

IEC 61691-8
Edition 1.0 2021-07

INTERNATIONAL
STANDARD

Behavioural languages –
Part 8: Standard SystemC® Analog/Mixed-Signal Extensions Language
Reference Manual

IE
C

 6
16

91
-8

:2
02

1-
07

(e
n)

IE

EE
 S

td
 1

66
6.

1-
20

16

IEEE Std 1666.1™

®

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2016 IEEE

All rights reserved. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of
Electrical and Electronics Engineers, Inc. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the IEC Central Office. Any questions about IEEE copyright should be addressed to the
IEEE. Enquiries about obtaining additional rights to this publication and other information requests should be
addressed to the IEC or your local IEC member National Committee.

IEC Central Office Institute of Electrical and Electronics Engineers, Inc.
3, rue de Varembé 3 Park Avenue
CH-1211 Geneva 20 New York, NY 10016-5997
Switzerland United States of America
Tel.: +41 22 919 02 11 stds.info@ieee.org
info@iec.ch www.ieee.org
www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee, …). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: sales@iec.ch.

IEC online collection - oc.iec.ch
Discover our powerful search engine and read freely all the
publications previews. With a subscription you will always
have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology,
containing more than 22 000 terminological entries in English
and French, with equivalent terms in 18 additional languages.
Also known as the International Electrotechnical Vocabulary
(IEV) online.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

mailto:stds.info@ieee.org
mailto:info@iec.ch
http://www.ieee.org/
https://www.iec.ch/
https://webstore.iec.ch/advsearchform
https://webstore.iec.ch/justpublished
https://webstore.iec.ch/csc
mailto:sales@iec.ch
https://oc.iec.ch/
http://www.electropedia.org/
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEC 61691-8
Edition 1.0 2021-07

INTERNATIONAL
STANDARD

Behavioural languages –
Part 8: Standard SystemC® Analog/Mixed-Signal Extensions Language
Reference Manual

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.01; 35.060

ISBN 978-2-8322-9951-7

 Warning! Make sure that you obtained this publication from an authorized distributor.

IEEE Std 1666.1™

®

® Registered trademark of the International Electrotechnical Commission

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

viii
Copyright © 2016 IEEE. All rights reserved.

Contents

1. Overview... 1

1.1 Scope..1
1.2 Purpose...1
1.3 Subsets... 2
1.4 Relationship with C++.. 2
1.5 Relationship with SystemC... 2
1.6 Guidance for readers... 2

2. Normative references..4

3. Terminology and conventions used in this standard..5

3.1 Terminology...5
3.1.1 Shall, should, may, can.. 5
3.1.2 Implementation, application... 5
3.1.3 Call, called from, derived from... 5
3.1.4 Specific technical terms... 5

3.2 Syntactical conventions... 6
3.2.1 Implementation-defined..6
3.2.2 Disabled.. 6
3.2.3 Ellipsis (...)... 6
3.2.4 Class names.. 6
3.2.5 Prefixes... 7

3.3 Typographical conventions..7
3.4 Semantic conventions.. 7

3.4.1 Class definitions and the inheritance hierarchy... 7
3.4.2 Function definitions and side-effects... 7
3.4.3 Functions whose return type is a reference or a pointer..8
3.4.4 Namespaces and internal naming...8
3.4.5 Non-compliant applications and errors.. 9

3.5 Notes and examples...9

4. Core language definitions...10

4.1 Class header files...10
4.1.1 #include “systemc-ams”... 10
4.1.2 #include “systemc-ams.h”.. 10

4.2 Base class definitions.. 11
4.2.1 sca_core::sca_module... 11
4.2.2 sca_core::sca_interface... 13
4.2.3 sca_core::sca_prim_channel... 14

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

ix
Copyright © 2016 IEEE. All rights reserved.

4.2.4 sca_core::sca_port...15
4.2.5 sca_core::sca_time.. 16
4.2.6 sca_core::sca_max_time... 16
4.2.7 sca_core::sca_parameter_base.. 16
4.2.8 sca_core::sca_parameter... 18
4.2.9 sca_core::sca_assign_from_proxy†...20
4.2.10 sca_core::sca_assign_to_proxy† ..21

5. Timed data flow model of computation...22

5.1 Class definitions.. 22
5.1.1 sca_tdf::sca_module..22
5.1.2 sca_tdf::sca_signal_if..29
5.1.3 sca_tdf::sca_signal.. 30
5.1.4 sca_tdf::sca_default_interpolator..31
5.1.5 sca_tdf::sca_in.. 32
5.1.6 sca_tdf::sca_out.. 37
5.1.7 sca_tdf::sca_out<T>... 39
5.1.8 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>...44
5.1.9 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>.. 50
5.1.10 sca_tdf::sca_de::sca_in, sca_tdf::sc_in...55
5.1.11 sca_tdf::sca_de::sca_in<bool>, sca_tdf::sc_in<bool>..62
5.1.12 sca_tdf::sca_de::sca_in<sc_dt::sc_logic>, sca_tdf::sc_in<sc_dt::sc_logic>.................. 69
5.1.13 sca_tdf::sca_de::sca_out, sca_tdf::sc_out...75
5.1.14 sca_tdf::sca_trace_variable...82

