::sc_time, an application can change the time
resolutign by calling the function sc_core::sc_set_time_resolution or query the time resolution by calling the function
sc_coref:sc_get_time_resolution.

4.2.6 dca_core::sca_max_time

The implementation shall provide a function sca_core::sca_max_time with the following declaratior|:

namespalce sca_core { corist)sca_core::sca_times sca_max time(); }

The function sca_c¢ore::sca_max_time shall return the maximum value of type sca_core::sci_time,
calculajed aftertaking into account the time resolution. Since function sca_core::sca_max_time necpssarily
returns|a reference to an object of type sca_core::sca_time that represents a non-zero time value, the time
resolutjo:¢annot be modified after a call to sca_core::sca_max_time. Every call to sca_core::sca_m
during o . . . - .
simulation time. The actual value is implementation-defined. Whether each call to sca_core::sca_max_time
returns a reference to the same object or a different object is implementation-defined.

4.2.7 sca_core::sca_parameter_base
4.2.7.1 Description

The class sca_core::sca_parameter_base shall define a type independent base class for module parameters.
After construction, parameters shall be unlocked.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -17 -

NOTE—AII instances of class sca_core::sca_parameter_base become part of the object hierarchy to facilitate access to
the primitive module parameter values.

4.2.7.2 Class definition

namespace sca_core {

class

{
publ

sca_parameter_base : public sc_core::sc_object

ic:

virtual const char* kind() const;

vir

tual std::string to_string() const = 0 ;

virtual void print( std::ostream& os = std::cout ) const = 0;
voild lock();
voild unlock () ;
booll is_locked () const;
protlected:

scal
exp
viy]
priv
//
sc3

scy
bi

std:

} // nd

4.2.7.3

sca_par

explici

| parameter_base () ;
licit sca_parameter_base( const char* );
[tual ~sca_parameter_base () ;

ate:

IDisabled

| parameter_base ( const sca_core::sca_parameter_bases );

| core::sca_parameter_ base& operator= ( const sca_core::sca_parameter bases );
sfostream& operator<< ( std::ostreamé&, const sca_core::sca_parameter_base& )8

nespace sca_core

Constructors

ameter base () ;

[ sca_parameter base( const char* )g

if such
e string

be class

The copstructor for class sca_core:;sca’ parameter_base shall pass the character string argument
argumdnt exists) through to the constructor belonging to the base class sc_core::sc_object to set th

name of the instance in the module hierarchy.

The d¢fault constructor{ shall call function sc_core::sc_gen unique name(“sca_parameter_base”) to
generate a unique string, name that it shall then pass through to the constructor belonging to the ba
sc_corg::sc_object,

4.2.7.4 kind

virtual=comst—iEr—kImdt——orst

The member function kind shall return the string “sca_core::sca_parameter_base”.

4.2.7.5to_string

virtual

std::string to_string() = 0;

The member function to_string shall perform the conversion of the parameter value to an object of class
std::string.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 18- IEEE Std 1666.1™-2016

4.2.7.6 print

virtual void print( std::ostream& os = std::cout ) = 0;

The member function print shall print the parameter value to the stream passed as an argument.

4.2.7.7 lock
void lock() ;

The memberfunct shall ¢
assignmhent is executed on a locked parameter.

4.2.7.4 unlock

void unflock () ;

The mgmber function unlock shall allow further assignments to the parameter.

4.2.7.9is_locked

bool is| locked() const;

The mgmber function is_locked shall return true if the parameter is locked; otherwise, it shall return false.

4.2.7.10 operator<<

std::osftream& operator<< ( std::ostream&, constdsca_core::sca_parameter_bases );

The opprator<< shall write the value of the'parameter passed as the second argument to the stream pgssed as
the firsf argument by calling the membépfunction print( std::ostream ).

4.2.8 4ca_core::sca_parameter
4.2.8.1 Description
The class sca_core:isca_parameter shall assign a parameter to a module.

4.2.8.4 Class:definition

namespace ‘sca core

template<class T>

class sca_parameter : public sca_core::sca_parameter_base

{

public:
sca_parameter () ;
explicit sca_parameter( const char* name );
sca_parameter ( const char* name , const T& default value );
~sca_parameter () ;

virtual const char* kind() const;

virtual std::string to_string() const;
virtual void print( std::ostream& os = std::cout ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -19-

con
ope

voi

st T& get() const;
rator const T& () const;

d set( const T& );

sca_core::sca_parameter<T>& operator= ( const T& value );
sca_core: :sca_parameter<T>& operator= ( const sca_core: :sca_parameter<T>& value );

}i

} // namespace sca core

4.2.8.3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics

for ass

ach of

the foll
a)

b)

©)
4.2.8.4

The cof

sca_par

The def
a uniq
sca_co
corresp

explici

The co

'gnmpnf are qr‘lpr}nnfp (Fnr Pvnmr\].ﬂ7 a fundamental fypp Qor-a pnin‘rr—-r) or-a 1'3 pe T that obevs
bwing rules:
The following stream operator shall be defined and should copy the state of the object _giver

second argument to the stream given as the first argument. The way in which the state ‘inform|
formatted is not defined by this standard.

std::ostreamé& operator<< ( std::ostream&, const T& );

[f the default assignment semantics are inadequate (in the sense given in thig subclause), the fo
assignment operator shall be defined for the type T. In either case (default assignment or
operator), the semantics of assignment should be sufficient to assigii.the state of an object of]
such that the value of the left operand is indistinguishable from the.value of the right operand.

const T& operator= ( const T& );

If any constructor for type T exists, a default constructorfor type T shall be defined.
Constructors

wstructors shall only be called within the contextof a s¢_core::sc_module during module const

ameter () ;

fault constructor shall call funétion sc_core::sc_gen_unique_name(“sca_parameter”) to g
e string name that it shallythen pass through to the constructor belonging to the bas
e::sca_parameter_base. The actual parameter value shall be created by the default constructg
onding type.

It sca_parameter\(, const char* name );

nstructor \shall pass the character string name through to the constructor belonging to tl

param

class s%[z_core: isca_parameter_base to set the string name of the instance in the module hierarchy. Th|

erfvalue shall be created by the default constructor of the corresponding type.

1 as the
ation is

lowing
explicit
type T

ruction.

enerate
e class
r of the

e base
e actual

sca_par

ameter ( const char* name , const T& default value );

The constructor shall pass the character string name_ through to the constructor belonging to the base
class sca_core::sca_parameter_base to set the string name of the instance in the module hierarchy. The actual
parameter value shall be created by the default constructor and initialized with the default value default value.

4.2.8.5kind

virtual

const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-20- IEEE Std 1666.1™-2016

The member function kind shall return the string “sca_core::sca_parameter”.

4.2.8.6 to_string

virtual std::string to_string() const;

The member function to_string shall perform the conversion of the parameter value to an object of class
std::string. Conversion shall be done by calling operator<< ( std::ostreamé&, const T& ). (See 4.2.8.3.)

4.2.8.7 print

virtuall void print( std::ostream& os = std::cout ) const;

The m¢mber function print shall print the current parameter value to the stream passed as.anvargurhent by
calling foperator<< ( std::ostreamé&, const T& ). (See 4.2.8.3.)

4.2.8.4 get

const Tl& get() const;

operator const T& () const;

The mgmber function get and operator const T& shall return a cénst reference to the actual parametef value.
If the niember functions lock or unlock have not yet executed, the member function get and operator const
T& shdll execute the member function lock of the base class'Sea_core::sca_parameter_base.

4.2.8.9 set

void seft( const T& value );

sca_core: :sca_parameter<T>& operator= ( ¢ohst T& value );

The m¢mber function set and operator= shall assign the value to the parameter. It shall be an errqr if the
membelr function set or operator= is‘called if the parameter is locked (see 4.2.7.9).

sca_core::sca_parameter<T>§ operator= ( const sca_core::sca parameter<T>& value );
The opprator= shall,copy the value of the parameter passed as argument.

4.2.9 4ca_caore: :sca_assign_from_pronyr

4.2.9.1 Description

The class sca_core::sca_assign_from J)roxyf shall be a helper class to facilitate the implementation of the
assignment operator from one class to another.

NOTE—This class is the base class of sca_tdf::sca ct _proxyf and sca_tdf::sca_ct vector _proxyTv to implement the
assignment of the values returned by these classes to a port or vector, whose type is passed to this base class as template
parameter of type T.

4.2.9.2 Class definition

namespace sca_core {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -21-

template<class T>
class sca_assign_froanroxyf

{

implementation-defined
bi

} // namespace sca core

4.2.9.3 Constraint on usage
An application shall not explicitly create an instance of class sca_core::sca_assign_from _proxyf.

4.2.10 sca_core::sca_assign_to DI’OXVT

4.2.10|1 Description

The class sca_core::sca_assign_to _proxyf shall be a helper class to facilitate the implementation of operators
to assign values to an object.

NOTE—-This class is used to support the implementation of the operator[] for the(classes sca_tdf::sca_put and
sca_tdf]:sca_de::sca_out.

4.2.10|2 Class definition

namespgce sca_core {

templlate<class T, class TV>
clasg sca assign to proxy’

{

sca_core::scaﬁassigaﬁtoﬁproxy*<T, TV>& operator= ((Const TV& value );
i

} // ndmespace sca core

4.2.10|3 operator=
scaﬁassignitoiproxy*<T, TV>& operator= ( const TV& value );
The opprator= performs the assignment of value value to an object of class T.

4.2.10|4 Constraint on-dusage

An application shallnot explicitly create an instance of class sca_core::sca_assign_to _proxyf.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-22- IEEE Std 1666.1™-2016

5. Timed data flow model of computation

The TDF model of computation shall define the procedural behavior that processes samples, which are tagged
in time. A TDF module shall define time domain processing, which is activated when a predefined number
of samples is available at its input port(s), and generates a predefined number of output samples at its output
port(s). Since the number of read and written samples is known and fixed, the activation schedule of a set
of connected TDF modules can be statically determined. For the communication with the SystemC kernel,
predefined specialized ports shall be used to maintain synchronization. For synchronization, the tagged time
of the samples shall be used. A TDF module is a primitive module that cannot be further hierarchically
decomposed.

5.1 Cllass definitions

All names used in the TDF class definitions shall be placed in the namespace sca_tdf.
5.1.1 4ca_tdf::sca_module

5.1.1.1 Description

The class sca_tdf::sca_module shall define the base class for all TDF primitive modules.

5.1.1.4 Class definition

namespajce sca_tdf {

class| sca_module : public sca_core::sca module

{
publfic:

virtual const char* kind() const;

protlected:

typedef void ( sca_tdf::sca _module::*sca module method ) ();

virtual
virtual
virtual
virtual
virtual
virtual

voild register_ processing( sca_tdf::sca_module::sca_module_method );
voild register_ ac_processing( sca_tdf::sca_module::sca_module method );

voi

void
void
void
void
void
void

ol request_next_activation( const sca_core::sca_time& ) 8
0 request, next activation( double, sc_core::sc_time_unit );
voild requé&stinext_activation( const sc_core::sc_events );
0 request next activation( const sca_core::sca_time&, const sc_core::sc_events );
4, request next_activation( double, sc_core::sc_time unit, const sc_core::sc_events );
ld request next activation( const sc core::sc event or lists )

set_attributes();
change attributes ()
initialize();
reinitialize();
processing () £
ac_processingd);

void request next_activation( const sc_core::sc_event_and_lists );
void request next_activation( const sca_core::sca_times, const sc_core::sc_event or_lists );

void request next activation

double, sc_core::sc_time unit, const sc_core::sc_event or list& );

(
void request next_activation( const sca_core::sca_times, const sc_core::sc_event and lists );
(

void request next_activation

double, sc core::sc time unit, const sc core::sc event and lists );

template<class T>

void request next_activation( const sca_tdf::sca_de::sca_in<T>& );
void accept_attribute_changes () ;

void reject_attribute_changes () ;

void does_attribute_changes () ;

void does_no_attribute_changes();

sca_core::sca_time get time() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -23-

sca_core::sca_time get timestep() const;
sca_core::sca_time get max_timestep() const;
sca_core::sca_time get_last_timestep() const;

boo
boo
boo
boo

exp

1 is_dynamic () const;

1 are_attribute_changes_allowed () const;
1 are_attributes_changed() const;

1 is_timestep_changed() const;

licit sca_module( const sc_core::sc_module_name& ) 8

sca_module () ;

vir

}i

#define

tual ~sca_module () ;

SCA TDF MODULE (name) struct name : sca tdf::sca module

} // ng

5.1.1.9

Modulg
of clasj

Object
to inst;
sca_td
argumg

every 1}

Inter-m
modulg

51.14

virtuall

The md

51115

virtual]

The m
for TI
set_tin

Imespace sca tdf

Constraints on usage

s, channels, signals, and ports outside of the namespace sca_tdf shall not be instantiated in the
sca_tdf::sca_module.

of class sca_tdf::sca_module can only be constructed during £laboration. It shall be 4
ntiate such a module during simulation. Every class derived¢(directly or indirectly) froi
::sca_module shall have at least one constructor. Every such,constructor shall have one and o
nt of class sc¢_core::sc_module name. A string-valued argument shall be passed to the constry
nodule instance.

odule communication for TDF modules shall be aceomplished using interface method calls, t
should communicate with its environment througly its ports.

kind

const char* kind() const;
mber function kind shall return‘the string “sca_tdf::sca_module”.
set_attributes

void set_attributes();

ember function set attributes shall provide a context to set attributes, which are 1
F MoCelaboration (see 5.3). The attributes can be defined using the member fu
estep,” set_ max_timestep, and request next activation of a TDF module and 1

context

n error
n class
nly one
ictor of

hat is, a

equired
nctions
hember

functio

hs\sét timestep, set max timestep, set delay, and set rate for ports of classes sca tdf:isca_in,

sca_tdf::sca_out, sca_tdf::sca_de::sca_in, sca_tdf::sca_de::sca_out, and in addition set_ct delay for
ports of classes sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> and sca_tdf::sca_out<T,
sca_tdf::SCA_DT_CUT>. The member function set_attributes shall be called during the elaboration phase
(see 5.3.1.1). The application shall not call this member function.

5.1.1.6 change_attributes

virtual

void change_attributes () ;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
—-24 - IEEE Std 1666.1™-2016

The member function change_attributes shall provide a context to change attributes of the TDF module
and its ports. The attributes can be changed using the member functions set_timestep, set_max_timestep,
or request_next_activation of a TDF module and member functions set_timestep, set max_timestep,
set_delay, and set rate for ports of classes sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sca_in,
sca_tdf::sca_de::sca_out, and in addition set ct delay for ports of classes sca_tdf::sca out<T,
sca_tdf::SCA_CT_CUT, INTERP> and sca_tdf::sca_out<T, sca_tdf::SCA_DT CUT>. The member
function shall only be called during simulation (see 5.3.2). The application shall not call this member function.

5.1.1.7 initialize

virtual void initialize();

The m¢mber function initialize shall provide a context to set initial values to member variablés) anfl ports.
In the ¢ontext of this member function, the application can initialize the delay samples of all‘ports|if their
delay aftribute has been set to a value greater than zero by using member function initialize(of ports of|classes
sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sca_in, and sca_tdf::sca_de::sca out. The hember
functioh shall only be called during simulation (see 5.3.2.1). The application shall;not call this qnember
functiop.

5.1.1.4 reinitialize

virtuall void reinitialize();

The mgmber function reinitialize shall provide a context to reinifialize values to member variables an(d ports.
The m¢mber function shall be called after each cluster execution period (see 5.3.2.3). The applicati¢gn shall
not call this member function.

NOTE—This member function may be used to reinitialize\the delay samples of the associated ports by using the member
functior] initialize in case of attribute changes.

5.1.1.9 processing

virtual] void processing() ;

The mpmber function proeessing shall provide a context to define the time-domain behavior| of the
TDF mjodule. It may be replaced by a registered application-defined member function (see 5.1.1.11).|1t shall
be a wprning if a TDE niodule does not implement a single member function processing or a registered
applicafion-defined'member function when time-domain simulation starts. If no application-defined hember
functioh is regisfeted, this member function shall be called during time-domain simulation (see 8.[1). The
application shallnot call this member function.

5.1.1.7]0'ac_processing

virtual void ac_processing();

The member function ac_processing shall provide a context to define the small-signal frequency-domain
behavior of the TDF module. It may be replaced by a registered application-defined member function (see
5.1.1.12). If no application-defined member function is registered, this function shall be called during small-
signal frequency-domain simulation (see 8.2). The application shall not call this member function.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -25-

5.1.1.11 register_processing

void re

gister_ processing( sca_tdf::sca module::sca module method );

The member function register_processing shall register a time-domain processing member function as a
replacement to the default time-domain processing member function processing. The argument shall be a
pointer to a member function of the TDF module. The registered application-defined member function shall
behave in the same way as defined in member function processing (see 5.1.1.9). The member function
register_processing shall only be called during module construction; otherwise, it shall be an error. It shall
be an error if more than one member function is registered.

5.1.1.12 register_ac_processing

void r

The m¢mber function register_ac_processing shall register a small-signal frequency-domain pro

memb

ister_ac_processing( sca_tdf::sca_module::sca_module method );

function as a replacement to the default small-signal frequency-domdin processing i

cessing
nember

functioh ac_processing. The argument shall be a pointer to a member functiomyof the TDF module. The

registefed application-defined member function shall behave in the same way.as defined in member f]

ac_pr
moduld

registerled.

5.1.1.1

The md
functio
shall bg

The tinpe given as argument shall be taken to be relative to the time in the context of the member fj

changd

void re

void re

The ne

void re

The ne

essing (see 5.1.1.10). The member function register ac_processing shall only be called
construction; otherwise, it shall be an error. It shall be an errorafimore than one member fun

3 request_next_activation

mber function request_next_activation shall override the propagated timestep defined by the 1
h set_timestep of the TDF modules and ports for‘the next module activation. The next module ac
no later than the time requested by this member function.

|_attributes of the current module, in"which the member function request_next_activation is

[quest_next_activation( con§t jsca_core::sca_times );

quest next_ activation( ‘double, sc_core::sc_time_unit );
Kt module activation’is requested after the time given as an argument has elapsed.
quest next “aetivation( const sc_core::sc_events );

Kt module activation is requested when the event, passed as an argument, is notified.

unction
during
ction is

hember

ivation

unction
called.

void re

void re

quest next activation( const sca_core::sca_times, const sc_core::sc_events );

quest next_activation( double, sc_core::sc_time unit, const sc_core::sc_events );

The next module activation is requested after the time given as an argument has elapsed or when the given
event is notified, whichever occurs first.

void re

void re

quest next activation( const sc_core::sc_event or_ lists );

quest next activation( const sc_core::sc_event_and lists );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-26 - IEEE Std 1666.1™-2016

The next module activation is requested based on the event list, passed as argument.

void request next_activation( const sca_core::sca_times, const sc_core::sc_event or_lists );

void request next activation( double, sc_core::sc_time_unit, const sc_core::sc_event or_lists& );

void request next activation( const sca_core::sca_times&, const sc_core::sc_event_and lists );

void request next_activation( double, sc_core::sc_time unit, const sc_core::sc_event_and_lists );

The next module activation is requested after the time given as an argument has elapsed or in response to the
event list, passed as argument, whichever is satisfied first.

template<class T>
void request next activation( const sca_tdf::sca_de::sca_in<T>& );

The ngxt module activation is requested when the event, which is returned by the’ member function
defaulq_event of the port, passed as an argument, is notified.

5.1.1.14 accept_attribute_changes

void ac:ept_attribute_changes ()8

The mgmber function accept_attribute changes shall mark a TDE module to accept attribute changeg caused
by othgr TDF modules, which belong to the same TDF cluster, after all set_attributes or change attributes
callbacks of the current cluster execution have been executed)(see 5.3.2.3). It shall be an error if the pnember
functioh is called outside the context of the member functions set_attributes, change attributes] or the
constructor of the current TDF module. If this memberfunction is not called, a TDF module shall nof accept
attributp changes.

NOTE—-A TDF module which accepts attribute.changes is not allowed to change attributes itself, unless the nember
functior] does_attribute_changes has been called:

5.1.1.15 reject_attribute_changes

void refject_attribute_changesi();

The mgmber function teject_attribute_changes shall mark a TDF module to reject attribute changgs made
by othgr TDF modules; which belong to the same TDF cluster, after all set_attributes or change_attyributes
callbacks of the curtent cluster execution have been executed (see 5.3.2.3). It shall be an error if the TDF module
is markjed to r&ject attribute changes, and if other TDF modules, which belong to the same TDF cluster,|change
the attrjbutes=It shall be an error if the member function is called outside the context of the member finctions
set_attributes, change_attributes. or the constructor of the current TDF module. If this member funiction is
not called, a TDF module shall reject attribute changes.

NOTE—A TDF module which rejects attribute changes may still change attributes itself, as long as the member function
does_attribute_changes has been called.

5.1.1.16 does_attribute_changes

void does_attribute_changes )

The member function does_attribute_changes shall mark a TDF module to allow it to make attribute changes
after all set_attributes or change_attributes callbacks of the current cluster execution have been executed

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -27 -

(see 5.3.2.3). It shall be a warning if the TDF module is marked to allow making attribute changes and if there
is no change_attributes callback implemented in the TDF module. It shall be an error if the member function
is called outside the context of the member functions set_attributes, change attributes, or the constructor of
the current TDF module. If this member function is not called, a TDF module is not allowed to make attribute
changes.

5.1.1.17 does_no_attribute_changes

void does_no_attribute_changes () ;

The member function does_no_attribute changes shall mark a TDF module to disallow it to make attribute
changep after all set_attributes or change_attributes callbacks of the current cluster execution haye been
executdd (see 5.3.2.3). It shall be an error if the TDF module is marked to disallow making attribute changes,
but changes its attributes or the ones of its ports. It shall be an error if the member function iS)called [outside
the context of the member functions set_attributes, change attributes, or the construcfor of the |current
TDF mjodule. If this member function is not called, a TDF module is not allowed to make.attribute changes.

5.1.1.18 get_time

sca_core::sca_time get time () const;

The mdmber function get time shall return the current module time Of type sca_core::sca_time. It represents
the timf of the first input sample of the current module activation\It'shall be an error if the member flunction
is callefl outside the context of the member functions initialize,‘reinitialize, processing, ac_processing, or
changd attributes of the current TDF module.

NOTE—-The function sc_core::sc_time_stamp should notbe used in a TDF module as there may be time offsets petween
the currgnt module time of the TDF module and the SystetnC kernel time.

5.1.1.19 get_timestep

sca_core::sca_time get timestep() congty

The mgmber function get_timestep shall return the current timestep of the module according to the execution
semantjcs (see 5.3). It shallibe an error if the member function is called outside the context|of the
member functions initialize;/reinitialize, processing, ac_processing, or change_attributes of the |current
TDF mjodule.

5.1.1.30 get_max ‘timestep

sca_core:{sca’time get max_timestep() const;

The member function get_max_timestep shall return the maximum timestep of the module according to the
execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports through the
member function set_timestep. It shall be an error if the member function is called outside the context of
the member functions initialize, reinitialize, processing, ac_processing, or change attributes of the current
TDF module.

NOTE—The member function request_next_activation overrules the resolved timestep set by the member functions
set_timestep of the TDF modules and needs to satisfy the resolved maximum timestep set by member functions
set_max_timestep of the TDF modules. The member function get_max_timestep returns the maximum resolved timestep.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-28 - IEEE Std 1666.1™-2016

5.1.1.21 get_last_timestep

sca_core::sca_time get last timestep() const;

The member function get last timestep shall return the last non-zero module timestep of type
sca_core::sca_time of the last module activation or before. For the first module activation, the member
function shall return the propagated timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.1.22 is_dynamic

bool is| dynamic() const;

The mgmber function is_dynamic shall return true if at least one TDF module within the TDE'cluster has been
marked to allow making attribute changes using the member function does_attribute)changes. Otlerwise,
it shall|return false. The state returned by the member function is_dynamic is updated after the execution
of all thember functions change attributes of the current cluster (see 5.3.2.3) It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, progessing,
ac_processing, or change_attributes of the current TDF module.

5.1.1.43 are_attribute_changes_allowed

bool are attribute_changes_allowed () const;

The m¢mber function are_attribute_changes_allowed shall return true if changes to the attributeg of the
TDF mpdule, in which the member function is called, and its ports are allowed. Otherwise, it shall retuin false.
It shall|be an error if the member function is called outside the context of the member functions inijtialize,
reinitiglize, processing, ac_processing, or change attributes of the current TDF module. By dgfault, a
TDF mjdule is not allowed to make changes to its attributes.

5.1.1.34 are_attributes_changed

bool are attributes_changed () ‘Gonst;

In the| context of the \callbacks processing, ac_processing, and reinitialize, the member flnction
are_atfributes_changed shall return true if the timestep, delay, or rate of the TDF module, or its ports, have
changefl since the-lastactivation of the callback processing. In the context of the callback change atttibutes,
the mgmber fimetion are attributes changed shall return true if the timestep, delay, or rate|of the
TDF mjodulg, or its ports, have changed between the last activation and before last activation of the dallback
processing. Otherwise, it shall return false. It shall be an error if the member function is called outside the
context of the Member Tunctions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.1.25is_timestep_changed

bool is_timestep_changed () const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_timestep_changed shall return true if the timestep of the TDF module, or its ports, have changed since
the last activation of the callback processing. In the context of the callback change attributes, the member
function is_timestep_changed shall return true if the timestep of the TDF module, or its ports, have changed

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -29 -

between the last activation and before last activation of the callback processing. Otherwise, it shall return false.
It shall be an error if the member function is called outside the context of the member functions initialize,

reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

NOTE—A change in the propagated timestep (see 5.3.1.2) may change the TDF module or port timestep, which is then

also detected by this member function.

5.1.1.26 Constructor

explicit sca_module( const sc_core::sc_module name& );

sca_module () ;

Modul¢ names are managed by class sc_core::sc_module_name, not by class sca_tdf::sca -module. The

string rjame of the module instance is initialized using the value of the string name passed as' an argu
the conftructor.

5.1.1.47 SCA_TDF_MODULE

The mgcro SCA_TDF_MODULE may be used to prefix the definition of a sca_tdf::sca_module, bufj
of the thacro is not obligatory.

Examp

®

SCA_TDF| MODULE (M1)
{

// pdrts, data members, member functions

SCA_JTOR (M1) ;
i
M1l::M1 (| sc_core::sc_module name )

{
// cdnstructor body

}
5.1.2 4ca_tdf::sca_signal_if
5.1.2.1 Description

The class sca_tdf:isca_signal if shall define an interface proper for a primitive channel o
sca_tdf::sca_signal: The interface class member functions are implementation-defined.

5.1.2.4 Class definition

ment to

the use

f class

namespace sca_tdf {

template<class T>
class sca_signal_if : public sca_core::sca_interface
{
protected:
sca_signal_if();

private:
// Other members
implementation-defined

// Disabled

sca_signal_if( const sca_tdf::sca_signal_ if<T>& );
sca_tdf::sca_signal_if<T>& operator= ( const sca_tdf::sca_signal_ if<T>s );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-30- IEEE Std 1666.1™-2016

bi

} // namespace sca tdf

5.1.3 sca_tdf::sca_signal
5.1.3.1 Description
The class sca_tdf::sca_signal shall define a primitive channel for the TDF MoC. It shall be used for connecting

modules derived from class sca_tdf::sca_module using port classes sca_tdf::sca_in and sca_tdf::sca_out.
An application shall not access the associated interface directly.

5.1.3.4 Class definition

namespalce sca_tdf {

templlate<class T>
class| sca_signal : public sca_tdf::sca_signal_ if<T>,
public sca_core::sca_prim_ channel
{
publfic:

scal signal();

expllicit sca_signal ( const char* );

virtual const char* kind() const;

privipte:

// |pisabled

sca signal( const sca_tdf::sca_signal<T>& );
i

} // ndmespace sca_tdf

5.1.3.3 Template parameter T

The argument passed as template parameter I shall be either a C++ type for which the predefined sefnantics
for assjgnment are adequate (for example, ‘a fundamental type or a pointer) or a type T that obeys pach of
the follpwing rules:

a) [The following stream operator shall be defined and should copy the state of the object given as the
second argument to thetstream given as the first argument. The way in which the state informfation is
formatted is not defined by this standard. The implementation shall use this operator for writifg trace
values in time-domain simulation (see 9.1).

std::ostreaméqoperator<< ( std::ostream&, const T& );

b) [If the defaulfassignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or pxplicit
operator), the semantics of assignment should be sufficient to assign the state of an object of|type T
such’ that the value of the left operand is indistinguishable from the value of the right operapd. The
implementation shall use this assignment operator within the implementation for writing to or reading
from ports of type T.

const T& operator= ( const T& );

¢) Ifany constructor for type T exists, a default constructor for type T shall be defined.

5.1.3.4 Constructors

sca_signal();

explicit sca_signal( const char* );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -31-

The constructor for class sca_tdf::sca_signal shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_prim_channel to set the string name of
the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen unique name(“sca_tdf signal”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class

sca_core::sca_prim_channel.

5.1.3.5kind

virtual const char* kind() const;

The mgmber function kind shall return the string “sca_tdf::sca_signal”.
5.1.4 4ca_tdf::sca_default_interpolator

5.1.4.1 Description

The |class sca_tdf::sca_default_interpolator shall  define  the default  interpolation
mechajism  for the  continuous-time  decoupling port of{/ Tlass sca_tdf::sca out<T,
sca_tdf::SCA_CT_CUT, INTERP>. The specialized classes sca_tdf::sca_default_interpolator<double>
and sda_tdf::sca_default_interpolator<sca_util::sca_complex> shall provide a default intergolation
mecharjism by interpreting the signal as continuous in time. For all"ether types, the class shall keep the value
of the lhst available time point.

5.1.4.4 Class definition

namespajce sca_tdf {

templlate<class T>

class| sca_default_ interpolator
{
publfic:

voild store_value( const sca_core:(sca_times, const T& );
T get value( const sca_core::scastime& ) const;

}i

templlate<>
class| sca_default_interpolator<double>

{

publfic:
voild store_value¥.gonst sca_core::sca_times, const double& );
douple get_value( const sca_core::sca_time& ) const;

bi

template<¥

class| sga, default_interpolator<sca_util::sca_complex>
{

publtTT
void store_value( const sca_core::sca_times, const sca_util::sca_complexs );
sca_util::sca_complex get value( const sca_core::sca_time& ) const;

}i

} // namespace sca_tdf

5.1.4.3 Template parameter T
The argument passed as template parameter T shall be either a C++ type for which the predefined semantics

for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

b)

IEC 61691-8:2021 © IEC 2021
-32- IEEE Std 1666.1™-2016

If the default assignment semantics are inadequate (in the sense given in this subclause), the following

assignment operator shall be defined for the type T. In either case (default assignment or

explicit

operator), the semantics of assignment should be sufficient to assign the state of an object of type T

such that the value of the left operand is indistinguishable from the value of the right operand.

const T& operator= ( const T& );

If any constructor for type T exists, a default constructor for type T shall be defined.

5.1.4.4 store_value

void store_value( const sca_core::sca_times, const T& );

void s{

void s{

An imy]
class.

5.1.4.5

T get_v|
double

sca_uti

An imy]
point g

5155
5.1.5.1

The cla
getting

5.1.5.7

namespal

temp]
class
{
publ}
scal

ore_value ( const sca_core::sca_time&, const double& );

ore_value ( const sca_core::sca_times&, const sca_util::sca_complexs& );

lementation shall use the member function store_value to store a time-value pair.to’ the inter

get_value
alue ( const sca_core::sca_time& ) const;
get_value ( const sca_core::sca_times& ) const;

1::sca_complex get value( const sca_core::sca_times ) Cohgt;

lementation shall use the member function get value'to return an interpolated value at a giv
ven as argument.

ca tdf::sca_in
Description

ss sca_tdf::sca_in shall definea port class for the TDF MoC. It provides functions for defi
attribute values (e.g., sampling rate or timestep), for initialization, and for reading input sampl|

Class definition

ce sca_tdf {

hte<class/T%
sca_in s plblic sca_core::sca port< sca_tdf::sca_signal if<T> >

lic s
| 2n()7

(polator

en time

ning or
es.

ex

voi
voi
voi
voi
voi
voi

uns
uns
sca
sca

M i — "
rert—sea—n<t ret—cree T

d set_delay( unsigned long );

d set _rate( unsigned long );

d set timestep( const sca_core::sca_times );

d set_timestep( double, sc_core::sc_time unit );

d set_max_timestep( const sca_core::sca_times );

d set max timestep( double, sc_core::sc_time unit );

igned long get_delay () const;
igned long get_rate() const;

_core::sca_time get time( unsigned long sample id = 0 ) const;
_core::sca_time get_timestep( unsigned long sample id = 0 ) const;

sca_core::sca_time get max_ timestep() const;
sca_core::sca_time get last timestep( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -33-

vir

voi
con

boo
boo
boo

con

tual const char* kind() const;

d initialize( const T& value, unsigned long sample id = 0 );
st T& read delayed value( unsigned long sample id = 0 ) const;

1 is_timestep_changed( unsigned long sample id = 0 ) const;
1 is_rate_changed() const;

1 is_delay_changed() const;

st T& read( unsigned long sample id = 0 ) const;

operator const T& () const;
const T& operator[] ( unsigned long sample id ) const;
private:
// Disabled
scal in( const sca_tdf::sca_in<T>& );
scal tdf::sca_in<T>& operator= ( const sca_tdf::sca_in<T>& );
}i
} // ndmespace sca_tdf
5.1.5.3 Template parameter T
The argument passed as template parameter T shall be either a C++ type for which the predefined se
for assjgnment are adequate (for example, a fundamental type or a pointet) or'a type T that obeys
the follpwing rules:

a)

b)

¢)

5.1.54

sca_in(

explici

The following stream operator shall be defined and should £opy the state of the object givel
second argument to the stream given as the first argument{ The way in which the state inform
formatted is not defined by this standard. The implementation shall use this operator for writi
values in time-domain simulation (see 9.1).

std::ostreamé& operator<< ( std::ostream&, const/L& );

[f the default assignment semantics are inadequate (in the sense given in this subclause), the fo
assignment operator shall be defined forthe type T. In either case (default assignment or
operator), the semantics of assignment-should be sufficient to assign the state of an object of]
such that the value of the left operand is indistinguishable from the value of the right opera
implementation shall use this asgignment operator within the implementation for writing to or
from ports of type T.

const T& operator= ( const T& );

[f any constructor fortype T exists, a default constructor for type T shall be defined.

Constructors

) 7

[t sca_in( const char* );

mantics
cach of

1 as the
ation is
\g trace

lowing
explicit
type T
nd. The
reading

The constructor for class sca_tdf::sca_in shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf in”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sca_core::sca_port.

5.1.5.5 set_delay

void se

t_delay( unsigned long );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-34 - IEEE Std 1666.1™-2016

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change attributes of the
current TDF module.

5.1.5.6 set_rate

void set_rate( unsigned long );

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall hgve a positive, nonzero value. If the member function is not called, the port rate shall be equalfto 1. It
shall bg an error if the member function is called outside the context of the member functions set |attpibutes
or chanjge_attributes of the current TDF module.

5.1.5.7 set_timestep

void st timestep( const sca_core::sca_times );

void sgt timestep( double, sc_core::sc_time unit );

The mgmber function set_timestep shall define the timestep between twiolconsecutive samples. If the nember
functioh is not called, the current timestep of the port is computed.as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called ©utside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.5.4 set_max_timestep

void seit max_ timestep( const sca_core::sca_time® );

void segt max timestep( double, sc_core::sc.time_unit );

The mgmber function set_max_timestep shall define the maximum timestep between two congecutive
samplep. If set_max_timestep is ot called, an implementation shall set the maximum timestep to the value
returnefl by function sca_core::sca._max_time. It shall be an error if the member function is called outpide the
contexq of the member functions set_attributes or change_attributes of the current TDF module.

5.1.5.9 get_delay

unsigned long get_delay () const;

The mgmberfunction get_delay shall return the delay set at the port. It shall be an error if the member function
is calletotitside-thecontextof thememberfunctions-initiatize; reinitiatize; processing;ac—processing, or
change_attributes of the current TDF module.

5.1.5.10 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -35-

5.1.5.11 get_time

sca_core::sca_time get time( unsigned long sample id = 0 ) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.1) shall hold:

. . . M get_timestep()-sample id 5.1)
P get—timwetsumpte_idy = get_timre() P.get_rate() ’

where P is an instance of a port of class sca_tdf::sca_in and M is the parent module derived fropn class
sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returhed by the [function
sc_coref:sc_get time_resolution (see 5.3.1.2).

5.1.5.12 get_timestep

sca_core::sca_time get timestep( unsigned long sample id = 0 ) copsth

The mgmber function get_timestep shall return the timestep between the preceding and current sample with
index spmple_id. If the preceding sample is not available, the:member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context] of the
member functions initialize, reinitialize, processing;(ac’processing, or change attributes of the |current
TDF mjodule.

5.1.5.13 get_max_timestep

sca_core::sca_time get max timestep () (tonst;

The mgmber function get_max,timestep shall return the maximum timestep between two consecutive amples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TQJF ports
through the member funetion’set_timestep. It shall be an error if the member function is called outside the
contexf of the memberfurictions initialize, reinitialize, processing, ac_processing, or change_attributes of
the curfent TDF medule.

5.1.5.14 getslast_timestep

sca_core:sca time get last timestep( unsigned long sample id = 0 ) const:

The member function get last_timestep shall return the timestep between the two samples preceding
the sample with index sample id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to se¢_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-36 - IEEE Std 1666.1™-2016

5.1.5.15 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_in”.

5.1.5.16 initialize

void initialize( const T& value, unsigned long sample id = 0 );

The memberfunction-initialize shall initialize one-sample-at-the port-The argument sample—id denotes the
index off the sample being written. The samples shall be indexed from zero to P.get_delay()—1, where'R flenotes
the porf. It shall be an error if sample_id is greater than or equal to the port delay. This memberdfunctipn shall
only b called in the member functions initialize or reinitialize of the current TDF module; otherwise/ it shall
be an efror. Consecutive initializations with the same sample_id shall overwrite the value.

NOTE—-The writing of an initial value to the port requires that the port has been assigned a delay(using the member ffunction
set_delgy, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.5.17 read_delayed_value

const T& read delayed value( unsigned long sample id = 0 ) consts

The mg¢mber function read_delayed_value shall return a reference to the value of a delayed samplg that is
availabje at the port. The argument sample id denotes the inidex of the delayed sample being read. The Jamples
shall b¢ indexed from zero to P.get_delay()—1, where Pddenotes the port. A sample_id of zero shall frefer to
the firsf delayed sample in time. It shall be an error if'sample_id is greater than or equal to the port delay.

The mgmber function shall only be called in the“member function reinitialize of the current TDF 1nodule.
Otherwfise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall refurn the same delayed value.

5.1.5.18 is_timestep_changed

bool isl timestep changed( yhsigned long sample id = 0 ) const;

The mgmber functionds\ timestep_changed shall return true if the timestep of the sample with index sapiple id
of the TDF port, réturned by its member function get_timestep(sample id), has changed with respedt to the
preceding sample.-Otherwise, it shall return false. It shall be an error if the member function is called [outside
the confext of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the qurfent TDF module.

5.1.5.19is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -37 -

be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.5.20 is_delay_changed

bool is_delay_ changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
functionis_delay_changed shall return true if the delay of the TDF port has changed between the last activation

and be
false. I
reinitig

5.1.5.2

const T]
operato

const Tj

The mg
particu
read. T|
zero sh
the porf

The m
the me
Consed
5.1.6 S
5.1.6.]
The cla

5.1.6.2

namespda

he samples shall be indexed from zero to P.get_rate()~1, where P denotes the port. A samp
all refer to the first input sample in time. It shall.be*an error if sample id is greater than or g
rate.

mber functions processing and ac_processing of the current module; otherwise, it shall be a|
utive reads with the same sample_id.during the same module activation shall return the same
ca tdf::sca out

Description
ss sca_tdf::sca, out’shall define a port class for the TDF MoC.

Class definition

ce sca_tdf {

enum

tialize,

ue of a
e being
e id of
qual to

ore last activation of the callback processing of the current TDF module. Otherwise, it shall return
shall be an error if the member function is called outside the context of the member functiohs$ in

lize, processing, ac_processing, or change_attributes of the current TDF module.

1lread

¢ read( unsigned long sample id = 0 ) const;

r const T& () const;

& operator[] ( unsigned long sample id ) const;

mber functions read, operator const T&, and operator[] shall return a reference to the va

ar sample that is available at the port. The argument sample id denotes the index of the sampl

bmber functions read, operator const-T&, and operator|[] shall only be called in the conftext of

h error.
alue.

lsca* cut policy
— <

{

SCA_NO_CUT,
SCA_CT_cuT,

bi
templ
class

} // na

SCA_DT_CUT

ate<class T, sca_tdf::sca_cut policy CUT_POL = sca_tdf::SCA NO_CUT,
class INTERP = sca_tdf::sca_default interpolator<T> >
sca_out implementation-defined ;

mespace sca_ tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-38 - IEEE Std 1666.1™-2016

5.1.6.3 Constraint on usage

An application shall not instantiate the sca_tdf::sca_out class template with template parameter combinations
matching none of the partial template specializations sca_tdf::sca_out<T>, sca_tdf::sca_out<T,
sca_tdf::SCA_CT_CUT, INTERP> orsca_tdf::sca_out<T, sca_tdf::SCA_DT CUT>(see5.1.7,5.1.8, and
5.1.9 respectively).

5.1.6.4 Template parameters
The first argument passed as template parameter T shall be either a C++ type for which the predefined semantics

for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of the
followi T2 TutCes:

a) [The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state)informjation is
formatted is not defined by this standard. The implementation shall use this operatér-for writifg trace
values in time-domain simulation (see 9.1).

std::ostreamé& operator<< ( std::ostream&, const T& );

b) |If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or pxplicit
operator), the semantics of assignment should be sufficient to assignvthe state of an object of|type T
such that the value of the left operand is indistinguishable from the value of the right operapd. The
implementation shall use this assignment operator within the‘ifnplementation for writing to or peading
from ports of type T.

const T& operator= ( const T& );

¢) [If any constructor for type T exists, a default congtructor for type T shall be defined.

The se¢ond argument passed as template parameter-CUT POL is an optional port decoupling policy |of type
sca_tdf::sca_cut_policy. The port decoupling policy argument determines the rules how sample tim¢ points
to portq of class sca_tdf::sca_in shall be decoupled:

— [The policy sca_tdf::SCA_NO_CUT means that the port shall not decouple TDF clusters. As such,
it acts as a normal TDF port-ofiélass sca_tdf::sca_out<T>. For this type of port, the third t¢mplate
[parameter INTERP shall be\ighored.

— |The policy sca_tdf::SEA CT_CUT means that the port shall decouple TDF cluster§ using
interpolation as defined by the third template parameter INTERP.

— [The policy sca «tdf::SCA_DT_CUT means that the port shall decouple TDF clusters using a §ample-
land-hold reginie. For this type of port, the third template parameter INTERP shall be ignored.

The third argument passed as template parameter INTERP is an optional interpolation mechanism|for the
type T.|By.default, the class sca_tdf::sca_default_interpolator<T> shall be used. If any constructor for type
INTER[P ¢xists, a default constructor for type INTERP shall be defined. An application may define jits own
interpolator classes for other types. Such class shall provide the following public member functions:

void store_value( const sca_core::sca_times, const T& );

T get value( const sca_core::sca_time& ) const;

An implementation shall confirm that the time passed as argument to member function store_value is larger
than the time passed as argument to the last call to member function store_value.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -39 -

An implementation shall confirm that the time passed as argument to member function get_value is smaller
than or equal to the time passed as argument to the last call to member function store_value and larger than
or equal to the time passed as argument to the before last call of member function store_value (see 5.1.4).
5.1.7 sca_tdf::sca_out<T>

5.1.7.1 Description

The class sca_tdf::sca_out<T> shall define a port class for the TDF MoC. It provides functions for defining
or getting attribute values (e.g., sampling rate or timestep), for initialization, and for writing output samples.

5.1.7. 2 €tassdefimiton

namespajce sca_tdf {

templlate<class T>
class| sca_out_base : public sca_core::sca_port< sca_tdf::sca_signal_ if<T> >
{ imglementation-defined };

template<class T>
class| sca_out<T, sca_tdf::SCA NO CUT> : public sca_tdf::sca_out base<T>
{
publfic:

sca out () ;

explicit sca_out( const char* );

0 set_delay( unsigned long );
0 set_rate( unsigned long );
[d set_timestep( const sca_core::sca_times& );
voild set timestep( double, sc_core::sc_time unit );
[l set max timestep( const sca_core::sca_times );
d set max timestep( double, sc_core::sc_time_unit );

unsjigned long get delay() const;

unsfigned long get_rate() const;

scal core::sca_time get time( unsigned long\sample id = 0 ) const;

scal core::sca_time get timestep( unsigned~long sample id = 0 ) const;

scal core::sca_time get max timestep () ‘const;

scal core::sca_time get last timestep( Unsigned long sample id = 0 ) const;

virftual const char* kind() consty

voild initialize( const Té& g valyue, unsigned long sample id = 0 );
confst T& read_delayed value( unsigned long sample id = 0 ) const;

bool is_timestep changed( unsigned long sample id = 0 ) const;
bool is_rate_changed () const;
bodll is_delay changed() const;

voild write( (cohst T& value, unsigned long sample id 0 );

voild write(\s€a_core: :scaﬁassignﬁfromﬁproxyksca_tdf: :sca_out_base<T> >& );
sca tdf{:sca out<T>& operator= ( const T& );

scal tdf:rsca_out<T>& operator= ( const sca_tdf::sca_in<T>& );
scal tdf<:sca_out<T>& operator= ( sca_tdf::sca_de::sca_in<T>& );
sca_tdf::sca_outl>& operator= (

SCa_core::sca _assign_Irom Proxy <

sca_tdf::sca_out base<T> >& );

sca_core: :scaﬁassignitoﬁproxyksca_tdf: :sca_out<T>, T>& operator[] (
unsigned long sample id );

private:

// Disabled

sca_out( const sca_tdf::sca_out<T>& );

sca_tdf::sca_out<T>& operator= ( const sca_tdf::sca_out<T>& );
i

} // namespace sca_tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
—-40 - IEEE Std 1666.1™-2016

5.1.7.3 Constructors

sca_out

explici

()

t sca_out( const char* );

The constructor for class sca_tdf::sca_out shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf out”) to generate

a uniqj
sca_co

5.1.7.4

void s

The mg
If the 1
functio
current

5.1.7.5

void se

The md

the member function processing of the current TDF module by using member function write. The ar
11 have a positive, nonzero value. If the'member function is not called, the port rate shall be eqyal to 1.

rate sh
It shall

or change_attributes of the current TDFimodule.

5.1.7.9

void se

void se

The md
functio
(see 5.]

Fe::sca_port.
set_delay

t_delay( unsigned long );

mber function set_delay shall define the number of samples to be inserted before the first output
hember function is not called, the port shall have a delay of zero. It shall be an error if the 1
h is called outside the context of the member functions set_attributes or change attribute
TDF module.

set_rate

t_rate( unsigned long );

mber function set_rate shall define the number of samples that can be written during the exec
be an error if the member function is.called outside the context of the member functions set_att

set_timestep

t_timestep( const,.seca/core::sca_times );

t_timestep( double, sc_core::sc_time_unit );

mber function set_timestep shall define the timestep between two consecutive samples. If the 1
h is not called, the current timestep of the port is computed as defined in the execution se
). It shall be an error if the member function is called outside the context of the member fu

e class

sample.
hember
of the

ition of
oument

ributes

hember
mantics
nctions

set_att

sl vt 1 PRI £41 + TN - |
Toutcy Ul \.uaugc AL IUutcS Ul uiv vulriviit 11 mnivouulc,

5.1.7.7 set_max_timestep

void se

void se

t_max timestep( const sca_core::sca_times );

t_max timestep( double, sc_core::sc_time unit );

The member function set max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 —41-

5.1.7.8 get_delay

unsigned long get_delay () const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.7.9 get_rate

unsigned long get rate() const;

The mgmber function get_rate shall return the rate set at the port. It shall be an error if the membet function
is callefl outside the context of the member functions initialize, reinitialize, processing, ac’ processing, or
changd attributes of the current TDF module.

5.1.7.10 get_time

sca_core::sca_time get_ time( unsigned long sample id = 0 ) const;

The mdmber function get_time shall return the time of the sample with index sample_id. It shall be an|error if
the me(lnber function is called outside the context of the member functions initialize, reinitialize, progessing,
ac_processing, or change_attributes of the current TDF modude.

The relptionship shown in Equation (5.2) shall hold:

M get_timestep()-sample id
P.get_rate()

P.get_time(sample id)= M get_time() + (5.2)

where P is an instance of a port of class s¢ay tdf::sca_out and M is the parent module derived fropn class
sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the [function
sc_coref:sc_get time_resolution (see.5.3.1.2).

5.1.7.11 get_timestep
sca_core::sca_time{get timestep( unsigned long sample id = 0 ) const;

The mgmberfunction get_timestep shall return the timestep between the preceding and current sample with
index siple” id. If the preceding sample is not available, the member function shall return the propagated

timestep—see—53+2—J+shall-besan—errer—the—memberfunetion—is—ealled—outsidethe—eentext of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.7.12 get_max_timestep

sca_core::sca_time get max timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
—-42 - IEEE Std 1666.1™-2016

context of the member functions initialize, reinitialize, processing, ac_processing, or change attributes of
the current TDF module.

5.1.7.13 get_last_timestep

sca_core::sca_time get last timestep( unsigned long sample id = 0 ) const;

The member function get last timestep shall return the timestep between the two samples preceding
the sample with index sample id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to s¢_core::SC_ZERO_TIME,
the mgmber function shall return the propagated timestep (see 5.3.1.2). It shall be an error| if the
member function is called outside the context of the member functions initialize, reinitialize, ‘progessing,
ac_processing, or change_attributes of the current TDF module.

5.1.7.14 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “sca_tdf::sca_out”.

5.1.7.15 initialize

void infitialize( const T& value, unsigned long sample id =9 )%

The mgmber function initialize shall initialize one sample at the port. The argument sample id dengtes the
index off the sample being written. The samples shall be'indexed from zero to P.get_delay()—1, where P flenotes
the porf. It shall be an error if sample_id is greater;than or equal to the port delay.
This mpmber function shall only be called dh the member functions initialize or reinitialize of the|current
TDF mpdule; otherwise, it shall be an errot. Consecutive initializations with the same sample_id shall oyerwrite
the valye.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delgy, which shall be calledun the member functions set_attributes or change_attributes of the TDF module.

5.1.7.16 read_delayed. value

const T¢ read_delayed value( unsigned long sample id = 0 ) const;

The mgmbér function read_delayed_value shall return a reference to the value of a delayed samplg that is

aVaila A\ ) at thb PUrt. Th\z alsulll\zllt AJMIII/IJLIC l:d d\/llUt\zD th\/ ;lld\zA Ufth\z dula_y \/d Dalll}]lb b\z;lls lbﬂd. Thb O amples
shall be indexed from zero to P.get_delay()—1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.
The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.7.17 is_timestep_changed

bool is_timestep_changed( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 —43 -

The member functionis_timestep changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change attributes
of the current TDF module.

5.1.7.18 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac processing, and reinitialize, the member function

is_rate
proces
is_rate
last act|
beane
proces

5.1.7.1

bool if

In the

is_delay changed shall return true if the delay of the TDF portihas changed since the last activatioj

callbac
functio

| changed shall return true if the rate of the TDF port has changed since the last activation of the d

ing of the current TDF module. In the context of the callback change_attributes, the meniber f]
| changed shall return true if the rate of the TDF port has changed between the last activation ang
vation of the callback processing of the current TDF module. Otherwise, it shall réturn false.
ror if the member function is called outside the context of the member functions initialize, rein
ing, ac_processing, or change_attributes of the current TDF module.

9is_delay _changed
| delay changed () const;

context of the callbacks processing, ac processing\and reinitialize, the member f

k processing of the current TDF module. In the contextyof the callback change_attributes, the 1
his_delay_changed shall return true if the delay ofthe TDF port has changed between the last ac

allback
unction
| before
It shall
tialize,

unction
n of the
hember
ivation

tialize,

pument
zero to
brt rate.

and before last activation of the callback processing.of‘the current TDF module. Otherwise, it shall return
false. I shall be an error if the member function is called outside the context of the member functions in
reinitiglize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.7.40 write

void wrfite( const T& value, unsighed) long sample id = 0 );

sca_tdf]: :sca_out<T>& operator=\( const T& );

sca_core: :scaﬁassignﬁtogproxy*<sca_tdf: :sca_out<T>, T>& operator[] ( unsigned long sample id );
The m¢mber functions write, operator=, and operator|[] shall write one sample to the port. The ar
sample| id denotes) the index of the sample being written. The samples shall be indexed from
P.get_tate()=T,where P denotes the port. It shall be an error if sample_id is greater than or equal to the p
sca_tdfl::Sca ont<T operator= ( const sca tdf:-sca in<T ) -

sca_tdf::sca_out<T>& operator= ( sca_tdf::sca_de::sca_in<T>& );

The operator= shall read the first value from the input port of class sca_tdf::sca_in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void wr

sca_tdf

ite( sca_core: :scaﬁassignifromiproxyksca_tdf: :sca_out_base<T> >& );

::sca_out<T>& operator= ( sca_core: :Scaﬁassignifromiproxyf<sca_tdf: :sca_out_base<T> >& );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
—44 — IEEE Std 1666.1™-2016

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from _proxyf to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member
function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

5.1.8 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>
5.1.8.1 Description

The clg e ; Py ; T lass for

the TDF MoC. It provi(ies functions for deﬁnin;; or getting attribute values (e.g., sampling rate or times{ep), for
initialigation, and for writing output samples. The samples read by the connected ports of class s¢a\tdf:fsca_in
shall b¢ interpreted as forming a continuous-time signal.

5.1.8.4 Class definition

namespagjce sca_tdf {

templlate<class T, class INTERP>
class| sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> : public sca_tdf::scalout base<T>
{
publfic:

scal out () ;

explicit sca_out( const char* );

0 set_delay( unsigned long );
[0 set_ct_delay( const sca_core::sca_times );
0 set_ct_delay( double, sc_core::sc_time_unit ){;
i set_rate( unsigned long );
voild set timestep( const sca_core::sca_times )\
d set_ timestep( double, sc_core::sc_time.unit );
[l set max timestep( const sca_core::sca\times );
0 set _max timestep( double, sc_core::s¢c time_unit );

unsfigned long get_delay() const;

scal core: :sca_time get_ct_delay() const;

unsfigned long get rate() consgy

scal core::sca_time get time( unsigned long sample id = 0 ) const;

scal core::sca_time get timestep( unsigned long sample id = 0 ) const;

scal core::sca_time get max)timestep() const;

scal core::sca_time get{ last_timestep( unsigned long sample id = 0 ) const;

virtual const chant kind() const;

voild initializef~const T& value, unsigned long sample id = 0 );
void set_iniltial value( const T& );
const T& read delayed value( unsigned long sample id = 0 ) const;

bodl &s, timestep_changed( unsigned long sample id = 0 ) const;
bodl is’rate changed() const;
bool 1is_delay changed() const;

void write( const T& value, unsigned long sample id = 0 );
void write( sca_core: :sca_assign_from_proxyksca_tdf: :sca_out_base<T> >& );
sca_tdf::sca_out<T, sca_tdf::SCA_CT CUT, INTERP>& operator= ( const T& );
sca_tdf::sca_out<T, sca_ tdf::SCA_CT CUT, INTERP>& operator= ( const sca_tdf::sca_in<T>& );
sca_tdf::sca_out<T, sca_tdf::SCA CT_CUT, INTERP>& operator= ( sca_tdf::sca_de::sca_in<T>& );
sca_tdf::sca_out<T, sca_tdf::SCA CT CUT, INTERP>& operator= (
sca_tdf::sca_out base<T> >& );
sca_core::scaﬁassignﬁtoﬁproxyksca_tdf::sca_out<T, sca_tdf::SCA CT_CUT, INTERP>, T>& operator[] (
unsigned long sample id );

sca_core::sca assign from proxy'<

private:
// Disabled
sca_out<T, sca_tdf::SCA CT_CUT, INTERP>(
const sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 — 45—

sca_tdf::sca_out<T, sca_tdf::SCA_CT CUT, INTERP>& operator= (

Cc

bi

onst sca_tdf::sca_out<T, sca_ tdf::SCA_CT CUT, INTERP>& );

} // namespace sca tdf

5.1.8.3 Constraint on usage

A port of class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> shall only be a member of a module
derived from class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.8.4 Constructors

sca_ouf

explici

The ¢
charact]
class sq

The def
a uniq
sca_co

5.1.8.5

void s

The mg
If the n

()

t sca_out( const char* );

nstructor for class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> shall p:
er string argument (if such argument exists) through to the constructor(béelonging to th
a_core::sca_port to set the string name of the instance in the module hietaschy.

ault constructor shall call function sc_core::sc_gen_unique_name({sca_tdf out ct cut”)tog
e string name that it shall then pass through to the constrictor belonging to the bas

Fe:isca_port.

set_delay

t_delay( unsigned long );

mber function set_delay shall define the number of samples to be inserted before the first output
hember function is not called, the port shall have a delay of zero. The total delay of the port

ss the
lc base

enerate
e class

sample.
hall be

the sunp of the delay set by the member functions set_delay and set_ct_delay. It shall be an error if the total

delay d
the conl
change

5.1.8.6

void se

void s

The mg
sample

f the port is smaller than one timestep. It shall be an error if the member function is called
structor of the parent module-othcalled outside the context of the member functions set_attril
|_attributes of the current TDF module.

set_ct_delay

t_ct delay( censt’sca_core::sca_times );

t_ct delay(,double, sc_core::sc_time_unit );

mberfunction set_ct_delay shall define the continuous-time delay to be inserted before the firs
If.tHe member function is not called, the continuous-time delay is set to s¢_core::SC ZERO

outside
utes or

output
TIME.

The total delay of the port shall be the sum of the delay set by the member functions set_delay and set_ct_delay.
It shall be an error if the total delay of the port is smaller than one timestep. It shall be an error if the member
function is called outside the constructor of the parent module or called outside the context of the member
functions set_attributes or change attributes of the current TDF module.

5.1.8.7 set_rate

void se

t_rate( unsigned long );

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
—46 - IEEE Std 1666.1™-2016

rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.8.8 set_timestep

void set_timestep( const sca_core::sca_times );

void set_timestep( double, sc_core::sc_time_unit );

The member function set_timestep shall define the timestep between two consecutive samples. If the member
functiop—is—snet-called—the—current i mputed—as—definedin-the-executionsemantics
(see 5.3). It shall be an error if the member function is called outside the context of the member fijnctions
set_attributes or change_attributes of the current TDF module.

5.1.8.9 set_max_timestep

void sgt max timestep( const sca_core::sca_times );

void seit_max_timestep( double, sc_core::sc_time_unit );

The mpmber function set max_timestep shall define the maximum-timestep between two congecutive
samplep. If set_max_timestep is not called, an implementation shall set’the maximum timestep to the value
returnefl by function sca_core::sca_max_time. It shall be an errorif'the member function is called outpide the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.8.10 get_delay

unsigned long get delay() const;

The mgmber function get_delay shall return the delay set at the port. It shall be an error if the member function
is callefl outside the context of the member-functions initialize, reinitialize, processing, ac_processing, or
changd attributes of the current TDE module.

5.1.8.11 get_ct_delay

sca_core::sca_time get dt delay() const;

The mgmber functienrget_ct_delay shall return the continuous-time delay of type sca_core::sca_tinje set at
the port. It shall’be an error if the member function is called outside the context of the member functions
initialize, reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.8.12 gct_l ate
unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.8.13 get_time

sca_core::sca_time get time( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 —47 -

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.3) shall hold:

M get_timestep() sample_id
P.get rate()

P.get_time(sample_id)= M get_time() + (5.3)

where P is an instance of a port of class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> and M is
the parent module derived from class sca_tdf::sca_module (see 5.3).

NOTE—-The relation is valid within the time resolution bound, which is returned by the™ function
sc_coref:sc_get time_resolution (see 5.3.1.2).

5.1.8.14 get_timestep
::sca_time get timestep( unsigned long sample id = 0 ) const;

The mgmber function get_timestep shall return the timestep between the preceding and current sample with
index spmple id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function 49 called outside the context| of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the |current
TDF mjodule.

5.1.8.15 get_max_timestep

The member function get_max_timestep shall return the maximum timestep between two consecutive Jamples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TQQF ports
the member function set_timestep. It shall be an error if the member function is called outside the
contex{ of the member functions initialize, reinitialize, processing, ac_processing, or change_attrihutes of
the curfent TDF module.

5.1.8.16 get_last_timestep

sca_core: :sca_time _get-last_timestep( unsigned long sample id = 0 ) const;

The mpmber.“function get_last_timestep shall return the timestep between the two samples preceding
the sampple,‘with index sample id. If the timestep between these two preceding samples is efjual to
sc_cor¢::SC ZERO TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.8.17 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_out<SCA_CT_CUT>".

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
—48 - IEEE Std 1666.1™-2016

5.1.8.18 initialize

void initialize( const T& value, unsigned long sample id = 0 );

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()—1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the constructor of the parent module or in the member functions
initialize or reinitialize of the current TDF module; otherwise, it shall be an error. Consecutive initializations
with the same sample id shall overwrite the value.

NOTE—The writing of an initial value to a port of class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>|requires
that the port has been assigned a delay using the member function set_delay, which shall be called in the member flinctions
set_attriibutes or change_attributes of the TDF module.

5.1.8.19 set_initial_value

void set_initial_value( const T& );

The m¢gmber function set_initial_value shall set the initial value of the, TDF decoupling port to the value
suppliefd as argument. It shall be an error if the member function is ealled outside the context of the qnember
functiop set_attributes of the current TDF module.

5.1.8.40 read_delayed_value

const T& read delayed value( unsigned long sample id{=+0 ) const;

The mg¢mber function read_delayed_value shall&eturn a reference to the value of a delayed samplg that is
availabje at the port. The argument sample id-denotes the index of the delayed sample being read. The Jamples
shall b¢ indexed from zero to P.get_delay()-1, where P denotes the port. A sample_id of zero shall frefer to
the firsf delayed sample in time. It shall’be an error if sample_id is greater than or equal to the port delay.

The mgmber function shall only be called in the member function reinitialize of the current TDF 1nodule.
Otherwfise, it shall be an errorfi€onsecutive reads with the same sample_id during the same module activation

shall refurn the same delayed-value.

5.1.8.41 is_timestep: changed

bool isl timestep changed( unsigned long sample id = 0 ) const;

ionis—timesten—chansed-sh i ; ithi ample_id
of the TDF port returned by its member functlon get tlmestep(sample ld) has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.8.22 is_rate_changed

bool is_rate_changed() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 — 49—

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change attributes of the current TDF module.

5.1.8.23 is_delay_changed

bool is_delay_ changed() const;

In the| context of the callbacks processing, ac_processing, and reinitialize, the member, function
is_delay changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the pnember
functiopis_delay_changed shall return true if the delay of the TDF port has changed between the last acfivation
and before last activation of the callback processing of the current TDF module. Qthierwise, it shal| return
false. Ifshall be an error if the member function is called outside the context of the member functions injtialize,
reinitiglize, processing, ac_processing, or change_attributes of the current FDF module.

5.1.8.44 write

void wrfite( const T& value, unsigned long sample id = 0 );
sca_tdf]: :sca_out<T, sca_tdf::SCA_CT CUT, INTERP>& operator=\( tonst T& );
sca_core: :scaﬁassignitoﬁproxyksca_tdf: :sca_out<T, sca_td£f::SCA_CT_CUT, INTERP>, T>& operator[] (

unsigned long sample id );

The m¢mber functions write, operator=, and operator|[] shall write one sample to the port. The argument
sample| id denotes the index of the sample-being written. The samples shall be indexed from pero to
P.get_rate()—1, where P denotes the port. Itshall be an error if sample_id is greater than or equal to the pprt rate.

sca_tdf]: :sca_out<T, sca_ tdf::SCA_CT CUT, INTERP>& operator= ( const sca_tdf::sca_in<T>& );

sca_tdf: :sca_out<T, sca_tdf: :SCA_CT CUT, INTERP>& operator= ( sca_tdf: :sca_de: :sca_in<T>& ) 8

The operator= shall (tead the first value from the input port of class sca_tdf::scal in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void write( sca, core: :sca_assign_from_proxyksca_tdf: :sca_out_base<T> >& );

sca_tdf]: :sea _out<T, sca_tdf::SCA_CT CUT, INTERP>& operator= (
sca_doxed :scaﬁassignﬁfromﬁproxy?sca_tdf: :sca_out_base<T> >& );

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from _proxyf to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member

function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-50- IEEE Std 1666.1™-2016

5.1.9 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>

5.1.9.1 Description

The class sca_tdf::sca_out<T, sca_tdf::SCA DT _CUT> shall define a decoupling port class for the
TDF MoC. It provides functions for defining or getting attribute values (e.g., sampling rate or timestep), for
initialization, and for writing output samples. The samples read by the connected ports of class sca_tdf::sca_in

shall always have the value of the last available time point.

5.1.9.2 Class definition

namespajce sca_tdf {

templlate<class T>
class| sca_out<T, sca_tdf::SCA DT _CUT> : public sca_tdf::sca_out_ base<T>
{
publfic:
sca out () ;
explicit sca_out( const char* );
voild set delay( unsigned long );
set_ct_delay( const sca_core::sca_times );
set_ct_delay( double, sc_core::sc_time_unit );
set_rate( unsigned long );

d
voild
d
d
voild set timestep( const sca_core::sca_times );
d
d
d

voi

set_timestep( double, sc_core::sc_time_unit );
set_max timestep( const sca_core::sca_times );
set_max timestep( double, sc_core::sc_time_unit );

unsfigned long get_delay () const;

scal core::sca_time get ct delay() const;

unsfigned long get rate() const;

sca core::sca_time get time( unsigned long sample,id = 0 ) const;

scal core::sca_time get timestep( unsigned long ‘§ample id = 0 ) const;

scal core::sca_time get max timestep() const;

scal core::sca_time get last_timestep( unsigfied long sample id = 0 ) const;

virtual const char* kind() const;

voild initialize( const T& value, unsigned long sample id = 0 );
voild set_initial_ value( const T& ),
const T& read delayed value( ynsidned long sample id = 0 ) const;

bodl is_timestep_changed ({unsigned long sample id = 0 ) const;
bodl is_rate_changed() const;
bodl is_delay_ changed () c¢onst;

voild write( const \|®&,value, unsigned long sample id = 0 );

voild write( sca~core: :sca_assign_from_proxyksca_tdf: :sca_out_base<T> >& );

scal tdf::sca_out<T, sca_tdf::SCA_DT CUT>& operator= ( const T& );

scal tdf: :sea, out<T, sca_tdf: :SCA_DT CUT>& operator= ( const sca_tdf: :sca_in<T>& ) 8
(
(

scal tdf: :Scadout<T, sca_tdf::SCA_DT_CUT>& operator= sca_tdf::sca_de::sca_in<T>& );
sca_core::sca assign from proxy'<

sca:tdf: :sca_out<T, sca_tdf::SCA_DT_CUT>& operator=
sical\tdf: :sca_out base<T> >& );
sca| core::sca assign to proxy'<sca_tdf::sca_out<T, sca_tdf::SCA DT CUT>, T>& operator[] (

unsigned long sample id );

private:
// Disabled
sca_out<T, sca_tdf::SCA DT_CUT>( const sca_tdf::sca_out<T, sca_tdf::SCA DT_CUT>& );
sca_tdf::sca_out<T, sca_tdf::SCA DT CUT>& operator= (
const sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& );
i

} // namespace sca_ tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -51-

5.1.9.3 Constraint on usage

A port of class sca_tdf::sca_out<T, sca_tdf::SCA_DT _CUT> shall only be a member of a module derived
from class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.9.4 Constructors

sca_out();

explicit sca_out( const char* );

The copstruetor{or class—sea—tdfisca—ou sea—tdf::SCA DT CU shall pass—the—character string
argumdnt (if such argument exists) through to the constructor belonging to the base class sca_core:*s¢a_port
to set the string name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf out, df'-¢ut”) to generate
a uniqpie string name that it shall then pass through to the constructor belonging“to the base class
sca_core::sca_port.

5.1.9.9 set_delay

void set_delay( unsigned long );

The mgmber function set_delay shall define the number of sampl€s te'be inserted before the first output jample.
If the member function is not called, the port shall have a delay of zero. The total delay of the port shall be the
sum of]the delay set by the member functions set_delay and-set_ct delay. It shall be an error if the thember
functioh is called outside the constructor of the parent-fdodule or called outside the context of the qember
functiops set_attributes or change_attributes of the current TDF module.

5.1.9.9 set_ct_delay

void set_ct_delay( const sca_core::sca times );

void sgt ct_delay( double, sc_coré::sc_time unit );

The mgmber function set_ct-delay shall define the continuous-time delay to be inserted before the firsf output
sample| If the member function is not called, the continuous-time delay is set to sc_core::SC_ZERO [TIME.
The total delay of the part shall be the sum of the delay set by the member functions set_delay and set_ct| delay.
It shall|be an error/if the member function is called outside the constructor of the parent module of called
outside|the context)of the member functions set_attributes or change attributes of the current TDF nodule.

5.1.9.7 set rate

void set_rate( unsigned long );

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument
rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-52 - IEEE Std 1666.1™-2016

5.1.9.8 set_timestep

void set_timestep( const sca_core::sca_times );

void set_timestep( double, sc_core::sc_time_unit );

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

i ti i
5.1.9.9set—max—tinestep

void sgt max timestep( const sca_core::sca_times );

void set max_timestep( double, sc_core::sc_time_unit );

The mpmber function set max_timestep shall define the maximum timestep between two congecutive
samplep. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returnefl by function sca_core::sca_max_time. It shall be an error if the membBer;function is called outpide the
contextf of the member functions set_attributes or change_attributes of the/current TDF module.

5.1.9.10 get_delay

unsigned long get delay() const;

The mgmber function get_delay shall return the delay set@t the port. It shall be an error if the member function
is callefl outside the context of the member functions.initialize, reinitialize, processing, ac_processing, or
changd attributes of the current TDF module.

5.1.9.11 get_ct_delay

sca_core::sca_time get ct delay() cense;

The mgmber function get_ct_.delay shall return the continuous-time delay of type sca_core::sca_tinje set at
the port. It shall be an errdr if the member function is called outside the context of the member finctions
initialize, reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.9.12 get_raté

unsignejd long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.9.13 get_time

sca_core::sca_time get time( unsigned long sample id = 0 ) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -53-

The relationship shown in Equation (5.4) shall hold:

. ) . M get_timestep() sample_id
P.get_time(sample_id)= M get_time()+ Pget_rate) (5.4)

where P is an instance of a port of class sca_tdf::sca_out<T, sca_tdf::SCA_ DT _CUT> and M is the parent
module derived from class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get time_resolution (see 5.3.1.2).

5.1.9.14-gettimestep

::sca_time get timestep( unsigned long sample id = 0 ) const;

The mgmber function get_timestep shall return the timestep between the preceding and\current sample with
index spmple id. If the preceding sample is not available, the member function shall-teturn the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called -outside the context| of the
member functions initialize, reinitialize, processing, ac_processing, or change- attributes of the |current
TDF mjodule.

5.1.9.15 get_max_timestep

8 :sca_time get_max_timestep () const;

ber function get_max_timestep shall return the maximum timestep between two consecutive Jamples
ing to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TQJF ports
the member function set_timestep. It shall\be an error if the member function is called outgide the
contexf of the member functions initialize, reinitialize, processing, ac_processing, or change_attrihutes of
the curfent TDF module.

5.1.9.16 get_last_timestep

sca_core::sca_time get last timestep( unsigned long sample id = 0 ) const;

The mpmber function get: last timestep shall return the timestep between the two samples preceding
the sampple with index sample id. If the timestep between these two preceding samples is efjual to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samplés are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO _[TIME,
the mgmber-function shall return the propagated timestep (see 5.3.1.2). It shall be an error| if the
member funetion is called outside the context of the member functions initialize, reinitialize, progessing,
ac_progessing, or change attributes of the current TDF module.

5.1.9.17 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_out<SCA_DT_CUT>".

5.1.9.18 initialize

void initialize( const T& value, unsigned long sample id = 0 );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 54 - IEEE Std 1666.1™-2016

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()—1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the constructor of the parent module or in the member functions
initialize or reinitialize of the current TDF module; otherwise, it shall be an error. Consecutive initializations
with the same sample_id shall overwrite the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.9.19-setinitialvalue

void set_initial_ value( const T& );

The m¢mber function set_initial_value shall set the initial value of the TDF decoupling port to the value
supplied as argument. It shall be an error if the member function is called outside the'eontext of the hember
functiop set_attributes of the current TDF module.

5.1.9.30 read_delayed_value

const T¢ read_delayed value( unsigned long sample id = 0 ) const;

The mgmber function read_delayed_value shall return a reference to the value of a delayed samplg that is
available at the port. The argument sample_id denotes the index-of the delayed sample being read. The Jamples
shall b¢ indexed from zero to P.get_delay()—1, where P denotes the port. A sample_id of zero shall frefer to
the firsf delayed sample in time. It shall be an error if.sGmiple_id is greater than or equal to the port delay.

The mg¢gmber function shall only be called in théZmember function reinitialize of the current TDF nodule.
Otherwfise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall refurn the same delayed value.

5.1.9.31is_timestep_changed
bool is| timestep changed( un§igned long sample id = 0 ) const;

The mgmber function is, timestep_changed shall return true if the timestep of the sample with index saiple id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respedt to the
preceding samplé. Otherwise, it shall return false. It shall be an error if the member function is called joutside
the confext of the'member functions initialize, reinitialize, processing, ac_processing, or change attributes
of the qurrent-TDF module.

5.1.9.22 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -55-

be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.9.23is_delay_changed

bool is_delay_ changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
functionis_delay_changed shall return true if the delay of the TDF port has changed between the last activation

tialize,

and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. I shall be an error if the member function is called outside the context of the member functiohs in
reinitiglize, processing, ac_processing, or change_attributes of the current TDF module.
5.1.9.44 write
void wrfite( const T& value, unsigned long sample id = 0 );
sca_tdf: :sca_out<T, sca_tdf: :SCA_DT CUT>& operator= ( const T& );
sca_core: :scaﬁassignitoﬁproxyksca_tdf: :sca_out<T, sca_tdf::SCA_DT_CUT>, 'T>& operator[] (
unsigned long sample id );

The mg
sample|
P.get
sca_tdf

sca_tdf

The operator= shall read the first_ value from the input port of class sca_tdf::sca

sca_td

void wy

sca_tdf
S ca_c

The md
sca_co

The mg

mber functions write, operator=, and operator[] shall{yrite one sample to the port. The ar
| id denotes the index of the sample being written\The samples shall be indexed from
ate()—1, where P denotes the port. It shall be an errorifisample_id is greater than or equal to the p,

::sca_out<T, sca_tdf::SCA DT CUT>& operator: ( const sca_tdf::sca_in<T>& );

::sca_out<T, sca_tdf: :SCA_DT CUT>& operator= ( sca_tdf: :sca_de: :sca_in<T>& ) 8

::sca_de::sca_in and write ito'the first value of the output port.

ite ( sca_core: :sca_assign_from_proxy*<sca_tdf: :sca_out_base<T> >& );

::sca_out<T, sca_gdf::SCA DT CUT>& operator= (
ore: :scaﬁassign¥from7proxyf<sca_tdf: :sca_out _base<T> >& );

mber functions write and operator= shall write the value made available through the object
Fe:isca-assign_from _proxyf to the output port.

mber functions write, operator=, and operator|[] shall only be called in the context of the 1

cument
zero to
prt rate.

| in or

bf class

hember

function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

5.1.10

5.1.10.

sca_tdf::sca_de::sca_in, sca_tdf::sc_in

1 Description

The class sca_tdf::sca_de::sca_in shall define a specialized port class for the TDF MoC. It provides functions
for defining or getting attribute values (e.g., sampling rate or timestep), for initialization, and for reading input
values. The port shall perform the synchronization between the TDF MoC and the SystemC kernel (see 5.3.2.4).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-56 - IEEE Std 1666.1™-2016

The class sca_tdf::sc_in shall be defined as an alias for class sca_tdf::sca_de::sca_in.

5.1.10.2 Class definition

namespace sca_tdf {
namespace sca_de {

template<class T>
class sca_in : public sca_core::sca_port< sc_core::sc_signal_in if<T> >
{
public:
sca_in();
explicit sca in( const char* );

oid set_delay( unsigned long );

oid set_rate( unsigned long );

oid set_timestep( const sca_core::sca_times );

oid set_timestep( double, sc_core::sc_time_unit );
bid set_max timestep( const sca_core::sca_timed );
oid set _max timestep( double, sc_core::sc_time_unit );

S s g o g

hsigned long get_delay () const;

unsigned long get_rate() const;

slca_core::sca_time get time( unsigned long sample id = 0 ) const;
slca_core::sca_time get timestep( unsigned long sample id = 0 ) conSg;
sica_core::sca_time get max timestep() const;

sica_core::sca_time get last timestep( unsigned long sample id =Q ) const;

vliirtual const char* kind() const;

void initialize( const T& value, unsigned long sample M = 0 );
Jonst T& read_delayed value( unsigned long sample id\\0 ) const;

ool is_timestep changed( unsigned long sample id ="0 ) const;
ool is_rate_changed() const;
ool is_delay changed() const;

Jonst T& read( unsigned long sample id = (%))
operator const T& ();
donst T& operator[] ( unsigned long gample id );

Jonst sc_events default event () Oonst;
Jonst sc_events value changediyevent () const;
ool event () const;

vlirtual void bind ( sc_cozxe: :sc_signal_in_if<T>& ) 8
vloid operator() ( scoeore::sc_signal in if<T>& );

viirtual void bind (| s¢_core::sc_port<sc_core::sc_signal_in_if<T> >& );
oid operator() \(\ sc_core::sc_port<sc_core::sc_signal_in_ if<T> >& );

<

viirtual void ‘bind( sc_core::sc_port<sc_core::sc_signal_inout if<T> >& );

vloid operator () ( sc_core::sc_port<sc_core::sc_signal_inout_if<T> >& );
prjivate;:
/Bd'sabled
sica_dn( const sca tdf::sca de::sca in<T>s );
sca_tdf::sca_de::sca_in<T>& operator= ( const sca_tdf::sca_de::sca_in<T>& );

bi
} // namespace sca_de
template<class T>

class sc_in: public sca_tdf::sca_de::sca_in<T>

{

public:
sc_in() : sca_tdf::sca_de::sca_in<T>() {}
explicit sc_in( const char* name ) : sca_tdf: :sca_de: :sca_in<T>( name ) {}

bi

} // namespace sca_tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -57 -

5.1.10.

3 Constraint on usage

A port of class sca_tdf::sca_de::sca_in and sca_tdf::sc_in shall only be a member of a module derived from
class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.10.

4 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a)

The following stream operator shall be defined and should copy the state of the object given as the

b)

¢)

5.1.10

sca_in (

explici

The co
exists)
instanc

sc_in()

explici

The co

through to the constructor belonging to the base class sca_tdf::sca_de::sca_in to set the string nam

instanc

values in time-domain simulation (see 9.1).

std::ostreamé& operator<< ( std::ostream&, const T& );

[f the default assignment semantics are inadequate (in the sense given in this subclause), the fo
assignment operator shall be defined for the type T. In either case (default-assignment or
operator), the semantics of assignment should be sufficient to assign the'state of an object of]
such that the value of the left operand is indistinguishable from the’ value of the right opera
implementation shall use this assignment operator within the implementation for writing to or
from ports of type T.

const T& operator= ( const T& );

If any constructor for type T exists, a default constructor for type T shall be defined.

5 Constructors

) 7

[t sca_in( const char* );

hstructor for class sca_tdf::sca_des:sca_in shall pass the character string argument (if such ar
hrough to the constructor betonging to the base class sca_core::sca_port to set the string nam|
b in the module hierarchy.

: sca_tdf::sca_de<usca_in<T>() {}

[t sc_in( const ‘¢char* name ) : sca_tdf::sca_de::sca_in<T>( name ) {}

hstructor. for class sca_tdf::sc_in shall pass the character string argument (if such argument

 ifivthe module hierarchy.

second argument to the stream given as the first argument. The way in which the state informjation is
formatted is not defined by this standard. The implementation shall use this operator for Writifg trace

lowing
explicit
type T
nd. The
reading

oument
e of the

exists)
e of the

The default constructor shall call function sc_core::sc_gen_unique name(“sca_tdf sc_in”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.10

.6 set_delay

void set_delay( unsigned long );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 58— IEEE Std 1666.1™-2016

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change attributes of the
current TDF module.

5.1.10.7 set_rate

void set_rate( unsigned long );

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall hgve a positive, nonzero value. If the member function is not called, the port rate shall be equalfto 1. It
shall bg an error if the member function is called outside the context of the member functions set |attpibutes
or chanjge_attributes of the current TDF module.

5.1.10|8 set_timestep

void st timestep( const sca_core::sca_times );

void sgt timestep( double, sc_core::sc_time unit );

The mgmber function set_timestep shall define the timestep between twiolconsecutive samples. If the nember
functioh is not called, the current timestep of the port is computed-asidefined in the execution semantjcs (see
5.3). It|shall be an error if the function is called outside the context of the member functions set_attyributes
or chanjge_attributes of the current TDF module.

5.1.10|9 set_max_timestep

void seit max_ timestep( const sca_core::sca_time® );

void segt max timestep( double, sc_core::sc.time_unit );

The mgmber function set_max_timestep shall define the maximum timestep between two congecutive
samplep. If set_max_timestep is ot called, an implementation shall set the maximum timestep to the value
returnefl by function sca_core::sca._max_time. It shall be an error if the member function is called outpide the
contexq of the member functions set_attributes or change_attributes of the current TDF module.

5.1.10|10 get_delay

unsigned long get_delay () const;

The mgmberfunction get_delay shall return the delay set at the port. It shall be an error if the member function
is calletotitside-thecontextof thememberfunctions-initiatize; reinitiatize; processing;ac—processing, or
change_attributes of the current TDF module.

5.1.10.11 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -59 -

5.1.10.12 get_time
sca_core::sca_time get time( unsigned long sample id = 0 ) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.5) shall hold:

. . . M get_timestep()-sample id
P get—timwetsumpte_idy = get_timre() P.get_rate() (5:5)

where P is an instance of a port of class sca_tdf::sca_de::sca_in and M is the parent module derive¢d from
class sda_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returhed by the [function
sc_coref:sc_get time_resolution (see 5.3.1.2).

5.1.10|13 get_timestep
sca_core::sca_time get timestep( unsigned long sample id = 0 ) copsth

The mgmber function get_timestep shall return the timestep between the preceding and current sample with
index spmple_id. If the preceding sample is not available, the:member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the member functions
initialife, reinitialize, processing, ac_processing, or:¢change_attributes of the current TDF module,

5.1.10|14 get_max_timestep
sca_core::sca_time get max timestep() consg’;

The mgmber function get_max_timestep shall return the maximum timestep between two consecutive amples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TQJF ports
through the member function'set timestep. It shall be an error if the member function is called outside the
contex of the member functions initialize, reinitialize, processing, ac_processing, or change attrihutes of
the curfent TDF module.

5.1.10|15 get_last timestep

sca_core:{sca’time get last timestep( unsigned long sample id = 0 ) const;

The member function get last_timestep shall return the timestep between the two samples preceding
the sample with index sample id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to se¢_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 60— IEEE Std 1666.1™-2016

5.1.10.16 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_in”.

5.1.10.17 initialize

void initialize( const T& value, unsigned long sample id = 0 );
The memberfunction-initialize-s mitialize one mple he-no he_argumen ample—1 tes the

index off the sample being written. The samples shall be indexed from zero to P.get_delay()—1, wherd' P fenotes
the porf. It shall be an error if sample_id is greater than or equal to the port delay.

This mpmber function shall only be called in the member functions initialize or reinitialize of the|current
TDF mpdule; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall oyerwrite
the valye.

NOTE—-The writing of an initial value to the port requires that the port has been assigned a delay using the member ffunction
set_delgy, which shall be called in the member functions set_attributes or change_ dttributes of the TDF module.

5.1.10|18 read_delayed_value

const T& read delayed value( unsigned long sample id = 0 ) «const;

The mg¢mber function read_delayed_value shall return @;reference to the value of a delayed samplg that is
availabje at the port. The argument sample id denotes'the index of the delayed sample being read. The Jamples
shall b¢ indexed from zero to P.get_delay()—1, whete P denotes the port. A sample_id of zero shall frefer to
the firsf delayed sample in time. It shall be an etror if sample_id is greater than or equal to the port delay.

The mgmber function shall only be called in the member function reinitialize of the current TDF 1nodule.
Otherwfise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall refurn the same delayed valué,

5.1.10{19 is_timestep_changed

bool isl timestep changed( unsigned long sample id = 0 ) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sapiple_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respedt to the
preceding‘sample. Otherwise, it shall return false. It shall be an error if the member function is called [outside
the con tonsinitiak initiakt i i ributes
of the current TDF module.

5.1.10.20 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -61-

last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.10.

21is_delay_changed

bool is_delay_ changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member

functio
and be
false. It
reinitig

5.1.10

const T]
operato

const Tj

The mg
particu
read. T|
zero sh

The m
the me
Consed

The v4
sc_cor

shall bg

5.1.10

const ¢

The md
membeg

shall be an error if the member function is called outside the context of the member functions in
lize, processing, ac_processing, or change_attributes of the current TDF module(

22 read

& read( unsigned long sample id = 0 );
r const T& ();

& operator[] ( unsigned long sample id );

mber functions read, operator const T&, and operatox]] shall return a reference to the va
ar sample that is available at the port. The argument sample id denotes the index of the sampl
he samples shall be indexed from zero to P.get_rate()—1, where P denotes the port. A samp
1 refer to the first input sample. It shall be an erfor'if sample_id is greater than or equal to the p

mber functions processing and ac_processing of the current module; otherwise, it shall be a|
utive reads with the same sample_id.during the same module activation shall return the same
lue of a sample shall be/read by the member function read of the interface proper d
p::sc_signal_in_if. The member function read of the interface proper of class sc_core::sc_sign4

called in the evaluatien\phase at the first delta cycle of the associated time of the sample. (see

23 default_event

c_events default_event() const;

mber-function default_event shall return a reference to the default event, which is returned
r furiction default_event of the channel. to which the port is bound.

his_delay_changed shall return true if the delay of the TDF port has changed between the last; activation
ore last activation of the callback processing of the current TDF module. Otherwise, it’ shall return

tialize,

ue of a
e being
e id of
pbrt rate.

bmber functions read, operator const-T&, and operator|[] shall only be called in the conftext of

h error.
alue.

f class

1 in_if
5.3).

by the

5.1.10.24 value_changed_event

const s

c_events value changed event () const;

The member function value_changed_event shall return a reference to the value-changed event, which is
returned by the member function value_changed_event of the channel, to which the port is bound.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

5.1.10.

IEC 61691-8:2021 © IEC 2021
- 62— IEEE Std 1666.1™-2016

25 event

bool event() const;

The member function event shall return the value, which is returned by the member function event of the
channel, to which the port is bound, at the current module time.

5.1.10.

virtual
void op

26 bind, operator()

void bind( sc_core::sc_signal_in if<T>& );
erator () ( sc_core::sc_signal_in_if<T>& ) 8

virtual
void op

virtual

void op

The m
passing
sca_td

51.11
51.11

The cl4
additio

The cla

51.11

namespal
names

temn
cly

{
Py
E

0]

void bind( sc_core::sc_port<sc_core::sc_signal_in_ if<T> >& );
erator () ( sc_core::sc_port<sc_core::sc_signal_in_if<T> >& );

void bind( sc_core::sc_port<sc_core::sc_signal_ inout if<T> >& );

erator () ( sc_core::sc_port<sc_core::sc_signal_inout if<T> >& );

bmber functions bind and operator() shall each call member function, bind of the bas
through their parameters as arguments to the function bind, in orderito bind the object
::sca_de::sca_in to the channel or port instance passed as an argument.

sca_tdf::sca_de::sca_in<bool>, sca_tdf::sc_in<bool>
1 Description

ss sca_tdf::sca_de::sca_in<bool> shall define a specialized port class for the TDF MoC. It p
nal member functions appropriate for two-valued signals.

ss sca_tdf::sc_in<bool> shall be defined aswan alias for class sca_tdf::sca_de::sca_in<bool>.

2 Class definition

ce sca_tdf {
pace sca_de {

plate<>
ss sca_in<bool> : public sca_core::sca_port< sc_core::sc_signal_in_if<bool> >

plic:
ca_in();
kplicit scaNdm( const char* );

bid set=delay( unsigned long );
oid, set) rate( unsigned long );
oid /set timestep( const sca_core::sca_times );

Sos <o

b class,
f class

rovides

oid, 'set timestep( double, sc core::sc time unit );

void set_max_timestep( const sca_core::sca_times );
void set_max_timestep( double, sc_core::sc_time_unit );

u
u
s
s
s
s

nsigned long get delay() const;

nsigned long get_rate() const;

ca_core::sca_time get_time( unsigned long sample id = 0 ) const;
ca_core::sca_time get_timestep( unsigned long sample id = 0 ) const;
ca_core::sca_time get max timestep() const;

ca_core::sca_time get last timestep( unsigned long sample id = 0 ) const;

virtual const char* kind() const;

void initialize( const bool value, unsigned long sample id = 0 );

c)

b

onst bools& read delayed value( unsigned long sample id = 0 ) const;

ool is_timestep_changed( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 63—

b
b

(o]

ool is_rate_changed() const;
ool is_delay changed() const;

onst bool& read( unsigned long sample id = 0 );

operator const boolé& ();
const bool& operator[] ( unsigned long sample id );

C
Cc
(o]
@

b
b
b

onst sc_events& default event() const;
onst sc_events& value_changed event() const;
onst sc_event& posedge_event() const;
onst sc_events& negedge_event () const;

ool event() const;
ool posedge () const;
ool negedge () const;

<

temp]
class

{
publ}

} // nd

5111

A port
derived

5111

sca_in (

explici

irtual void bind( sc_core::sc_signal_in if<bool>& );
oid operator() ( sc_core::sc_signal_in_if<bool>s& );

[irtual void bind( sc_core::sc_port<sc_core::sc_signal_in_if<bool> >& );

oid operator() ( sc_core::sc_port<sc_core::sc_signal_in if<bool> >& );

irtual void bind( sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >& );

loid operator () ( sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >& ) ;

ivate:

/ Disabled

ca_in( const sca_tdf::sca_de::sca_in<bool>& );

ca_tdf::sca_de::sca_in<bool>& operator= ( const sca_tdf::sca_de:swsea_in<bool>& );

amespace sca_de
ate<>
sc_in<bool>: public sca_tdf::sca_de::sca_in<bool>
[ic:
 in() : sca_tdf::sca_de::sca_in<bool>() {}
licit sc_in( const char* name ) : sca_tdf::Sca de::sca_in<bool>( name ) {}
Imespace sca_tdf

3 Constraint on usage

fclass sca_tdf::sca_de::sca-in<bool>and sca_tdf::sc_in<bool> shall only be a member of a
from class sca_tdf::scaxmodule; otherwise, it shall be an error.

4 Constructors

) ;

L sca_inm{»const char* );

The col

.o .o < >

module

if such

argument exists) through to the constructor belonging to the base class sca_core::sca_port to set the string

name o

sc_in()

explici

f the instance in the module hierarchy.

sca_tdf::sca_de::sca_in<bool>() {}

t sc_in( const char* name ) : sca_tdf::sca_de::sca_in<bool>( name_ ) {}

The constructor for class sca_tdf::sc_in<bool> shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_tdf::sca_de::sca_in<bool> to set the string

name o

f the instance in the module hierarchy.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 64— IEEE Std 1666.1™-2016

The default constructor shall call function sc_core::sc_gen unique name(“sca_tdf sc_in”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.11.5 set_delay

void set_delay( unsigned long );

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change attributes of the
current| TDF module.

5.1.11|6 set_rate

void sgt rate( unsigned long );

The mdmber function set_rate shall define the number of samples that can be readduring the executiop of the
membelr function processing of the current TDF module by using member funiction read. The argument rate
shall hgve a positive, nonzero value. If the member function is not called,the’port rate shall be equal{to 1. It
shall b¢ an error if the member function is called outside the context of the member functions set_attributes
or chanjge_attributes of the current TDF module.

5.1.11}7 set_timestep

void set_timestep( const sca_core::sca_times );

void set timestep( double, sc_core::sc_time_unit )y

The mgmber function set_timestep shall define-the timestep between two consecutive samples. If the nember
functiop is not called, the current timestep‘ef-the port is computed as defined in the execution semantjcs (see
5.3). It|shall be an error if the function-s:called outside the context of the member functions set_attributes
or change_attributes of the current"TDF module.

5.1.11|8 set_max_timestep

void seit_max_timestep (, cOmst sca_core::sca_times );

void set_max_timestep. double, sc_core::sc_time_unit );

The mgmber function set_max_timestep shall define the maximum timestep between two congecutive
samplep.. Jf’set_max_timestep is not called, an implementation shall set the maximum timestep to the value

1 ol e il h T | 111 AN 1 £ e . 11od 4. d h
returne& oy munetromr sea_coresisca_nmax— e 1t Sirar 0T atr Crror 1T tire Neoetr runctromr s cancaouts1de the

context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.11.9 get_delay

unsigned long get delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 65—

5.1.11.

10 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or

change

5.1.11.

_attributes of the current TDF module.

11 get_time

sca_core::sca time get time( unsigned long sample id = 0 ) const;

The md

the merer function is called outside the context of the member functions initialize, reinitialize, prod

ac_pr

The rel

P.get_time(sample id)= M get_time()+

where P is an instance of a port of class sca_tdf::sca_de::sca_in<bOel>and M is the parent module
from clpss sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution'\*bound, which is returned by the
sc_coref:sc_get time_resolution (see 5.3.1.2).

5.1.11]12 get_timestep

sca_core::sca_time get timestep( unsigned long sample id = 0 ) const;

The mgmber function get_timestep shall return the timestep between the preceding and current samyj

index
timeste
membe
TDF m)|

51.11

mber function get_time shall return the time of the sample with index sample_id. It shall‘be/an
essing, or change_attributes of the current TDF module.
htionship shown in Equation (5.6) shall hold:

M get_timestep()-sample id
P.get rate()

imple_id. 1f the preceding Samiple is not available, the member function shall return the pro
p (see 5.3.1.2). It shall be an error if the member function is called outside the context
r functions initialize, xeinitialize, processing, ac_processing, or change_attributes of the
pdule.

13 get_max_timestep

e: :sca_time get max_timestep() const;

error if
essing,

(5.6)

derived

function

le with
bagated

of the
current

accordi

amples

ng to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.11.14 get_last_timestep

sca_core::sca_time get last timestep( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
— 66 - IEEE Std 1666.1™-2016

The member function get last timestep shall return the timestep between the two samples preceding
the sample with index sample id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc¢_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.11.15 kind

virtual const char* kind() const;

The mgmber function kind shall return the string “sca_tdf::sca_de::sca_in”.

5.1.11|16 initialize

void infitialize( const bool& value, unsigned long sample id = 0 );

The mgmber function initialize shall initialize one sample at the port. The atgument sample id dengtes the
index off the sample being written. The samples shall be indexed from zero to.RP.get_delay()—1, where P flenotes
the port. It shall be an error if sample_id is greater than or equal to the pert delay.

This mpmber function shall only be called in the member functiens initialize or reinitialize of the|current
TDF mpdule; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall oyerwrite
the valge.

NOTE—-The writing of an initial value to the port requires thatthe port has been assigned a delay using the member ffunction
set_delgy, which shall be called in the member functions,Set_attributes or change_attributes of the TDF module.

5.1.11)17 read_delayed_value

const Hools& read delayed value( unsigrfed long sample id = 0 ) const;

The mg¢mber function read_delayed_value shall return a reference to the value of a delayed samplg that is
availabje at the port. The argument sample id denotes the index of the delayed sample being read. The Jamples
shall b¢ indexed from zero te’ P.get_delay()—1, where P denotes the port. A sample_id of zero shall frefer to
the firsf delayed sample.intime. It shall be an error if sample_id is greater than or equal to the port delay.

The mgmber furiction shall only be called in the member function reinitialize of the current TDF 1nodule.
Otherwfise, it-shall be an error. Consecutive reads with the same sample_id during the same module activation
shall refurn,the same delayed value.

5.1.11.18is_timestep_changed

bool is_timestep changed( unsigned long sample id = 0 ) const;

The member functionis_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 67—

5.1.11.19is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change attributes of the current TDF module.

5.1.11j20 is_delay_changed

bool is| delay changed() const;

In the| context of the callbacks processing, ac processing, and reinitialize,(the member flinction
is_delay changed shall return true if the delay of the TDF port has changed sifice the last activation of the
callback processing of the current TDF module. In the context of the callback ¢hange_attributes, the thember
functiopis_delay_changed shall return true if the delay of the TDF port has eHanged between the last acfivation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. I shall be an error if the member function is called outside the cOntext of the member functions injtialize,
reinitiglize, processing, ac_processing, or change attributes of\the current TDF module.

5.1.11]21 read

const Hoolé& read( unsigned long sample id = 0 );
operatgr const bool& ();

const Hoolé& operator[] ( unsigned long sample id );

The mgmber functions read, operator.‘const bool&, and operator|[] shall return a reference to the vajue of a
particular sample that is available at the port. The argument sample_id denotes the index of the sample being
read. The samples shall be indexed from zero to P.get rate()—1, where P denotes the port. A sample id of
zero shhll refer to the first input;sample. It shall be an error if sample_id is greater than or equal to the pprt rate.

The m¢mber functionsiread, operator const bool&, and operator[] shall only be called in the coftext of
the member functignis'processing and ac_processing of the current module; otherwise, it shall be ah error.
Consedutive reads with the same sample_id during the same module activation shall return the same yalue.

The vglug,'of a sample shall be read by the member function read of the interface prqper of
class dqc_core::sc_signal_in_if<bool>. The member function read of the interface proper of class
sc_core::sc_signal _in_if<bool> shall be called in the evaluation phase at the first delta cycle of the associated
time of the sample. (see 5.3).

5.1.11.22 default_event

const sc_events& default event() const;

The member function default_event shall return a reference to the default event, which is returned by the
member function default_event of the channel, to which the port is bound.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 68— IEEE Std 1666.1™-2016

5.1.11.23 value_changed_event

const sc_events& value_changed event () const;

The member function value_changed_event shall return a reference to the value-changed event, which is
returned by the member function value_changed_event of the channel, to which the port is bound.

5.1.11.24 posedge_event

const sc_events posedge_event() const;

The mgmber function posedge event shall return a reference to the event, which is returned by the.apember
functioh posedge_event of the channel, to which the port is bound.

5.1.11)25 negedge_event

const sic_events& negedge_event () const;

The mgmber function negedge_event shall return a reference to the event,ayhich is returned by the nember
functioh negedge_event of the channel, to which the port is bound.

5.1.11]|26 event

bool evlent () const;

The m¢mber function event shall return the value, wiiich is returned by the member function event of the
channel, to which the port is bound, at the current module time.

5.1.11)27 posedge

bool posedge () const;

The mgmber function posedge,shall return the value, which is returned by the member function posgdge of
the chahnel, to which the postiis‘bound, at the current module time.

5.1.11)|28 negedge

bool negedge () .const;

The mgmber function negedge shall return the value, which is returned by the member function neggdge of

the chahnehto~which-the-pertisboundatthe-eurrent-medule-time:
5.1.11.29 bind, operator()
virtual void bind( sc_core::sc_signal_in_if<bool>& );

void operator() ( sc_core::sc_signal_ in_if<bool>& );

virtual void bind( sc_core::sc_port<sc_core::sc_signal_in_if<bool> >& );
void operator() ( sc_core::sc_port<sc_core::sc_signal_in if<bool> >& );

virtual void bind( sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >& );
void operator() ( sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >& );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 69—

The member functions bind and operator() shall each call member function bind of the base class,
passing through their parameters as arguments to the function bind, in order to bind the object of class
sca_tdf::sca_de::sca_in<bool> to the channel or port instance passed as an argument.

5.1.12 sca_tdf::sca_de::sca_in<sc_dt::sc_logic>, sca_tdf::sc_in<sc_dt::sc_logic>
5.1.12.1 Description

The class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> shall define a specialized port class for the TDF MoC. It
provides additional member functions appropriate for four-valued signals.

The TSC s i T class

sca_tdf::sca_de::sca_in<sc_dt::sc_logic>.
5.1.12|2 Class definition

namespajce sca_tdf {
namesjpace sca_de {

template<>
clalss sca_in<sc_dt::sc_logic> : public sca_core::sca_port<
sc_core::sc_signal_in if<sc_dtx:sc_logic> >

pupblic:
ca_in () ;
kplicit sca_in( const char* );

Q. 0

oid set_delay( unsigned long );

oid set_rate( unsigned long );

oid set_timestep( const sca_core::sca_times );

oid set_timestep( double, sc_core::sc_time_unit );
oid set_max timestep( const sca_core::sca times );
oid set max timestep( double, sc_core::sc time_unit );

S o g o<

unsigned long get_delay() const;

unsigned long get_rate() const;

slca_core::sca_time get_ time ( unsigned long sample id = 0 ) const;
sica_core::sca_time get timestep{( unsigned long sample id = 0 ) const;
sica_core::sca_time get max timestep() const;

sica_core::sca_time get last timestep( unsigned long sample id = 0 ) const;

vlirtual const char* kindy) const;

vloid initialize( donsgt sc_dt::sc_logic value, unsigned long sample id = 0 );
Jonst sc_dt::sc logics read delayed value( unsigned long sample id = 0 ) const;

ool is_timestep changed( unsigned long sample id = 0 ) const;
bool is_rate changed() const;
Hool iswdelay changed() const;

Jon€” sc_dt::sc_logic& read( unsigned long sample id = 0 );
operator const sc dt::sc logic& ();
const sc_dt::sc_logicé& operator[] ( unsigned long sample id );

const sc_events& default event() const;
const sc_events value changed event() const;
const sc_event& posedge_event() const;
const sc_event& negedge_event () const;

bool event() const;
bool posedge () const;

bool negedge () const;

virtual void bind( sc_core: :sc_signal_in_if<sc_dt: :sc_logic>& ) 8
void operator() ( sc_core::sc_signal_in_if<sc_dt::sc_logic>& );

virtual void bind( sc_core::sc_port<sc_core::sc_signal_in_if<sc_dt::sc_logic> >& );
void operator() ( sc_core::sc_port<sc_core::sc_signal_in if<sc_dt::sc_logic> >& );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-70- IEEE Std 1666.1™-2016

virtual void bind( sc_core::sc_port<sc_core::sc_signal_inout_ if<sc_dt::sc_logic> >& );
void operator() ( sc_core::sc_port<sc_core::sc_signal_inout_if<sc_dt::sc_logic> >& );

private:
// Disabled
sca_in( const sca_tdf::sca_de::sca_in<sc_dt::sc_logic>& ) 8
sca_tdf::sca_de::sca_in<sc dt::sc_logic>& operator= (
const sca_tdf::sca_de::sca_in<sc_dt::sc_logic>& );
i

} // namespace sca_ de
template<>

class sc_in<sc_dt::sc_logic>: public sca_tdf::sca_de::sca_in<sc_dt::sc_logic>

{

publfic:
sc_fin() : sca_tdf::sca_de::sca_in<sc_dt::sc_logic>() {}
explicit sc_in( const char* name ) : sca_tdf::sca_de::sca_in<sc_dt::sc_logic>( name_ )~{1

bi

} // ndmespace sca_tdf

5.1.12|3 Constraint on usage

A port pf class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> and sca_tdf::sc_in<s¢ dt::sc_logic> shall only be
a member of a module derived from class sca_tdf::sca_module; otherwisé; it’shall be an error.

5.1.12]4 Constructors

sca_in () ;

explicift sca_in( const char* );

The copstructor for class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> shall pass the character string argument
(if sucH argument exists) through to the construcfor belonging to the base class sca_core::sca_port tg set the
string rjame of the instance in the module hierarchy.

sc_in()| : sca_tdf::sca_de::sca_in<sc dti:sc_logic>() {}

explicift sc_in( const char* name_ "“+/: sca_tdf::sca_de::sca_in<sc dt::sc_logic>( name ) {}

The ¢onstructor for _¢lass sca_tdf::sc_in<sc_dt::sc_logic> shall pass the character | string
argumgnt (if such _ argument exists) through to the constructor belonging to thd base
class sda_tdf::sca_de:ssca_in<sc_dt::sc_logic> to set the string name of the instance in the module higrarchy.

The ddfault constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf _sc_in”) to generate
a uniqpie string name that it shall then pass through to the constructor belonging to the base class
sca_core::sea_port.

5.1.12.5 set_delay

void set_delay( unsigned long );

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -71-

5.1.12

.6 set_rate

void set_rate( unsigned long );

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1. It
shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.12

.7 set_timestep

void s

void s

The md
functio
5.3). It

t_timestep( const sca_core::sca_times );

t_timestep( double, sc_core::sc_time_unit );

mber function set_timestep shall define the timestep between two consecutive samples. If the 1

shall be an error if the function is called outside the context of the member functions set_att

or chanjge_attributes of the current TDF module.

5.1.12

void se

void s

The m|
sample
returne
context

5.1.12

unsigng

The ms
is calle
change

5.1.12

8 set_max_timestep

[t max timestep( const sca_core::sca_times );

t_max timestep( double, sc_core::sc_time unit );

ember function set_ max_timestep shall define the maximum timestep between two cong
5. If set_max_timestep is not called, an implementation shall set the maximum timestep to th
1 by function sca_core::sca_max_time.\Itshall be an error if the member function is called out
of the member functions set_attributes or change attributes of the current TDF module.

9 get_delay

d long get_delay () consg;

mber function get, delay shall return the delay set at the port. It shall be an error if the member f]
| attributes\of'the current TDF module.

10 gét> rate

nember

h is not called, the current timestep of the port is computed as defined in the'eXecution semantfics (see

ributes

ecutive
e value
bide the

unction

 outside the eontéxt of the member functions initialize, reinitialize, processing, ac_processing, or

unsigne

d long get rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.12.11 get_time

sca_cor

e::sca_time get time( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-72- IEEE Std 1666.1™-2016

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.7) shall hold:

. ) . M get_timestep() sample_id
P.get_time(sample_id)= M get_time() + Pget_rate) (5.7

where P is an instance of a port of class sca_tdf::sca_de::sca_in<sc_dt::sc_logic>and M is the parent module
derived from class sca_tdf::sca_module (see 5.3).

NOTE—-The relation is valid within the time resolution bound, which is returned by the™ function
sc_coref:sc_get time_resolution (see 5.3.1.2).

5.1.12]12 get_timestep

sca_core::sca_time get timestep( unsigned long sample id = 0 ) const;

The mgmber function get_timestep shall return the timestep between the preceding and current sample with
index spmple id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function 49 called outside the context| of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the |current
TDF mjodule.

5.1.12|13 get_max_timestep

sca_core::sca_time get max_ timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive Jamples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TQQF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
contex{ of the member functions initialize, reinitialize, processing, ac_processing, or change_attrihutes of
the curfent TDF module.

5.1.12]14 get_last_timeStep
sca_core: :sca_time _get-last_timestep( unsigned long sample id = 0 ) const;

The mpmber.“function get_last_timestep shall return the timestep between the two samples preceding
the sampple,‘with index sample id. If the timestep between these two preceding samples is efjual to
sc_cor¢::SC ZERO TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.12.15 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_in".

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -73 -

5.1.12.16 initialize
void initialize( const sc_dt::sc_logics value, unsigned long sample id = 0 );

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()—1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the mefmber function
set_delgy, which shall be called in the member functions set_attributes or change_attributes of the TBDF.module.

5.1.12]|17 read_delayed_value

const sic_dt::sc_logics read delayed value( unsigned long sample id = 0 ) consgt;

The mgmber function read_delayed_value shall return a reference to the~alue of a delayed samplg that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The Jamples
shall b¢ indexed from zero to P.get_delay()—1, where P denotes the’port. A sample_id of zero shall frefer to
the firs delayed sample in time. It shall be an error if sample_id is gréater than or equal to the port delay.

The mg¢gmber function shall only be called in the member, function reinitialize of the current TDF nodule.
Otherwfise, it shall be an error. Consecutive reads with the.same sample_id during the same module activation

shall refurn the same delayed value.

5.1.12|18 is_timestep_changed
bool is] timestep changed( unsigned long sample id = 0 ) const;

The mgmber function is_timestep_changed shall return true if the timestep of the sample with index saiple id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respedt to the
preceding sample. Otherwise,it'shall return false. It shall be an error if the member function is called joutside
the confext of the member-functions initialize, reinitialize, processing, ac_processing, or change attributes
of the qurrent TDF modulg.

5.1.12]19is_rate) changed

bool isl rate changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 74 - IEEE Std 1666.1™-2016

5.1.12.20 is_delay_changed

bool is_delay_ changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
functionis_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.12|21 read

const sc_dt::sc_logic& read( unsigned long sample id = 0 );
operatdr const sc_dt: :sc_logic& ()

const sgic_dt::sc_logic& operator[] ( unsigned long sample id );

The mgmber functions read, operator const sc_dt::sc_logic& and operator]] shall return a reference to the
value df a particular sample that is available at the port. The argumentsample id denotes the index of the
sample|being read. The samples shall be indexed from zero to P.get, rate()—1, where P denotes the [port. A
sample| id of zero shall refer to the first input sample. It shall be af error if sample_id is greater than ¢r equal
to the port rate.

The m¢mber functions read, operator const sc_dt::sc_logic&, and operator[] shall only be called in the
contexf of the member functions processing and ac_processing of the current module; otherwise, it $hall be
an errof. Consecutive reads with the same sample_id\during the same module activation shall return the same
value.

The vdqlue of a sample shall be read by -the member function read of the interface proper af class
sc_cor¢::sc_signal _in_if<sc_dt::sc_logic>. The member function read of the interface proper af class

sc_cor¢::sc_signal_in_if<sc_dt::s¢”legic> shall be called in the evaluation phase at the first delta gycle of
the ass@ciated time of the sample: (s€e 5.3).

5.1.12|22 default_event

const sc_events default_event() const;

The m¢mber-function default_event shall return a reference to the default event, which is returned by the
membejr function default_event of the channel, to which the port is bound.

5.1.12.23 value_changed_event

const sc_events& value_changed event () const;

The member function value_changed_event shall return a reference to the value-changed event, which is
returned by the member function value_changed_event of the channel, to which the port is bound.

5.1.12.24 posedge_event

const sc_event& posedge_event() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 75—

The member function posedge_event shall return a reference to the event, which is returned by the member
function posedge_event of the channel, to which the port is bound.

5.1.12.25 negedge_event

const sc_event& negedge_event () const;

The member function negedge_event shall return a reference to the event, which is returned by the member
function negedge_event of the channel, to which the port is bound.

5.1.12.26 event

bool evlent () const;

The m¢mber function event shall return the value, which is returned by the member function event of the
channel, to which the port is bound, at the current module time.

5.1.12)27 posedge

bool posedge () const;

The mgmber function posedge shall return the value, which is retutied by the member function posgdge of
the chahnel, to which the port is bound, at the current module tirfie:

5.1.12|28 negedge

bool nejgedge () const;

The mgmber function negedge shall return thé-value, which is returned by the member function neggdge of
the chahnel, to which the port is bound, at the’current module time.

5.1.12]29 bind, operator()
virtual] void bind( sc_core::sc\signal_in if<sc_dt::sc_logic>s& );
void operator() ( sc_core:(:sc¢_signal_in_if<sc_dt::sc_logic>& );

virtuall void bind( sc {coreé::sc_port<sc_ core::sc_signal_in_if<sc_dt::sc_logic> >& );
void operator() ( sc\ecore: :sc_port<sc_core: :sc_signal_in_if<sc_dt: :sc_logic> >& ) ;

virtuall void bind()sc_core::sc_port<sc_core::sc_signal_ inout if<sc_dt::sc_logic> >& );
void operator({)-i( sc_core::sc_port<sc_core::sc_signal_inout_if<sc_dt::sc_logic> >& );

The mpmbér functions bind and operator() shall each call member function bind of the bas¢ class,
passing through their parameters as arguments to the function bind, in order to bind the object of class
sca_tdf::sca_de::sca_in<sc_dt::sc_logic> to the channel or port instance passed as an argument.

5.1.13 sca_tdf::sca_de::sca_out, sca_tdf::sc_out
5.1.13.1 Description
The class sca_tdf::sca_de::sca_out shall define a specialized port class for the TDF MoC. It provides functions

for defining or getting attribute values (e.g., sampling rate or timestep), for initialization, and for writing output
values. The port shall perform the synchronization between the TDF MoC and the SystemC kernel (see 5.3.2.4).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-76 - IEEE Std 1666.1™-2016

The class sca_tdf::sc_out shall be defined as an alias for class sca_tdf::sca_de::sca_out.

5.1.13.2 Class definition

namespace sca_tdf {
namespace sca_de {

template<class T>
class sca_out : public sca_core::sca_port< sc_core::sc_signal_inout if<T> >
{
public:
sca_out () ;
explicit sca out( const char* );

oid set_delay( unsigned long );

oid set_rate( unsigned long );

oid set_timestep( const sca_core::sca_times );

oid set_timestep( double, sc_core::sc_time_unit );
bid set_max timestep( const sca_core::sca_timed );
oid set _max timestep( double, sc_core::sc_time_unit );

S s g o g

hsigned long get_delay () const;

unsigned long get_rate() const;

slca_core::sca_time get time( unsigned long sample id = 0 ) const;
slca_core::sca_time get timestep( unsigned long sample id = 0 ) conSg;
sica_core::sca_time get max timestep() const;

sica_core::sca_time get last timestep( unsigned long sample id =Q ) const;

vliirtual const char* kind() const;
void initialize( const T& value, unsigned long sample M = 0 );

oid initialize_de_signal( const T& );
Jonst T& read delayed value( unsigned long sample 44 = 0 ) const;

<

ool is_timestep changed( unsigned long samplegi@”= 0 ) const;

ool is_rate_changed() const;

Hool is_delay changed() const;

vloid write( const T& value, unsigned long* sample id = 0 );

void write( sca_core: :scaﬁassignifromiproxyksca_tdf: :sca_de::sca_out<T> >& );
sica_tdf::sca_de::sca_out<T>& operater= ( const T& );
sica_tdf::sca_de::sca_out<T>& operator= ( const sca_tdf::sca_in<T>& );
slca_tdf::sca_de::sca_out<T>& operator= ( sca_tdf::sca de::sca_in<T>& );
sica_tdf::sca_de::sca_out<T>§ operator= ( sca_core: :scaﬁassignﬁfromﬁproxyk

sca_tdf::sca_de::sca_out<T> >& );
sica_core: :scaﬁassignitoﬁproxy*<sca_tdf: :sca_de::sca_out<T>, T>& operator[] (
unsigned long sampleNd ) ;

prijvate:
/ Disabled
sica_out( congt 'sca_tdf::sca_de::sca_out<T>& );
sica_tdf::sea de::sca_out<T>& operator= ( const sca_tdf::sca_de::sca_out<T>& );

} // |lhameSpdce sca de

templpte<class T>
class sc_out: public sca_tdf::sca de::sca_out<T>

{

public:
sc_out() : sca_tdf::sca_de::sca_out<T>() {}
explicit sc_out( const char* name ) : sca_tdf::sca_de::sca_out<T>( name ) {}

}i

} // namespace sca_ tdf

5.1.13.4 Constraint on usage

A port of class sca_tdf::sca_de::sca_out and sca_tdf::sc_out shall only be a member of a module derived
from class sca_tdf::sca_module; otherwise, it shall be an error.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -77 -

5.1.13.

3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a)

The following stream operator shall be defined and should copy the state of the object given as the

second argument to the stream given as the first argument. The way in which the state inform

ation is

formatted is not defined by this standard. The implementation shall use this operator for writing trace

values in time-domain simulation (see 9.1).

std::ostream& operator<< ( std::ostream&, const T& );

b)

¢)

5.1.13

sca_ouf

explici

The co1
exists)
instanc

sc_out (

explici

The co

through to the constructor Belpnging to the base class sca_tdf::sca_de::sca_out to set the string nam

instanc

The de
a uniq
sca_co

T the defauttassTgmeTt SeTamics are adequate (T tHe STIse ZiverT I tis subciause); the o
assignment operator shall be defined for the type T. In either case (default assignmentyor

operator), the semantics of assignment should be sufficient to assign the state of an objeet of]
such that the value of the left operand is indistinguishable from the value of the right‘opera
implementation shall use this assignment operator within the implementation forywriting to or
from ports of type T.

const T& operator= ( const T& );

If any constructor for type T exists, a default constructor for type T shall)be defined.

5 Constructors

()

[ sca_out( const char* );

istructor for class sca_tdf::sca_de::sca_out shall\pass the character string argument (if such ar
hrough to the constructor belonging to the base class sca_core::sca_port to set the string nam|
b in the module hierarchy.

) : sca_tdf::sca_de::sca out<T>() &

[t sc_out( const char* name ) N\’~sca_tdf::sca_de::sca_out<T>( name ) {}

hstructor for class sca_tdf:isc_out shall pass the character string argument (if such argument
e in the module hierarchy.
fault constiuctor shall call function sc_core::sc_gen_unique_name(“sca_tdf sc_out”) to g

he string name that it shall then pass through to the constructor belonging to the bag
re::sca, port.

lowing
explicit
type T
nd. The
reading

oument
e of the

exists)
e of the

enerate
e class

5.1.13'6 act_dday

void se

t_delay( unsigned long );

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change attributes of the

current

TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 78— IEEE Std 1666.1™-2016

5.1.13.7 set_rate

void set_rate( unsigned long );

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument
rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.13.8 set_timestep

void st timestep( const sca_core::sca_times );

void sgt timestep( double, sc_core::sc_time unit );

The mgmber function set_timestep shall define the timestep between two consecutive samples. If the nember
functioh is not called, the current timestep of the port is computed as defined.in\the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.13]9 set_max_timestep

void seit max_ timestep( const sca_core::sca_times );

void segt max timestep( double, sc_core::sc_time_unit );

The mgmber function set_max_timestep shall define the maximum timestep between two congecutive
samplep. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returnefl by function sca_core::sca_max_time.\[t'shall be an error if the member function is called outpide the
contexq of the member functions set_attributes or change_attributes of the current TDF module.

5.1.13]10 get_delay

unsigned long get_delay () consg;

The mgmber function get. delay shall return the delay set at the port. It shall be an error if the member function
is callefl outside the eontext of the member functions initialize, reinitialize, processing, ac_processing, or
changd attributes\ofthe current TDF module.

5.1.13|11 get rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.13.12 get_time

sca_core::sca_time get time( unsigned long sample id = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -79 -

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.8) shall hold:

. ) . M get_timestep() sample_id
P.get_time(sample_id)= M get_time() + Pget_rate) (5.8)

where P is an instance of a port of class sca_tdf::sca_de::sca_out and M is the parent module derived from
class sca_tdf::sca_module (see 5.3).

NOTE—-The relation is valid within the time resolution bound, which is returned by the™ function
sc_coref:sc_get time_resolution (see 5.3.1.2).

5.1.13|13 get_timestep

sca_core::sca_time get timestep( unsigned long sample id = 0 ) const;

The mgmber function get_timestep shall return the timestep between the preceding and current sample with
index spmple id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function 49 called outside the context| of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the |current
TDF mjodule.

5.1.13|14 get_max_timestep

sca_core::sca_time get max_ timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive Jamples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TQQF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
contex{ of the member functions initialize, reinitialize, processing, ac_processing, or change_attrihutes of
the curfent TDF module.

5.1.13]15 get_last_timestep
sca_core: :sca_time _get-last_timestep( unsigned long sample id = 0 ) const;

The mpmber.“function get_last_timestep shall return the timestep between the two samples preceding
the sampple,‘with index sample id. If the timestep between these two preceding samples is efjual to
sc_cor¢::SC ZERO TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.13.16 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_out”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-80- IEEE Std 1666.1™-2016

5.1.13.17 initialize

void initialize( const T& value, unsigned long sample id = 0 );

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()—1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the mefmber function
set_delgy, which shall be called in the member functions set_attributes or change_attributes of the TBDF.module.

5.1.13|18 initialize_de_signal

void initialize_de_signal( const T& );

The mgmber function initialize_de_signal shall set the initial value of the.§ignal, to which the port is|bound,
by calling member function write of that signal using the value passed.as an argument to member function
initialize_de_signal. The port need not have been bound at the point during elaboration when member function
initialize_de_signal is called. In this case, the implementation shdll'defer the call to write until after the port
has begn bound and the identity of the signal is known. It shall b€ an error to call this member functipn after
the elalporation phase has finished.

5.1.13]19 read_delayed_value

const T& read delayed value( unsigned long sampdé id = 0 ) const;

The mg¢mber function read_delayed_value“shall return a reference to the value of a delayed samplg that is
availabje at the port. The argument sample id denotes the index of the delayed sample being read. The Jamples
shall b¢ indexed from zero to P.get_delay()—1, where P denotes the port. A sample_id of zero shall frefer to
the firsf delayed sample in time, It shall be an error if sample_id is greater than or equal to the port delay.

The mgmber function shallenly be called in the member function reinitialize of the current TDF 1nodule.
Otherwfise, it shall be an effor. Consecutive reads with the same sample_id during the same module activation

shall refurn the sam@delayed value.

5.1.13|20 is-timestep_changed

bool is=timgs_f_ep=ghang_ed( unsigned long sample 7d = 0 ) const:

The member functionis_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.13.21 is_rate_changed

bool is_rate_changed() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -81-

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change attributes of the current TDF module.

5.1.13.22 is_delay_changed

bool is_delay_ changed() const;

In the| context of the callbacks processing, ac_processing, and reinitialize, the member, function
is_delay changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the pnember
functiopis_delay_changed shall return true if the delay of the TDF port has changed between the last acfivation
and before last activation of the callback processing of the current TDF module. Qthierwise, it shal| return
false. Ifshall be an error if the member function is called outside the context of the member functions injtialize,
reinitiglize, processing, ac_processing, or change_attributes of the current FDF module.

5.1.13|23 write

void wrfite( const T& value, unsigned long sample id = 0 );
sca_tdf::sca_de::sca_out<T>& operator= ( const T& );
sca_core: :scaﬁassignitoﬁproxyksca_tdf: :sca_de::sca_out<T®, T>& operator[] (

unsigned long sample id );

The m¢mber functions write, operator=, and operator|[] shall write one sample to the port. The argument
sample| id denotes the index of the sample-being written. The samples shall be indexed from pero to
P.get_rate()—1, where P denotes the port. Itshall be an error if sample_id is greater than or equal to the pprt rate.

sca_tdf]: :sca_de::sca_out<T>& operatox= ( const sca_tdf::sca_ in<T>& );

sca_tdf]: :sca_de::sca_out<T>s& gperator= ( sca_tdf::sca de::sca_in<T>& );

The operator= shall (tead the first value from the input port of class sca_tdf::scal in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void write( sca, core: :sca_assign_from_proxyksca_tdf: :sca_de::sca_out<T> >& );

sca_tdf]: :sca _de::sca_out<T>s& operator= (
sca_doxed :scaﬁassignﬁfromﬁproxy?sca_tdf: :sca_de::sca_out<T> >& );

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from _proxyf to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member
function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

The value of a sample shall be written by the member function write of the interface proper of class

sc_core::sc_signal_inout_if. The member function write shall be called in the evaluation phase at the first
delta cycle of the associated time of the sample. (see 5.3).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-82- IEEE Std 1666.1™-2016

5.1.14 sca_tdf::sca_trace_variable
5.1.14.1 Description

The class sca_tdf::sca_trace_variable shall implement a variable, which can be traced in a trace file of class
sca_util::sca_trace_file.

5.1.14.2 Class definition

namespace sca_tdf {

template<class T>
class| sca_trace_variable : public sc_core::sc_object,
public sca_util::sca_traceable_objectT

{
publfic:

scal trace_variable();

expllicit sca_trace variable( const char* );

virtual const char* kind() const;
voild write( const T& );

const T& read();
opgrator const T& ();

scal tdf::sca_trace variable<T>& operator= ( const T& value );
scal tdf::sca_trace variable<T>& operator= ( const sca_tdf::sca_ind{>& port );
scal tdf::sca_trace variable<T>& operator= ( sca_tdf::sca_de::sca\in<T>& port );

}i

} // ndmespace sca tdf

5.1.14|3 Constraint on usage

An appllication shall instantiate an object of class sea_tdf::sca_trace_variable only in the context off a class
derived from sca_tdf::sca_module. An applicatignshall write to an object of this class only within the nember
functioh processing of the parent module derived from class sca_tdf::sca_module.

5.1.14]4 Constructors

sca_trace_variable();

explicift sca_trace_variableé (\eonst char* );

The constructor for <¢lass sca_tdf::sca_trace_variable shall pass the character string argument (jif such
argumdnt exists) through to the constructor belonging to the base class sc_core::sc_object to set thp string
name of the instanee in the module hierarchy.

ault constructor shall call function se¢_core::sc_gen_unique_name(“sca_trace_variable”) to generate
T I i e class

sc_core::sc_object.
5.1.14.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_trace variable”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -83 -

5.1.14.6 write

void write( const T& );

sca_tdf::sca_trace_ variable<T>& operator= ( const T& );

sca_tdf::sca_trace variable<T>& operator= ( const sca_tdf::sca_in<T>& );

sca_tdf::sca_trace variable<T>& operator= ( sca_tdf::sca_de::sca_in<T>& );

The member functions write and operator= shall write one sample to the trace variable. The member functions
shall only be called in the context of the member function processing of the current module; otherwise, it
shall be_an error

5.1.14|7 read

const T|& read();

operator const T& ()

The md
functio
current|

5.2 Hierarchical composition and port binding

The hie
the con

different models of computation. Port binding rules shall follow IEEE Std 1666-2011 as well as the fo

specifig

a)

b)

¢)

d)

mber functions read and operator const T& shall return a reference torthe trace variable. The 1
hs shall only be called in the context of the member functions progessing and ac_processing
module; otherwise, it shall be an error.

structor or its equivalent macro definitions. A higrarchical module can include modules and

rules as defined in this subclause. Otherwise, it shall be an error.

A port of class sca_tdf::sca_in shall onily be bound to a primitive channel of class sca_tdf::sca)
or to a port of class sca_tdf::sca_incor'sca_tdf::sca_out of the parent module.

A port of class sca_tdf::sca_outshall only be bound to a primitive channel of class sca_tdf::sca|
or to a port of class sca_tdfi:sca_out of the parent module.

A port of class sca_tdf:tsca_in or sca_tdf::sca_out shall be bound to exactly one primitive chd
class sca_tdf::sca_signal throughout the whole hierarchy.

A primitive channel of class sca_tdf::sca_signal shall have exactly one primitive port

e)

to it throughout the whole hierarchy.

nember
> of the

rarchical composition of TDF modules shall use modules derived from class s¢_core::sc_module and

ports of
lowing

| signal

| signal

nnel of

f class

sca_tdf::sca_‘out bound to it and may have one or more primitive ports of class sca_tdf::sca_in bound

A porttoficlass sca_tdf::sca_de::sca_in shall only be bound to a channel derived from an ifterface

propecof class sc_core::sc_signal_in_if or to a port of class sc_core::sc_in or sc_core::sc_ou

t of the

parent module.

f) A port of class sca_tdf::sca_de::sca_out shall only be bound to a channel derived from an interface
proper of class sc¢_core::sc_signal_inout_if or to a port of class sc_core::sc_out of the parent module.

5.3 El

aboration and simulation

An implementation of the TDF MoC in a SystemC AMS class library shall include a public shell consisting
of the predefined classes, functions, macros, and so forth that can be used directly by an application. An
implementation also includes a TDF solver that implements the functionality of the TDF class library. The
underlying semantics of the TDF solver are defined in this subclause.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-84 - IEEE Std 1666.1™-2016

The execution of a SystemC AMS application that includes TDF modules consists of elaboration followed
by simulation. Elaboration results in the consistent composition of the TDF modules through the computation
of TDF attributes. Simulation involves the activation of the member functions initialize, processing,
change_attributes, and reinitialize of the TDF modules. In addition to providing support for elaboration and
simulation, the TDF solver may also provide implementation-specific functionality beyond the scope of this
standard. As an example of such functionality, the TDF solver may compute a static schedule for time-domain
processing and may report information about the TDF module composition.

5.3.1 Elaboration

The primary purpose of TDF elaboration is to create internal data structures for the TDF solver to support the
semantfesof- TEOFsmmutationr—The-TDFctaboratromasdescribedrthrsthauseamdmrthe-fottowmmgsubclauses
shall ejecute in one sc_core::sc_module::end_of elaboration callback. The actions stated in the following
subclayses shall occur, in the given order, during TDF elaboration and only during TDF eldborati¢n. The
descripfion of such actions uses the concept of a TDF cluster (see 3.1.4).

NOTE—+It is not defined in which order the TDF elaboration and _{an ~ applicationfdefined
sca_tdf{:sca_module::end_of_elaboration callback are executed.

5.3.1.1 Attribute setting

The TIDF elaboration phase shall execute, in no particular order, all the-tmember functions set_attribjutes of
the moglules derived from class sca_tdf::sca_module.

5.3.1.3 Timestep calculation and propagation

The cqmposition of TDF modules involves the computation and the propagation of consistent| values
for the|timesteps at each port of classes sca_tdf::sea in, sca_tdf::sca_out, sca_tdf::sca_de::sca|in and
sca_tdf::sca_de::sca_out, and for each TDF module processing function. The port and module tignesteps
are saifl to be consistent if they differ by less than the time resolution as returned by the flnction
sc_cor¢::sc_get time resolution. It shall be.an error if consistency is not met.

The pr¢pagated timestep of a module (73;) derived from class sca_tdf::sca_module shall be consistgnt with
the rate{(R) and the propagated timeStep of any port (7)) derived from class sca_tdf::sca_in, sca_tdf::sca_out,
sca_tdf::sca_de::sca_in or sca_tdf::sca_de::sca_out within that module, according to Equation (5.9):

Twl=TpR (5.9)

The maximum timesteps, set by member function set_max_timestep, shall be propagated to all TDF modules
and TIPF ports iimthe cluster according to Equation (5.9). The maximum timestep shall be resolved by
taking fhe smallest propagated maximum timestep of the TDF modules in the cluster. In case non¢ of the
TDF njodules’in the cluster specifies the maximum timestep smaller than the time returned by flnction
sca_core:sca_max_time, the largest propagated maximum timestep in the cluster shall be equal to the time
returned by function sca_core::sca_max_time. If in a TDF cluster no timestep has been assigned using
member function set_timestep of a TDF module or TDF port, the propagated maximum timestep shall be
used as the propagated timestep. It shall be an error if the propagated maximum timestep is smaller than the
propagated timestep in the cluster.

In case the TDF attributes are changed and the Equation (5.9) cannot be satisfied in consequence to this change,
an implementation shall at least satisfy the Equation (5.9) for the TDF modules in the cluster, which contain
the TDF ports with the smallest timestep.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 85—

The timestep of a module, returned by the member function get timestep, shall be equal to the time between
the last and current activation of the callback processing, except for the first module activation, where it shall
return the propagated value.

The timestep shall be only updated immediately before the execution of the callbacks initialize,
processing, and reinitialize. If the difference between two timesteps is smaller than or equal to the time
resolution, as returned by the function sc_core::sc_get time resolution, the timesteps are considered to
be indistinguishable. In case a timestep change is imposed, as a result of the use of the member functions
set_timestep or set_max_timestep, the time at which the next cluster execution period starts shall be equal to
the current module time plus the smallest propagated timestep in the cluster.

The tinrestep—vatues—for ports—boumdto-thesame—chammetof classsca—tdfrsca—sigmatshatt-be—consistent.

The asgigned and propagated timestep values shall be consistent throughout the TDF cluster; othefwise it
shall b¢ an error. It shall be an error if the propagated timestep is equal to the time returngd by flunction
sca_cofe::sca_max_time.

After quccessful TDF elaboration, all assigned timestep values shall be overridden by the propagated
timestep values, rounded to the next smallest multiple of the time resolution, as\returned by the flnction
sc_core::sc_get time_resolution.

Each |sample read from or written to a port of class sca tdf::sca in, sca_tdf::sta out,
sca_tdf::sca_de::sca_in or sca_tdf::sca_de::sca_out shall be associated with an absolute time pf type
sca_core::sca_time. The first sample shall be associated with a time equal to the current module activation
time.

NOTE—-An application needs to assign at least one timestep, using‘member functions set_timestep or set_max_t{mestep,
to at ldast one TDF module or one port of class sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sc]a_in or
sca_tdf{:sca_de::sca_out in a TDF cluster. If no timestep hias*been assigned, the propagated timestep becomes [equal to
the timejreturned by function sca_core::sca_max_time, which shall result in an error (see 4.2.6).

5.3.1.3 Computability check

It shall{be an error if TDF clusters are-not computable. For each TDF cluster, let R be a vector of positive
integer|values 7y, #ar,, ... , M, Which'size N is the number of modules in the cluster. A TDF clustet is said
to be c¢mputable if all three following conditions are met:

a) |For every pair of ports?; and P; belonging, respectively, to modules M; and M; of the same clujter and
which are bound to the same channel of class sca_tdf::sca_signal, Equation (5.10) shall hold:

rym; Prget rate() = ry ;P j.get_rate() (5.10)

b) |For €ach cluster, there exists an order of activation of the TDF modules that fulfills the acfivation
conditions as defined in 5.3.2.2, such that each TDF module M; shall be activated exactly 3y, tfmes.

c¢) For each cluster, there exists an activation order of modules where the time stamps of samples read
from ports of class sca_tdf::sca_de::sca_in at a particular module activation are smaller than or equal
to the time stamps of samples written to ports of class sca_tdf::sca_de::sca_out at later scheduled
module activations.

5.3.2 Simulation
This subclause defines the process of time-domain simulation of a TDF cluster. The simulation of TDF modules

involves the execution of a TDF initialization phase followed by activations of the time-domain processing
member functions.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 86— IEEE Std 1666.1™-2016

5.3.2.1 Initialization

The TDF initialization phase shall include the execution, in no particular order, of all the member functions
initialize of the TDF modules. The TDF initialization phase shall start after the callbacks to the member
functions start_of simulation, immediately before the first call to the first scheduled member function
processing. The current module time, returned by member function get time in the context of the member
function initialize, shall be equal to the time of the first module activation.

The initial sample values at ports with an associated delay greater than zero are defined by the execution of
the port member function initialize, which shall be called in the TDF module callback initialize. Otherwise,
the initial sample values are defined by the default constructor of the corresponding data type.

Samplds written by the member function initialize of a port of class sca_tdf::sca_out shall be availablle to all
connecfed ports of class sca_tdf::sca_in before the first sample is written to the output port while’exlecuting
the menber function processing (see 5.1.7.15, 5.1.8.18, and 5.1.9.18).

5.3.2.4 Processing

The m¢mber function processing of class sca_tdf::sca_module shall be called.if the required numnber of
samplep is available at all the module’s input ports. The number of required samples is defined by the frates of
the porfs of class sca_tdf::sca_in. After execution of the member function\processing, the required Jamples
shall bg considered as consumed and thus not available anymore.

The number of produced samples is defined by the rates of the ports'of class sca_tdf::sca_out. After execution
of the fnember function processing, the produced samples shall*be available to all connected ports pf class
sca_tdf::sca_in.
The samples written by the member function initialize of a port of class sca_tdf::sca_in dr class
sca_tdf::sca_de::sca_in shall be available first atthis port in the order of their sample indexes. (see 3.1.5.16
and 5.1[10.17).

NOTE 1—Samples, which are not written, remain undefined.
NOTE 3—Samples available at a port ©f class sca_tdf::sca_in become ordered as follows: 1. samples as defined by the
port delqy, 2. samples as defined by the port delay of the connected port of class sca_tdf::sca_out, 3. samples a§ written

by the npember function processing of the module that instantiates the connected port of class sca_tdf::sca_out.

NOTE 3—The member function sca_tdf::sca_module::end_of_simulation may be used to perform post prpcessing
actions.

5.3.2.3 Attribute/changes and reinitialization

The TOE attributes can be changed during simulation in the context of the member function change_attributes

of the modutes—dertvedfrom—ctass m.a_tdf..m.a_luudu}c. Fhe-member-functions \,haugc_attl ibtites-of each
TDF module, which belong to the same cluster, shall be executed, in no particular order, after each cluster
execution period. The cluster execution period shall be the shortest possible periodic cycle of module
activations to fulfill the execution semantics (see 5.3.2.2). The current module time, returned by member
function get_time in the context of the member function change_attributes, shall be equal to the highest
annotated time to any of the samples during the cluster execution period.

After execution of all member functions change_attributes, an implementation shall check the consistency of
timesteps and rates and perform timestep calculation and propagation (see 5.3.1.2 and 5.3.1.3). This is followed
by the execution of the member functions reinitialize. The current module time, returned by member function
get_time in the context of member function reinitialize, shall be equal to the time of the next module activation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 87—

If the delay of a port is changed using the member function set delay in the member function
change_attributes, the following rules shall be applied:

If the delay of a port is decreased, the number of delayed samples shall be reduced to the new port

delay, starting with removing the oldest samples.

Ifthe delay of a port is increased, the number of delayed samples shall be increased, where the new delay
samples shall be added before the available samples. By default, the initial delay values are defined by
the default constructor of the corresponding data type. The member function initialize may be called

in the callback reinitialize to initialize these new delay values.

5.3.2.4 Synchronization with the SystemC kernel

Synchr|
sca_td

While
sca_td

While
sca_td

5.4 Er

A mod
functio
equatio
shall b
or sca |
TDF ¢
sca_td

The dis
a)

b)

©)

If a tim
distanc
modulg

::sca_de::sca_in and class sca_tdf::sca_de::sca_out.

executing the member function processing of a module and reading from3a port o
::sca_de::sca_in, the requested samples shall be available (see 5.1.10.22).

executing the member function processing of a module and wifiting to a port o
::sca_de::sca_out, the sample can be written at the corresponding timée (see 5.1.13.23).

nbedded linear dynamic equations

ule derived from class sca_tdf::sca_module can embed linear dynamic equations in its f
h processing given in the form of linear transfer fumetions in the Laplace domain or staf
ns. The equations shall be solved by considering samples as continuous-time signals. The 5
e a continuous-time signal represented by a reference to an object of class sca_tdf::sca ct|
tdf::sca_ct vector _proxyf. Only solutions_at ‘discrete time points shall be made available
ntext. The required sampling shall be realized by the objects of class sca_tdf::sca ct pr
1isca_ct_vector _proxyf depending on the ‘output argument.

crete time points at which the input-values are sampled shall be derived from:

The timestep returned by the member function get timestep of the parent module ¢
sca_tdf::sca_module.

sca_tdf::sca_de::sca”in, which is passed as an argument to the linear dynamic equations.

The timestep passed as an argument to the linear dynamic equations.

estep value’is defined for the equations, the timestep value shall be smaller than or equal to t
e between the last computed solution of the equations and the time of the current activation

bnization with the SystemC kernel shall be done exclusively by wusing ports hof

class

f class

f class

nember
c-space
olution
_proxy*

to the
oxyf or

f class

The timestep returned\by the member function get_timestep of an instance of class sca_tdf::sda_in or

he time
of the

derived from class sca_tdf::sca_module, in which the equations are embedded.

The coefficients of the equation system to be solved can be changed between computations of solutions. The
computation of a solution shall be executed at least once in the member function processing of the module
derived from class sca_tdf::sca_module. The time of the last solution shall not be greater than the time of the
current activation of the member function processing of the module derived from class sca_tdf::sca_module,
in which the equations are embedded. When the time of the last computed solution is smaller than the current
module time, the timestep shall be extended by the difference between these two times.

If the time of the first discrete time point of the current calculation is equal or smaller than the time of the last
discrete time point of the previous calculation, the state of the equation system shall be restored to the state at

the last

time point of the calculation before the last calculation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 88— IEEE Std 1666.1™-2016

The embedded linear dynamic equation classes shall be instantiated as a member of a module derived from class
sca_tdf::sca_module. The classes shall be instantiated before the callback start of simulation. After the
computation of the first solution of the equations, the sizes of the coefficient vectors or matrices, representing
the number of equations, shall not be changed.

541 sca_tdf::sca_ct_|oroxy4r

5.4.1.1 Description

The class sca_tdf::sca_ct _proxyf shall be a helper class, which shall map the computed continuous-time
solution to sampled output values. An instance of this class shall exist only as reference returned by the member

functio

5.4.1.7

namespal

class
puly
pu
pub
{
publ}
doy
voi

voi
voi
voi

}i

} // ng

5.4.1.3
An app|

54.1.4

ild to_port( sca_tdf::sca_out base<double>& ) const;
ijd to_port( sca_tdf::sca_de::sca_out<double>& ) const;

Class definition

ce sca_tdf {

scaﬁctﬁproxyfz

lic sca_core::sca_assigq_from_proxyf<sca_uti1::sca_vector<double> >y
lic sca_core::sca_assign_froanroxyT<sca_tdf::sca_out_base<double> Sn
lic sca_core::scaﬁassignﬁfromﬁproxy7<sca_tdf::sca_de::sca_out<double> >

ic:

ole to_double () const;

A to_vector( sca_util::sca_vector<double>&, unsigned long,nsamples = 0 ) const;
st sca_util::sca_vector<double>& to_vector ( unsigned lofg,‘msamples = 0 ) const;

rator double() const;

ate:

[Disabled

_ct_proxyTO;

0 assign_to( sca_util::sca_vector<double>& );

d assign_to( sca_tdf::sca_out base<dguble>& );
d assign_to( sca_tdf::sca_de::sca out<double>& );

Imespace sca tdf
Constraint on gysage
lication shallet explicitly create an instance of class sca_tdf::sca ct _proxyf.

to_daeuble

double

[to "double () const;

operator double() const;

The member function to_double and operator double() shall sample the continuous-time solution at the end
of the current time interval and shall return the value.

5.4.1.5 to_vector

void to_vector ( sca_util::sca_vector<double>&, unsigned long nsamples = 0 ) const;

const s

ca_util::sca_vector<double>& to_vector( unsigned long nsamples = 0 ) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -89 -

The member function to_vector shall sample the continuous-time solution with constant timesteps, starting at
the beginning of the current time interval plus the time interval divided by the number of samples nsamples and
finishing with the end time of the current calculation with nsamples samples. If nsamples is zero, the number
of input samples of the current calculation shall be used. The member function shall resize the vector and copy
the result or return a reference to a vector of the appropriate size. At zero time (t=0), the values written to the
vector shall be equal to the initial calculated value at t=0.

5.4.1.6 to_port

void to_port( sca_tdf::sca_out_base<double>& port ) const;

void to_port( sca tdf::sca de::sca out<double>& port ) const;

The mgmber function to_port shall sample the continuous-time solution with the constant timestepidsgociated
with the¢ port port using the member function port.get_timestep(), starting at the absolute time associated with
the firs} sample of the port port using the member function port.get time(0) and finishing-at the endl of the
current|{time interval as returned by the member function port.get_time(port.get rate()~1) or as provided by
the defjned timestep. The result is written to the corresponding samples of the port, It)shall be an err¢r if the
time aspociated with the last output sample is larger than the time associated withythe input sample plus the
continfous-time delay.

5.4.1.1 assign_to

void asgisign_to( sca_util::sca_vector<double>s& );
void asgisign_to( sca_tdf::sca_out_base<double>& );

void asisign_to( sca_tdf::sca_de::sca_out<double>& );

The m¢mber function assign_to shall use the clas§'sca_core::sca_assign_from_proxy’, to map opérator=
of clas§ sca_util::sca_vector to the member function to_vector. Equally, the operator= of a port pf class
sca_tdf::sca_out or sca_tdf::sca_de::sca,out shall be mapped to the member function to_port.
5.4.2 sca_tdf::sca_ct_vector_proxyT

5.4.2.1 Description

The clgss sca_tdf::sca_af” vector _proxyf shall be a helper class, which shall map the computed continuous-
time soflution to sampléd output values. An instance of this class shall exist only as reference returned by the

membelr functions calculate or operator() of class sca_tdf::sca_ss (see 5.4.5.8).

5.4.2.4 ClasSdefinition

namesp sca tdf |

class sca_ct_vector_proxyT
public sca_core::scaﬁassignifromiproxyf<sca_util::sca_matrix<double> >,
public sca_core::sca_assigq_from_proxy7<sca_tdf::sca_out_base<sca_util::sca_vector<double> > >,
public sca_core::sca_assign_from_proxy7<sca_tdf::sca_de::sca_out<sca_util::sca_vector<double> > >

{

public:
const sca_util::sca_vector<double>& to_vector() const;
void to_matrix( sca_util::sca_matrix<double>&, unsigned long nsamples = 0 ) const;
const sca_util::sca_matrix<double>& to_matrix( unsigned long nsamples = 0 ) const;
void to_port( sca_tdf::sca_out_base<sca_util::sca_vector<double> >& ) const;
void to_port( sca_tdf::sca_de::sca_out<sca util::sca_vector<double> >& ) const;

operator const sca_util::sca_vector<double>& () const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-90 - IEEE Std 1666.1™-2016

private:
// Disabled
scaﬁctﬁvectorﬁproxyr (s

void assign_to( sca_util::sca_matrix<double>s& );
void assign_to( sca_tdf::sca_out base<sca_util::sca_vector<double> >& );

void assign_to( sca_tdf: :sca_de: :sca_out<sca_util: :sca_vector<double> >& );
bi

} // namespace sca_tdf

5.4.2.3 Constraint on usage

:
An appjffication shatt ot eXplicitly create an instance of ciass sca_tdiisca ¢ vector proxy .

5.4.2.4to_vector

const sica_util::sca_vector<double>& to_vector () const;

operatgr const sca_util::sca_vector<double>& () const;

The mgmber function to_vector shall sample the continuous-time solution at the ehd of the current time jnterval
and shdll return the values.

5.4.2.4 to_matrix

void to matrix( sca_util::sca_matrix<double>&, unsigned long, nsamples = 0 ) const;

const sica_util::sca_matrix<double>& to_matrix( unsigned leng nsamples = 0 ) const;

The mgmber function to_matrix shall sample the continuous-time solution with constant timesteps, stgrting at
the begjnning of the current time interval plus the time interval divided by the number of samples nsamples and
finishirjg with the end time of the current calculation with nsamples samples. If nsamples is zero, the humber
of input samples of the current calculation\shall be used. The member function shall resize the mafrix and
copy the result or return a reference toca;matrix of the appropriate size. The column size of the matrjix shall
be equgl to the number of samples’At zero time (t=0), the values written to the matrix shall be equql to the
initial dalculated value at t=0.

5.4.2.4 to_port

void tq port( sca_tdfsisca_out base< sca_util::sca_vector<double> >& port ) const;

void to port( sca_tdf::sca_de::sca_out< sca_util::sca_vector<double> >& port ) const;

The mgmbérfunction to_port shall sample the continuous-time solution with the constant timestep asgociated
with th&POTT porT USINg The member TUnction porT.get_tmestep(); Sarting arthe absotute ime associated with
the first sample of the port port using the member function porz.get_time(0) and finishing at the end of the
current time interval as returned by the member function porz.get_time(porz.get_rate()—1) or as provided by
the defined timestep. The result is written to the corresponding samples of the port. It shall be an error if the
time associated with the last output sample is larger than the time associated with the input sample plus the
continuous-time delay.

5.4.2.7 assign_to

void assign_to( sca_util: :sca_matrix<double>& ) 8

void assign_to( sca_tdf::sca_out base<sca_util::sca_vector<double> >& );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

IEEE Std 16

66.1™-2016 -91-

void assign_to( sca_tdf::sca_de::sca_out<sca_util::sca_vector<double> >& );

The member function assign_to shall use the class sca_core::sca_assign_from _proxyf, to map the operator=
of class sca_util::sca_matrix to the member function to_matrix. Equally, the operator= of a port of class
sca_tdf::sca_out or sca_tdf::sca_de::sca_out shall be mapped to the member function to_port.

5.4.3 sca_tdf::sca_Itf nd

5.4.3.1 Description

The class-sca_ sca_ltf ndsha . 3 : S
domain variable s in the numerator-denominator form shown in Equation (5.11):

H(

where
coeffic
respect

5.4.3.4 Class definition

namespalce sca_tdf {

class| sca_ltf nd : public sc_core::sc_object

{

publlic:
scal 1tf nd();
explicit sca_1ltf nd( const char* );

virftual const char* kind() const;

void set_max_delay( const sca_core« :sca_time& ) 8
voild set max_delay( double, sc_eore::sc_time unit );

doyple estimate_next value ()* const;

voild enable_iterations/)y

sca

sca

ZM*I ;
o um;s
N—ld .
en; s
=0 "

V=k- . e(=s-delay)

 is the constant gain of the transfer function, M and N are the number,of humerator and deno}
ents, respectively, and num; and den; are real-valued coefficients of the’numerator and denor
vely. The argument delay is the continuous-time delay applied toithe values available at the in|

| tdf: :sca_ct_proxy*& calculate( const sca_util::sca_vector<double>& num,

const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& state,
double input,
double k=1.0,

const sca_core::sca_time& tstep = sca_core::sca_max time ()

_tdf::scaictiproxy*& calculate( const sca_util::sca_vector<double>& num,

aplace-

(5.11)

minator
hinator,
put.

i il . + doubl =)

const sca_core::sca_times delay,
sca_util::sca_vector<double>& state,
double input,
double k=1.0,

const sca_core::sca_time& tstep = sca_core::sca_max time ()

sca_tdf::scaictiproxy*& calculate( const sca_util::sca_vector<double>& num,

const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& state,

const sca_util::sca_vector<double>& input,
double k=1.0,

const sca_core::sca_time& tstep = sca_core::sca_max_ time ()

sca_tdf::scaictiproxy*& calculate( const sca_util::sca_vector<double>& num,

const sca_util::sca_vector<double>& den,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

)7

)7


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

—-92 —
const sca_core::sca_times& delay,
sca_util::sca_vector<double>& state,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_time& tstep = sca_core::sca_max time ()
sca_tdf::scaictiproxy*& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& state,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxyj& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
sca util::sca vector<double>& state
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::scaﬁctﬁproxyj& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& state,
const sca_tdf::sca_de::sca_in<double>& inputy,
double k g0 ) ;
sca_tdf::scaictiproxyf& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
sca_util::sca_vector<double>¢ state,
const sca_tdf::sca_de::sca_ingdeuble>& input,
double k=1.0);
sca_tdf::scaﬁctﬁproxyf& calculate( const sca_util::sca_vectersdouble>& num,
const sca_util::sca_vegtor<double>& den,
double input,
double k=1.0,
const sca_core::sca_time& tstep = sca_core::sca_max time ()
sca_tdf::sca_ct_proxy*& calculate( const sca_util::sca_vector<double>& num,
const sca_wtil::sca_vector<double>& den,
const sda);core::sca_times delay,
double input,
double k=1.0,
const sca_core::sca_time& tstep = sca_core::sca_max_ time ()
sca_tdf::scaﬁctﬁproxyf& calculate (. tonst sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca_max_time ()
sca_tdf::scaﬁctﬁproxyr& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times& delay,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca_max_time ()
sca_tdf::scaﬁctﬁproxyr& calculate( const sca_util::sca_vector<double>& num,
const sca util::sca_vector<double>& den
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxy*& calculate( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxyr& calculate( const sca_util::sca_vector<double>& num,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

)7


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

- 903 -

const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxyj& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& state,
double input,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca_max_time ()
sca_tdf::scaictiproxyr& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
sca util::sca vector<double>& state
double input,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca_max, timg()
sca_tdf::scaictiproxyf& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& states
const sca_util::sca_vector<double>& inpgt,
double kR™0,
const sca_core::sca_times tstep = sca’core::sca_max_timg()
sca_tdf::scaictiproxyf& operator() ( const sca_util::sca_vector<doubde>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
sca_util::sca_vector<double>& state,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_time& tstep = sca_core::sca_max_time()
sca_tdf::scaﬁctﬁproxyr& operator() ( const sca_util:¢sca vector<double>& num,
const sca_util::sca_vector<double>& den,
sca_utils:sca_vector<double>& state,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxyf& operator() ( consf 'sca_util::sca_vector<double>& num,
censt sca_util::sca_vector<double>& den,
€0rist sca_core::sca_times delay,
sca_util::sca_vector<double>& state,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxyf& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
sca_util::sca_vector<double>& state,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& operator () ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
sca_util::sca_vector<double>& state,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& operator () ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
double input,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca _max_time ()
sca_tdf::scaictiproxyj& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
double input,
const sca_core::sca_times& delay,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca _max_time ()
sca_tdf::scaictiproxyr& operator() ( const sca_util::sca_vector<double>& num,

Published by IEC under licence from IEEE

.© 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

-94 - IEEE Std 1666.1™-2016
const sca_util::sca_vector<double>& den,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_time& tstep = sca_core::sca_max_time() ) 8
sca_tdf::scaictiproxyj& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times& delay,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_time& tstep = sca_core::sca_max_time() ) 8
sca_tdf::scaictiproxyj& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& operator() ( const sca_util::sca_vector<double>& num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_times delay,
const sca_tdf::sca_in<double>& input,
double k 1.0,)
sca_tdf::sca_ct_proxy*& operator() ( const sca_util::sca_vector<double>& numy
const sca_util::sca_vector<double>& den,
const sca_tdf::sca_de::sca_in<doublex®) input,
double k=1.0);
sca_tdf::scaﬁctﬁproxyr& operator() ( const sca_util::sca_vector<double*s num,
const sca_util::sca_vector<double>& den,
const sca_core::sca_timegs delay,
const sca_tdf::sca_de::.sea_in<double>& input,
double k=1.0);

} // ndmespace sca_ tdf

5.4.3.3 Constructors

sca_ltfl nd();

explicift sca_1ltf nd( const char* );

The conpstructor for class sca_tdf::sca, Itf_nd shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_object to set the string name of the instance
in the Module hierarchy.

The default constructonshall call function sc_core::sc_gen_unique _name(“sca_ltf nd”) to generate aunique
string rlame that it shall*then pass through to the constructor belonging to the base class sc_core::sc_gbject.

5.4.3.4 Constraint on usage

The vegtots’num and den shall have at least one element, respectively.

5.4.3.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_Itf nd”.

5.4.3.6 set_max_delay

void set max delay( const sca_core::sca_times );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -95 -

void set _max _delay( double, sc_core::sc_time unit );

The member function set_max_delay shall define the maximum allowable continuous-time delay of the input
values. If the member function is not called, the maximum allowable delay shall be set to the current timestep
used, at which the input values are available. It shall be an error if the member function is called outside the
context of the member function set_attributes of the current TDF module (see 5.1.1.5).

5.4.3.7 estimate_next_value

double estimate_next value() const;

The mgmber function estimate_next_value shall return an estimation of the value of type double one timestep
ahead. [This timestep shall be equal to the last computed non-zero timestep. The estimation shall.ise the same
filter cpefficients as provided for the last calculation of the equation system. The accuracy o6f the esfimated
next value is implementation-defined.

NOTE |—An implementation may give a warning in case the provided filter coefficients ¢ould lead to an inpccurate
estimatipn of the next value.

NOTE 2—If the number of numerator coefficients is equal or larger than the numibér’of denumerator coefficjents, an
implem¢ntation may give an inaccurate estimation of the next value.

5.4.3.4 enable_iterations

void enable iterations();

The m¢mber function enable_iterations shall enablezcro timestep recalculations by means of setfing the
timestep argument tstep of the member function caleulate and operator() to sc_core::SC_ZERO_TIME. It
shall bg¢ called during elaboration; otherwise it shall'be an error.

5.4.3.9 calculate, operator()

sca_tdf]: :scaﬁctﬁproxyr& calculate (7. N)%;

sca_tdf]: :scaﬁctﬁproxy*& operator() (...);

The mgmber function calculate and operator() shall return the continuous-time signal of the Laplace-domain
variabl¢ s in the numerator-denominator form, using a reference to the class sca_tdf::sca ct prox| " The
compufation of the(solution of the equation system shall be started at the time of the first module actiyation.

The argumentsunclude the gain of the transfer function £, the vectors of the numerator coefficients mum and

denominator,coefficients den, the continuous-time delay delay, the state vector state, the value of the jnput at
the curkent time ivzputj Clﬂd the Hmﬁcfnp Ictﬂp.

The first element of the vectors num and den shall be the coefficient of order zero of the respective polynomial.

The argument delay specifies the continuous-time delay, which shall be applied to the input values before
calculating the linear transfer function. The delay shall be smaller than or equal to the current timestep used, at
which the input values are available, or if the member function set max_delay has been called, smaller than
or equal to the delay set by the member function set_max_delay. If the argument delay is not specified, the
continuous-time delay shall be set to the value sc_core::SC_ZERO_TIME.

If the state vector state is not explicitly used as argument, the states shall be stored internally. In case where
states are stored internally and the member function get timestep returns sc_core::SC_ZERO_TIME for

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-96 - IEEE Std 1666.1™-2016

the first calculation of the equation system of the current module activation, the state vector is restored to the
values before the last module activation. If the size of the state vector is zero, its size shall be defined by the
member functions calculate or operator= and the vector elements shall be initialized to zero. Otherwise, the
size of the state vector shall be consistent with the numerator and denumerator sizes. The relation between the
numerator and denumerator sizes and the size of the state vector is implementation-defined.

If the timestep value fstep is not specified as argument, or if it is set to the value returned by function
sca_core::sca_max_time, the member functions calculate and operator() shall define a timestep value equal
to the time distance between the time reached by the last execution of the member function calculate and the
time of the current activation of the module derived from class sca_tdf::sca_module, in which the transfer
function is embedded. A specified timestep shall be smaller than or equal to the time distance between the time

reachedbythetastexecutiomrofthememberfurctiomrcatcutate—amd-thetmreof thecorrentactivation of the

modulq derived from class sca_tdf::sca_module, in which the transfer function is embedded.

If the fimestep tstep is set to the value sc_core::SC_ZERO_TIME and the internal time* of the efjuation
system|has progressed to the same point in time equal to the current module activation returned by member
functioh get_time, the time and the state of the equation system shall be restored to the/time and statg before
the las{ calculation, and shall use the new input values. It shall be an error if the-timestep fstep is equal
to sc_cpre::SC_ZERO _TIME and the member function enable_iterations hasinot been called before the
callback start_of simulation.

If a value of type double is used as input argument, the value shall becinterpreted as forming a contjnuous-
time sipnal from the end of the last calculation time interval to_ th€ end of the current time interval. If a
vector pf class sca_util::sca_vector<double> is used as inputsargument, the values shall be interpteted as
forming a continuous-time signal of equidistant distributed:samples from the end of the last calgulation
time ifterval to the end of the current time interval. ff>a port of class sca_tdf::sca_in<double> or
sca_tdf::sca_de::sca_in<double> is used as input argiment, the samples available at the port ghall be
interpr¢ted as forming a continuous-time signal using*the associated time points.

The oufput settling behavior resulting from a ¢liange of coefficients during simulation is implementation-
defined. If the state vector is stored internallys the state vector shall reset to zero when such a change ccurs.

In caselthe state vector elements are set to zero, the output value shall be zero as long as the input valuelis zero.
5.4.4 4ca_tdf::sca_ltf_zp
5.4.4.1 Description

The claks sca_tdf::scarItf zp shall implement a scaled continuous-time linear transfer function of the L{aplace-
domair] variable § in'the zero-pole form shown in Equation (5.12):

M-1
Hi: 0 (s — zeros;) | \
H( )_r’» ek=s-delar) (512)

HN—I ol
0 (s— po esl,)

where £ is the constant gain of the transfer function, M and N are the number of zeros and poles, respectively,
and zeros; and poles; are complex-valued zeros and poles, respectively. If M or N is zero, the corresponding
numerator or denominator term shall be a constant 1. The argument delay is the continuous-time delay applied
to the values available at the input.

5.4.4.2 Class definition

namespace sca_tdf {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

class sca_ltf_zp

{
public:

sca_1ltf zp();
explicit sca_ltf zp( const char* );

virtual const char* kind()

const;

- 97 —

public sc_core::sc_object

void set max delay( const sca_core::sca_times );
void set max delay( double, sc_core::sc_time unit );

double estimate_next_value () const;

void enable_iterations();

sca_ tdf

::sca ct proxyr&

calculate (

scal tdf

scal tdf

scal tdf

scal tdf

scal tdf

::scaﬁctﬁproxyr&

::scaﬁctﬁproxy*&

88 sca_ct_proxyf&

::scaﬁctﬁproxyr&

::scaﬁctﬁproxyr&

const sca_util:
const sca_util:
sca_util:

double
double

const sca core:

calculate (
const
const
const

double
double
const

calculate (
const
const

const
double
const

calculate (
const
const
const

const
doptble
const

calculate (
gonst
const
sca_util
sca_tdf:
double

const

calculate (
const
const
const

sca_tdf

sca_tdf

::scaﬁctﬁproxyr&

::scaﬁctﬁproxyr&

const sca_tdf:

double

calculate (
const sca_util
const sca_util
sca_util
sca_tdf:
double

const

calculate (

const sca_util
const sca_util
const sca_core

sca_util:
sca_util:
sca_core:
sca_util:

sca_core:

sca_util:
sca_util:
sca_util:
sca_util:

sca_core:

sca_util:
sca_utils
sca_core;
sca_ukil:
scajutil:

Sca_core:

sca_util:
sca_util:

sca_util:
sca_util:
sca_core:
sca_util::

:sca_vector<sca_util::sca_complex>&
:sca_vector<sca_util::sca_complex>& poles,
:sca_vector<double>& state,

input,

k=1.0,
sca_core::sca_max_time()

zeros,

:sca_times tstep =

:sca_vector<sca_util::sca_complex>& [zeros,
:sca_vector<sca_util::sca_complex>§-poles,
:sca_times delay,
:sca_vector<double>& state,

input,

k = 12,
:sca_times tstep = scacoxe::sca_max_time ()

:sca_vector<sca_util::sca_complex>& zeros,
:sca_vector<sca\util::sca_complex>& poles,
:sca_vector<double>s& state,
:sca_vectorg<dotble>& input,

k=1.0,
:sca_timess tstep = sca_core::sca_max_time ()

:sta, vector<sca_util::sca_complex>& zeros,
:sca_vector<sca_util::sca_complex>& poles,
Ysca_times delay,
:sca_vector<double>& state,
:sca_vector<double>& input,

k =1.0,
:sca_times tstep = sca_core::sca_max_time ()

:sca_vector<sca_util::sca_complex>& zeros,
:sca_vector<sca_util::sca_complex>& poles,
::sca_vector<double>& state,
:sca_in<double>& input,

k=1.0);

:sca_vector<sca_util:
:sca_vector<sca_util:
:sca_times delay,

:sca_complex>&
:sca_complex>&

zeros,
poles,

)i

)i

)7

)i

sca_vector<double>&
:sca_in<double>&

state,
input,

k=1.0);

::sca_vector<sca_util::sca_complex>&
::sca_vector<sca_util::sca_complex>&
::sca_vector<double>& state,
:sca_de::sca_in<double>s& input,
k=1.0

zeros,
poles,

)i

zeros,
poles,

::sca_vector<sca util::sca_complex>&
::sca_vector<sca_util::sca_complex>&
::sca_times delay,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.



https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

- 908 —
sca_util::sca_vector<double>& state,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxyr& calculate (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
double input,
double k = 1.0,
const sca_core::sca_times& tstep = sca_core::sca_max_time() );
sca_tdf::sca_ct proxy's calculate(
const sca_util::sca_vector<sca_util::sca_complex>s zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_core::sca_times& delay,
double input,
double k = 1.0,
const sca_core::sca_time& tstep = sca_core::sca_max_time() );
sca_tdf::sca_ct_proxy*& calculate (
const sca_util::sca_vector<sca_util::sca_complex>s& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_times& tstep = sca_core::sca_max\time() );
sca_tdf::sca_ct_proxy*& calculate (
const sca_util::sca_vector<sca_util::sca_complex>s zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_core::sca_times& delay,
const sca_util::sca_vector<double>& ipput,
double KNE 1.0,
const sca_core::sca_times tstep =,.Sca) core::sca_max_time() );
sca_tdf::scaﬁctﬁproxyf& calculate (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vectorssca util::sca_complex>& poles,
const sca_tdf::sca_in<dqukle>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& calculate (
const sca_util::sga, vector<sca_util::sca_complex>s& zeros,
const sca_utilssca_vector<sca_util::sca_complex>& poles,
const sca_corei<sca_times& delay,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& calculate (
cdnst® sca_util::sca_vector<sca_util::sca_complex>s& zeros,
COnst sca_util::sca_vector<sca_util::sca_complex>s poles,
gonst sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictﬁproxy*& calculate (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>s& poles,
const sca_core::sca_times delay,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxy*& operator() (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>s& poles,
sca_util::sca_vector<double>& state,
double input,
double k=1.0,
const sca_core::sca_times& tstep = sca_core::sca_max_time () );
sca_tdf::scaictiproxy*& operator() (

const
const
const

sca_util::sca_vector<sca util::sca_complex>& zeros,
sca_util::sca_vector<sca_util::sca_complex>& poles,
sca_core::sca_times delay,
sca_util::sca_vector<double>& state,

double input,

double k=1.0,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

const sca_core:

—99 —

:sca_times tstep = sca_core::sca_max_time ()

)i

sca_tdf::sca ct proxy's operator() (
const sca_util::sca_vector<sca_util::sca_complex>s& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
sca_util::sca_vector<double>& state,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_times& tstep sca_core::sca_max_time() );
sca_tdf::scaictiproxyr& operator() (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_core::sca_times& delay,
sca_util::sca_vector<double>& state,
const sca util::sca vector<double>& input
double k=1.0,
const sca_core::sca_times& tstep = sca_core::sca_max_time () );
sca_tdf::scaﬁctﬁproxy*& operator () (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
sca_util::sca_vector<double>& state,
const sca_tdf::sca_in<double>& input,
double k=1.0);
sca_tdf::scaﬁctﬁproxy*& operator () (
const sca_util::sca_vector<sca_util::sca_complex>s& zeros,
const sca_util::sca_vector<sca_util::sca_complex>s& poles,
const sca_core::sca_times delay,
sca_util::sca_vector<double>& spates
const sca_tdf::sca_in<double>& diHput,
double k)= 1.0 );
sca_tdf::sca_ct_proxy*& operator () (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vectorssca_util::sca_complex>s& poles,
sca_util::sca_vectorsdouble>& state,
const sca_tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::scaictiproxy*& operator() (
const sca_utilsusca vector<sca_util::sca_complex>& zeros,
const sca_utili"sca_vector<sca_util::sca_complex>s& poles,
const sca_core::sca_times delay,
scautil: :sca_vector<double>& state,
const(sca tdf::sca_de::sca_in<double>& input,
double k=1.0);
sca_tdf::sca_ct_proxy*& operator () (
gonst sca_util::sca_vector<sca_util::sca_complex>s& zeros,
const sca_util::sca_vector<sca_util::sca_complex>s poles,
double input,
double k 1.0,
const sca_core::sca_times& tstep = sca_core::sca_max_time() );
sca_tdf::scaictiproxy*& operator() (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca util::sca vector<sca util::sca complex>& poles,
const sca:core'~sca:time dp7aT _
double input,
double k 1.0,
const sca_core::sca_times& tstep = sca_core::sca_max_time () );
sca_tdf::scaictiproxy*& operator() (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>s& poles,
const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_times& tstep = sca_core::sca_max_time () );
sca_tdf::scaictiproxy*& operator() (

const sca_util:
const sca_util:
const sca_core:

:sca_vector<sca_util::sca_complex>& zeros,
:sca_vector<sca_util::sca_complex>& poles,
:sca_times delay,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.



https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 100 - IEEE Std 1666.1™-2016

const sca_util::sca_vector<double>& input,
double k=1.0,
const sca_core::sca_times tstep = sca_core::sca_max_time() );

sca_tdf: :scaﬁctﬁproxyr& operator() (
const sca_util::sca_vector<sca_util::sca_complex>& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_tdf::sca_in<double>& input,
double k=1.0);

sca_tdf::sca_ct proxy's operator() (
const sca_util::sca_vector<sca_util::sca_complex>s& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_core::sca_times& delay,
const sca_tdf::sca_in<double>& input,
double k=1.0);

sca_tdf::sca_ct_proxy*& operator() (
const sca_util::sca_vector<sca_util::sca_complex>s& zeros,
const sca_util::sca_vector<sca_util::sca_complex>& poles,
const sca_tdf::sca_de::sca_in<double>& input,

double k=1.0);
sca_tdf::sca_ct_proxy*& operator () (
const sca_util::sca_vector<sca_util::sca_complex>s [zeros,
const sca_util::sca_vector<sca_util::sca_complex>§ ‘poles,
const sca_core::sca_times& delay,
const sca_tdf::sca_de::sca_in<double>& input,

double k = 2.0 ;
bi

} // ndmespace sca_ tdf

5.4.4.3 Constructors

sca_1tf] zp();

explicift sca_ltf zp( const char* );

The constructor for class sca_tdf::sca_Itf zp-shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_object to set the string name of the ipstance
in the hodule hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_Itf zp”) to generate 4 unique
string rfame that it shall then-pass through to the constructor belonging to the base class sc_core::sc_gbject.

5.4.4.4 Constraint on_usage
The expansion of the numerator and the denominator shall result in a real value, respectively.

5.4.4.9 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_Itf zp”.

5.4.4.6 set_max_delay

void set _max_delay( const sca_core::sca_times );

void set_max_delay( double, sc_core::sc_time unit );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -101 -

The member function set_max_delay shall define the maximum allowable continuous-time delay of the input
values. If the member function is not called, the maximum allowable delay shall be set to the current timestep
used, at which the input values are available. It shall be an error if the member function is called outside the
context of the member function set_attributes of the current TDF module (see 5.1.1.5).

5.4.4.7 estimate_next_value

double estimate_next value() const;

The member function estimate_next_value shall return an estimation of the value of type double one timestep
ahead. This timestep shall be equal to the last computed non-zero timestep. The estimation shall use the same
filter cpefficients as provided for the last calculation of the equation system. The accuracy of the,estimated
next vallue is implementation-defined.

NOTE |—An implementation may give a warning in case the provided filter coefficients could 1€adto an inpccurate
estimatipn of the next value.

NOTE 3—If the number of zeros is equal or larger than the number of poles, an implementation may give an inpccurate
estimatipn of the next value.

5.4.4.4 enable_iterations

void enjable_iterations();

The m¢mber function enable_iterations shall enable zero fithestep recalculations by means of setfing the
timestep argument tstep of the member function calculate and operator() to sc_core::SC_ZERO_TIME. It
shall b¢ called during elaboration; otherwise it shall beati-€rror.

5.4.4.9 calculate, operator()

sca_tdf]: :scaﬁctﬁproxy*& calculate(...);

sca_tdf]: :sca_ct_proxy*& operator () (...

The mdmber function calculateé:and operator() shall return the continuous-time signal of the Laplace-domain
variablg s in the zero-pole formy, using a reference to the class sca_tdf::sca_ct_proxy’. The computatiop of the
solutiof of the equation system shall be started at the time of the first module activation.

The arguments include the gain of the transfer function £, the vectors of the zero coefficients zeros apd pole
coefficlents poles, the continuous-time delay delay, the state vector state, the value of the input at the|current
time input, and\the timestep tstep.

Each elemient of the vectors zeros and pn]oc shall define a root of the transfer function. The root shhll be a

value of type sca_util::sca_complex. It shall be an error if the expansion of the zeros and poles has a nonzero
imaginary part. If the size of the vector zeros, respectively poles, is zero, then the numerator, respectively the
denominator, of the transfer function shall be equal to the value shown in Equation (5.13):

10+00; (5.13)

The argument delay specifies the continuous-time delay, which shall be applied to the input values before
calculating the linear transfer function. The delay shall be smaller than or equal to the current timestep used, at
which the input values are available, or if the member function set_max_delay has been called, smaller than
or equal to the delay set by the member function set max_delay. If the argument delay is not specified, the
continuous-time delay shall be set to the value sc_core::SC_ZERO_TIME.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-102 - IEEE Std 1666.1™-2016

If the state vector state is not explicitly used as argument, the states shall be stored internally. In case where
states are stored internally and the member function get timestep returns sc_core::SC_ZERO_TIME for
the first calculation of the equation system of the current module activation, the state vector is restored to the
values before the last module activation. If the size of the state vector is zero, its size shall be defined by the
member functions calculate or operator() and the vector elements shall be initialized to zero. Otherwise, the
size of the state vector shall be consistent with the numerator and denumerator sizes. The relation between the
numerator and denumerator sizes and the size of the state vector is implementation-defined.

If the timestep value fstep is not specified as argument, or if it is set to the value returned by function
sca_core::sca_max_time, the member functions calculate and operator() shall define a timestep value equal
to the time distance between the time reached by the last execution of the member function calculate and the
time off Tvatt T —tdfrsca— - T ransfer
functioh is embedded. A specified timestep shall be smaller than or equal to the time distance betweemhe time
reached by the last execution of the member function calculate and the time of the current acfivatio
modulq derived from class sca_tdf::sca_module, in which the transfer function is embedded.

If the fimestep tstep is set to the value sc_core::SC_ZERO_TIME and the internaltime of the efjuation
system|has progressed to the same point in time equal to the current module activatien returned by member
functioh get time, the time and the state of the equation system shall be restoredto the time and statg before
the lasq{ calculation, and shall use the new input values. It shall be an error.if the timestep tstep is equal
to sc_cpre::SC_ZERO _TIME and the member function enable_iterations’has not been called before the
callback start_of simulation.

If a value of type double is used as input argument, the value shall’be interpreted as forming a continuous-
time sipnal from the end of the last calculation time interval to the end of the current time interval. If a
vector pf class sca_util::sca_vector<double> is used as input argument, the values shall be interpteted as
forming a continuous-time signal of equidistant distributed samples from the end of the last calgulation
time ifterval to the end of the current time intetval. If a port of class sca_tdf::sca_in<double> or
sca_tdf::sca_de::sca_in<double> is used as input‘argument, the samples available at the port ghall be
interpr¢ted as forming a continuous-time signal\using the associated time points.

The oufput settling behavior resulting fronr a change of coefficients during simulation is implementation-
defined. If the state vector is stored intérnally the state vector shall reset to zero when such a change dccurs.

In caselthe state vector elements are set to zero, the output value shall be zero as long as the input valuelis zero.
5.4.5 dca _tdf::sca_ss
5.4.5.1 Description

The clgss sca“tdf::sca_ss shall implement a system, which behavior is defined by the state-space equations
Equatign ¢5.14) and Equation (5.15):

% =A-s5(t)+B-x(t — delay) (5.14)
W(t)=C:-s(t)+D-x(t — delay) (5.15)

where s(f) is the state vector, x(¢) is the input vector, and y(¢) is the output vector. The argument delay is the
continuous-time delay applied to the values available at the input. A, B, C, and D are matrices having the
following characteristics:

— A is a n-by-n matrix, where n is the number of states.

— B is a n-by-m matrix, where m is the number of inputs.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

- 103 -

— Cis ar-by-n matrix, where r is the number of outputs.

— Dis

a r-by-m matrix.

5.4.5.2 Class definition

namespace sca_tdf {

class sca_ss : public sc_core::sc_object

{
public:

sca_ss();
explicit sca_ss( const char* );

virtual

const char* kind() const;

void set_max_delay( const sca_core::sca_time& )8
voild set max_delay( double, sc_core::sc_time unit );

scal util::sca_vector<double> estimate_next value() const;

voild enable_iterations();

scal tdf

scal tdf

scal tdf

scal tdf

::sca_ct_vector_proxyf& calculate (

const sca_util:
const sca_util:

const
const

const sca_util:
const sca_core:

::scaﬁc;ﬁvectorﬁproxy*& calculate (

const sca_util:
const sca_util:
const sca_util:
const sca_utilg
const sca_core:

sca_util:
const sea util:
const ‘sca_core:

1:sca_ct vector proxy's calcilate (

const sca_util:
Const sca_util:
const sca_util:
const sca_util:

sca_util:
const sca_util:
const sca_core:

::scq_cﬁ_vector_proxyf& calculate (

const sca_util:
const sca_util:
const sca_util:

const sca_uti

sca_tdf

sca_tdf

:sca_matrix<double>& af %4/ matrix
:sca_matrix<double>& ®WA/// matrix
::sca_matrix<double>& c, // matrix
::sca_matrix<doublek& d, // matrix D
:sca_vector<double>& s, // state vector s (t)
:sca_vector<double>& x, // input vector x(t)
:sca_times “tStep = sca_core::sca _max_time ()

O W o

:sca_matrix<double>& a, // matrix
:scadmatrix<double>& b, // matrix
‘8ca_matrix<double>& ¢, // matrix
isca_matrix<double>& d, // matrix
:sca_times delay,
:sca_vector<double>& s, // state vector s(t)
:sca_vector<double>& x, // input vector x(t)
:sca_times tstep = sca_core::sca _max_time ()

O QW

:sca_matrix<double>& a,
:sca_matrix<double>& b,
:sca_matrix<double>& c,
:sca_matrix<double>& d,
:sca_vector<double>s& s,
:sca_matrix<double>& x,
:sca_times tstep = sca_core::sca _max_ time()

:sca_matrix<double>& a,
:sca_matrix<double>& b,
:sca_matrix<double>& c,
:sca_matrix<double>& d,

)7

)i

)i

onst sca core::sca times delg

sca_util
const sca_util

const sca_core:

::scaﬁcpﬁvectorﬁproxyf& calculate (
const
const

const sca_util:
const sca_util:

const sca_tdf:

::sca_ct_vector_proxyf& calculate (
const sca_util
const sca_util

: :sca_vector<double>& s,
::sca_matrix<double>& x,
:sca_times tstep = sca_core::sca max_time()

::sca_matrix<double>& a,
:sca_matrix<double>& b,
:sca_matrix<double>& c,
:sca_matrix<double>& d,
: :sca_vector<double>& s,
:sca_in< sca_util::sca_vector<double> >& x );

::sca_matrix<double>& a,
::sca_matrix<double>& b,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

)7



https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

- 104 - IEEE Std 1666.1™-2016

const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times delay,
L : :sca_vector<double>& s,
const sca_tdf::sca_in< sca_util::sca_vector<double> >& x );
sca_tdf::sca_ct_vector_proxyf& calculate (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
sca_util::sca_vector<double>& s,
const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x );
sca_tdf::scaﬁcpﬁvectorﬁproxyf& calculate (
const sca util::sca matrix<double>§ a
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times delay,
sca_util::sca_vector<double>& s,
const sca_tdf::sca_de::sca_in< sca_util::sca_vector<dbuble> >{ x );
sca_tdf::sca_ct_vectoz;proxyf& calculate (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_util::sca_vector<double>& X,
const sca_core::sca_times& tstep =,sea_core::sca_max_ time() );
sca_tdf::sc@icpivector;proxyf& calculate (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca matrix<double>& d,
const sca_core::scactimes delay,
const sca_util: :s€a, Vector<double>& x,
const sca_core::sea_times& tstep = sca_core::sca_max_time() );
sca_tdf::scaﬁcpﬁvectorﬁproxyf& calculate (
const scasutil::sca matrix<double>& a,
const  s€a_util::sca_matrix<double>& b,
const sea_util::sca_matrix<double>& c,
copst 'sca_util::sca_matrix<double>& d,
8Ost sca_util::sca_matrix<double>& x,
const sca_core::sca_time& tstep = sca_core::sca_max_time() );
sca_tdf::sc@ictivector;proxyf& calculate (
const sca_util::sca_matrix<double>& a,
const ::sca_matrix<double>& b,
const ::sca_matrix<double>& c,
const :sca_matrix<double>& d,
const ::sca_times delay,
const ':sca_matrix<double>& 5
const sca_core::sca_times& tstep = sca_core::sca_max_time() );
sca_tdf::scaﬁcpﬁvectorﬁproxyf& calculate (
const sca_util::sca_matrix<double>& a,
orrst—Sta_utiiT st matrixdoubt=>%17
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_tdf::sca_in< sca_util::sca_vector<double> >& x );
sca_tdf::sca_ct_vector_proxyf& calculate (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times& delay,
const sca_tdf::sca_in< sca_util::sca_vector<double> >& x );
sca_tdf::scgﬁcpﬁvectorﬁproxyf& calculate (

const sca_util
const sca_util

::sca_matrix<double>&
::sca_matrix<double>&

a,
b,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

- 105 -

const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >&
sca_tdf::scaﬁcpﬁvectorﬁproxyf& calculate (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times delay,
const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >&
sca_tdf::sca_ct_vector;proxyf& operator () (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca util::sca matrix<double>§ C
const sca_util::sca_matrix<double>& d,
sca_util::sca_vector<double>& s,
const sca_util::sca_vector<double>& x,
const sca_core::sca_time& tstep = sca_core::sca_max_time() ) 8
sca_tdf::scaﬁcpﬁvectorﬁproxyf& operator () (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times delay,
sca_util::sca_vector<double>& &
const sca_util::sca_vector<double>& X,
const sca_core::sca_times& tstep =,sea_core::sca_max_ time() );
sca_tdf::sc@icpivector;proxyf& operator() (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca matrix<double>& d,
sca_util::scasyector<double>s& s,
const sca_util::s€a matrix<double>& x,
const sca_core::sea_times& tstep = sca_core::sca_max_time() );
sca_tdf::scaﬁcpﬁvectorﬁproxyf& operator () *y
const scasutil::sca matrix<double>& a,
const  s€a_util::sca_matrix<double>& b,
const sea_util::sca_matrix<double>& c,
copst 'sca_util::sca_matrix<double>& d,
8Ost sca_core::sca_times delay,
sca_util::sca_vector<double>& s,
const sca_util::sca_matrix<double>& x,
const sca_core::sca_times tstep = sca_core::sca max_time() );
sca_tdf::scaﬁc;ﬁvectorﬁproxyf& operator () (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const ::sca_matrix<double>& d,
L :sca_vector<double>s& s,
const sca_tdf::sca_in< sca_util::sca_vector<double> >& x );
sca_tdf::sca_ct_vector;proxyf& operator () (
oTStSTa—uttiTTstamatrix<doubte>t=;
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times& delay,
sca_util::sca_vector<double>& s,
const sca_tdf::sca_in< sca_util::sca_vector<double> >& X )
sca_tdf::scaﬁcpﬁvectorﬁproxy’& operator () (

const
const
const
const

const

sca_util:
sca_util::
sca_util::
sca_util:
sca_util:

:sca_matrix<double>& a,
sca_matrix<double>& b,
sca_matrix<double>& c,
:sca_matrix<double>& d,
:sca_vector<double>s& s,

sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 106 - IEEE Std 1666.1™-2016

sca_tdf: :sca_ct_vector_proxyf& operator () (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const :sca_matrix<double>& c,
const ::sca_matrix<double>& d,
const sca_core::sca_times& delay,
sca_util::sca_vector<double>& s,
const sca_tdf: :sca_de: :sca_in< sca_util: :sca_vector<double> >& x );

sca_tdf: :sca_ct_vector proxy's operator() (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_util::sca_vector<double>& x,

onst sca core::.sca timeg tstep = sca core::sca max time() )

sca tdf: :sca_ct_vector_proxyf& operator () (

const sca_util::sca_matrix<double>& a,

const sca_util::sca_matrix<double>& b,

const sca_util::sca_matrix<double>& c,

const sca_util::sca_matrix<double>& d,

const sca_core::sca_times& delay,

const sca_util::sca_vector<double>& x,

const sca_core: :sca_time& tstep = sca_core_: :sca_max_time() ) 8

scal tdf: :scaﬁctﬁvectorﬁproxyf& operator () (

const sca_util::sca_matrix<double>& &,

const sca_util::sca_matrix<double>& by,

const sca_util::sca matrix<doublex&\c,

const sca_util::sca_matrix<doudle>¢ d,

const sca_util::sca_matrix<deuble>& x,

const sca_core::sca_times& #step = sca_core::sca_max_time() );

sca tdf: :scaﬁctﬁvectorﬁproxyf& operator() (

const sca_util::sca matrix<double>& a,
const sca_util::scarmatrix<double>& b,
const sca_util::séa matrix<double>& c,
const sca_util::sea_matrix<double>& d,
const {¥sca_times delay,

const :sca_matrix<double>& x,

const sca~core::sca_times& tstep = sca_core::sca max_time() );

scal tdf: :scaﬁctﬁvectorﬁproxyf& operator() (

copst 'sca_util::sca_matrix<double>& a,

8Ost sca_util::sca_matrix<double>& b,

const sca_util::sca matrix<double>& c,

const sca_util::sca_matrix<double>& d,

const sca_tdf::sca_in< sca_util::sca_vector<double> >& x );

sca tdf: :scaﬁctﬁvectorﬁproxyf& operator () (

const sca_util::sca_matrix<double>& a,

const sca_util::sca_matrix<double>& b,

const sca_util::sca_matrix<double>& c,

const sca_util::sca_matrix<double>& d,

const sca_core::sca_times delay,

const sca_tdf::sca_in< sca_util::sca_vector<double> >& x );

scal tdf: :sca_ct_vector_proxyf& operator () (

oTStSTa—uttiTTstamatrix<doubte>t=;
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x );

sca_tdf: :sca_ct_vector_proxyf& operator () (
const sca_util::sca_matrix<double>& a,
const sca_util::sca_matrix<double>& b,
const sca_util::sca_matrix<double>& c,
const sca_util::sca_matrix<double>& d,
const sca_core::sca_times delay,
const sca_tdf: :sca_de: :sca_in< sca_util: :sca_vector<double> >& x );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 107 -

} // namespace sca tdf

5.4.5.3 Constructors

sca ss(

explici

)i

t sca_ss( const char* );

The constructor for class sca_tdf::sca_ss shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_object to set the string name of the instance
in the module hierarchy.

The de
string 1

5454

virtual

The md

5.4.5.5

void se

void se

The mg
values.
used, a
context

5.4.5.6

sca_uti

The n

sca_util::sca_vector<double> one timestep ahead. This timestep shall be equal to the last computed n

timeste
system

NOTE

fault constructor shall call function sc_core::sc_gen_unique_name(“sca_ss”) to generate a
ame that it shall then pass through to the constructor belonging to the base class sc¢_coré::s¢_d

kind
const char* kind() const;

mber function kind shall return the string “sca_tdf::sca_ss”.

set_max_delay

t_ max delay( const sca_core::sca_times );

it max delay( double, sc_core::sc_time_unit );

mber function set_max_delay shall define the'maximum allowable continuous-time delay of t}
If the member function is not called, the maximum allowable delay shall be set to the current t
which the input values are available. It\shall be an error if the member function is called out
of the member function set_attributes of the current TDF module (see 5.1.1.5).

estimate_next_value
l::sca_vector<double> estimate_next_value() const;

iember function\_éstimate_next value shall return an estimation of the value o

p. The estimation shall use the same filter coefficients as provided for the last calculation of the ¢
The aceuracy of the estimated next value is implementation-defined.

unique
bject.

le input
mestep
side the

f type
bn-zero
quation

estimati

—<%An implementation may give a warning in case the provided filter coefficients could lead to an inrlccurate

b-of-the-next-value

NOTE 2—If any of the values in matrix D of the state-space equation system is non-zero, an implementation may give
an inaccurate estimation of the next value.

5.4.5.7 enable_iterations

void enable_iterations();

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 108 - IEEE Std 1666.1™-2016

The member function enable_iterations shall enable zero timestep recalculations by means of setting the
timestep argument tstep of the member function calculate and operator() to sc_core::SC_ZERO_TIME. It
shall be called during elaboration; otherwise it shall be an error.

5.4.5.8 calculate, operator()

sca_tdf: :scaﬁctﬁvectorﬁproxyf& calculate(...);

sca_tdf: :sca_ct_vector_proxyf& operator () (...);

The member function calculate and operator() shall return the continuous-time signal of the state-space
equatio IEHEEE : ass-sea—tdfisca—ecivector—proxyThecomputation-ofthesolution
of the dquation system shall be started at the time of the first module activation.

The arguments include the matrices a, b, ¢, and d, the continuous-time delay delay, the state vector s, the input
vector ¥, and the timestep #step. It shall be an error if one of the following conditions is notet:

a) |Argument a shall be a square matrix of the size of state vector s.

b) |The number of columns in matrix b and the number of columns in matrix;d is equal to the sizp of the
input vector x.

¢) [The number of rows in matrix » and the number of columns in matrix c is equal to the siz¢ of the
state vector s.

d) [The number of rows in matrices ¢ and d is equal to the size-ofithe output vector y.
The value of the state vector shall be kept after a change of values of matrix coefficients.

The argument delay specifies the continuous-time delayswhich shall be applied to the input valueq before
calculajing the linear transfer function. The delay shall'\be smaller than or equal to the current timestep pised, at
which the input values are available, or if the member function set_ max_delay has been called, smaller than
or equdl to the delay set by the member function-set_max_delay. If the argument delay is not specifiied, the
contingous-time delay shall be set to the value sc_core::SC_ZERO_TIME.

If the sfate vector state is not explicitly~ised as argument, the states shall be stored internally. In cas¢ where
states gre stored internally and thesmiember function get_timestep returns sc_core::SC_ZERO_TIME for
the firsf calculation of the equation system of the current module activation, the state vector is restore to the
values pefore the last module\activation. If the size of the state vector is zero, its size shall be defined by the
membelr functions calculate or operator= and the vector elements shall be initialized to zero. Otherwjise, the
size of fhe state vector shall be consistent with the coefficient matrix sizes.

If the {imestep.value fstep is not specified as argument, or if it is set to the value returned by flnction
sca_cofe::sea \max_time, the member functions calculate and operator() shall define a timestep valye equal
to the tymé€ distance between the time reached by the last execution of the member function calculate and the
time oflthe current activation of the module derived from class sca_tdf::sca module in which the stafe space
equation is embedded. A specified timestep shall be smaller than or equal to the time distance between the
time reached by the last execution of the member function calculate and the time of the current activation of
the module derived from class sca_tdf::sca_module, in which the state space equation is embedded.

If the timestep zstep is set to the value sc_core::SC_ZERO_TIME and the internal time of the equation
system has progressed to the same point in time equal to the current module activation returned by member
function get_time, the time and the state of the equation system shall be restored to the time and state before
the last calculation, and shall use the new input values. It shall be an error if the timestep fstep is equal
to sc_core::SC_ZERO _TIME and the member function enable_iterations has not been called before the
callback start_of simulation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -109 -

If a vector of class sca_util::sca_vector<double> is used as input argument, the values shall be interpreted
as forming a continuous-time signal of equidistant distributed samples from the end of the last calculation
time interval to the end of the current time interval. If a matrix of class sca_util::sca_matrix<double>
is used as input argument, the matrix columns shall be interpreted as forming continuous-time signal of
equidistant distributed samples from the end of the last calculation time interval to the end of the current
time interval. If a port of class sca_tdf::sca_in<sca_util::sca_vector<double>>orsca_tdf::sca_de::sca_in<
sca_util::sca_vector<double> > is used as input argument, the samples available at the port shall be interpreted
as forming a continuous-time signal using the associated time points.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-110 - IEEE Std 1666.1™-2016

6. Linear signal flow model of computation

The LSF model of computation shall define the behavior of non-conservative continuous-time systems as
mathematical relations between quantities represented by real-value functions of the independent variable
time. The resulting differential and algebraic equation system, which is defined by the set of connected
predefined LSF primitive modules, shall be solved during simulation. The mathematical relation defined by
each LSF primitive module shall contribute to this overall equation system. The predefined set of LSF primitive
modules shall support the basic operators required to define LSF behavior as defined in this clause.

6.1 Class definitions

All names used in the LSF class definitions shall be placed in the namespace sca_lsf.
6.1.1 4ca_lsf::sca_module
6.1.1.1 Description

The cldss sca_Isf::sca_module shall define the base class for all LSF primitive modules. An applicatipn shall
not der]ve from this class directly, but shall use the predefined primitive modules as defined in the following
clauses|

6.1.1.4 Class definition

namespajce sca_lsf {

class| sca_module : public sca_core::sca module

{
publfic:

virtual const char* kind() const;
protlected:

scal module () ;

virtual ~sca_module () ;
}.

} /} ngmespace sca lsf
6.1.2 4ca_lIsf::sca_signal_if
6.1.2.1 Description

The class sca_lsfi:sca_signal_if shall define an interface proper for a primitive channel of class
sca_lsft:sca_signal. The interface class member functions are implementation-defined.

6.1.2.4 Class definition

namespace sca 1lsf {

class sca_signal_if : public sca_core::sca_interface
{

protected:

sca_signal_if();

private:
// Other members
implementation-defined

// Disabled

sca_signal_if( const sca_lsf::sca_signal_ifs );
sca_lsf::sca_signal_ifs operator= ( const sca_lsf::sca_signal_ifs );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -111-

} // namespace sca 1lsf

6.1.3s

ca lIsf::sca_signal

6.1.3.1 Description

The class sca_lsf::sca_signal shall define a primitive channel for the LSF MoC. It shall be used for connecting
modules derived from class sca_lsf::sca_module using ports of class sca_Isf::sca_in and sca_lsf::sca_out.
An application shall not access the associated interface directly.

6.1.3.2

Class definition

namespdg
class
{

publl
sca
exp
viy
priv

//
sc3

}i

} // ng

6.1.3.3

sca_sig

explici

ce sca_lsf {

sca_signal : public sca_lsf::sca_signal_if,
public sca_core::sca_prim_ channel

lic:

| signal();

licit sca_signal ( const char* );
ftual const char* kind() const;
ate:

IDisabled
| signal( const sca_lsf::sca_signals );

espace sca lsf

Constructors

nal () ;

[t sca_signal ( const char* );

The coalstructor for class sca_lsf::sca\signal shall pass the character string argument (if such argument exists)
througlh to the constructor belonging-to the base class sca_core::sca_prim_channel to set the string jame of
the instance in the module hierarchy.

The ddfault constructor (shall call function sc_core::sc_gen_unique name(“sca_lsf signal”) to generate
a uniqpe string name\‘that it shall then pass through to the constructor belonging to the base class
sca_cofe::sca_prim’~channel.

6.1.3.4 kind

virtual TONST Chnar™ Rindt(7J [O) eV v

The member function kind shall return the string “sca_lsf::sca_signal”.

6.1.4 sca_lsf::sca_in

6.1.4.1 Description

The class sca_lsf::sca_in shall define a port class for the LSF MoC.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-112 - IEEE Std 1666.1™-2016

6.1.4.2 Class definition

namespace sca_lsf {

class sca_in : public sca_core::sca_port< sca_lsf::sca_signal if >
{
public:

sca_in();

explicit sca_in( const char* );

virtual const char* kind() const;
private:

// Other members
im, meptation-defined

// |pisabled
sca in( const sca_lsf::sca_in& );

}i

} // ndmespace sca lsf

6.1.4.3 Constructors

sca_in (] ;

explicift sca_in( const char* );

The copstructor for class sca_lsf::sca_in shall pass the characterstring argument (if such argumenf exists)
througl) to the constructor belonging to the base class sca_core::sea_port to set the string name of the ipstance
in the Module hierarchy.

The default constructor shall call function sc_core::s¢<gen_unique_name(“sca_Isf_in”) to generate d unique
string rfame that it shall then pass through to the cofnistructor belonging to the base class sca_core::scq_port.

6.1.4.4 kind

virtual] const char* kind() const;

The mgmber function kind shall. réturn the string “sca_lsf::sca_in”.
6.1.5 4ca_lIsf::sca_out
6.1.5.1 Description

The class sca” Isf::sca_out shall define a port class for the LSF MoC.

6.1.5.2Cclass-defind

namespace sca_lsf {

class sca_out : public sca_core::sca_port< sca_lsf::sca_signal_if >
{
public:

sca_out();

explicit sca_out( const char* );

virtual const char* kind() const;
private:

// Other members
implementation-defined

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 113 -

/7

Disabled

sca_out( const sca_lsf::sca_outs& );

}i

} // namespace sca lsf

6.1.5.3 Constructors

sca_out

explici

()

t sca_out( const char* );

The cokllstructor for class sca_lsf::sca_out shall pass the character string argument (if such argument
througl) to the constructor belonging to the base class sca_core::sca_port to set the string name of the i

in the 1
The de
unique

sca_co

6.1.5.4

virtual]

The md
6.1.6 9
6.1.6.1

The cl4
additio

W

where ;
the LS}

6.1.6.7

namespal

class

hodule hierarchy.

fault constructor shall call function sc_core::sc_gen_unique name(“sca_Isf 'onit”) to gen
string name that it shall then pass through to the constructor belongifig to the bas

re:isca_port.
kind
const char* kind() const;
mber function kind shall return the string “sca_Isf::sca_out”.

ca lsf::sca_add
Description

ss sca_lIsf::sca_add shall implement.a primitive module for the LSF MoC that realizes the w
h of two LSF signals. The primitive'shall contribute Equation (6.1) to the equation system:

=k x(O)+kyxy(0)

E/(7) and x,(¢) are the fwo 'LSF input signals, k; and k;, are constant weighting coefficients, an
 output signal.

Class definition

ce sca Isf {

sed_add : public sca_lsf::sca_module

exists)
hstance

crate a
£ class

cighted

(6.1)

1 y(7) is

{

publ
sca
sca

ic:

_1sf::sca_in x1; // LSF inputs
_1sf::sca_in x2;

sca_lsf::sca out y; // LSF output

sca_core::sca_parameter<double> kl; // weighting coefficients
sca_core::sca_parameter<double> k2;

vir

exp

tual const char* kind() const;

licit sca_add( sc_core::sc_module name, double kI _ = 1.0, double k2 = 1.0)

:ox1( "x1" ), x2( "x2" ), y( "y" ), k1( "k1", k1_ ), k2( "k2", k2 )

{ 1

bi

mplementation-defined }

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 114 - IEEE Std 1666.1™-2016

} // namespace sca 1lsf
6.1.6.3 kind
virtual const char* kind() const;

The member function kind shall return the string “sca_Isf::sca_add”.

6.1.7 sca_lsf::sca_sub

6.1.7.Description

The clgss sca_lsf::sca_sub shall implement a primitive module for the LSF MoC that realizes\.the weighted
subtracfion of two LSF signals. The primitive shall contribute Equation (6.2) to the equation system:

W)=k x 1) —kyx,(t) (6.2)

where ¥,;(¢) and x(¢) are the two LSF input signals, k; and &, are constant weighting coefficients, angl y(¢) is
the LSk output signal.

6.1.7.4 Class definition

namespagjce sca_lsf {
class| sca_sub : public sca_lsf::sca_module
{
publfic:
scal 1sf::sca_in x1; // LSF inputs
sca_lsf::sca_in x2;

scal 1sf::sca out y; // LSF output

scal core::sca_parameter<double> kl; M(\weighting coefficients
scal core::sca_parameter<double> k2%

virftual const char* kind() comSt})

explicit sca_sub( sc_core::sc_module_pame, double kI = 1.0, double k2 = 1.0 )
oxT "I ), x2( "x2™DG vy "y" ), k1I( k1, k1), k2( "k2", k2 )

{ dmplementation-defined)}

bi

} // ndmespace sca IlSf.

6.1.7.4 kind

virtual] censt char* kind() const;

The member function kind shall return the string “sca_lsf::sca_sub”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 1156 -

6.1.8 sca_lsf::sca_gain
6.1.8.1 Description
The class sca_lsf::sca_gain shall implement a primitive module for the LSF MoC that realizes the

multiplication of an LSF signal by a constant gain. The primitive shall contribute Equation (6.3) to the equation
system:

W)= k-x(1) (6.3)

where £ is the constant gain coefficient, x(¢) is the LSF input signal, and y(¢) is the LSF output signal.

6.1.8.4 Class definition

namespagjce sca_lsf {
class| sca_gain : public sca_lsf::sca_module
{
publfic:
scal 1sf::sca_in x; // LSF input
scal 1sf::sca out y; // LSF output
scal core::sca_parameter<double> k; // gain coefficient
virftual const char* kind() const;
explicit sca_gain( sc_core::sc_module name, double k = 1O )
= mxm )T vyt ), k("R k)
{ Implementation-defined }

}i

} // ndmespace sca lsf

6.1.8.4 kind

virtual] const char* kind() const;

The mgmber function kind shall retufn the string “sca_lIsf::sca_gain”.
6.1.9 4ca_lsf::sca_dot
6.1.9.1 Description

The cldss sca_lsf::sca_dot shall implement a primitive module for the LSF MoC that realizes the scalgd first-
order time derivative of an LSF signal. The primitive shall contribute Equation (6.4) to the equation system:

axi
y(t):k' dt (64)

where £ is the constant scale coefficient, x(¢) is the LSF input signal, and y(¢) is the LSF output signal.

6.1.9.2 Class definition

namespace sca_lsf {

class sca_dot : public sca_lsf::sca_module

{
public:
sca_lsf::sca_in x; // LSF input

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 116 - IEEE Std 1666.1™-2016

sca_lsf::sca out y; // LSF output

sca_core::sca_parameter<double> k; // scale coefficient

virtual const char* kind() const;

explicit sca_dot( sc_core::sc_module name, double k = 1.0 )
Dx("x" ), v( "y ), k( "K", k)

{ implementation-defined }

}i

} // namespace sca_lsf

6.1.9.3 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “sca_lsf::sca_dot”.
6.1.10|sca_lsf::sca_integ
6.1.10|1 Description

The clgss sca_lsf::sca_integ shall implement a primitive module for the*LSF MoC that realizes thg scaled
time-dgmain integration of an LSF signal. The primitive shall contribute Equation (6.5) to the equation pystem:

¢
wt)= k'[ x(H)dt + Y, 6.5)

Istart

where f is the constant scale coefficient, x(¢) is the LSF input signal, y, is the initial condition at ¢ = 0, and
¥(?) is the LSF output signal. The integration shall"be done from the first calculation time point z,f to the
current|time ¢.

If yp is|set to sca_util::SCA_UNDEFINED, the primitive shall contribute the equation y = k - x for the first
calculation instead of Equation (6.5).\n-this case, yy is set to the resulting y value of the first calculatipn.

6.1.10|2 Class definition

namespalce sca_lsf {

class| sca_integ s jpublic sca_lsf::sca_module
{
publfic:

scal 1sf::scain x; // LSF input

scal 1sf:zsca out y; // LSF output

sca_core::sca_parameter<double> k; // scale coefficient
sca_core::sca_parameter<double> y0; // initial condition at t=0

virtual const char* kind() const;

explicit sca_integ( sc_core::sc_module name, double k = 1.0, double y0 = 0.0 )
sx("x" ), y("y" ), k("k", k_ ), yO( "yO", yO_ )

{ implementation-defined }

}i

} // namespace sca_ lsf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 117 -

6.1.10.

virtual

3 kind

const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_integ”.

6.1.11 sca_lIsf::sca_delay
6.1.11.1 Description
The class sca_lsf::sca_delay shall implement a primitive module for the LSF MoC that generates a scaled
time-dglayed version of an LSF signal. The primitive shall contribute Equation (6.6) to the equation system:
t<dela
=y 7 e (6.6)
k-x(t—delay) t>delay
where 4 is the time in seconds, delay is the time delay in seconds, & is the constant scale coefficient, x(f) is the
LSF input signal, y, is the output value before the delay is in effect, and y(7) is theL.SF output signal.
6.1.11{2 Class definition
namespgjce sca_lsf {
class| sca_delay : public sca_lsf::sca_module
{
publfic:
scal 1sf::sca_in x; // LSF input
scal 1sf::sca out y; // LSF output
scal core::sca_parameter<sca_core::sca_timeXy delay; // time delay
scal core::sca_parameter<double> k; // scalé coefficient
scal core::sca_parameter<double> y0; //.output value before delay is in effect
virftual const char* kind() const;
expllicit sca_delay( sc_core::sgc_module_name,
const sca_core::sca_time& delay = sc_core::SC_ZERO_TIME,
doublek ¢ = 1.0,
doup®eyy0 = 0.0 )
) xC"x" ), y( "y" ) delay( "delay", delay ), k( "k", k_ ), y0o( "yOo", y0 )
{ dmplementation-defined }
bi
} // ndmespace scd\dst
6.1.11|3 Constraint of usage
The delaystattbegreaterthamorequat to zero:
6.1.11.4 kind
virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_delay”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 118 - IEEE Std 1666.1™-2016

6.1.12 sca_lsf::sca_source
6.1.12.1 Description

The class sca_lsf::sca_source shall implement a primitive module for the LSF MoC that realizes a source for
an LSF signal. In time-domain simulation, the primitive shall contribute Equation (6.7) to the equation system:

B init_value t<delay 67
= offset + amplitude-sin(2z- frequency-(t — delay)+ phase) t>delay '

where ¢ is the time in seconds, delay is the initial delay in seconds, init_value is the initial value, offset is the
offset, mplitude 1s the source amplitude, jrequency is the source Irequency 1n hertz, phase 1s the sourde phase
in radigns, and y(7) is the LSF output signal.

In small-signal frequency-domain simulation, the primitive shall contribute Equation (6.8). t6 the equation
system

y() = ac_amplitude-{cos(ac_phase)+ j-sin(ac_phase)} (6.8)

where f'is the simulation frequency, ac_amplitude is the small-signal amplitude, and ac phase is thg small-
signal phase in radians.

In small-signal frequency-domain noise simulation, the primitive sh@all eontribute Equation (6.9) to the equation
system

(/)= ac_noise_amplitude (6.9)
where fis the simulation frequency, and ac_noise_amplitude is the small-signal noise amplitude.

6.1.12]2 Class definition

namespgjce sca_lsf {

class| sca_source : public sca_lsf:):sca_module
{
publlic:

scal 1sf::sca_out y; ///BSE output

scal core::sca_parameter<double> init value;
sca_core::sca_parameter<double> offset;

scal core::sca parameter<double> amplitude;

scal core::sca parameter<double> frequency;

sca core::sca-parameter<double> phase;

scal corer:sca parameter<sca core::sca_time> delay;
scal coreuysca_parameter<double> ac_amplitude;

scal eoxe” :sca_parameter<double> ac_phase;

sca—corerrsca—parameter<soubt ae—rrotse—amptituce
virtual const char* kind() const;

explicit sca_source( sc_core::sc_module_ name,

double init value = 0.0,
double offset = 0.0,
double amplitude = 0.0,
double frequency = 0.0,
double phase = 0.0,

const sca_core: :sca_time& delay = sc_core::SC_ZERO_TIME,
double ac amplitude = 0.0,

double ac phase = 0.0,

double ac noise amplitude = 0.0 )

Sy Oyt o),
init value( "init value", init value ),

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -119 -

{
bi

offset ( "offset", offset ),
amplitude( "amplitude", amplitude )
frequency( "frequency", frequency )
phase ( "phase", phase ),

delay( "delay", delay ),

’
’

ac_amplitude( "ac_amplitude", ac amplitude ),
ac_phase ( "ac_phase", ac phase ),
ac_noise amplitude( "ac_noise amplitude", ac noise amplitude

implementation-defined }

} // namespace sca lsf

6.1.12.3 kind

virtual]

The md
6.1.13
6.1.13
The cl3

Laplac
shall cq

de

=

+...

where

respect]
numerg
availab)

6.1.13

namespal

class

{
publ}

const char* kind() const;

mber function kind shall return the string “sca_lsf::sca_source”.
sca_lsf::sca_lItf_nd
1 Description

ss sca_lsf::sca_Itf nd shall implement a primitive module for the\ESF MoC that realizes 3
b transfer function in the time-domain in the numerator-denominator form (see 5.4.3). The pj

ntribute Equation (6.10) to the equation system:
Ny N2y dy ()

N-I—a tdeny g+ tden g +deng ()

dM~Ix(—delay) dM=2x(—delag)
\mumy g tAumy T

dx(t—dela
+ numl¥ + numgy x(t — delay))

 is the constant gain coefficient, 4/ and N are the number of numerator and denominator coef}

vely, indexed with i, x(f) i§ the LSF input signal, num; and den; are real-valued coefficient
tor and denominator, respéctively, delay is the continuous-time delay in seconds, applied to thg
e at the input, and y(£)is the LSF output signal.

2 Class definition

ce sca_1sf |
sca(ltf' nd : public sca_1lsf::sca module

H

scaled
1mitive

(6.10)

icients,
of the
values

sca_lsf::sca_in x; // LSF input

sca_lsf::sca out y; // LSF output

sca_core::sca_parameter<sca util::sca_ vector<double> > num; // numerator coefficients
sca_core::sca_parameter<sca util::sca_vector<double> > den; // denumerator coefficients
sca_core::sca_parameter<sca_core::sca_time> delay; // time delay

sca_core: :sca_parameter<double> k; // gain coefficient

vir

exp

tual const char* kind() const;

licit sca_1tf nd( sc_core::sc_module_name,
const sca_util::sca_vector<double>& num = sca_util::sca_create_vector( 1.0 ),
const sca_util::sca_vector<double>& den = sca_util::sca_create_vector( 1.0 ),
double k= 1.0)
cx("x" ), y("y" ), num( "num", num ), den( "den", den ),

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

-120 -

delay( "delay", sc_core::SC_ZERO TIME ),
{ implementation-defined }

k(

sca_ltf nd( sc_core::sc_module name,

"k, ko

)

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

const sca_util::sca_vector<double>& num_,
const sca_util::sca_vector<double>& den_,
const sca_core::sca_times& delay_ ,
double k = 1.0 )
cx("x" ), y("y" ), num( "num", num_ ), den( "den", den ),
delay( "delay" , delay ), k( "k", k_ )

{ implementation-defined }

}i

} // namespace sca lsf

6.1.13[3 Constraint on usage
The vegtors num and den shall have at least one element, respectively.
6.1.13|4 kind
virtuall const char* kind() const;
The mgmber function kind shall return the string “sca_lIsf::sca_Itf nd”.
6.1.14|sca_lsf::sca_ltf_zp
6.1.14|1 Description
The clgss sca_lIsf::sca_Itf _zp shall implement a primitive module for the LSF MoC that realizes g4 scaled
Laplac¢ transfer function in the time-domain in the zero*pole form (see 5.4.4). The primitive shall contribute
Equatign (6.11) to the equation system:
d d d d
(E - polesN71 T polesNiz)- : (E - poleslxdt - poleso)y(t) 611)
A1

= {(% —zerosy_ 1)(% — Zerosyp. 2)- - (% — zeros 1)(% - zeroso)x(t —dela y)}
where £ is the constant gain coefficient, M and N are the number of zeros and poles, respectively, indexied with
i, x(f) i§ the LSF input signal,zeros; and poles; are complex-valued zeros and poles, respectively, deldy is the
contingous-time delay in(seconds applied to the values available at the input, and y(7) is the LSF outpu{ signal.

6.1.14|2 Class définition

namespajce s¢a_dsf {
class| sea’ 1tf zp : public sca_lsf::sca _module
{
public:

sca_lsf::sca_in

x; // LSF input

sca_lsf::sca out y; // LSF output

sca_core::sca_parameter<sca util::sca_vector<sca_ util::sca_complex> > zeros;
sca_core::sca_parameter<sca util::sca_vector<sca_ util::sca_complex> > poles;
sca_core::sca_parameter<sca_core::sca_time> delay; // time delay

sca_core: :sca_parameter<double> k; // gain coefficient

virtual const char* kind() const;

exp

licit sca_1tf_zp( sc_core::sc _module_name,
const sca_util::sca_vector<sca_util::sca_complex>& zeros =
sca_util::sca_vector<sca_ util::sca_complex>(),

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -121 -

const sca_util::sca_vector<sca_util::sca_complex>& poles =
sca_util::sca_vector<sca_util::sca_complex> (),
double k = 1.0 )

cox("x" ), y( "y" ), zeros( "zeros", zeros ), poles( "poles", poles ),

{1

delay( "delay", sc_core::SC_ZERO _TIME ), k( "k", k_
mplementation-defined }

sca_1ltf zp( sc_core::sc_module name,

const sca_util::sca_vector<sca_util::sca_complex>& zeros_,
const sca_util::sca_vector<sca_util::sca_complex>& poles ,
const sca_core::sca_times delay ,

double k = 1.0 )

ox("x" ), y( "y" ), zeros( "zeros", zeros ), poles( "poles", poles ),

{ 1

bi

delay( "delay", delay ), k( "k", k )
mplementation-defined }

} // nd

6.1.14

The ex
error if]

6.1.14

virtuall

The md
6.1.15
6.1.15

The cl
which 1
contrib

ds(
dt

ne
where 3

to the Y
numbel

Imespace sca 1sf

3 Constraint on usage

pansion of the numerator and the denominator shall result in a real value, respectively. It sha

after expansion, the imaginary part is numerically not zero.
4 kind
const char* kind() const;

mber function kind shall return the string “sca_lsf::sca ‘Itf zp”.

sca_lsf::sca_ss

1 Description

1ss sca_lsf::sca_ss shall implement a“primitive module for the LSF MoC that realizes a

pehavior is defined by single-input single-output state-space equations (see 5.4.5). The primiti
ite Equation (6.12) and Equation'(6.13) to the equation system:

- =A-s(f)+B-x(t — delay)
=C-s(t)+D-x(t vdelay)
(¢) is the stafe-vector, x(¢) is the LSF input signal, delay is the continuous-time delay in seconds

ralues availdble at the input, and y(¢) is the LSF output signal. A is a n-by-n matrix, where
of states, B and C are vectors of size n, and D is a real value.

2 €lass definition

6.1.15

1 be an

system,
ve shall

(6.12)

(6.13)

applied
1 is the

namespa

class

{
publ

ce sca_lsf {
sca_ss : public sca_lsf::sca _module

il@s

sca_lsf::sca_in x; // LSF input

sca_lsf::sca out y; // LSF output

sca_core: :sca_parameter<sca_util::sca_matrix<double>
sca_core::sca_parameter<sca util::sca_matrix<double>
sca_core::sca_parameter<sca util::sca_matrix<double>
sca_core::sca_parameter<sca util::sca_matrix<double>

a; // matrix of size n-by-n

with one row of size n
of size 1

c; // matrix
d; // matrix

VvV V. V V

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

A

b; // matrix B with one column of size n
@
D


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-122 - IEEE Std 1666.1™-2016

sca_core::sca_parameter<sca_core::sca_time> delay; // time delay
virtual const char* kind() const;

explicit sca_ss( sc_core::sc_module name,

const sca_util::sca_matrix<double>& a = sca_util::sca_matrix<double>(),
const sca_util::sca_matrix<double>& b = sca_util::sca_matrix<double>(),
const sca_util::sca_matrix<double>& c = sca_util::sca_matrix<double>(),
const sca_util::sca_matrix<double>& d = sca_util::sca_matrix<double>(),
const sca_core::sca_times& delay = sc_core::SC_ZERO TIME )

sxC"x" ), y(C"y" ), at "a", a ), b("b", b ), c("c", ¢ ), d("d", d ),

delay( "delay", delay )
{ implementation-defined }
bi

} // namespace sca l1sf

6.1.15|3 Constraint on usage

It shall|be an error if one of the following conditions is not met:
— |Argument a shall be a square matrix of the size of state vector s.
— JArgument b shall be a matrix with one column and the size of state vector;s rows.
— |Argument c shall be a matrix with one row and the size of state vector(s ¢olumns.

— |Argument d shall be a matrix of one row and one column.
NOTE—-The class sca_lsf::sca_ss uses matrices similar to class sca_tdf::s¢a’ ss.

6.1.154 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string/‘sea_lsf::sca_ss”.
6.1.16|sca_lsf::sca_tdf::sca_gain, scd_lsf::sca_tdf gain
6.1.16|1 Description

The clgss sca_lsf::sca_tdf::scargain shall implement a primitive module for the LSF MoC that realjzes the
scaled multiplication of a TDF input signal by an LSF input signal. The primitive shall contribute Eguation
(6.14) to the equation system:

W(t) = scale: inpx(d) (6.14)

where §cale iS the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a contjnuous-
time signaly x(7) is the LSF input signal, and y(¢) is the LSF output signal.

The class sca_lsf::sca_tdf_gain shall be defined as an alias for class sca_lsf::sca_tdf::sca_gain.

6.1.16.2 Class definition

namespace sca_lsf {
namespace sca_tdf {
class sca_gain : public sca_lsf::sca_module
{

public:
::sca_tdf::sca_in<double> inp; // TDF input

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:

2021 © IEC 2021

IEEE Std 1666.1™-2016 -123 -

sca_lsf::sca_in x; // LSF input

sca_lsf::sca out y; // LSF output

sca_core: :sca_parameter<double> scale; // scale coefficient

virtual const char* kind() const;

explicit sca_gain( sc_core::sc_module name, double scale = 1.0 )

{
}i

: inp( "inp" ), x( "x" ), y( "y" ), scale( "scale", scale )
implementation-defined }

} // namespace sca tdf

typedef sca lsf::sca_tdf::sca _gain sca_ tdf gain;

} // ndmespace sca lsf

6.1.16

virtuall

The md

6.1.17

6.1.17

The cld
the sca

equation system:

hAU

where §
time sig

The cla

6.1.17

namespa
nameg
cldg

{
ry

3 kind

const char* kind() const;

mber function kind shall return the string “sca_lsf::sca_tdf::sca_gain™.
sca_lsf::sca_tdf::sca_source, sca_Isf::sca_tdf _source

1 Description

ss sca_lsf::sca_tdf::sca_source shall implement a primitive module for the LSF MoC that
ed conversion of a TDF signal to an LSF signal. The primitive shall contribute Equation (6.13
= scale-inp

cale is the constant scale coefficientyinp is the TDF input signal that shall be interpreted as a cont]
bnal, and y(7) is the LSF output signal.

ss sca_lsf::sca_tdf source shall be defined as an alias for class sca_lIsf::sca_tdf::sca_source.

2 Class definition

ce sca_lsf {
pace sca_(tdf {

ss s¢a_source : public sca_lsf::sca_module

realizes
) to the

(6.15)

Inuous-

o T4, &%

s
s
v
@

{
}i

Y/

typed:

:sca_tdf::sca_in<double> inp; // TDF input

ca_lsf::sca_out y; // LSF output

ca_core::sca_parameter<double> scale; // scale coefficient

irtual const char* kind() const;

xplicit sca_source( sc_core::sc_module name, double scale = 1.0 )
: inp( "inp" ), y( "y" ), scale( "scale", scale )
implementation-defined }

namespace sca_tdf

ef sca_1sf::sca_tdf::sca_source sca_tdf_ source;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 124 - IEEE Std 1666.1™-2016

} // namespace sca 1lsf

6.1.17.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_Isf::sca_tdf::sca_source”.

6.1.18 sca_lIsf::sca_tdf::sca_sink, sca_Isf::sca_tdf_sink

6.1.18|1 Description

The clgss sca_lsf::sca_tdf::sca_sink shall implement a primitive module for the LSF MoC fthat replizes a
scaled gonversion from an LSF signal to a TDF signal. The value of the LSF input signal x(#) shall b¢ scaled
with cdefficient scale and written to the TDF output port outp.

The cldss sca_Isf::sca_tdf sink shall be defined as an alias for class sca_Isf::scatdf::sca_sink.

6.1.18|2 Class definition

namespagjce sca_lsf {
namesjpace sca_tdf {

class sca_sink : public sca_lsf::sca_module
{
puplic:

sica_lsf::sca_in x; // LSF input

:|l:sca_tdf: :sca_out<double> outp; // TDF, Qqutput

sica_core::sca_parameter<double> scalg; // scale coefficient

vliirtual const char* kind() constW%

ekplicit sca_sink( sc_core:{scimodule_name, double scale = 1.0 )

: x( "x" ), outp( "outp" )%’scale( "scale", scale )

{| implementation-defined }

} // |lhamespace sca_tdf

typedef sca_lsf::sea.tdf::sca_sink sca_tdf sink;

} // ndmespace dca)lsf

6.1.18{3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_sink”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 -125 -

6.1.19

6.1.19.

sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf _mux

1 Description

The class sca_Isf::sca_tdf::sca_mux shall implement a primitive module for the LSF MoC that realizes the
selection of one of two LSF signals by a TDF control signal (multiplexer). The primitive shall contribute

Equation (6.16) to the equation system:

»@)

x,(t) ctrl= false
x,(t) ctrl=true

where ¢

The cla

6.1.19

namespg
names
cly

{

jops!

E

S|

E

typed

} // nd

6.1.19

virtual]

The me

trl 1s the TDF control signal, x(¢) and x,(¢) are the LSF input signals, and y(¢) 1s the LSF outpu
ss sca_lsf::sca_tdf mux shall be defined as an alias for class sca_lsf::sca_tdf::sca_mux.

2 Class definition

ce sca_lsf {

pace sca_tdf {

ss sca_mux : public sca_lsf::sca_module
olic:

ca_lsf::sca_in x1; // LSF inputs

ca_lsf::sca_in x2;

ca_1sf::sca_out y; // LSF output

:|:sca_tdf: :sca_in<bool> ctrl; // TDF control inpuh

lirtual const char* kind() const;

kplicit sca_mux( sc_core::sc_module_ name<)
ox1( "x1" ), x2( "x2" ), y( "y" ), Crl( "ctrl" )
implementation-defined }

amespace sca_tdf
ef sca_lsf::sca_tdf::sca mux sca_tdf mux;

mespace sca_lsf

3 kind

const_char* kind() const;

mber function kind shall return the string “sca_Isf::sca_tdf::sca_mux”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

(6.16)

signal.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021
- 126 - IEEE Std 16

6.1.20 sca_lsf::sca_tdf::sca_demux, sca_lIsf::sca_tdf _demux

6.1.20.1 Description

© IEC 2021
66.1™-2016

The class sca_lsf::sca_tdf::sca_demux shall implement a primitive module for the LSF MoC that realizes
the routing of an LSF input signal to either one of two LSF output signals controlled by a TDF signal
(demultiplexer). The primitive shall contribute Equation (6.17) and Equation (6.18) to the equation system:

x(t) ctrl= false

VI (0= { 0 ctrl=true

A
where ¢trl is the TDF control signal, x(¢) is the LSF input signal, and y;(¢) and y,(f) are the IcSF.6utput
The class sca_lsf::sca_tdf demux shall be defined as an alias for class sca_lsf::scatdf::sca_demux]

6.1.20|2 Class definition

namespagjce sca_lsf {
namesjpace sca_tdf {

class sca _demux : public sca_lsf::sca_module

{

bi
} // lhamespace sca_tdf
typedef sca_lsf::sca_tdf::sca _demux sca_tdf demux;

} // ndmespace scal LsF

6.1.20(3 kind

puplic:

(6.17)

] 1
Cirt— Jdise

h= {x(l‘) ctrl =true

sica_lsf::sca_in x; // LSF input

sica_lsf::sca _out yl; // LSF outputs
sica_lsf::sca_out y2;

:|:sca_tdf::sca_in<bool> ctrl; // TDF cont¥ol input
vliirtual const char* kind() const;
explicit sca_demux( sc_core: :sc_module_name )

sox( "x" ), yl( "yl ), y24NyZ" ), ctrl( "ctrl" )
{| implementation-defined }

(6.18)

signals.

virtual CTONST Cnar™ Rind(T Const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_demux”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -127 -

6.1.21 sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain
6.1.21.1 Description

The class sca_lIsf::sca_de::sca_gain shall implement a primitive module for the LSF MoC that realizes the
scaled multiplication of a discrete-event input signal by an LSF input signal. The primitive shall contribute

Equation (6.19) to the equation system:
W)= scale-inp-x(t) (6.19)

where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as a

discretg=timme bigllal, X(7) stheESF iupul. bigllal, audyu) s theESF output biguai.
The cldss sca_Isf::sca_de_gain shall be defined as an alias for class sca_Isf::sca_de::sca_gainl

6.1.21]2 Class definition

namespagjce sca_lsf {
namesjpace sca_de {

class sca_gain : public sca_lsf::sca_module
{
puplic:

sc_core: :sc_in<double> inp; // discrete-event input

sica_lsf::sca_in x; // LSF input

sica_lsf::sca out y; // LSF output

slca_core: :sca_parameter<double> scale; // scalg\coefficient

vliirtual const char* kind() const;

ekplicit sca_gain( sc_core::sc_module_name, double scale = 1.0 )

: inp( "inp" ), x( "x" ), y( "y" )g\scale( "scale", scale )

{| implementation-defined }

} // lhamespace sca_de

typedef sca_lsf::sca_de::scaygain sca_de gain;

} // ndmespace sca_lsf

6.1.21{3 kind

virtual] const “Char* kind () const;

The mdmber function kind shall return the ering “sca _lsf::sca _de::sca gnin”

6.1.22 sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source

6.1.22.1 Description

The class sca_lsf::sca_de::sca_source shall implement a primitive module for the LSF MoC that realizes the
scaled conversion of a discrete-event input signal to an LSF signal. The primitive shall contribute Equation

(6.20) to the equation system:

W)= scale-inp (6.20)

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-128 - IEEE Std 1666.1™-2016

where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as
a discrete-time signal, and y(7) is the LSF output signal.

The class sca_Isf::sca_de_source shall be defined as an alias for class sca_lsf::sca_de::sca_source.

6.1.22.2 Class definition

namespace sca_lsf {
namespace sca_de {

class sca_source : public sca_lsf::sca_module

{

puplic:
gc_core: :sc_in<double> inp; // discrete-event input

sca_lsf::sca _out y; // LSF output

sjca_core: :sca_parameter<double> scale; // scale coefficient
virtual const char* kind() const;

ekplicit sca_source( sc_core::sc_module_name, double scale = 1.0 )
: inp( "inp" ), y( "y" ), scale( "scale", scale )

{| implementation-defined }

} // |lhamespace sca de

typedef sca 1lsf::sca de::sca source sca de source;

} // ndmespace sca_lsf

6.1.22{3 kind

virtual] const char* kind() const;

The mgmber function kind shall return the'string “sca_lsf::sca_de::sca_source”.
6.1.23|sca_lsf::sca_de::sca_sink;'sca_lsf::sca_de_sink

6.1.23|1 Description

The claps sca_lsf::sca_de::sca_sink shall implement a primitive module for the LSF MoC that realizes & scaled
convergion from an L SF signal to a discrete-event signal. The value of the LSF input signal x(¢) shall b¢ scaled

with cdefficient scale and written to the discrete-event output port outp.

The class sca_Isf::sca_de_sink shall be defined as an alias for class sca_lsf::sca_de::sca_sink.

6.1.23.2 Class definition

namespace sca_lsf {
namespace sca_de {
class sca_sink : public sca_lsf::sca_module
{
public:
sca_lsf::sca in x; // LSF input

sc_core::sc_out<double> outp; // discrete-event output

sca_core::sca_parameter<double> scale; // scale coefficient

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -129 -

virtual const char* kind() const;
explicit sca_sink( sc_core::sc_module_name, double scale = 1.0 )
: x("x" ), outp( "outp" ), scale( "scale", scale )
{ implementation-defined }
bi
} // namespace sca de

typedef sca_lsf::sca_de::sca_sink sca_de_sink;

} // namespace sca_lsf

6.1.23.3 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “sca_lsf::sca_de::sca_sink”.
6.1.24|sca_lsf::sca_de::sca_mux, sca _lIsf::sca_de_mux
6.1.24|1 Description

The clgss sca_lIsf::sca_de::sca_mux shall implement a primitive module for the LSF MoC that realjzes the
selectign of one of two LSF signals by a discrete-event control signal (multiplexer). The primitiye shall
contribjite Equation (6.21) to the equation system:

x,(t) ctrl= false

- (6.21)
xy(t) ctrl=true

Wt

where dtrl is the discrete-event control signal, x(f) and x5(¢) are the LSF input signals, and y(¢) is the LSK output
signal.

The cldss sca_Isf::sca_de_mux shall be defined as an alias for class sca_lsf::sca_de::sca_mux.

6.1.24]2 Class definition

namespajce sca_lsf {
namesjpace sca_de {

class sca mux : Public sca_lsf::sca_module
{
puplic:

sica_lsf;:sca in x1; // LSF inputs
sjca_1s¥f:sca_in x2;

sicay 1€f: :sca_out y; // LSF output

sc_core: :sc_in<bool> ctrl; // discrete-event control
virtual const char* kind() const;
explicit sca_mux( sc_core::sc_module name )
cox1( "x1" ), x2( "x2" ), y( "y" ), ctrl( "ctrl" )
{ implementation-defined }
i
} // namespace sca_de

typedef sca_ lsf::sca_de::sca_mux sca_de mux;

} // namespace sca lsf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-130 - IEEE Std 1666.1™-2016

6.1.24.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_mux”.

6.1.25 sca_lIsf::sca_de::sca_demux, sca_lsf::sca_de_demux

6.1.25.1 Description

The class sca_lsf::sca_de::sca_demux shall implement a primitive module for the LSF MoC that realizes the

routing| of an LSF input signal to either one of two LSF output signals controlled by a discrete-even} signal
(demulfiplexer). The primitive shall contribute Equation (6.22) and Equation (6.23) to the equatién syjstem:

- {x(t) ctrl = false (6.22)

Y1 ( 0 ctrl=true

(6.23)

0 ctrl= false
y,(P=

x(t) ctrl=true

where ¢#r/ is the discrete-event control signal, x(7) is the LSF input signal,.and y;(¢) and y,(f) are the LSH output
signals

The cldss sca_Isf::sca_de_demux shall be defined as an alias for class sca_lsf::sca_de::sca_demux.

6.1.25|2 Class definition

namespalce sca_lsf {
namesjpace sca_de {

clalss sca_demux : public sca_lsf::scaimodule

{
puplic:
sica_1sf::sca_in x; // LSF(input

sica_1sf::sca_out yl; //WLSF outputs
slca_1lsf::sca_out y2;

sic_core: :sc_in<bodl>)ctrl; // discrete-event control
viirtual consteoliar* kind() const;
explicit sca/demux( sc_core::sc_module name )

sox (M), yl( "yl ), y2( "y2" ), ctrl( "ctrl" )

{| implementation-defined }

}i

} // namespace sca_de
typedef sca_lsf::sca_de::sca_demux sca_de demux;

} // namespace sca 1sf

6.1.25.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_demux”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -131-

6.2 Hierarchical composition and port binding

The hierarchical composition of LSF modules shall use modules derived from class sc_core::sc_module and
the constructor or its equivalent macro definitions. A hierarchical module can include modules and ports of
different models of computation. Port binding rules shall follow IEEE Std 1666-2011 as well as the following
specific rules:

a) A port of class sca_Isf::sca_in shall only be bound to a primitive channel of class sca_lsf::sca_signal
or to a port of class sca_lsf::sca_in or sca_lsf::sca_out of the parent module.

b) A portofclasssca_Isf::sca_out shall only be bound to a primitive channel of class sca_Isf::sca_signal
or to port of class sca_lsf::sca_out of the parent module.

¢) [ApOrTof Class sca_ISfisca_im of sca_Istiisca_out shatt be bound 1o exactly one primitive cignnel of
class sca_lsf::sca:signal throughout the whole hierarchy.

d) |[A primitive channel of class sca_lsf::sca_signal shall have exactly one primitive) port ¢f class
sca_lsf::sca_out bound to it and may have one or more primitive ports of class scaJsf::sca_in bound
to it throughout the whole hierarchy.

Predefiped LSF primitive modules using ports of other models of computation shall follow the port pinding
rules of the corresponding models of computation.

6.3 Elpboration and simulation

An implementation of the LSF MoC in a SystemC AMS class library shall include a public shell consisting of
the preglefined classes, functions, and so forth that can be used directly by an application. An implemgntation
shall also include an LSF solver that implements the functionality of the LSF class library. The underlying
semantjcs of the LSF solver are defined in this subclause:

The exg¢cution of a SystemC AMS application thatncludes LSF modules consists of elaboration follgwed by
simulafion. Elaboration results in one or more. gquation systems based on the contributions of the copnected
LSF mjodules. Simulation solves the equation systems repetitively. In addition to providing support for
elaboration and simulation, the LSF solvet.may also provide implementation-specific functionality beyond the
scope ¢f this standard. As an example. ot such functionality, the LSF solver may report information] on the
LSF m¢dule composition and equation setup.

6.3.1 Elaboration
The primary purpose of\LSF elaboration is to create internal data structures and equations for the LSF splver to

suppor{ the semantics-0f LSF simulation. The LSF elaboration as described in this clause and in the following
subclayses shall execute in a sc_core::sc_module::end_of elaboration callback.

The actiorystated in the following subclauses shall occur, in the given order, during LSF elaboration apd only

D e ala on ne de PH1ION O n-a on cthe on plol an > Sie A0 n asetof

LSF modules nced by chanel o cls sca_lsf::sa_ignal.

LSF elaboration shall lock the parameter values of the predefined primitive modules (see 4.2.7).

6.3.1.1 Timestep calculation and propagation

The timestep for every LSF cluster shall be derived from the timestep of a connected TDF cluster or set by
the member functions set_timestep or set max_timestep of an LSF primitive module derived from class

sca_lsf::sca_module in the corresponding LSF cluster. The timestep shall be propagated within the LSF cluster
to all primitive modules and to all ports of class sca_tdf::sca_in and sca_tdf::sca_out<T>, if any.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
-132 - IEEE Std 1666.1™-2016

It shall be an error if a timestep value is not assigned to at least one LSF module. The assigned and propagated
timestep values shall be consistent throughout the LSF cluster; otherwise, it shall be an error. It shall be an
error if the propagated timestep is equal to the time returned by function sca_core::sca_max_time.

After successful LSF elaboration, all assigned timestep values shall be overridden by the propagated timestep
values.

NOTE—An LSF cluster could be considered as one TDF module marked to accept attribute changes, which could be
connected to TDF modules in a hierarchical composition by the ports of class sca_tdf::sca_in and sca_tdf::sca_out<T> of
the predefined LSF primitive modules. In this case, the LSF cluster is included in the timestep calculation of the TDF cluster
and needs to comply with the same rules (see 5.3.1.2).

6.3.1.4 Equation system setup and solvability check

For eadh LSF cluster, an equation system shall be set up by combining:
— [the contributing equations of each of the predefined LSF primitive modules in the cluster.

— [the equations implied by the connected ports of class sca_Isf::sca_in and sca_dsfiisca_out that pxpress
the equality of the values conveyed by the ports.

it shall jpe an error if any of the equation systems is numerically singular.
6.3.2 $imulation

This supclause defines the process of time-domain simulation of 2SF descriptions. The simulation of g cluster
of LSF|modules is done by a repetitive solving of the underlying equation systems.

6.3.2.1 Initialization

For eagh LSF cluster:
— Jall LSF signals and states shall be set to-zero.

— [for all LSF signals consistent initial conditions shall be calculated in agreement with th¢ initial
conditions set by the predefined primitives.

6.3.2.4 Time-domain simulation
The solver shall at least provide results at the calculated timestep distances. If the current calculation tjmestep
is sc_cgre::SC_ZERQ, TIME, the time and the state of the equation system shall be restored to the time and

state bgfore the last'ealculation and the calculation shall be repeated on the new input values.

6.3.2.3 Synchronization with TDF MoC

Synchrpnization with the TDF MoC shall be done exclusively by using the predefined LSF primitive mhodules
containing ports of class sca_tdf::sca_in and sca_tdf::sca_out.

The LSF solver reads repetitively samples from ports of class sca_tdf::sca_in for all calculated timesteps of
the LSF cluster. Consecutive reads shall be interpreted as forming a continuous-time signal.

The LSF solver writes repetitively samples to ports of class sca_tdf::sca_out for all calculated timesteps of
the LSF cluster.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 133 -

6.3.2.4 Synchronization with the SystemC kernel

Synchronization with the SystemC kernel shall be done exclusively by using the predefined LSF primitive
modules containing ports of class sc_core::sc_in and sc_core::sc_out.

The LSF solver reads repetitively values from ports of class s¢_core::sc_in at each first delta cycle of the
corresponding SystemC time for all calculated timesteps of the LSF cluster. The value is assumed as constant
until the next value is read.

The LSF solver writes repetitively values to ports of class sc_core::sc_out at each first delta cycle of the
corresponding SystemC time for all calculated timesteps of the LSF cluster.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 134 - IEEE Std 1666.1™-2016

7. Electrical linear networks model of computation

The ELN model of computation shall define the behavior of conservative continuous-time systems consisting
of linear networks based on electrical primitives. The resulting differential and algebraic equation system,
which is determined by the set of connected predefined ELN primitive modules, shall be solved during
simulation. The mathematical relation defined in each ELN primitive module shall contribute to this overall
equation system. The predefined ELN primitive modules shall serve as a basic set of electrical linear network
primitives as defined in this clause.

For ELN primitive modules with exactly two terminals, the voltage across the primitive is defined in volt and
the current through the primitive is defined in ampere.

Curren

tracing for ELN primitive modules shall be supported for at least the primitives having two te

rminals

as defifjed in this clause. The current, which is traced, is defined as the current in ampere flowingthrough the

ELN piimitive from terminal p to terminal 7.

Voltag

b tracing shall be supported by the primitive channels of class sca)eln::sca node and

sca_elij::sca_node_ref. The voltage, which is traced, is defined as the voltage in\wolt across the electrical

node o

of clasq sca_eln::sca_node_ref.
An imgjlementation may support current tracing of ELN primitive modulgés with more than two termir]

All ELN primitive modules, which support current (fracing, shall be derived from
sca_util: :scaitraceableiobjectf.

7.1Cl

All names used in the ELN class definitions shallbe placed in the namespace sca_eln.
7.1.1 4ca_eln::sca_module
7.1.1.1 Description

The clafss sca_eln::sca_module'shall define the base class for all ELN primitive modules. An applicati

not der|
clauses|

7.1.1.7

namespdag

class

{
publ

[ class sca_eln::sca_node or sca_eln::sca_node_ref and the corresponding electrical referen

lass definitions

ve from this class-directly, but shall use the predefined primitive modules as defined in the fo

Class definition

ce{sca”eln {

e node

als.

class

bn shall
lowing

sca_module : public sca_core::sca_module

ic:

virtual const char* kind() const;

prot

ected:

sca_module () ;
virtual ~sca_module () ;

}i

} // namespace sca_eln

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 135 -

7.1.2 sca_eln::sca_node_if
7.1.2.1 Description

The class sca_eln::sca_node_if shall define an interface proper for the primitive channels of class
sca_eln::sca_node and sca_eln::sca_node_ref. The interface class member functions are implementation-
defined.

7.1.2.2 Class definition

namespace sca_eln {

class| sca_node_if : public sca_core::sca_interface
{
protlected:

scal node_if();

privipte:
// |other members
imglementation-defined

// |pisabled
scal node_if ( const sca_eln::sca_node ifs );

scal eln::sca_node ifs& operator= ( const sca_eln::sca _node_ifs );
i

} // ndmespace sca_eln

7.1.3 4ca_eln::sca_terminal
7.1.3.1 Description
The cldss sca_eln::sca_terminal shall define a port.class for the ELN MoC.

7.1.3.4 Class definition

namespajce sca_eln {

class| sca_terminal : public sca_'core::sca_port< sca eln::sca_node_if >
{
publfic:

sca_terminal();

expllicit sca_termindl (,Const char* name );

virftual const ch@rX ‘'kind() const;

privipte:
// |other memb&rs
imglemedtatv on-defined

// IDhsabled
sca TEPMIRAI( CONST SCa_EINTISCE TETMInals T
}i

} // namespace sca_eln

7.1.3.3 Constructors

sca_terminal () ;

explicit sca_terminal ( const char* name_ );

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 136 - IEEE Std 1666.1™-2016

The constructor for class sca_eln::sca_terminal shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_core::sca_port to set the string name of the
instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_eln_terminal”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class

sca_core::sca_port.

7.1.3.4 kind

virtual const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca_terminal”.
7.1.4 4ca_eln::sca_node
7.1.4.1 Description

The class sca_eln::sca_node shall define a primitive channel for the ELN MoC=1t shall be used for connecting
ELN ptimitive modules using ports of class sca_eln::sca_terminal. The primitive channel shall reprgsent an
electrical node. An application shall not access the associated interface directly.

7.1.4.4 Class definition

namespalce sca_eln {

class| sca_node : public sca_eln::sca_node_if,
public sca_core::sca prim channel
{
publlic:

scal node () ;

explicit sca_node( const char* name );

virftual const char* kind() const;
privipte:

// |Pisabled

sca_node( const sca_gln::sca_pode& ) 8

bi

} // ndmespace sca_eln

7.1.4.3 Construciors

sca_node () ;

explicift\sed node( const char* name );

The constructor for class sca_eln::sca_node shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_prim_channel to set the string name of
the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen unique name(“sca_eln_node”) to generate

a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_prim_channel.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 137 -

7.1.4.4 kind

virtual

const char* kind() const;

The member function kind shall return the string “sca_eln::sca_node”.

7.1.5 sca_eln::sca_node_ref

7.1.5.1 Description

The class sca_eln::sca_node_ref shall define a primitive channel for the ELN MoC. It shall be used for

connec
represc
access

7.1.5.2

namespdg
class
{

publl
sc3
exp
viy
priv

//
sca)

bi

} // ng

7.1.5.3

sca_nod

explici

The co
exists)
name oj

The de

ing ELN primitive modules using ports of class sca_eln::sca_terminal. The primitive chann
nt an electrical reference node, a node which holds a voltage of zero volt. An application s
he associated interface directly.

Class definition

ce sca_eln {

sca_node_ref : public sca_eln::sca_node_if,
public sca_core::sca_prim_ channel

ic:

| node_ref () ;

licit sca_node_ref ( const char* name );
[tual const char* kind () const;

ate:

IDisabled
_node_ref( const sca_gln::sca_pode_ref& )8

espace sca_eln

Constructors

e_ref();

[t sca_node_ref( constfehar* name );

hstructor for clags,sca_eln::sca_node_ref shall pass the character string argument (if such arf
through to the constructor belonging to the base class sca_core::sca_prim_channel to set th
f the instance in the module hierarchy.

Fault constructor shall call function sc_core::sc_gen_unique name(“sca_eln_node_ref”) to g

a uniq

el shall
hall not

cument
e string

enerate
e class

he\string name that it shall then pass through to the constructor belonging to the bas

sca_core::sca_prim_channel.

7.1.5.4 kind

virtual

const char* kind() const;

The member function kind shall return the string “sca_eln::sca_node_ref”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 138 - IEEE Std 1666.1™-2016

7.1.6 sca_eln::sca_r
7.1.6.1 Description

The class sca_eln::sca_r shall implement a primitive module for the ELN MoC that represents a resistor. The
primitive shall contribute Equation (7.1) to the equation system:

Vpu(t) = ip.u(t) value (7.1)

where value is the resistance in ohm, v, ,(f) is the voltage across the resistor between terminals p and », and
ip(t) is the current through the resistor flowing from terminal p to terminal .

7.1.6.4 Class definition

namespalce sca_eln {

classl sca_r : public sca_eln::sca_module,
public sca_ptil::scaﬁtraceableﬁobjectr
{
publfic:

scal eln::sca_terminal p;

scal eln::sca_terminal n;

sca core::sca_parameter<double> value;

virtual const char* kind() const;

explicit sca_r( sc_core::sc_module name, double value =".0 )
qpC "p" ), n( "n" ), value( "value", value )
{ implementation-defined }

}i

} // ndmespace sca_eln

7.1.6.4 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca_r”.
7.1.7 dca_eln::sca ¢
7.1.7.1 Description

The clgss sca.elnzisca_c shall implement a primitive module for the ELN MoC that represents a capacitor.
The primitive shall contribute Equation (7.2) to the equation system:

. d(value Vpaul(t)+q 0) (7.2)
ipn(t) = dt

where value is the capacitance in farad, gy is the initial charge in coulomb, v, ,(?) is the voltage across the
capacitor between terminals p and 7, and i, ,(¢) is the current through the capacitor flowing from terminal p
to terminal 7.

If the initial charge g is set to sca_util::SCA_UNDEFINED, the primitive shall contribute no equation to

the equation system for the first calculation. In this case, the initial charge g shall be calculated as follows:
qo = value - v, .9, where v, , is the voltage across the capacitor after the first calculation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 139 -

7.1.7.2 Class definition

namespace sca_eln {

class sca_c : public sca_eln::sca_module,

{

public sca_util: :sca_traceable_objectT

public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

sca_core::sca_parameter<double> value;
sca_core::sca_parameter<double> q0;

virtual const char* kind() anat .
expllicit sca_c( sc_core::sc_module name, double value = 1.0, double g0 = 0.0 )
e "p" ), n( "n" ), value( "value", value ), gqO0( "q0", g0 )

{ 1

bi

} // nd

7.1.7.3
The arg

7.1.7.4

virtuall

The md
7.1.8 S
7.1.8.1

The clg
The pri

Vp,

where
inductg
termind

nplementation-defined }
nespace sca_eln

Constraint of usage

ument value shall not be numerically zero.

kind

const char* kind() const;
mber function kind shall return the string “sca_elf::sca_c”.
ca eln::sca |

Description

ss sca_eln::sca_l shall implement a primitive module for the ELN MoC that represents an i
mitive shall contribute Equation (7.3) to the equation system:

d(value' ipn(H) . psi 0)
)= dt

alue is the'inductance in henry, psiy is the initial linked flux in weber, v, ,(¢) is the voltage ac
r between terminals p and », and i, () is the current through the inductor flowing from termi
1 n,

ductor.

(7.3)

ross the
hal p to

If the initial linked flux psiy is set to sca_util::SCA_UNDEFINED, the primitive shall contribute to the
equation system the equation v, , = 0 for the first calculation instead of Equation (7.3). In this case, the initial
linked flux psiy shall be calculated as follows: psig = value - iy, ,9, where iy 9 is the current flowing through
the inductor after the first calculation.

7.1.8.2 Class definition

namespa

class

{

ce sca_eln {

sca_l : public sca_eln::sca_module,
public sca_util: :sca_traceable_objectT

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

- 140 - IEEE Std 1666.1™-2016

public:

sca_eln::sca_terminal p;

sca_eln::sca_terminal n;

sca_core::sca_parameter<double> value;

sca_core::sca_parameter<double> psiO;

virtual const char* kind() const;

explicit sca_1( sc_core::sc_module name, double value = 1.0, double psiO_ = 0.0 )

:p("p" ), n( "n" ), value( "value", value ), psiO( "psiO", psiO_ )
{ implementation-defined }
}i

} // namespace sca_eln

7.1.8.3 Constraint of usage
The argument value shall not be numerically zero.

7.1.8.4 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca_1".
7.1.9 4ca_eln::sca_vcvs
7.1.9.1 Description

The class sca_eln::sca_vevs shall implement a primitive“module for the ELN MoC that represents a [voltage
controlled voltage source. The primitive shall contribute Equation (7.4) to the equation system:

v mn(t) = value vacp nen(t) (7.4)

where Yalue is the scale coefficient, v, uen(?) is the control voltage across terminals ncp and ncn, and pyp, ()
is the vpltage across terminals np and-ai.

7.1.9.4 Class definition

namespgjce sca_eln {

class| sca_vcvs :fpublic sca_eln::sca_module
{
publfic:
scal elnyrsca_terminal ncp;
scal eln::sca_terminal ncn;

sc dh-— ~ inal—ap

sca_eln::sca_terminal nn;
sca_core: :sca_parameter<double> value;
virtual const char* kind() const;
explicit sca_vecvs( sc_core::sc_module_name, double value = 1.0 )
: ncp( "ncp" ), ncn( "ncn" ), np( "np" ), nn( "nn" ), value( "value", value )
{ implementation-defined }

}i

} // namespace sca eln

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 141 -

7.1.9.3 kind

virtual const char* kind() const;
The member function kind shall return the string “sca_eln::sca_vevs”.

7.1.10 sca_eln::sca_vccs

7.1.10.1 Description

The class sca_eln::sca_vces shall implement a primitive module for the ELN MoC that represents a voltage

controlled current source. The primitive shall contribute Equation (7.5) to the equation system:

inp nn(t) = Value' Vncpmcn(t)

where Yalue is the scale coefficient in siemens, v,y ncn(?) is the control voltage across tetminals ncp 4
and 7, () is the current flowing through the primitive from terminal np to terminal -

7.1.10|2 Class definition

namespagjce sca_eln {
class| sca_veces : public sca_eln::sca_module
{
publfic:
scal eln::sca_terminal ncp;

scal eln::sca terminal ncn;

scal eln::sca_terminal np;
scal eln::sca_terminal nn;

sca core::sca_parameter<double> value;
virftual const char* kind() const;
expllicit sca_veces( sc_core::sc_module name, double value = 1.0

{ dmplementation-defined }
}i

} // ndmespace sca_eln

7.1.10{3 kind

virtual] const char? kind() const;

The mgmbér function kind shall return the string “sca_eln::sca_vces”.

)l ncp( "ncp" ), ncn( "nen" ), mpl "np" ), nn( "nn" ), value( "value", value )

(1.5)

nd ncn,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 142 - IEEE Std 1666.1™-2016

7.1.11 sca_eln::sca_ccvs
7.1.11.1 Description
The class sca_eln::sca_ccvs shall implement a primitive module for the ELN MoC that represents a current

controlled voltage source. The primitive shall contribute Equation (7.6) and Equation (7.7) to the equation
system:

Vnp,nn(t) = Value' incp,ncn(t) (76)

Vep,nen(t) =0 (7.7)

where yalue is the scale coefficient in ohm, 7, sen(f) is the current flowing through the primitive from'terminal
ncp to terminal ncn, vy, ua(f) is the voltage across terminals np and nn, and v,ep nen(?) is the-voltagg across
termingls ncp and nen.

7.1.11]2 Class definition

namespgjce sca_eln {
class| sca_ccvs : public sca_eln::sca_module
{
publfic:
scal eln::sca_terminal ncp;

scal eln::sca_terminal ncn;

scal eln::sca_terminal np;
scal eln::sca_terminal nn;

sca core::sca_parameter<double> value;

virftual const char* kind() const;

expllicit sca_ccvs( sc_core::sc_module_namej ~double value = 1.0 )

;] ncp( "ncp" ), ncn( "ncn" ), np( "np" ), nn( "nn" ), value( "value", value )
{ dmplementation-defined }

bi

} // ndmespace sca_eln
7.1.11)3 kind
virtual] const char* kind ()Y const;

The mgmber functipn kind shall return the string “sca_eln::sca_ccvs”.

7.1.12|seaeln::sca_cccs

7.1.12.1 Description

The class sca_eln::sca_ccces shall implement a primitive module for the ELN MoC that represents a current
controlled current source. The primitive shall contribute Equation (7.8) and Equation (7.9) to the equation
system:

inp,nn(t) = Value'incp,ncn(t) (7.8)

Vncp,ncn(f) =0 (7.9)

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 143 -

where value is the scale coefficient, iy, ncn(?) is the current flowing through the primitive from terminal ncp
to terminal ncn, iy, ,,(?) is the current flowing through the primitive from terminal 7p to terminal nn, and
Vaep,nen(t) 1s the voltage across terminals ncp and ncen.

7.1.12.2 Class definition

namespace sca_eln {

class sca_cccs : public sca_eln::sca_module
{
public:
sca_eln::sca_terminal ncp;
sca_eln: :sca_terminal ncn;

scal eln::sca_terminal np;
scal eln::sca_terminal nn;

sca core::sca_parameter<double> value;

virftual const char* kind() const;

expllicit sca_cccs( sc_core::sc_module_name, double value = 1.0 )

)l ncp( "ncp" ), ncn( "nen" ), np( "np" ), nn( "nn" ), value( "value", ygdue )
{ dmplementation-defined }

bi

} // ndmespace sca_eln

7.1.12{3 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “scaieln::sca_cces”.
7.1.13|sca_eln::sca_nullor
7.1.13|1 Description

The class sca_eln::sca_nullor shall imiplement a primitive module for the ELN MoC that represents 4 nullor.
The primitive shall contribute Equation (7.10) and Equation (7.11) to the equation system:

Vnij ,m'n(t) =0 (7.10)
inip,nin(t)z 0 (7.11)

where b nin(2).1s the voltage across terminals nip and nin, and i,;, »is(f) is the current flowing thropgh the
primitiye from terminal nip to terminal nin.

NOTE—A nullor (a nullator - norator pair) corresponds to an ideal operational amplifier (an amplifier with an infinite gain).

7.1.13.2 Class definition

namespace sca_eln {

class sca_nullor : public sca_eln::sca_module
{
public:
sca_eln::sca_terminal nip;
sca_eln::sca_terminal nin;

sca_eln::sca_terminal nop;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 144 - IEEE Std 1666.1™-2016

sca_eln::sca_terminal non;
virtual const char* kind() const;
explicit sca_nullor( sc_core::sc_module_name )
: nip( "nip" ), nin( "nin" ), nop( "nop" ), non( "non" )
{ implementation-defined }

bi

} // namespace sca_eln

7.1.13.3 kind

virtual const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca_nullor”.
7.1.14|sca_eln::sca_gyrator
7.1.14]1 Description

The claks sca_eln::sca_gyrator shall implement a primitive module for the ELN MoC that represents a gyrator.
The primitive shall contribute Equation (7.12) and Equation (7.13) to the equation system:

ip 1) = g, vp o1 (7.12)
ip () ==& ;' vp n(t) (7.13)

where g; and g, are the gyration conductances in siemefis, v,, ,,(?) is the voltage across terminals p;jand 7,,
vp,n,(f)|1s the voltage across terminals p; and ny, i,, ,(?) is the current flowing through the primitiye from
termingl p; to terminal n;, and iy, ,,,(?) is the currenf flowing through the primitive from terminal p; to terminal
np.

7.1.14|2 Class definition

namespalce sca_eln {

class| sca_gyrator : publicisea_eln::sca module
{
publfic:
scal eln::sca_terminal pl;
scal eln::sca_texminal nl;

scal eln::sca, terminal p2;
scal eln::seasterminal n2;

sca core; :sca_parameter<double> gl;
sca core::sca parameter<double> g2;

virtual const char* kind() const;
explicit sca_gyrator( sc_core::sc_module name, double gl = 1.0, double g2 = 1.0 )
:pl( "pl" ), nl( "nl" ), p2( "p2" ), n2( "n2" ), gl( "g1", g1 ), g2( "g2", g2 )
{ implementation-defined }
}i

} // namespace sca eln

7.1.14.3 kind

virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 — 145 -

The member function kind shall return the string “sca_eln::sca_gyrator”.

7.1.15

sca_eln::sca_ideal_transformer

7.1.15.1 Description

The class sca_eln::sca_ideal transformer shall implement a primitive module for the ELN MoC that
represents an ideal transformer. The primitive shall contribute Equation (7.14) and Equation (7.15) to the

equatio

n system:

Vpl,n,(l) = VatiO'VpZ,nz(t)

(7.14)

ip,]

where 71
across 1
and ip,

7.1.15

namespdg
class

{
publf
sc3
sca

sca
sca

sca
viy]
exp

{ 3

}i
} // nd
7.1.15

virtual]

The md

(1) = ratio*ip ,n/(t)

atio is the transformation ratio, v,, () is the voltage across terminals p, and 1, v, f,(#) is the
erminals p; and ny, ip, ,,(?) is the current flowing through the primitive from termindl p; to term
,(?) is the current flowing through the primitive from terminal p; to terminal 7:

2 Class definition

ce sca_eln {

sca_ideal_transformer : public sca_eln::sca_module
ic:

| eln::sca_terminal pl;

| eln::sca_terminal nl;

| eln::sca_terminal p2;
_eln::sca_terminal n2;

| core::sca_parameter<double> ratio;
[tual const char* kind() const;

Licit sca_ideal_transformer ( scy¢ore::sc_module name, double ratio = 1.0 )
)

dpl( "pl" ), nl( "nl" ), p2(s"P2™ ), n2( "n2" ), ratio( "ratio", ratio_

Implementation-defined }
Imespace sca eln
3 kind

const cHar% 'kind () const;

mber function kind shall return the string “sca_eln::sca_ideal_transformer”.

(7.15)

voltage
inal ny,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
— 146 - IEEE Std 1666.1™-2016

7.1.16 sca_eln::sca_transmission_line
7.1.16.1 Description
The class sca_eln::sca_transmission_line shall implement a primitive module for the ELN MoC that

represents a transmission line. The primitive shall contribute Equation (7.16) and Equation (7.17) to the
equation system:

2yl b (1) t<delay
o (7.16)
00 Ld@lmo'de’“y(vaz,bz(r — delay)+ 2’ iq,p (1 ~ delay)) + zy'iq p (1) 1> delay
2y, p0) t<delay
L (7.17)
wp ) {edelm”'dezay("apbxt —delay)+zyiq,p (t —delay )) T2y layp 1) t2delay

where g is the characteristic impedance of the transmission line in ohm, delay is thetransmission delay in
second$ and deltay is the dissipation factor in 1/seconds. v, p,(?) is the voltage acréss terminals a; fand b,
Va, b,(t)| is the voltage across terminals a, and b, iy, p,(?) is the current flowing through the primitiye from
termingl a; to terminal b, and iy, 5,(?) is the current flowing through the primitive from terminal a; to tprminal
b.

7.1.16|2 Class definition

namespalce sca_eln {

class| sca_transmission line : public sca_eln::sca_module
{
publfic:
scal eln::sca_terminal al;
scal eln::sca_terminal bl;

scal eln::sca_terminal a2;
scal eln::sca_terminal b2;

sca core::sca_parameter<double> .z(07
scal core::sca_parameter<sca_ core;isca_time> delay;
scal core::sca_parameter<doublex>/deltal;

virftual const char* kinds)\eonst;

expllicit sca_transmiSsion_line( sc_core::sc_module_name,

double z0_ = 100.0,
const sca_core::sca_times& delay = sc_core::SC_ZERO TIME,
double delta0 = 0.0 )

) al( "al"( )y bl ( "b1l" ),
a2 ( "a2Ww, b2( "b2" ),
z0 (™z®', z0_ ),

dglay "delay", delay ),
8elfal ( "deltal", deltal )
{ Ymptememtatiomr—detimed—

}i

} // namespace sca_eln

7.1.16.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_transmission_line”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 — 147 -

7.1.17

7.1.17.

sca_eln::sca_vsource

1 Description

The class sca_eln::sca_vsource shall implement a primitive module for the ELN MoC that realizes a voltage
source. In time-domain simulation, the primitive shall contribute Equation (7.18) to the equation system:

Vp,n(t) =

init_value t<delay
offset + amplitude-sin(2x- frequency-(t — delay)+ phase) t>delay

(7.18)

where ¢ is the time in seconds, delay is the initial delay in seconds, init_value is the inital voltage in volt, offset

is the d
hertz, p

In smal]
system

Vp,

where f
is the s

In sma]l-signal frequency-domain noise simulation, the primitive\shall contribute Equation (7.20

equatio

Vp,
where f

7.1.17

namespd|
class

{
publ}
scal
scal

sca
sca
sca
sca
sca
sca

TIset voltage 1n volt, amplitude is the source amplitude 1 Volt, jrequency 1s the source irequ
hase is the source phase in radians, and v, ,(¢) is the output voltage across terminals p and 7.

l-signal frequency-domain simulation, the primitive shall contribute Equation (7.19) t6 the ¢

(f)=ac_ampl itude-{cos(ac ' phase)+ j-sin(ac _phase)}

is the simulation frequency in hertz, ac_amplitude is the small-signal/amplitude in volt, and ad
mall-signal phase in radian.

n system:
(f)=ac_noise_amplitude
is the simulation frequency in hertz, and ac_ngise amplitude is the small-signal noise amplitude

2 Class definition

ce sca_eln {

sca_vsource : public sca_eln::sca_module,
public sca_util::scaﬁtraceableﬁobjectT

e
| eln::sca_terminal” py
| eln::sca_terminal.hn;

| core::sca parameter<double> init_value;

| core::sca_parameter<double> offset;

| core:  sea-parameter<double> amplitude;

| core™: sca_parameter<double> frequency;

| corewr'sca_parameter<double> phase;

| coxre: :sca parameter<sca_core::sca_time> delay;

ency in

guation

(7.19)

' phase

to the

(7.20)

in volt.

sca_CTOre’ 'SCa_parameterdouples ac_amplitude;

sca_core::sca_parameter<double> ac_phase;

sca

vir

exp

_core::sca_parameter<double> ac _noise_amplitude;

tual const char* kind() const;

licit sca_vsource ( sc_core::sc_module_pame,

double init value = 0.0,

double offset_ = 0.0,

double amplitude = 0.0,

double frequency = 0.0,

double phase = 0.0,

const sca_core::sca_times& delay = sc_core::SC_ZERO_TIME,
double ac amplitude = 0.0,

double ac phase = 0.0,

double ac noise amplitude = 0.0 )

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

—148 - IEEE Std 1666.1™-2016

3 ® T Do

n( "n" ),

init_value( "init value", init value ),

offset ( "offset", offset ),

amplitude( "amplitude", amplitude ),

frequency( "frequency", frequency ),

phase ( "phase", phase ),

delay( "delay", delay ),

ac_amplitude( "ac_amplitude", ac amplitude ),

ac_phase( "ac_phase", ac phase ),

ac_noise amplitude( "ac_noise amplitude", ac noise amplitude

{ implementation-defined }
bi

} // namespace sca_eln

7.1.17{3 kind

virtuall const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca_vsource”.
7.1.18|sca_eln::sca_isource
7.1.18|1 Description

The cldss sca_eln::sca_isource shall implement a primitive module/for the ELN MoC that realizes acurrent
source.|In time-domain simulation, the primitive shall contribute‘Equation (7.21) to the equation systgm:

) B init_value t<delay (7.21)
ipA(D)= offset + amplitude - sin(2z- frequency-(t =delay)+ phase) t>delay .

where 1 is the time in seconds, delay is the initiakdelay in seconds, init_value is the initial current in gmpere,
offset i§ the offset current in ampere, amplitude is the source amplitude in ampere, frequency is thel source
frequerfcy in hertz, phase is the source phas€ in radians, and i, ,() is the output current through the pfimitive
from teyminal p to terminal 7.

In small-signal frequency-domain simulation, the primitive shall contribute Equation (7.22) to the efuation
system

ip\(f) = ac_ampi ifirde{cos(ac_phase)+ j-sin(ac_phase)} (7.22)

where f'is the simulation frequency, ac_amplitude is the small-signal amplitude in ampere, and ac_phase is
the smgll-signal phase in radian.

I all 3 1 £ | . . M lo4s 4+la . 1da Jooll 4gacloa st I 4a Via MaTle] t th
n sma 1-5151“11 uu\.iu\,u\,_y-uuulalu ITUISL  SHITUIAUIVUILL, - UIv PlllllJLlVb SlIall LUl ioute J_lguauuu \/.=J) (0] c

equation system:
ipn(f) = ac_noise_amplitude (7.23)
where f'is the simulation frequency, and ac_noise_amplitude is the small-signal noise amplitude in ampere.

7.1.18.2 Class definition

namespace sca_eln {

class sca_isource : public sca_eln::sca_module,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 — 149 -

public sca_util: :sca_t.raceable_objectT
{
public:
sca_eln::sca_terminal p;
sca_eln: 8 sca_terminal n;

sca_core::sca_parameter<double> init value;
sca_core::sca_parameter<double> offset;
sca_core::sca_parameter<double> amplitude;
sca_core::sca_parameter<double> frequency;
sca_core:: sca_parameter<double> phase;
sca_core::sca_parameter<sca core::sca_time> delay;
sca_core::sca_parameter<double> ac_amplitude;
sca_core: :sca_parameter<double> ac phase;

sca_core: :sca_parameter<double> ac_noise_amplitude;

virtual const char* kind() const;

explicit sca_isource( sc_core::sc_module name,

double init value 0,
double offset = 0.0,
double amplitude = 0.0,
double frequency = 0.0,
double phase = 0.0,
const sca_core::sca_times& delay = sc_core::SC_ZERO_TIME;
double ac amplitude = 0.0,
double ac phase = 0.0,
double ac noise amplitude = 0.0 )
e "p" ),
n( "n" ),
init_value( "init value", init value ),
offset ( "offset", offset ),
amplitude( "amplitude", amplitude ),
frequency( "frequency", frequency ),
phase ( "phase", phase ),
delay( "delay", delay ),
ac_amplitude( "ac_amplitude", ac amplitude ),
ac_phase ( "ac_phase", ac phase ),
ac_noise amplitude( "ac noise amplitude", ac\nvise amplitude )

{ implementation-defined }
bi

} // ndmespace sca_eln

7.1.18|3 kind

virtuall const char* kind() coast;

The mgmber function kind shall return the string “sca_eln::sca_isource”.
7.1.19|sca_eln{sca_tdf::sca_r, sca_eln::sca_tdf r

7.1.19]1 Description

The class sca_eln::sca_tdf::sca_r shall implement a primitive module for the ELN MoC that represents a
resistor, which resistance is controlled by a TDF input signal. The primitive shall contribute Equation (7.24)
to the equation system:

Vpn(t) = scale-inp-ip n(t) (7.24)
where scale is the constant scale coefficient, inp is the TDF input signal, v, ,(¢) is the voltage across terminals
p and n, and i, ,(£) is the current flowing through the primitive from terminal p to terminal n. The product of

scale and inp shall be interpreted as the resistance in ohm.

The class sca_eln::sca_tdf r shall be defined as an alias for class sca_eln::sca_tdf::sca_r.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 150 - IEEE Std 1666.1™-2016

7.1.19.2 Class definition

namespace sca_eln {
namespace sca_tdf {

class sca_r : public sca_eln::sca_module,
public sca_util: :scaﬁtraceableﬁobjectT
{
public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

::sca_tdf::sca_in<double> inp;

sica_core: :sca_parameter<double> scale;
vliirtual const char* kind() const;
ekplicit sca_r( sc_core::sc_module name, double scale = 1.0 )
:p( "p" ), n( "n" ), inp( "inp" ), scale( "scale", scale )
{| implementation-defined }

bi
} // lhamespace sca_tdf

typedef sca_eln::sca_tdf::sca_r sca_tdf r;

} // ndmespace sca_eln

7.1.19{3 kind

virtual] const char* kind() const;

The mgmber function kind shall return the string “sca>eln::sca_tdf::sca_r”.
7.1.20|sca_eln::sca_tdf::sca_c, sca_eln:isca tdf c

7.1.20]1 Description

The clgss sca_eln::sca_tdf::sca_c'shall implement a primitive module for the ELN MoC that repr¢sents a

capacitpr, which capacitance is ¢ontrolled by a TDF input signal. The primitive shall contribute Equation (7.25)
to the gquation system:

. d(scale'inp'vp,n(t)+ qo) (7.25)
ipf()= dt

where jcale\isithe constant scale coefficient, inp is the TDF input signal, g, is the initial charge in cqulomb,
vpa(?) I'the’voltage across terminals p and n, and i, ,(?) is the current flowing through the primitiye from
terminal p to terminal n. The product of scale and inp shall be interpreted as the capacitance in farad.

If the initial charge g is set to sca_util::SCA_UNDEFINED, the primitive shall contribute no equation to
the equation system for the first calculation. In this case, the initial charge ¢ shall be calculated as follows:
qo = scale - inp - v, n9, where v, ;9 is the voltage across the capacitor after the first calculation.

The class sca_eln::sca_tdf c shall be defined as an alias for class sca_eln::sca_tdf::sca_c.

7.1.20.2 Class definition

namespace sca_eln {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 151 -

names

cla

{
pu
s
s

s
S

pace sca_tdf {

ss sca_c : public sca_eln::sca_module,
public sca_util::scaﬁtraceableﬁobjectr

blic:
ca_eln::sca_terminal p;
ca_eln::sca_terminal n;

:sca_tdf::sca_in<double> inp;

ca_core::sca_parameter<double> scale;
ca_core::sca_parameter<double> q0;

virtual const char* kind() const;

=

{

y
typed

} // ng

7.1.20

The TO

7.1.20

virtuall

The mg
7.1.21
7.1.21
The clg

inductg
to the ¢

Vp,

kplicit sca_c( sc_core::sc_module_name, double scale = 1.0, double g0 = 0.0 )
:p( "p" ), n( "n" ), inp( "inp" ), scale( "scale", scale ), gO0( "g0", qO0_
implementation-defined }

amespace sca_tdf
ef sca_eln::sca_tdf::sca_c sca_tdf c;

mespace sca_eln

3 Constraint of usage
F input signal inp shall not be zero.

4 kind

const char* kind() const;

mber function kind shall return the string“sca_eln::sca_tdf::sca_c”.

sca_eln::sca tdf::sca |, sca, e::sca_tdf |

1 Description

ss sca_eln::sca_tdf::§ca 1 shall implement a primitive module for the ELN MoC that repres

quation systems

d(scale'inpip,n(t) + psi0>
0): dt

where s

Joca 4lo 4 4 1 £ 0 VR b ) TN . VR 1 : el qaastacol 1o 4 £1 -
CUuit 15 Ulv CULISLAlIt SLalL CULILLIVIUIIL, l"/}/ IS UIC 111 llllJul, 01511(11, IJQ L) 15 UIC HIIUIAl TIHIINCU TTUA 1L

ents an

r, which inductange is-controlled by a TDF input signal. The primitive shall contribute Equation (7.26)

(7.26)

weber,

Vp,n(f) is the voltage across terminals p and n, and i, ,(¢) is the current flowing through the primitive from
terminal p to terminal n. The product of scale and inp shall be interpreted as the inductance in henry.

If the initial linked flux psiy is set to sca_util::SCA_UNDEFINED, the primitive shall contribute to the
equation system the equation v, , = 0 for the first calculation instead of Equation (7.26). In this case, the initial
linked flux psiy shall be calculated as follows: psip = scale - inp - iy, 9, Where iy, 9 is the current flowing through
the inductor after the first calculation.

The class sca_eln::sca_tdf 1 shall be defined as an alias for class sca_eln::sca_tdf::sca_l.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 152 - IEEE Std 1666.1™-2016

7.1.21.2 Class definition

namespace sca_eln {
namespace sca_tdf {

class sca_l : public sca_eln::sca_module,
public sca_util: :scaﬁtraceableﬁobjectT
{
public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

::sca_tdf::sca_in<double> inp;

sica_core: :sca_parameter<double> scale;
slca_core: :sca_parameter<double> psiO;

vlirtual const char* kind() const;
explicit sca_1( sc_core::sc_module name, double scale = 1.0, double psiO_ = 0p0¢)
:p( "p" ), n( "n" ), inp( "inp" ), scale( "scale", scale ), psiO( "psi0"GH)psi0O_ )
{| implementation-defined }

bi
} // lhamespace sca tdf

typedef sca_eln::sca_tdf::sca 1l sca_tdf 1;

} //nanfespace sca eln

7.1.21|3 Constraint of usage
The TI)F input signal inp shall not be zero.

7.1.21{4 kind

virtuall const char* kind() const;

The mgmber function kind shall return(the string “sca_eln::sca_tdf::sca_1”.
7.1.22|sca_eln::sca_tdf::sca rswitch, sca_eln::sca_tdf _rswitch
7.1.22]1 Description

The class sca_eln::sea. tdf::sca_rswitch shall implement a primitive module for the ELN MoC that regresents

a switch, which s controlled by a TDF control signal. The primitive shall contribute Equation (7.27) to the
equation system:

(7onipn(t) ctrl # off state T
vpnll) :irofj‘"ip,n(l) ctrl = off state (7.27)

where ctrl is the TDF control signal, 7, is the resistance of the switch in ohm under the condition that off” state
is equal to the TDF control signal, and r,, is the resistance of the switch in ohm under the condition that
off _state is not equal to the TDF control signal. v, ,(¥) is the voltage across terminals p and n, and iy, ,(¢) is the
current flowing through the primitive from terminal p to terminal .

The class sca_eln::sca_tdf rswitch shall be defined as an alias for class sca_eln::sca_tdf::sca_rswitch.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 153 -

7.1.22.2 Class definition

namespace sca_eln {
namespace sca_tdf {

class sca_rswitch : public sca_eln::sca_module,
public sca_util: :scaﬁtraceableﬁobjectT
{
public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

::sca_tdf::sca_in<bool> ctrl;

sica_core: :sca_parameter<double> ron;
sica_core: :sca_parameter<double> roff;
sica_core: :sca_parameter<bool> off state;

viirtual const char* kind() const;

explicit sca_rswitch( sc_core::sc_module name,

double ron = 0.0,
double roff = sca_util::SCA_INFINITY,
bool off state = false )
s p( "p" ), n( "n" ), ctrl( "ctrl" ),
ron( "ron", ron ), roff( "roff", roff ),

off state( "off state", off state )
{| implementation-defined }

} // |lnamespace sca_ tdf
typedef sca_eln::sca_tdf::sca_rswitch sca_tdf rswitch;

} // ndmespace sca_eln

7.1.22|3 kind

virtuall const char* kind() const;

The mgmber function kind shall retutn'the string “sca_eln::sca_tdf::sca_rswitch”.
7.1.23|sca_eln::sca_tdf::sca vsource, sca_eln::sca_tdf vsource

7.1.23|1 Description

The class sca_eln:¢sea” tdf::sca_vsource shall implement a primitive module for the ELN MoC that

the scaled convetsion of a TDF signal to an ELN voltage source. The primitive shall contribute Equatio
to the gquatiensystem:

Vp = vr'nloq’np

realizes

n (7.28)

(7.28)

where scale is the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a continuous-
time signal, and v,, ,(#) is the voltage across terminals p and n. The product of scale and inp shall be interpreted

as the voltage in volt.

The class sca_eln::sca_tdf vsource shall be defined as an alias for class sca_eln::sca_tdf::sca_vsource.

7.1.23.2 Class definition

namespace sca_eln {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
— 154 - IEEE Std 1666.1™-2016

namespace sca_tdf {

class sca_vsource : public sca_eln::sca module,
public sca_util::scaﬁtraceableﬁobjectr
{
public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

::sca_tdf::sca_in<double> inp;

sca_core::sca_parameter<double> scale;

virtual const char* kind() const;

explicit sca vsource( sc core::sc module name, double scale = 1.0 )

:p( "p" ), n( "n" ), inp( "inp" ), scale( "scale", scale )
{| implementation-defined }

bi
} // lhamespace sca_tdf
typedef sca_eln::sca_tdf::sca_vsource sca_tdf vsource;

} // ndmespace sca_eln

7.1.23|3 kind

virtuall const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca‘tdf::sca_vsource”.
7.1.24|sca_eln::sca_tdf::sca_isource, sca_eln::sca\tdf isource
7.1.24|1 Description
The clgss sca_eln::sca_tdf::sca_isource shallMmiplement a primitive module for the ELN MoC that pealizes
the scaled conversion of a TDF signal to an’ELN current source. The primitive shall contribute Equatiop (7.29)
to the gquation system:
ip ()= scale-inp (7.29)
where §cale is the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a contjnuous-
time signal, and i, ,(¢) is the current flowing through the primitive from terminal p to terminal n. The product
of scal¢ and inp shallsbg interpreted as the current in ampere.

The class sca_€ln:zsca_tdf isource shall be defined as an alias for class sca_eln::sca_tdf::sca_isourge.

7.1.24|2€lass definition

namespace sca_eln {
namespace sca_tdf {
class sca_isource : public sca_eln::sca_module,

public sca_util::sca_traceable_objectT
{
public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

::sca_tdf::sca_in<double> inp;

sca_core::sca_parameter<double> scale;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 155 -
virtual const char* kind() const;
explicit sca_isource( sc_core::sc_module name, double scale = 1.0 )

{
bi

Y/

typed:

:p("p" ), n( "n" ), inp( "inp" ), scale( "scale", scale )
implementation-defined }

namespace sca_tdf

ef sca eln::sca tdf::sca isource sca tdf isource;

} // namespace sca_eln

7.1.24.

3 kind

virtual]

The md
7.1.25
7.1.25
The cl4
scaled

andn s

The cla

7.1.25

namespal

namesj

g

:|:sca_tdf::sca_ocut<double> outp;

const char* kind() const;

mber function kind shall return the string “sca_eln::sca_tdf::sca_isource”.
sca_eln::sca tdf::sca_vsink, sca_eln::sca_tdf_vsink
1 Description

ss sca_eln::sca_tdf::sca_vsink shall implement a primitive modyle for the ELN MoC that re
tonversion from an ELN voltage to a TDF output signal. The/value of the voltage across tern
hall be scaled with coefficient scale and written to a TDE-gutput port outp.

ss sca_eln::sca_tdf vsink shall be defined as an aliasfor class sca_eln::sca_tdf::sca_vsink.

2 Class definition

ce sca_eln {
pace sca_tdf {

ss sca_vsink : public sca_eln:tsca_module,
public sca_util::sca_traceable_objectT

plic:

ca_eln::sca_terminal oNS
ca_eln::sca_terminal n;

ca_core::sca/parameter<double> scale;

irtualeednst char* kind() const;
kpliclt sca_vsink( sc_core::sc_module_name, double scale = 1.0)
SN "p" ), n( "n" ), outp( "outp" ), scale( "scale", scale )

alizes a
hinals p

{
bi

Yy 7/

implementation-defined }

namespace sca_tdf

typedef sca_eln::sca_tdf::sca_vsink sca_tdf vsink;

} // namespace sca_eln
7.1.25.3 kind
virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 156 — IEEE Std 1666.1™-2016

The member function kind shall return the string “sca_eln::sca_tdf::sca_vsink”.

7.1.26 sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf isink

7.1.26.1 Description

The class sca_eln::sca_tdf::sca_isink shall implement a primitive module for the ELN MoC that realizes a
scaled conversion from an ELN current to a TDF output signal. The value of the current flowing through the

primitive from terminal p to terminal # shall be scaled with coefficient scale and written to a TDF output port
outp. The primitive shall contribute Equation (7.30) to the equation system:

VP,E(L)—G (7.30)
where Y, ,(?) is the voltage across terminals p and .
The class sca_eln::sca_tdf_isink shall be defined as an alias for class sca_eln::sca_tdfi:sea”isink.

7.1.26|2 Class definition

namespalce sca_eln {
namesjpace sca_tdf {

clalss sca_isink : public sca_eln::sca_module,
public sca_util::sca_traceable_objectT

puplic:
sica_eln::sca_terminal p;
sca_gln::sca_terminal n;
:|:sca_tdf: :sca_out<double> outp;
sica_core: :sca_parameter<double> scale;
virtual const char* kind() const;
ekplicit sca_isink( sc_core::sc_module_name, double scale = 1.0)
:p("p" ), n( "n" ), outp (W leutp" ), scale( "scale", scale )
{| implementation-defined }
i
} // lhamespace sca tdf

typedef sca_eln::sca_tdfj:sca isink sca_tdf isink;

} // ndmespace sca_ el

7.1.26{3 kind

virtuall const char* kind () const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_isink”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 157 -

7.1.27 sca_eln::sca_de::sca_r, sca _eln::sca de_r
7.1.27.1 Description
The class sca_eln::sca_de::sca_r shall implement a primitive module for the ELN MoC that represents a
resistor, which resistance is controlled by a discrete-event input signal. The primitive shall contribute Equation
(7.31) to the equation system:

Vp,n(t) = scale:inp-ipn(t) (7.31)
where scale is the constant scale coefficient, inp is the discrete-event input signal, v, ,(?) is the voltage across

terminglspamd 77, -amd 7, (7 15 thecurremt ffowing througir the primitive fromT termitat pto-termima] 7. The
product of scale and inp shall be interpreted as the resistance in ohm.

The class sca_eln::sca_de_r shall be defined as an alias for class sca_eln::sca_de::sca_r.

7.1.27|2 Class definition

namespalce sca_eln {
namesjpace sca_de {

claglss sca_r : public sca_eln::sca_module,
public sca_util::sca_traceable_objectT

puplic:
sica_eln::sca_terminal p;
sca_gln::sca_terminal n;
sic_core::sc_in<double> inp;
sica_core: :sca_parameter<double> scale;
virtual const char* kind() const;
explicit sca_r( sc_core::sc _module\name, double scale = 1.0 )
cp("p" ), n( "n" ), inp( "inp| ), scale( "scale", scale )
{| implementation-defined }
i
} // |lhamespace sca de

typedef sca_eln::sca_de:fsca r sca de_r;

} // ngmespace sca eln

7.1.27{3 kind

virtual] cgnst’char* kind () const;

The member function kind shall return the string “sca_eln::sca_de::sca_r”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 158 - IEEE Std 1666.1™-2016

7.1.28 sca_eln::sca_de::sca_c, sca_eln::sca_de_c
7.1.28.1 Description

The class sca_eln::sca_de::sca_c shall implement a primitive module for the ELN MoC that represents a
capacitor, which capacitance is controlled by a discrete-event input signal. The primitive shall contribute

Equation (7.32) to the equation system:

. d(scale'inp'vp,n(t)+ qo) (7.32)
ipn(t) = dr

where jcale is the constant scale coefficient, inp is the discrete-event input signal, g is the initialxcharge in
coulomb, v, ,(?) is the voltage across terminals p and 7, and i, ,(¢) is the current flowing through-the ptimitive
from tefminal p to terminal n. The product of scale and inp shall be interpreted as the capacitance in fhrad.

If the ipitial charge g is set to sca_util::SCA_UNDEFINED, the primitive shall conttibute no eqution to
the equation system for the first calculation. In this case, the initial charge g shall be,calculated as follows:
qo = scqle - inp - v), no, where v, 0 is the voltage across the capacitor after the firstcalculation.

The cldss sca_eln::sca_de_c shall be defined as an alias for class sca_eln::s¢a_de::sca_c.

7.1.28|2 Class definition

namespajce sca_eln {
namesjpace sca_de {

claglss sca_c : public sca_eln::sca_module,

public sca_util: :scaﬁtraceableﬁobject*
{
puplic:
sica_eln::sca_terminal p;
sica_eln::sca_terminal n;

slc_core::sc_in<double> inp;

sica_core: :sca_parameter<doublep scale;
sica_core: :sca_parameter<double> q0;

viirtual const char* kiod{) const;

explicit sca_c( scucore::sc _module name, double scale = 1.0, double g0 = 0.0 )
cp("p" ), al\¥n" ), inp( "inp" ), scale( "scale", scale ), qO0( "gO0", g0 )
{| implementafHon-defined }

}i

} // lnamespac&®sca de

typedef \$ca_eln::sca_de::sca_c sca_de_c;

} // namespace sca_eln

7.1.28.3 Constraint of usage
The discrete-event input signal inp shall not be zero.

7.1.28.4 kind

virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

IEEE Std 166

6.1™-2016 - 159 -

The member function kind shall return the string “sca_eln::sca_de::sca_c”.

7.1.29 sca_eln::sca_de::sca_l, sca_eln::sca _de_|

7.1.29.1 Description

The class sca_eln::sca_de::sca_l shall implement a primitive module for the ELN MoC that represents
an inductor, which inductance is controlled by a discrete-event input signal. The primitive shall contribute

Equation (7.33) to the equation system:

d(scale'inp'ip,n(t)Jr psin\)

Vp,

where Jcale is the constant scale coefficient, inp is the discrete-event input signal, psiy is the initial link

in webg

from teyminal p to terminal n. The product of scale and inp shall be interpreted as the inductance in hg

If the initial linked flux psiy is set to sca_util::SCA_UNDEFINED, the primitive shall contributq
equation system the equation v,, , = 0 for the first calculation instead of Equatiofi (7.33). In this case, th
linked flux psiy shall be calculated as follows: psip = scale - inp - i, ,9, Where 0 1s the current flowing
the indyctor after the first calculation.

The class sca_eln::sca_de_l shall be defined as an alias for class sca “eln::sca_de::sca_l.

7.1.29

namespajce sca_eln {
namesjpace sca_de {

claglss sca_l : public sca_eln::sca_module;

{

puplic:
sica_eln::sca_terminal p;
sica_eln::sca_terminal n;

}i

slc_core::sc_in<double>.iup;

sica_core: :sca_parameter<double> scale;
sica_core: :sca_parameter<double> psiO;

virtual const /chrar* kind () const;

()= dt -

T, Vp,(?) is the voltage across terminals p and n, and i, (%) is the current flowing threugh the pi

2 Class definition

public sca_util::sca txadceable object f

plicit sca’ 1( sc_core::sc_module name, double scale = 1.0, double psiO_ = 0.0 )
cp"p ), n( "n" ), inp( "inp" ), scale( "scale", scale ), psiO( "psiO", psiO_ )
implementation-defined }

(7.33)

ed flux
imitive
nry.

to the
e initial
hrough

} // namespace sca de

typedef sca_eln::sca_de::sca_l sca_de_l1;

} // namespace sca_eln

7.1.29.

The dis

3 Constraint of usage

crete-event input signal inp shall not be zero.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 160 - IEEE Std 1666.1™-2016

7.1.29.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_1”.

7.1.30 sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch

7.1.30.1 Description

The class sca_eln::sca_de::sca_rswitch shall implement a primitive module for the ELN MoC that represents

a switch, which is controlled by a discrete-event control signal. The primitive shall contribute Equatiop (7.34)
to the gquation system:

Ton'ipn(t) ctrl # off state

= 7.34
vppll Foff ipn(t) ctrl=off state (7.34)

where ¢trl is the discrete-event control signal, r,is the resistance of the switch in @hm under the conditjion that
off staje is equal to the discrete-event control signal, and r,,, is the resistance(ofithe switch in ohm under the
conditipn that off” state is not equal to the discrete-event control signal. v,y(@yis the voltage across tefminals
p and 7, and i, ,(?) is the current flowing through the primitive from terminal p to terminal 7.

The cldss sca_eln::sca_de_rswitch shall be defined as an alias for.class sca_eln::sca_de::sca_rswitdh.

7.1.30|2 Class definition

namespajce sca_eln {
namesjpace sca_de {

clgss sca_rswitch : public sca_eln::sca module,
public sca_util: :scaﬁtraceableﬁobjectr

puplic:

sica_eln::sca_terminal p;
sica_eln::sca_terminal n;
sc_core::sc_in<bool> c®xl;

sica_core: :sca_parameter<double> ron;
sica_core: : sca_parameter<double> roff;
sica_core: :sca.parameter<bool> off state;

virtual const char* kind() const;

expli¢ity'sca_rswitch( sc_core::sc_module name,

double ron = 0.0,
double roff = sca_util::SCA_INFINITY,
bool off state = false )
:p("p" ), n( "n" ), ctrl( "ctrl" ),
ron( "ron", ron ), roff( "roff", roff ),

off state( "off state", off state )
{ implementation-defined }
}i
} // namespace sca de

typedef sca_eln::sca_de::sca_rswitch sca_eln::sca_de_ rswitch;

} // namespace sca_eln

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 161 -

7.1.30.3 kind

virtual

const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_rswitch”.

7.1.31

sca_eln::sca _de::sca vsource, sca_eln::sca_de_vsource

7.1.31.1 Description

Theclass sca_eln::sca_de::sca_vsource shall implement a primitive module for the ELN MoC that realizes the

scaled

(7.35) 1
Vp,

where
a discrg

o the equation system:

(t)= scale-inp

cale is the constant scale coefficient, inp is the discrete-event input signal thatshall be interp}
te-time signal, and v, ,(?) is the voltage across terminals p and n. The product of scale and i

be intefpreted as the voltage in volt.

The cla

7.1.31

namespd|
names|

cly

{
bi

y

2 Class definition

ce sca_eln {
pace sca_de {

ss sca_vsource : public sca_eln::sca_module,
public sca_util::scaﬁtraceableﬁobjectr

blic:

ca_eln::sca_terminal p;

ca_eln::sca_terminal n;

c_core::sc_in<double> inp;

ca_core::sca_parametergdouble> scale;

lirtual const char* kind() const;

kplicit sca_vsoqurce’( sc_core::sc_module_name, double scale = 1.0 )

cp( "p" ), w\"*n" ), inp( "inp" ), scale( scale )
implementatien-defined }

amegpate sca_de

onversion of a discrete-event signal to an ELN voltage source. The primitive shall contribute E|

ss sca_eln::sca_de vsource shall be defined as an alias for class‘sca’_eln::sca_de::sca_vsour]

quation

(7.35)

reted as
p shall

ce.

typedef, se¢a_eln::sca_de::sca_vsource sca_de vsource;
} // namespace sca_eln
7.1.31.3 kind
virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_vsource”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 162 - IEEE Std 1666.1™-2016

7.1.32 sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource
7.1.32.1 Description
The class sca_eln::sca_de::sca_isource shall implement a primitive module for the ELN MoC that realizes the
scaled conversion of a discrete-event signal to an ELN current source. The primitive shall contribute Equation
(7.36) to the equation system:

ipn(t)=scale-inp (7.36)
where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as a

discretg=time stgmat; and 7,5 s the current flowingthrougih the primtive fromr termimat 7 to termimaj 7. The
slldl, 'p,n\l) 5 5 P J4
product of scale and inp shall be interpreted as the current in ampere.

The class sca_eln::sca_de_isource shall be defined as an alias for class sca_eln::sca_de::sca_'isource.

7.1.32|2 Class definition

namespalce sca_eln {
namesjpace sca_de {

clalss sca_isource : public sca_eln::sca_module,
public sca_util::sca_traceable_objectT

puplic:

sica_eln::sca_terminal p;

sca_gln::sca_terminal n;

sic_core::sc_in<double> inp;

sica_core: :sca_parameter<double> scale;

virtual const char* kind() const;

explicit sca_isource( sc_core::sc_module name, double scale = 1.0 )
cp("p" ), n( "n" ), inp( "inp| ), scale( "scale", scale )

{| implementation-defined }

} // |lhamespace sca de

typedef sca_eln::sca_de:fsca_isource sca_de_isource;

} // ngmespace sca eln

7.1.32{3 kind

virtual] cgnst’char* kind () const;

The member function kind shall return the string “sca_eln::sca_de::sca_isource”.

7.1.33 sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink

7.1.33.1 Description

The class sca_eln::sca_de::sca_vsink shall implement a primitive module for the ELN MoC that realizes
a scaled conversion from an ELN voltage to a discrete-event output signal. The value of the voltage across

terminals p and # shall be scaled with coefficient scale and written to a discrete-event output port outp.

The class sca_eln::sca_de_vsink shall be defined as an alias for class sca_eln::sca_de::sca_vsink.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 163 -

7.1.33.2 Class definition

namespace sca_eln {

names

pace sca_de {

class sca_vsink : public sca_eln::sca_module,

{

public sca_util::scaﬁtraceableﬁobjectr

public:
sca_eln::sca_terminal p;
sca_eln::sca_terminal n;

sc_core::sc_out<double> outp;

s

{
bi

Y/
typed

} // ng

7.1.33

virtual]

The md

7.1.34

7.1.34

The cld
scaled

througl} the primitive fromyterminal p to terminal n shall be scaled with coefficient scale and writf

discrets

ca_core::sca_parameter<double> scale;
lirtual const char* kind() const;
xkplicit sca_vsink( sc_core::sc_module_name, double scale = 1.0 )

:p("p" ), n( "n" ), outp( "outp" ), scale( "scale", scale )
implementation-defined }

amespace sca_de

ef sca_eln::sca_de::sca_vsink sca_de_vsink;

espace sca_eln

3 kind

const char* kind() const;

mber function kind shall return the string “sca™eln::sca_de::sca_vsink”.

sca_eln::sca_de::sca_isink, sca_.eln::sca_de_isink
1 Description

ss sca_eln::sca_de::sca_isink shall implement a primitive module for the ELN MoC that re
Conversion from an ELN current to a discrete-event output signal. The value of the current

-event output porf oufp. The primitive shall contribute Equation (7.37) to the equation system
(n=0
nn()is the voltage across terminals p and n.

7.1.34.2 Class definition

namespa
names
cla

{
pu

s
S

ce sca_eln {
pace sca_de {

ss sca_isink : public sca_eln::sca_module,
public sca_util::sca_traceable_objectT

blic:

ca_eln::sca_terminal p;
ca_eln::sca_terminal n;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

hlizes a
flowing
en to a

(7.37)



https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021

- 164 - IEEE Std 1666.1™-2016
sc_core: :sc_out<double> outp;
sca_core::sca_parameter<double> scale;
virtual const char* kind() const;
explicit sca_isink( sc_core::sc_module name, double scale = 1.0 )
:p( "p" ), n( "n" ), outp( "outp" ), scale( "scale", scale )

{ implementation-defined }
bi

} // namespace sca_de

typedef sca_eln::sca_de::sca_isink sca_de_ isink;

} // ndmespace sca_eln

7.1.34]3 kind

virtuall const char* kind() const;

The mgmber function kind shall return the string “sca_eln::sca_de::sca_isink”.

7.2 Hierarchical composition and port binding

The higrarchical composition of ELN modules shall use modules detived from class sc_core::sc_module and
the constructor or its equivalent macro definitions. A hierarchical module can include modules and ports of
differeft models of computation. Port binding rules shall follew*IEEE Std 1666-2011 as well as the following
specifi¢ rules:

a) |A port of class sca_eln::sca_terminal shall.‘only be bound to a primitive channel qf class
sca_eln::sca_node, sca_eln::sca_node_refior to a port of class sca_eln::sca_terminal of th¢ parent
module.

b) |A port of class sca_eln::sca_terminal shall be bound to exactly one primitive channel ¢f class
sca_eln::sca_node or sca_eln::sca_node_ref throughout the whole hierarchy.

¢) |A primitive channel of clags'sea_eln::sca_node or sca_eln::sca_node_ref shall have one ¢r more
primitive ports of class sca_eln::sca_terminal bound to it throughout the whole hierarchy.

d) |For each cluster ofconnected predefined ELN primitive modules, at least one port df class
sca_eln::sca_terminal shall be bound to a primitive channel of class sca_eln::sca_node_ref.

Predefined ELN primitive modules with ports of other models of computation shall follow the port pinding
rules of the correSponding models of computation.

7.3 Elpboration and simulation

An implementation of the ELN MoC in a SystemC AMS class library shall include a public shell consisting of
the predefined classes, functions, and so forth that can be used directly by an application. An implementation
shall also include an ELN solver that implements the functionality of the ELN class library. The underlying
semantics of the ELN solver are defined in this subclause.

The execution of a SystemC AMS application that includes ELN modules consists of elaboration followed by
simulation. Elaboration results in one or more equation systems setup by the contributions of the ELN modules.
Simulation solves the equation systems repetitively. In addition to providing support for elaboration and
simulation, the ELN solver may also provide implementation-specific functionality beyond the scope of this

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016 - 165 -

standard. As an example of such functionality, the ELN solver may report information on the ELN module
composition and equation setup.

7.3.1 Elaboration

The primary purpose of ELN elaboration is to create internal data structures and setup equations for the
ELN solver to support the semantics of ELN simulation. The ELN elaboration as described in this clause
and in the following subclauses shall execute in one sc¢_core::sc_module::end_of elaboration callback. The
actions stated in the following subclauses shall occur, in the given order, during ELN elaboration and only
during ELN elaboration. The description of such actions use the concept of an ELN cluster, which is a set of
ELN modules connected by channels of class sca_eln::sca_node.

ELN el
NOTE
7.3.1.1

The tin
by the
class s(
ELN ¢l

It shall
timeste
error if]

NOTE-
connect

of the p
need to

7.3.1.2

For eag

It shall

For eag
node o

aboration shall lock the parameter values of the predefined ELN primitive modules (see 4.2.7)
-Connections by channels of class sca_eln::sca_node_ref are ignored for building ELN clusters.
Timestep calculation and propagation

nestep for every ELN cluster shall be derived from the timestep of a cofinected TDF cluste]
member functions set_timestep or set max_timestep of an ELN, primitive module derivg
a_eln::sca_module of the corresponding ELN cluster. The timestep/shall be propagated wi
ister to all primitive modules and to all ports of class sca_tdf::sca~in and sca_tdf::sca_out<T>

be an error if a timestep value is not assigned to at least one' ELN module. The assigned and pro
p values shall be consistent throughout the ELN cluster; otherwise, it shall be an error. It sha
the propagated timestep is equal to the time returned\by function sca_core::sca_max_time.

-An ELN cluster can be considered as one TDF miedule marked to accept attribute changes, which
ed to TDF modules in a hierarchical compositiontby the ports of class sca_tdf::sca_in and sca_tdf::sca |
edefined ELN primitive modules. The ELN cluster is included in the timestep calculation of the TDF cly
comply with the same rules (see 5.3.1.2).

Equation system setup andisolvability check

h ELN cluster, an equation syStem shall be set up by combining:
the contributing equations of each of the predefined ELN primitive modules in the cluster.

the equations implied by Kirchhoff’s Laws.
be an errordf’any of the equation systems is numerically singular.

h port-of Class sca_eln::sca_terminal, the voltage across the terminal and the corresponding rg
classsca_eln::sca_node_ref shall be defined due to Kirchhoff’s Voltage Law. It shall be an

this vo

I or set
d from
hin the
L if any.

pagated
1 be an

ould be
out<T>
ster and

ference
error if

tage is undefined

7.3.2 Simulation

This subclause defines the process of time-domain simulation of ELN descriptions. The simulation of a cluster
of ELN modules is done by a repetitive solving of the underlying equation systems.

7.3.2.1 Initialization

The ELN initialization phase calculates consistent initial conditions for the equation systems.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 166 - IEEE Std 1666.1™-2016

7.3.2.2 Time-domain simulation

The solver shall provide results at least at the calculated timestep distances. If the current calculation timestep
is sc_core::SC_ZEROQO_TIME, the time and the state of the equation system shall be restored to the time and
state before the last calculation and the calculation shall be repeated on the new input values.

7.3.2.3 Synchronization with TDF MoC

Synchronization with the TDF MoC shall be done exclusively by using the predefined ELN primitive modules
containing ports of class sca_tdf::sca_in and sca_tdf::sca_out.

The ElfN-sotverteadsTepetitivety samptesfromrportsof chasssca—tdfrsca—imforattcatcutated-timrey teps of

the ELNN cluster. Consecutive reads shall be interpreted as forming a continuous-time signal.

The EIN solver writes repetitively samples to ports of class sca_tdf::sca_out for all calculated timesteps of
the ELNN cluster.

7.3.2.4 Synchronization with the SystemC kernel

Synchrpnization with the SystemC kernel shall be done exclusively by using.the predefined ELN pfimitive
modulds containing ports of class sc_core::sc_in and sc_core::sc_out.

The EIN solver reads repetitively values from ports of class sc_core::sc_in at each first delta cycl¢ of the
corresponding SystemC time for all calculated timesteps of the ELN.cluster. The value is assumed as donstant
until the next value is read.

The EIIN solver writes repetitively values to ports of class sc_core::sc_out at each first delta cycl¢ of the
corresponding SystemC time for all calculated timestéps of the ELN cluster.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 167 -

8. Predefined analyses

8.1 Time-domain analysis

The time-domain analysis shall be applicable to all descriptions supported by the predefined models of
computation as defined in Clause 5, Clause 6 and Clause 7. The analysis shall compute the time-domain
behavior of the overall system, possibly composed by different models of computation and including
descriptions as defined in IEEE Std 1666-2011.

8.1.1 Elaboration and simulation

The ex¢cution of a time-domain analysis consists of elaboration followed by simulation (see 5.3, 6:3,'%]3). The
elaboradftion and simulation shall use the same semantics as defined in IEEE Std 1666-2011.

8.1.2 Running elaboration and simulation

An impjlementation shall provide either or both of the following two mechanisms for running elaboration and
simulation:
— |Under application control using functions sc_main and sc_core::sc{start.

— |Under control of the kernel.

An application may pause and resume the simulation using thé function sc_core::sc_pause followed by
the funiction sc_core::sc_start. The time of each individual TBF, LSF, and ELN module after paysing is
implenjentation-defined. The time domain simulation is resunied from these individual module times.

An aprjlication may stop the simulation using the fuhCtion sc_core::sc_stop. If the stop mode, defjned by
functioh sc_set_stop_mode, is set to sc_core::SC STOP_IMMEDIATE, the time domain simulati¢n shall
stop immediately. If the stop mode is set to se_coxé€::SC_STOP_FINISH_DELTA, the time of each individual
TDF, IJSF, and ELN module after stopping is implementation-defined.

NOTE—TDF, LSF, and ELN modules can b&iinstantiated in the sc_main context.

8.2 Sinall-signal frequengcy=-domain analyses

The smhll-signal frequencysdomain analyses shall be applicable to all descriptions supported by the predefined
models| of computatien\defined in 5.3, 6.3, and 7.3. The analyses shall compute the small-signal frequency-
domain behavior of.the overall system, possibly composed of modules from different models of comptation.
The sygtem description shall be mapped to a linear complex equation system.

Two kipd§.of small-signal frequency-domain analysis shall be supported:

a) Small-signal irequency-domain analysis shall solve for each irequency point the linear complex
equation system including all small-signal frequency-domain source contributions.

b) Small-signal frequency-domain noise analysis shall solve the linear complex equation system for
each frequency point and each small-signal frequency-domain noise source contribution, whereby
all contributions of small-signal frequency-domain sources and small-signal frequency-domain noise
sources, except the currently activated noise source, shall be set to zero.

All functions used in the small-signal frequency-domain and noise analysis shall be placed in the namespace
sca_ac_analysis.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 168 - IEEE Std 1666.1™-2016

8.2.1 Elaboration and simulation

The execution of a small-signal frequency-domain or noise simulation consists of elaboration followed by
simulation. For starting a small-signal frequency-domain or noise analysis, dedicated functions shall be used
(see 8.2.2). While performing the analysis, the state of the time-domain simulation shall not be changed.

8.2.1.1 Elaboration
The small-signal frequency-domain elaboration shall be performed if one of the dedicated start functions is

executed (see 8.2.2). In the case a time-domain elaboration has not yet been performed (due sc_core::sc_start
has not yet been executed), the implementation shall perform a time-domain elaboration first.

The implementation shall set up one complex linear frequency-dependent equation system by compoging the
equation system contributions of TDF, LSF, and ELN descriptions.

8.2.1.4 Simulation

The linar complex equation system for the chosen analysis kind, shall be solved\for each frequendy point
according to the kind of analysis.

8.2.2 Running elaboration and simulation

The |implementation  shall  provide the  function ,S&ca_ac_analysis::sca_ac_start| and
sca_ac| analysis::sca_ac_noise_start for running small-signal frequency-domain elaboration and simpilation.

When ¢alled, functions sca_ac_analysis::sca_ac_start and'sea_ac_analysis::aca_ac_noise_start shall first
run elaboration as described in 8.1, if not yet performed.

8.2.2.1 sca_ac_analysis::sca_ac_start

namespagjce sca_ac_analysis {
enum [sca_ac_scale { SCA_LOG, SCA_LIN- }7

void |sca_ac_start( double start\fheq, double stop freq, unsigned long npoints,
sca_ac_analysis::sca_ac_scale scale = sca_ac_analysis::SCA_LOG ) ;

void |sca_ac_start( const/sca_util::sca_vector<double>s& frequencies );

} // ndmespace sca ac analysis

The furjctions sca"ae_analysis::sca_ac_start shall perform a small-signal frequency-domain simulatipn. The
first fupction shall calculate the frequency domain behavior at npoints frequencies. If npoints is greater than
zero, the first fiequency point in hertz shall be start _freq. If npoints is greater than one, the last frequengy point
in hert4 shall be stop_freq. If scale is sca_ac_analysis::SCA_LOG, the remaining frequency points $hall be
logarithmically distributed and if scale is sca_ac_analysis::SCA_LIN, the remaining points shall be linearly
distributed.

The second function shall calculate the small-signal frequency-domain behavior at the frequency points given
by the vector frequencies.

8.2.2.2 sca_ac_analysis::sca_ac_hoise_start
namespace sca_ac_analysis {

void sca_ac_noise_start( double start freq, double stop freq, unsigned long npoints,
sca_ac_analysis::sca_ac_scale scale = sca_ac_analysis::SCA_LOG ) ;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 169 -

void sca_ac_noise_start( const sca_util::sca_vector<double>& frequencies );

} // namespace sca ac analysis

The functions sca_ac_analysis::sca_ac_noise_start shall perform a small-signal frequency-domain noise
simulation. The first function shall calculate the frequency-domain noise behavior at npoints frequencies. If
npoints is greater than zero, the first frequency point in hertz shall be start_freq. If npoints is greater than one,
the last frequency point in hertz shall be stop_freq. If scale is sca_ac_analysis::SCA_LOG, the remaining
frequency points shall be distributed logarithmically and if scale is sca_ac_analysis::SCA_LIN, the remaining
points shall be distributed linear.

The sedond Tunction shall calculate the Irequency-domain noise benavior at the Irequeicy points given by the
vector frequencies.

8.2.3 $mall-signal frequency-domain analysis of TDF descriptions

The smhpll-signal frequency-domain and noise representation of a TDF description shall'eontribute the complex
equation system shown in Equation (8.1):

A(J )'x(‘f)+b(‘f)+bnoise(f)+c(‘f’ X(f)): 0 (81)

where 4(f) is a complex matrix of the frequency fthat shall include contribuitions of modules derived frgm class
sca_tdf::sca_module. Each module derived from class sca_tdf::sea module can provide the implem¢ntation
of the fember function ac_processing (see 5.1.1.10) or the coftesponding registered member function (see
5.1.1.12). The contributions shall describe linear complex functions between ports of class sca_tdf:fsca_in
and pofts of class sca_tdf::sca_out_base.

x(f) i a complex vector representing the small-sighal frequency-domain values of the ports qf class
sca_tdf::sca_out_base.

b(f) ad b,,pise( /) are complex frequency dépendent vectors, which represent the contributions to the ports of
class sda_tdf::sca_out_base independent from the ports of class sca_tdf::sca_in.

For small-signal frequency-domain‘analysis, the independent contribution b(f) shall be provided to the equation
system|[by using the function s¢a_ac_analysis::sca_ac for accessing the port of class sca_tdf::sca_ouf_base.
In this ¢ase the contributiondyy;s.( /) shall be set to zero.

For smpll-signal frequency-domain noise analysis, the independent contribution by,,;se( /) shall be provided
to the gquation system by using the function sca_ac_analysis::sca_ac_noise for accessing the port pf class
sca_tdf::sca_out_base. In this case the contribution b( /') shall be set to zero.

c( f, x(J)94sa vector of contributions from interaction with LSF or ELN primitives and may depend ¢n TDF

small_s (7119] ﬁ‘Pqnpan-ﬂnmnin ‘IQIIIPQ nffhp pf\ﬁq nF {‘]QQQ SCA fr‘f"eon out I’\QQQ
t=3

The implementation shall permit the access to time-domain values and complex frequency-domain values at
ports. The access to complex frequency-domain values shall be done by the function sca_ac_analysis::sca_ac
(see 8.2.3.1), while the time-domain values shall be accessible by using the member functions to read from a
port of class sca_tdf::sca_de::sca_in or sca_tdf::sca_in.

If no value of type sca_util::sca_complex has been assigned to ports of class sca_tdf::sca_out_base, using

the functions sca_ac_analysis::sca_ac or sca_ac_analysis::sca_ac_noise, respectively, the implementation
shall set these values to zero.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 170 - IEEE Std 1666.1™-2016

NOTE—It is not defined in which order and how often the member functions sca_tdf::sca_module::ac_processing are
executed.

8.2.3.1 sca_ac_analysis::sca_ac

namespace sca_ac_analysis {

templ
const

templ

ate<class T>
sca_util::sca_complex& sca_ac( const sca_tdf::sca_in<T>& );

ate<class T>

sca_util::sca_complex& sca_ac( const sca_tdf::sca_out base<T>& );

} // namespace sca_ac_analysis

The furpction sca_ac_analysis::sca_ac applied to ports of class sca_tdf::sca_in shall return a cOnst're
to a value of type sca_util::sca_complex of the corresponding port.

The furjction sca_ac_analysis::sca_ac applied to ports of class sca_tdf::sca_out_baseGhall return a rg
to a value of type sca_util::sca_complex to allow assignment of a contribution to this port.

It sha
sca_td

NOTEH
class sc

8.2.3.7

namespal

templf
sca_u

} // ng

| be an error if the functions are called outside the context) of the member f
::sca_module::ac_processing or its equivalent registered member\fanction.

-The values of type sca_util::sca_complex read using the functiofisca_ac_analysis::sca_ac from the
p_tdf::sca_in are implementation-defined.

sca_ac_analysis::sca_ac_noise

ce sca_ac_analysis {

pte<class T>
til::sca_complex& sca_ac_noise( const sgeca’ tdf::sca_out base<T>& );

espace sca_ac analysis

The fupction sca_ac_analysis::sca~a¢: noise applied to port of class sca_tdf::sca_out_base shall j

referen|

It sha
sca_td

8.2.3.3

namespda

Ce to a value of type sca_util:sca_complex to allow assignment of a noise contribution to this

1 be an error if the function is called outside the context of the member f
::sca_module::ae_processing or its equivalent registered member function.

sca_acanalysis::sca_ac_is_running

ce sca _ac_analysis {

ference

ference

unction

ports of

eturn a
port.

unction

bool lscarac is running():

} // na

mespace sca ac_analysis

The function sca_ac_analysis::sca_ac_is_running shall return true while performing a small-signal
frequency-domain or a small-signal noise simulation; otherwise, it shall return false.

8.2.3.4 sca_ac_analysis::sca_ac_noise_is_running

namespa

bool

ce sca_ac_analysis {

sca_ac_noise_is_running();

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 -171 -

} // namespace sca ac analysis

The function sca_ac_analysis::sca_ac_noise_is_running shall return true while performing a small-signal
frequency-domain noise simulation; otherwise, it shall return false.

8.2.3.5sca_ac_analysis::sca_ac_f

namespace sca_ac_analysis {
double sca_ac_£f();

} // namespace sca ac analysis

The furlction sca_ac_analysis::sca_ac_f shall return the current frequency in hertz.

It sha]l be an error if the function is called outside the context of the memiber flunction
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.4 sca_ac_analysis::sca_ac_w

namespajce sca_ac_analysis {
doublle sca_ac w();

} // ngmespace sca ac analysis

The fupction sca_ac_analysis::sca_ac_w shall return the current angular frequency in radians per|second
(rad/s).

It shall be an error if the function is called” outside the context of the member flnction
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.1 sca_ac_analysis::sca_ac_s

namespagjce sca_ac_analysis {
sca_util::sca_complex sca_ae,s(+long n =1 );

} // ndmespace sca ac anallysis

The fugpction sca_ac.“analysis::sca_ac_s shall return the complex value of the Laplace operator s” = (jw)".

It sha]l be <an~error if the function is called outside the context of the member flunction
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.8sca_ac_analysis::sCa_acC_z

namespace sca_ac_analysis {
sca_util::sca_complex sca_ac_z( long n, const sca_core::sca_time& tstep );
sca_util::sca_complex sca_ac z( long n =1 );

} // namespace sca ac analysis

The functions sca_ac_analysis::sca_ac_z shall return the complex value of the z operator 2" (¢/* """ 5%P)_If
not specified, the argument #step shall be set to the value returned by the member function get_timestep of the
module of class sca_tdf::sca_module, in which the function is called.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

-172 -

IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.9 sca_ac_analysis::sca_ac_delay

namespa

ce sca_ac_analysis {

sca_util::sca_complex sca_ac_delay( const sca_core::sca_time& delay );

} // namespace sca ac _analysis

The function sca_ac_analysis::sca_ac_delay shall return the complex value of the continuous time delay

(efjm "d

It sha
sca_td

8.2.3.1

namespal

sca_u

sca_u

} // ng

The fui
of the |

t’u/v)'

1 be an error if the function is called

0 sca_ac_analysis::sca_ac_Itf nd

ce sca_ac_analysis {

til::sca_complex sca_ac_ltf nd( const sca_util
const sca_util
const sca_util

double k

til: :sca_complex sca_ac ltf nd( const sca_util
const sca_util
const sca_core
const sca_util

double k&

Imespace sca_ac analysis

the compplex value input.

It sha
sca_td

8.2.3.1

namespdg

sca_u

1 sca_ac_analysis::sca_ac_ltf_zp

ce sca_ac_analysis {

til: {sca’ complex sca_ac_ltf zp( const sca_util
const sca_util

const sca_util

outside the context of the member A
::sca_module::ac_processing or its equivalent registered member function.

: :sca_vector<double>¢ num,
::sca_vector<double>& den,
::sca_complexs ipput = 1.0,
=1.0);

: :sca_véctor<double>& num,
: :sca\vector<double>& den,
::sca_times delay,
:isca_complexs input = 1.0,
<J)1.0 );

::sca_vector<sca_util::sca_complex>s&
::sca_vector<sca_util::sca_complex>s&
::sca_complexs input = 1.0,

\ction sca_ac_analysis::sca_ac_Itf nd shall return the complex value of the linear transfer f]
aplace-domain variable s in numerator-denumerator form (see 8.2.3.10) with s' = (jw)', multi

1 be an error if the’ function is called outside the context of the member f
::sca_module::ac_preeessing or its equivalent registered member function.

zeros,
poles,

unction

unction
lied by

unction

sca_u

} // na

double k

til::sca_complex sca_ac ltf zp( const sca_util
const sca_util

const sca_core

const sca_util

double k

mespace sca ac_analysis

=1.0);

::sca_vector<sca_util::sca_complex>s&
::sca_vector<sca_util::sca_complex>é&
::sca_times delay,

::sca_complexs input = 1.0,

=1.0);

zeros,
poles,

The function sca_ac_analysis::sca_ac_Itf_zp shall return the complex value of the linear transfer function
of the Laplace-domain variable s in zero-pole form (see 8.2.3.11) with s’ = (jw)’, multiplied by the complex
value input.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8

:2021 © IEC 2021

IEEE Std 1666.1™-2016

It shall be an error

if the function

- 173 -

is called outside the context of

the member

sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.12 sca_ac_analysis::sca_ac_ss

namespa

sca_u

ce sca_ac_analysis {
til::sca_vector<sca_util:
const
const
const
const
const

:sca_complex> sca_ac_ss (
sca_util:
sca_util:
sca_util:
sca_util:
sca_util:

:sca_matrix<double>&
:sca_matrix<double>&
:sca_matrix<double>&
:sca_matrix<double>&
:sca_vector<sca_util:

a,
b,
C/
d,
:sca_complex>& input

function

)

sca_u

sca_u

sca u

} // ng

The fur
with (d]
y with

It sha
sca_td

8.2.4 §
The im|

Theref
small-§|

til::sca_vector<sca_util:
const
const
const
const

til::sca_vector<sca_util:
const
const
const
const
const
const

til: :sca_vector<sca_util:
const
const
const
const
const

espace sca_ac analysis

1 be an error if the function

delay b

:sca_complex> sca_ac_ss(
sca_util:
sca_util:
sca_util:
sca_util:

:sca_complex> sca_ac_ss(
sca_util:
sca_util:
sca_util:
sca_util:
sca_core:
sca_util:

:sca_complex> sca_ac_ss(
sca_util:
sca_util:
sca_util:
sca_util:
S ca_core H

sca_matrix<double>&
sca_matrix<double>&
sca_matrix<double>&
sca_matrix<double>&

:sca_matrix<double>&
:sca_matrix<double>&
:sca_matrix<double>s&
:sca_matrix<double>&
:sca_times delayy

:sca_vector<sga_util:

:sca_matrix<double>s&
:scadmatrix<double>&
:sca_matrix<double>&
:sea ‘matrix<double>&
:sca_time& delay );

ctions sca_ac_analysis::sca_ac_ss shallréturn the complex vector y of the state-space equation|
dt) = (jw)'. The function with the complex vector input as argument shall multiply the comples
nput. It shall be an error if the matrix’and vector sizes are inconsistent (see 8.2.3.12) .

is called outside the context of the member f
::sca_module::ac_processing or its equivalent registered member function.

mall-signal freqguency-domain analysis of LSF descriptions
blementatiomof the LSF primitive modules shall define their small-signal frequency-domain bg
re, theésequation system for each LSF cluster (see 6.3.1.2) shall be transformed from time-do

jgnal\frequency-domain by replacing a derivation d/dt by jow, an integral by //(jw) respectivell
y eJ@ " delay The resulting equation systems shall be contributed to the overall equation system]

a,
b,
c,

a,
b
O
d,

:sca_complex>& inpuf
a,

b,
c,

system
( vector

unction

havior.

main to
y and a

8.2.5 Small-signal frequency-domain analysis of ELN descriptions

The implementation of the ELN primitive modules shall define their small-signal frequency-domain behavior.

Therefore, the equation system for each ELN cluster (see 7.3.1.2) shall be transformed from time-domain to
small-signal frequency-domain by replacing a derivation d/dt by jw, and a delay by ¢7® 9@ The resulting
equation system shall be contributed to the overall equation system.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
- 174 - IEEE Std 1666.1™-2016

9. Utility definitions

9.1 Trace files

An AMS trace file records the simulation results for AMS signals and nodes. At least the tabular and the VCD
trace file format shall be supported. The VCD format can only support tracing for time-domain simulation.

A VCD trace file can only be created and opened by calling function sca_util::sca_create_vcd_trace_file
and a tabular trace file by calling function sca_util::sca_create_tabular_trace_file. A trace file may be
opened during elaboration or at any time during simulation. Values can only be traced by calling function
sca_utilrrsea— . 5 hall not
be trac¢d to a given trace file if one or more delta cycles have elapsed since opening the file. A\VED trace
file sha]l be closed by calling function sca_util::sca_close_ved_trace file. A tabular trace file $hall bg closed
by calling function sca_util::sca_close_tabular_trace file. A trace file shall not be closed by these functions
before the final delta cycle of the simulation.

An implementation may support other trace file formats by nproviding altefnatives
to tHe functions sca_util::sca_create_ved_trace file, sca_util::sca \Create tabular_trace file,
sca_util::sca_close_vcd_trace_file, and sca_util::sca_close_tabular_trace file.

9.1.1 ¢lass definitions

All names used in the class definitions and function declarations-for/tracing shall be placed in the namiespace
sca_util.

9.1.1.1 sca_util::sca_trace_mode_base
9.1.1.1.1 Description

The class sca_util::sca_trace_mode_base shall define the base class for trace mode manipulators. The
manipdlators, which shall be derived from this base class, are predefined. An application shall not cgeate an

instancg and shall not derive from this.£lass.

Instancps of derived classes can .only be used as argument to the member function set_mode ¢f class
sca_utjl::sca_trace_file (see.9:1.1.2.5).

An impllementation shall at least support the trace mode manipulators as defined in this subclause.

9.1.1.1.2 Class dgefinition

namespacedsca’util {

class sca_trace_mode_base
{
public:
virtual ~sca_trace_mode_base() = 0;
i
enum sca_ac_fmt { SCA_AC_REAL IMAG, SCA AC_MAG RAD, SCA AC DB DEG };
class sca_ac_format : public sca_util::sca_trace_mode_base
{
public:
sca_ac_format( sca_util::sca_ac_ fmt format = sca_util::SCA AC_REAL IMAG );
}i

enum sca_noise fmt { SCA NOISE SUM, SCA NOISE ALL };

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 - 175 -

class sca_noise_format : public sca_util::sca_trace_mode_base
{
public:
sca_noise_format( sca_util::sca_noise_fmt format = sca_util::SCA_NOISE_SUM ) ;

bi

class sca_decimation : public sca_util::sca_trace_mode_base
{
public:
sca_decimation( unsigned long n );
bi

class sca_sampling : public sca_util::sca_trace_mode_base
{
public:
sca_sampling( const sca_ core::sca_ time& tstep,
const sca_core::sca_times toffset = sc_core::SC_ZERO TIME );
scal sampling( double tstep, sc_core::sc_time_unit tstep unit,
double toffset = 0.0, sc_core::sc_time unit toffset unit = sc_core::SC_SEC, ),

bi
enum [sca_multirate fmt { SCA_ INTERPOLATE, SCA DONT_ INTERPOLATE, SCA HOLD_ SAMPLE };

class| sca_multirate : public sca_util::sca_trace_mode_base

{
publfic:

scal multirate( sca_util::sca multirate_fmt format = sca_util::SCA INTERPOLATE ) ;
bi

} // ndmespace sca util

9.1.1.1.3 Trace mode classes

If an ipstance of class sca_util::sca_ac format is passed to the member function set mode qf class
sca_util::sca_trace file, the format for writing the.results of a small-signal frequency-domain dr noise
simulafion shall be set. If sca_util::SCA_AC_REALMMAG is passed as argument to create an instance of
class sqa_util::sca_ac_format, the results shall bewritten as real and imaginary part. The signal namgs shall
be extended by .real and .imag. If sca_util::SCA A C_MAG_RAD is passed as argument to create an ipstance
of clas§ sca_util::sca_ac_format, the results shall be written as magnitude value and phase in radign. The
signal pames shall be extended by .mag dnd .rad. If sca_util::SCA_AC_DB_DEG is passed as argument to
create 4n instance of class sca_util:ssea” ac_format, the results shall be written as the magnitude in |decibel
(dB) aijd phase in degree. The signal names shall be extended by .db and .deg. The magnitude (DB) of the
signal felative to a reference leviel 6f one (1) shall be expressed in decibel according to Equation (9.1)|

DR= 20~10g10(magnitude) 9.1)

ifstance of-Class sca_util::sca_noise_format is passed to the member function set_mode ¢f class
sca_util::sca_trace_file, the format for writing the results of a small-signal frequency-domain noise
simulation,shall be set. If sca_util::SCA_NOISE_SUM is passed as argument to create an instance pf class
sca_utjl:isca_noise_format, the contributions of all noise sources of a small-signal frequency-domain noise
simulation sha metically. In this case, onty e magnitude or reat value corresponding to the
specified format shall be written. If sca_util::SCA_NOISE_ALL is passed as argument to create an instance
of class sca_util::sca_noise_format, the contributions of all noise sources of a small-signal frequency-domain
noise simulation shall be written separately. The name shall be extended by the instance name followed by the
corresponding format specifier (e.g., .db or .deg).

If an instance of class sca_util::sca_decimation is passed to the member function set_mode of class
sca_util::sca_trace_file, only every n-th line of the results of a time-domain simulation shall be written to the
tabular trace file, where 7 is the argument that shall be assigned while creating the passed instance. It shall
be an error, if n is equal to zero.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.


https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

	Contents
	FOREWORD
	Introduction
	Important notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Subsets
	1.4 Relationship with C++
	1.5 Relationship with SystemC
	1.6 Guidance for readers

	2. Normative references
	3. Terminology and conventions used in this standard
	3.1 Terminology
	3.1.1 Shall, should, may, can
	3.1.2 Implementation, application
	3.1.3 Call, called from, derived from
	3.1.4 Specific technical terms

	3.2 Syntactical conventions
	3.2.1 Implementation-defined
	3.2.2 Disabled
	3.2.3 Ellipsis (...)
	3.2.4 Class names
	3.2.5 Prefixes

	3.3 Typographical conventions
	3.4 Semantic conventions
	3.4.1 Class definitions and the inheritance hierarchy
	3.4.2 Function definitions and side-effects
	3.4.3 Functions whose return type is a reference or a pointer
	3.4.3.1 Functions that return *this or an actual argument
	3.4.3.2 Functions that return const char*

	3.4.4 Namespaces and internal naming
	3.4.5 Non-compliant applications and errors

	3.5 Notes and examples

	4. Core language definitions
	4.1 Class header files
	4.1.1 #include “systemc-ams”
	4.1.2 #include “systemc-ams.h”

	4.2 Base class definitions
	4.2.1 sca_core::sca_module
	4.2.1.1 Description
	4.2.1.2 Class definition
	4.2.1.3 Constraints on usage
	4.2.1.4 kind
	4.2.1.5 set_timestep
	4.2.1.6 set_max_timestep
	4.2.1.7 SCA_CTOR

	4.2.2 sca_core::sca_interface
	4.2.2.1 Description
	4.2.2.2 Class definition
	4.2.2.3 Constraints on usage

	4.2.3 sca_core::sca_prim_channel
	4.2.3.1 Description
	4.2.3.2 Class definition
	4.2.3.3 Constraints on usage
	4.2.3.4 Constructors
	4.2.3.5 kind

	4.2.4 sca_core::sca_port
	4.2.4.1 Description
	4.2.4.2 Class definition
	4.2.4.3 Template parameter IF
	4.2.4.4 Constraints on usage
	4.2.4.5 Constructors
	4.2.4.6 kind

	4.2.5 sca_core::sca_time
	4.2.6 sca_core::sca_max_time
	4.2.7 sca_core::sca_parameter_base
	4.2.7.1 Description
	4.2.7.2 Class definition
	4.2.7.3 Constructors
	4.2.7.4 kind
	4.2.7.5 to_string
	4.2.7.6 print
	4.2.7.7 lock
	4.2.7.8 unlock
	4.2.7.9 is_locked
	4.2.7.10 operator<<

	4.2.8 sca_core::sca_parameter
	4.2.8.1 Description
	4.2.8.2 Class definition
	4.2.8.3 Template parameter T
	4.2.8.4 Constructors
	4.2.8.5 kind
	4.2.8.6 to_string
	4.2.8.7 print
	4.2.8.8 get
	4.2.8.9 set

	4.2.9 sca_core::sca_assign_from_proxy†
	4.2.9.1 Description
	4.2.9.2 Class definition
	4.2.9.3 Constraint on usage

	4.2.10 sca_core::sca_assign_to_proxy†
	4.2.10.1 Description
	4.2.10.2 Class definition
	4.2.10.3 operator=
	4.2.10.4 Constraint on usage



	5. Timed data flow model of computation
	5.1 Class definitions
	5.1.1 sca_tdf::sca_module
	5.1.1.1 Description
	5.1.1.2 Class definition
	5.1.1.3 Constraints on usage
	5.1.1.4 kind
	5.1.1.5 set_attributes
	5.1.1.6 change_attributes
	5.1.1.7 initialize
	5.1.1.8 reinitialize
	5.1.1.9 processing
	5.1.1.10 ac_processing
	5.1.1.11 register_processing
	5.1.1.12 register_ac_processing
	5.1.1.13 request_next_activation
	5.1.1.14 accept_attribute_changes
	5.1.1.15 reject_attribute_changes
	5.1.1.16 does_attribute_changes
	5.1.1.17 does_no_attribute_changes
	5.1.1.18 get_time
	5.1.1.19 get_timestep
	5.1.1.20 get_max_timestep
	5.1.1.21 get_last_timestep
	5.1.1.22 is_dynamic
	5.1.1.23 are_attribute_changes_allowed
	5.1.1.24 are_attributes_changed
	5.1.1.25 is_timestep_changed
	5.1.1.26 Constructor
	5.1.1.27 SCA_TDF_MODULE

	5.1.2 sca_tdf::sca_signal_if
	5.1.2.1 Description
	5.1.2.2 Class definition

	5.1.3 sca_tdf::sca_signal
	5.1.3.1 Description
	5.1.3.2 Class definition
	5.1.3.3 Template parameter T
	5.1.3.4 Constructors
	5.1.3.5 kind

	5.1.4 sca_tdf::sca_default_interpolator
	5.1.4.1 Description
	5.1.4.2 Class definition
	5.1.4.3 Template parameter T
	5.1.4.4 store_value
	5.1.4.5 get_value

	5.1.5 sca_tdf::sca_in
	5.1.5.1 Description
	5.1.5.2 Class definition
	5.1.5.3 Template parameter  T
	5.1.5.4 Constructors
	5.1.5.5 set_delay
	5.1.5.6 set_rate
	5.1.5.7 set_timestep
	5.1.5.8 set_max_timestep
	5.1.5.9 get_delay
	5.1.5.10 get_rate
	5.1.5.11 get_time
	5.1.5.12 get_timestep
	5.1.5.13 get_max_timestep
	5.1.5.14 get_last_timestep
	5.1.5.15 kind
	5.1.5.16 initialize
	5.1.5.17 read_delayed_value
	5.1.5.18 is_timestep_changed
	5.1.5.19 is_rate_changed
	5.1.5.20 is_delay_changed
	5.1.5.21 read

	5.1.6 sca_tdf::sca_out
	5.1.6.1 Description
	5.1.6.2 Class definition
	5.1.6.3 Constraint on usage
	5.1.6.4 Template parameters

	5.1.7 sca_tdf::sca_out<T>
	5.1.7.1 Description
	5.1.7.2 Class definition
	5.1.7.3 Constructors
	5.1.7.4 set_delay
	5.1.7.5 set_rate
	5.1.7.6 set_timestep
	5.1.7.7 set_max_timestep
	5.1.7.8 get_delay
	5.1.7.9 get_rate
	5.1.7.10 get_time
	5.1.7.11 get_timestep
	5.1.7.12 get_max_timestep
	5.1.7.13 get_last_timestep
	5.1.7.14 kind
	5.1.7.15 initialize
	5.1.7.16 read_delayed_value
	5.1.7.17 is_timestep_changed
	5.1.7.18 is_rate_changed
	5.1.7.19 is_delay_changed
	5.1.7.20 write

	5.1.8 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>
	5.1.8.1 Description
	5.1.8.2 Class definition
	5.1.8.3 Constraint on usage
	5.1.8.4 Constructors
	5.1.8.5 set_delay
	5.1.8.6 set_ct_delay
	5.1.8.7 set_rate
	5.1.8.8 set_timestep
	5.1.8.9 set_max_timestep
	5.1.8.10 get_delay
	5.1.8.11 get_ct_delay
	5.1.8.12 get_rate
	5.1.8.13 get_time
	5.1.8.14 get_timestep
	5.1.8.15 get_max_timestep
	5.1.8.16 get_last_timestep
	5.1.8.17 kind
	5.1.8.18 initialize
	5.1.8.19 set_initial_value
	5.1.8.20 read_delayed_value
	5.1.8.21 is_timestep_changed
	5.1.8.22 is_rate_changed
	5.1.8.23 is_delay_changed
	5.1.8.24 write

	5.1.9 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>
	5.1.9.1 Description
	5.1.9.2 Class definition
	5.1.9.3 Constraint on usage
	5.1.9.4 Constructors
	5.1.9.5 set_delay
	5.1.9.6 set_ct_delay
	5.1.9.7 set_rate
	5.1.9.8 set_timestep
	5.1.9.9 set_max_timestep
	5.1.9.10 get_delay
	5.1.9.11 get_ct_delay
	5.1.9.12 get_rate
	5.1.9.13 get_time
	5.1.9.14 get_timestep
	5.1.9.15 get_max_timestep
	5.1.9.16 get_last_timestep
	5.1.9.17 kind
	5.1.9.18 initialize
	5.1.9.19 set_initial_value
	5.1.9.20 read_delayed_value
	5.1.9.21 is_timestep_changed
	5.1.9.22 is_rate_changed
	5.1.9.23 is_delay_changed
	5.1.9.24 write

	5.1.10 sca_tdf::sca_de::sca_in, sca_tdf::sc_in
	5.1.10.1 Description
	5.1.10.2 Class definition
	5.1.10.3 Constraint on usage
	5.1.10.4 Template parameter  T
	5.1.10.5 Constructors
	5.1.10.6 set_delay
	5.1.10.7 set_rate
	5.1.10.8 set_timestep
	5.1.10.9 set_max_timestep
	5.1.10.10 get_delay
	5.1.10.11 get_rate
	5.1.10.12 get_time
	5.1.10.13 get_timestep
	5.1.10.14 get_max_timestep
	5.1.10.15 get_last_timestep
	5.1.10.16 kind
	5.1.10.17 initialize
	5.1.10.18 read_delayed_value
	5.1.10.19 is_timestep_changed
	5.1.10.20 is_rate_changed
	5.1.10.21 is_delay_changed
	5.1.10.22 read
	5.1.10.23 default_event
	5.1.10.24 value_changed_event
	5.1.10.25 event
	5.1.10.26 bind, operator()

	5.1.11 sca_tdf::sca_de::sca_in<bool>, sca_tdf::sc_in<bool>
	5.1.11.1 Description
	5.1.11.2 Class definition
	5.1.11.3 Constraint on usage
	5.1.11.4 Constructors
	5.1.11.5 set_delay
	5.1.11.6 set_rate
	5.1.11.7 set_timestep
	5.1.11.8 set_max_timestep
	5.1.11.9 get_delay
	5.1.11.10 get_rate
	5.1.11.11 get_time
	5.1.11.12 get_timestep
	5.1.11.13 get_max_timestep
	5.1.11.14 get_last_timestep
	5.1.11.15 kind
	5.1.11.16 initialize
	5.1.11.17 read_delayed_value
	5.1.11.18 is_timestep_changed
	5.1.11.19 is_rate_changed
	5.1.11.20 is_delay_changed
	5.1.11.21 read
	5.1.11.22 default_event
	5.1.11.23 value_changed_event
	5.1.11.24 posedge_event
	5.1.11.25 negedge_event
	5.1.11.26 event
	5.1.11.27 posedge
	5.1.11.28 negedge
	5.1.11.29 bind, operator()

	5.1.12 sca_tdf::sca_de::sca_in<sc_dt::sc_logic>, sca_tdf::sc_in<sc_dt::sc_logic>
	5.1.12.1 Description
	5.1.12.2 Class definition
	5.1.12.3 Constraint on usage
	5.1.12.4 Constructors
	5.1.12.5 set_delay
	5.1.12.6 set_rate
	5.1.12.7 set_timestep
	5.1.12.8 set_max_timestep
	5.1.12.9 get_delay
	5.1.12.10 get_rate
	5.1.12.11 get_time
	5.1.12.12 get_timestep
	5.1.12.13 get_max_timestep
	5.1.12.14 get_last_timestep
	5.1.12.15 kind
	5.1.12.16 initialize
	5.1.12.17 read_delayed_value
	5.1.12.18 is_timestep_changed
	5.1.12.19 is_rate_changed
	5.1.12.20 is_delay_changed
	5.1.12.21 read
	5.1.12.22 default_event
	5.1.12.23 value_changed_event
	5.1.12.24 posedge_event
	5.1.12.25 negedge_event
	5.1.12.26 event
	5.1.12.27 posedge
	5.1.12.28 negedge
	5.1.12.29 bind, operator()

	5.1.13 sca_tdf::sca_de::sca_out, sca_tdf::sc_out
	5.1.13.1 Description
	5.1.13.2 Class definition
	5.1.13.4 Constraint on usage
	5.1.13.3 Template parameter T
	5.1.13.5 Constructors
	5.1.13.6 set_delay
	5.1.13.7 set_rate
	5.1.13.8 set_timestep
	5.1.13.9 set_max_timestep
	5.1.13.10 get_delay
	5.1.13.11 get_rate
	5.1.13.12 get_time
	5.1.13.13 get_timestep
	5.1.13.14 get_max_timestep
	5.1.13.15 get_last_timestep
	5.1.13.16 kind
	5.1.13.17 initialize
	5.1.13.18 initialize_de_signal
	5.1.13.19 read_delayed_value
	5.1.13.20 is_timestep_changed
	5.1.13.21 is_rate_changed
	5.1.13.22 is_delay_changed
	5.1.13.23 write

	5.1.14 sca_tdf::sca_trace_variable
	5.1.14.1 Description
	5.1.14.2 Class definition
	5.1.14.3 Constraint on usage
	5.1.14.4 Constructors
	5.1.14.5 kind
	5.1.14.6 write
	5.1.14.7 read


	5.2 Hierarchical composition and port binding
	5.3 Elaboration and simulation
	5.3.1 Elaboration
	5.3.1.1 Attribute setting
	5.3.1.2 Timestep calculation and propagation
	5.3.1.3 Computability check

	5.3.2 Simulation
	5.3.2.1 Initialization
	5.3.2.2 Processing
	5.3.2.3 Attribute changes and reinitialization
	5.3.2.4 Synchronization with the SystemC kernel


	5.4 Embedded linear dynamic equations
	5.4.1 sca_tdf::sca_ct_proxy†
	5.4.1.1 Description
	5.4.1.2 Class definition
	5.4.1.3 Constraint on usage
	5.4.1.4 to_double
	5.4.1.5 to_vector
	5.4.1.6 to_port
	5.4.1.7 assign_to

	5.4.2 sca_tdf::sca_ct_vector_proxy†
	5.4.2.1 Description
	5.4.2.2 Class definition
	5.4.2.3 Constraint on usage
	5.4.2.4 to_vector
	5.4.2.5 to_matrix
	5.4.2.6 to_port
	5.4.2.7 assign_to

	5.4.3 sca_tdf::sca_ltf_nd
	5.4.3.1 Description
	5.4.3.2 Class definition
	5.4.3.3 Constructors
	5.4.3.4 Constraint on usage
	5.4.3.5 kind
	5.4.3.6 set_max_delay
	5.4.3.7 estimate_next_value
	5.4.3.8 enable_iterations
	5.4.3.9 calculate, operator()

	5.4.4 sca_tdf::sca_ltf_zp
	5.4.4.1 Description
	5.4.4.2 Class definition
	5.4.4.3 Constructors
	5.4.4.4 Constraint on usage
	5.4.4.5 kind
	5.4.4.6 set_max_delay
	5.4.4.7 estimate_next_value
	5.4.4.8 enable_iterations
	5.4.4.9 calculate, operator()

	5.4.5 sca_tdf::sca_ss
	5.4.5.1 Description
	5.4.5.2 Class definition
	5.4.5.3 Constructors
	5.4.5.4 kind
	5.4.5.5 set_max_delay
	5.4.5.6 estimate_next_value
	5.4.5.7 enable_iterations
	5.4.5.8 calculate, operator()



	6. Linear signal flow model of computation
	6.1 Class definitions
	6.1.1 sca_lsf::sca_module
	6.1.1.1 Description
	6.1.1.2 Class definition

	6.1.2 sca_lsf::sca_signal_if
	6.1.2.1 Description
	6.1.2.2 Class definition

	6.1.3 sca_lsf::sca_signal
	6.1.3.1 Description
	6.1.3.2 Class definition
	6.1.3.3 Constructors
	6.1.3.4 kind

	6.1.4 sca_lsf::sca_in
	6.1.4.1 Description
	6.1.4.2 Class definition
	6.1.4.3 Constructors
	6.1.4.4 kind

	6.1.5 sca_lsf::sca_out
	6.1.5.1 Description
	6.1.5.2 Class definition
	6.1.5.3 Constructors
	6.1.5.4 kind

	6.1.6 sca_lsf::sca_add
	6.1.6.1 Description
	6.1.6.2 Class definition
	6.1.6.3 kind

	6.1.7 sca_lsf::sca_sub
	6.1.7.1 Description
	6.1.7.2 Class definition
	6.1.7.3 kind

	6.1.8 sca_lsf::sca_gain
	6.1.8.1 Description
	6.1.8.2 Class definition
	6.1.8.3 kind

	6.1.9 sca_lsf::sca_dot
	6.1.9.1 Description
	6.1.9.2 Class definition
	6.1.9.3 kind

	6.1.10 sca_lsf::sca_integ
	6.1.10.1 Description
	6.1.10.2 Class definition
	6.1.10.3 kind

	6.1.11 sca_lsf::sca_delay
	6.1.11.1 Description
	6.1.11.2 Class definition
	6.1.11.3 Constraint of usage
	6.1.11.4 kind

	6.1.12 sca_lsf::sca_source
	6.1.12.1 Description
	6.1.12.2 Class definition
	6.1.12.3 kind

	6.1.13 sca_lsf::sca_ltf_nd
	6.1.13.1 Description
	6.1.13.2 Class definition
	6.1.13.3 Constraint on usage
	6.1.13.4 kind

	6.1.14 sca_lsf::sca_ltf_zp
	6.1.14.1 Description
	6.1.14.2 Class definition
	6.1.14.3 Constraint on usage
	6.1.14.4 kind

	6.1.15 sca_lsf::sca_ss
	6.1.15.1 Description
	6.1.15.2 Class definition
	6.1.15.3 Constraint on usage
	6.1.15.4 kind

	6.1.16 sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain
	6.1.16.1 Description
	6.1.16.2 Class definition
	6.1.16.3 kind

	6.1.17 sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source
	6.1.17.1 Description
	6.1.17.2 Class definition
	6.1.17.3 kind

	6.1.18 sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink
	6.1.18.1 Description
	6.1.18.2 Class definition
	6.1.18.3 kind

	6.1.19 sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux
	6.1.19.1 Description
	6.1.19.2 Class definition
	6.1.19.3 kind

	6.1.20 sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux
	6.1.20.1 Description
	6.1.20.2 Class definition
	6.1.20.3 kind

	6.1.21 sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain
	6.1.21.1 Description
	6.1.21.2 Class definition
	6.1.21.3 kind

	6.1.22 sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source
	6.1.22.1 Description
	6.1.22.2 Class definition
	6.1.22.3 kind

	6.1.23 sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink
	6.1.23.1 Description
	6.1.23.2 Class definition
	6.1.23.3 kind

	6.1.24 sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux
	6.1.24.1 Description
	6.1.24.2 Class definition
	6.1.24.3 kind

	6.1.25 sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux
	6.1.25.1 Description
	6.1.25.2 Class definition
	6.1.25.3 kind


	6.2 Hierarchical composition and port binding
	6.3 Elaboration and simulation
	6.3.1 Elaboration
	6.3.1.1 Timestep calculation and propagation
	6.3.1.2 Equation system setup and solvability check

	6.3.2 Simulation
	6.3.2.1 Initialization
	6.3.2.2 Time-domain simulation
	6.3.2.3 Synchronization with TDF MoC
	6.3.2.4 Synchronization with the SystemC kernel



	7. Electrical linear networks model of computation
	7.1 Class definitions
	7.1.1 sca_eln::sca_module
	7.1.1.1 Description
	7.1.1.2 Class definition

	7.1.2 sca_eln::sca_node_if
	7.1.2.1 Description
	7.1.2.2 Class definition

	7.1.3 sca_eln::sca_terminal
	7.1.3.1 Description
	7.1.3.2 Class definition
	7.1.3.3 Constructors
	7.1.3.4 kind

	7.1.4 sca_eln::sca_node
	7.1.4.1 Description
	7.1.4.2 Class definition
	7.1.4.3 Constructors
	7.1.4.4 kind

	7.1.5 sca_eln::sca_node_ref
	7.1.5.1 Description
	7.1.5.2 Class definition
	7.1.5.3 Constructors
	7.1.5.4 kind

	7.1.6 sca_eln::sca_r
	7.1.6.1 Description
	7.1.6.2 Class definition
	7.1.6.3 kind

	7.1.7 sca_eln::sca_c
	7.1.7.1 Description
	7.1.7.2 Class definition
	7.1.7.3 Constraint of usage
	7.1.7.4 kind

	7.1.8 sca_eln::sca_l
	7.1.8.1 Description
	7.1.8.2 Class definition
	7.1.8.3 Constraint of usage
	7.1.8.4 kind

	7.1.9 sca_eln::sca_vcvs
	7.1.9.1 Description
	7.1.9.2 Class definition
	7.1.9.3 kind

	7.1.10 sca_eln::sca_vccs
	7.1.10.1 Description
	7.1.10.2 Class definition
	7.1.10.3 kind

	7.1.11 sca_eln::sca_ccvs
	7.1.11.1 Description
	7.1.11.2 Class definition
	7.1.11.3 kind

	7.1.12 sca_eln::sca_cccs
	7.1.12.1 Description
	7.1.12.2 Class definition
	7.1.12.3 kind

	7.1.13 sca_eln::sca_nullor
	7.1.13.1 Description
	7.1.13.2 Class definition
	7.1.13.3 kind

	7.1.14 sca_eln::sca_gyrator
	7.1.14.1 Description
	7.1.14.2 Class definition
	7.1.14.3 kind

	7.1.15 sca_eln::sca_ideal_transformer
	7.1.15.1 Description
	7.1.15.2 Class definition
	7.1.15.3 kind

	7.1.16 sca_eln::sca_transmission_line
	7.1.16.1 Description
	7.1.16.2 Class definition
	7.1.16.3 kind

	7.1.17 sca_eln::sca_vsource
	7.1.17.1 Description
	7.1.17.2 Class definition
	7.1.17.3 kind

	7.1.18 sca_eln::sca_isource
	7.1.18.1 Description
	7.1.18.2 Class definition
	7.1.18.3 kind

	7.1.19 sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r
	7.1.19.1 Description
	7.1.19.2 Class definition
	7.1.19.3 kind

	7.1.20 sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c
	7.1.20.1 Description
	7.1.20.2 Class definition
	7.1.20.3 Constraint of usage
	7.1.20.4 kind

	7.1.21 sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l
	7.1.21.1 Description
	7.1.21.2 Class definition
	7.1.21.3 Constraint of usage
	7.1.21.4 kind

	7.1.22 sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch
	7.1.22.1 Description
	7.1.22.2 Class definition
	7.1.22.3 kind

	7.1.23 sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource
	7.1.23.1 Description
	7.1.23.2 Class definition
	7.1.23.3 kind

	7.1.24 sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource
	7.1.24.1 Description
	7.1.24.2 Class definition
	7.1.24.3 kind

	7.1.25 sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink
	7.1.25.1 Description
	7.1.25.2 Class definition
	7.1.25.3 kind

	7.1.26 sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink
	7.1.26.1 Description
	7.1.26.2 Class definition
	7.1.26.3 kind

	7.1.27 sca_eln::sca_de::sca_r, sca_eln::sca_de_r
	7.1.27.1 Description
	7.1.27.2 Class definition
	7.1.27.3 kind

	7.1.28 sca_eln::sca_de::sca_c, sca_eln::sca_de_c
	7.1.28.1 Description
	7.1.28.2 Class definition
	7.1.28.3 Constraint of usage
	7.1.28.4 kind

	7.1.29 sca_eln::sca_de::sca_l, sca_eln::sca_de_l
	7.1.29.1 Description
	7.1.29.2 Class definition
	7.1.29.3 Constraint of usage
	7.1.29.4 kind

	7.1.30 sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch
	7.1.30.1 Description
	7.1.30.2 Class definition
	7.1.30.3 kind

	7.1.31 sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource
	7.1.31.1 Description
	7.1.31.2 Class definition
	7.1.31.3 kind

	7.1.32 sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource
	7.1.32.1 Description
	7.1.32.2 Class definition
	7.1.32.3 kind

	7.1.33 sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink
	7.1.33.1 Description
	7.1.33.2 Class definition
	7.1.33.3 kind

	7.1.34 sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink
	7.1.34.1 Description
	7.1.34.2 Class definition
	7.1.34.3 kind


	7.2 Hierarchical composition and port binding
	7.3 Elaboration and simulation
	7.3.1 Elaboration
	7.3.1.1 Timestep calculation and propagation
	7.3.1.2 Equation system setup and solvability check

	7.3.2 Simulation
	7.3.2.1 Initialization
	7.3.2.2 Time-domain simulation
	7.3.2.3 Synchronization with TDF MoC
	7.3.2.4 Synchronization with the SystemC kernel



	8. Predefined analyses
	8.1 Time-domain analysis
	8.1.1 Elaboration and simulation
	8.1.2 Running elaboration and simulation

	8.2 Small-signal frequency-domain analyses
	8.2.1 Elaboration and simulation
	8.2.1.1 Elaboration
	8.2.1.2 Simulation

	8.2.2 Running elaboration and simulation
	8.2.2.1 sca_ac_analysis::sca_ac_start
	8.2.2.2 sca_ac_analysis::sca_ac_noise_start

	8.2.3 Small-signal frequency-domain analysis of TDF descriptions
	8.2.3.1 sca_ac_analysis::sca_ac
	8.2.3.2 sca_ac_analysis::sca_ac_noise
	8.2.3.3 sca_ac_analysis::sca_ac_is_running
	8.2.3.4 sca_ac_analysis::sca_ac_noise_is_running
	8.2.3.5 sca_ac_analysis::sca_ac_f
	8.2.3.6 sca_ac_analysis::sca_ac_w
	8.2.3.7 sca_ac_analysis::sca_ac_s
	8.2.3.8 sca_ac_analysis::sca_ac_z
	8.2.3.9 sca_ac_analysis::sca_ac_delay
	8.2.3.10 sca_ac_analysis::sca_ac_ltf_nd
	8.2.3.11 sca_ac_analysis::sca_ac_ltf_zp
	8.2.3.12 sca_ac_analysis::sca_ac_ss

	8.2.4 Small-signal frequency-domain analysis of LSF descriptions
	8.2.5 Small-signal frequency-domain analysis of ELN descriptions


	9. Utility definitions
	9.1 Trace files
	9.1.1 Class definitions
	9.1.1.1 sca_util::sca_trace_mode_base
	9.1.1.1.1 Description
	9.1.1.1.2 Class definition
	9.1.1.1.3 Trace mode classes

	9.1.1.2 sca_util::sca_trace_file
	9.1.1.2.1 Description
	9.1.1.2.2 Class definition
	9.1.1.2.3 enable
	9.1.1.2.4 disable
	9.1.1.2.5 set_mode
	9.1.1.2.6 reopen

	9.1.1.3 sca_util::sca_traceable_object†
	9.1.1.3.1 Description
	9.1.1.3.2 Class definition
	9.1.1.3.3 Constraint on usage


	9.1.2 Function declarations
	9.1.2.1 sca_util::sca_create_vcd_trace_file
	9.1.2.2 sca_util::sca_close_vcd_trace_file
	9.1.2.3 sca_util::sca_create_tabular_trace_file
	9.1.2.3.1 Format for time-domain simulations
	9.1.2.3.2 Format for small-signal frequency-domain and noise simulations

	9.1.2.4 sca_util::sca_close_tabular_trace_file
	9.1.2.5 sca_util::sca_write_comment
	9.1.2.6 sca_util::sca_trace


	9.2 Data types and constants
	9.2.1 Class definition and function declarations
	9.2.1.1 sca_util::sca_complex
	9.2.1.1.1 Description
	9.2.1.1.2 Class definition

	9.2.1.2 sca_util::sca_matrix
	9.2.1.2.1 Description
	9.2.1.2.2 Class definition
	9.2.1.2.3 Template parameter T
	9.2.1.2.4 Constructors
	9.2.1.2.5 resize
	9.2.1.2.6 set_auto_resizable
	9.2.1.2.7 unset_auto_resizable
	9.2.1.2.8 is_auto_resizable
	9.2.1.2.9 n_rows
	9.2.1.2.10 n_cols
	9.2.1.2.11 operator()
	9.2.1.2.12 operator=
	9.2.1.2.13 operator==
	9.2.1.2.14 operator!=
	9.2.1.2.15 to_string
	9.2.1.2.16 print
	9.2.1.2.17 operator<<

	9.2.1.3 sca_util::sca_vector
	9.2.1.3.1 Description
	9.2.1.3.2 Class definition
	9.2.1.3.3 Template parameter T
	9.2.1.3.4 Constructors
	9.2.1.3.5 resize
	9.2.1.3.6 set_auto_resizable
	9.2.1.3.7 unset_auto_resizable
	9.2.1.3.8 is_auto_resizable
	9.2.1.3.9 length
	9.2.1.3.10 operator()
	9.2.1.3.11 operator=
	9.2.1.3.12 operator==
	9.2.1.3.13 operator!=
	9.2.1.3.14 to_string
	9.2.1.3.15 print
	9.2.1.3.16 operator<<

	9.2.1.4 sca_util::sca_create_vector
	9.2.1.4.1 Description
	9.2.1.4.2 Definition


	9.2.2 Definition of constants
	9.2.2.1 sca_util::SCA_INFINITY
	9.2.2.1.1 Description
	9.2.2.1.2 Definition

	9.2.2.2 sca_util::SCA_COMPLEX_J
	9.2.2.2.1 Description
	9.2.2.2.2 Definition

	9.2.2.3 sca_util::SCA_UNDEFINED
	9.2.2.3.1 Description
	9.2.2.3.2 Definition



	9.3 Reporting information
	9.3.1 Class definition and function declarations
	9.3.1.1 sca_util::sca_information_mask†
	9.3.1.1.1 Class definition
	9.3.1.1.2 operator|

	9.3.1.2 sca_util::sca_information_on
	9.3.1.3 sca_util::sca_information_off

	9.3.2 Mask definitions
	9.3.2.1 sca_util::sca_info::sca_module
	9.3.2.2 sca_util::sca_info::sca_tdf_solver
	9.3.2.3 sca_util::sca_info::sca_lsf_solver
	9.3.2.4 sca_util::sca_info::sca_eln_solver


	9.4 Version and copyright
	9.4.1 Macro definitions
	9.4.1.1 IEEE_16661_SYSTEMC_AMS
	9.4.1.2 SCA_VERSION_MAJOR
	9.4.1.3 SCA_VERSION_MINOR
	9.4.1.4 SCA_VERSION_PATCH
	9.4.1.5 SCA_VERSION_ORIGINATOR
	9.4.1.6 SCA_VERSION_RELEASE_DATE
	9.4.1.7 SCA_VERSION_PRERELEASE
	9.4.1.8 SCA_IS_PRERELEASE
	9.4.1.9 SCA_VERSION
	9.4.1.10 SCA_COPYRIGHT

	9.4.2 Constants
	9.4.2.1 sca_core::sca_version_major
	9.4.2.2 sca_core::sca_version_minor
	9.4.2.3 sca_core::sca_version_patch
	9.4.2.4 sca_core::sca_version_originator
	9.4.2.5 sca_core::sca_version_release_date
	9.4.2.6 sca_core::sca_version_prerelease
	9.4.2.7 sca_core::sca_is_prerelease
	9.4.2.8 sca_core::sca_version_string
	9.4.2.9 sca_core::sca_copyright_string

	9.4.3 Function declarations
	9.4.3.1 sca_core::sca_copyright
	9.4.3.2 sca_core::sca_version
	9.4.3.3 sca_core::sca_release



	Annex A (informative) Introduction to the SystemC Analog/Mixed-Signal extensions
	Annex B (informative) Glossary
	Index