5.2 Hierarchical composition and port binding...83
5.3 Elaboration and simulation..83

5.3.1 Elaboration..84
5.3.2 Simulation...85

5.4 Embedded linear dynamic equations.. 87
5.4.1 sca_tdf::sca_ct_proxy†..88
5.4.2 sca_tdf::sca_ct_vector_proxy†..89
5.4.3 sca_tdf::sca_ltf_nd.. 91
5.4.4 sca_tdf::sca_ltf_zp.. 96
5.4.5 sca_tdf::sca_ss.. 102

6. Linear signal flow model of computation..110

6.1 Class definitions.. 110
6.1.1 sca_lsf::sca_module.. 110
6.1.2 sca_lsf::sca_signal_if.. 110
6.1.3 sca_lsf::sca_signal.. 111
6.1.4 sca_lsf::sca_in...111
6.1.5 sca_lsf::sca_out...112

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

x
Copyright © 2016 IEEE. All rights reserved.

6.1.6 sca_lsf::sca_add.. 113
6.1.7 sca_lsf::sca_sub.. 114
6.1.8 sca_lsf::sca_gain... 115
6.1.9 sca_lsf::sca_dot...115
6.1.10 sca_lsf::sca_integ.. 116
6.1.11 sca_lsf::sca_delay... 117
6.1.12 sca_lsf::sca_source..118
6.1.13 sca_lsf::sca_ltf_nd.. 119
6.1.14 sca_lsf::sca_ltf_zp...120
6.1.15 sca_lsf::sca_ss...121
6.1.16 sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain... 122
6.1.17 sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source.. 123
6.1.18 sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink..124
6.1.19 sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux... 125
6.1.20 sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux... 126
6.1.21 sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain...127
6.1.22 sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source..127
6.1.23 sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink... 128
6.1.24 sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux.. 129
6.1.25 sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux...130

6.2 Hierarchical composition and port binding...131
6.3 Elaboration and simulation..131

6.3.1 Elaboration..131
6.3.2 Simulation...132

7. Electrical linear networks model of computation.. 134

7.1 Class definitions.. 134
7.1.1 sca_eln::sca_module... 134
7.1.2 sca_eln::sca_node_if...135
7.1.3 sca_eln::sca_terminal..135
7.1.4 sca_eln::sca_node... 136
7.1.5 sca_eln::sca_node_ref...137
7.1.6 sca_eln::sca_r..138
7.1.7 sca_eln::sca_c... 138
7.1.8 sca_eln::sca_l.. 139
7.1.9 sca_eln::sca_vcvs..140
7.1.10 sca_eln::sca_vccs.. 141
7.1.11 sca_eln::sca_ccvs.. 142
7.1.12 sca_eln::sca_cccs.. 142
7.1.13 sca_eln::sca_nullor..143
7.1.14 sca_eln::sca_gyrator..144
7.1.15 sca_eln::sca_ideal_transformer...145

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

xi
Copyright © 2016 IEEE. All rights reserved.

7.1.16 sca_eln::sca_transmission_line...146
7.1.17 sca_eln::sca_vsource...147
7.1.18 sca_eln::sca_isource..148
7.1.19 sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r...149
7.1.20 sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c..150
7.1.21 sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l... 151
7.1.22 sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch..152
7.1.23 sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource...153
7.1.24 sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource.. 154
7.1.25 sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink.. 155
7.1.26 sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink..156
7.1.27 sca_eln::sca_de::sca_r, sca_eln::sca_de_r.. 157
7.1.28 sca_eln::sca_de::sca_c, sca_eln::sca_de_c... 158
7.1.29 sca_eln::sca_de::sca_l, sca_eln::sca_de_l.. 159
7.1.30 sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch... 160
7.1.31 sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource..161
7.1.32 sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource..162
7.1.33 sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink... 162
7.1.34 sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink... 163

7.2 Hierarchical composition and port binding...164
7.3 Elaboration and simulation..164

7.3.1 Elaboration..165
7.3.2 Simulation...165

8. Predefined analyses...167

8.1 Time-domain analysis..167
8.1.1 Elaboration and simulation.. 167
8.1.2 Running elaboration and simulation.. 167

8.2 Small-signal frequency-domain analyses.. 167
8.2.1 Elaboration and simulation.. 168
8.2.2 Running elaboration and simulation.. 168
8.2.3 Small-signal frequency-domain analysis of TDF descriptions.................................... 169
8.2.4 Small-signal frequency-domain analysis of LSF descriptions..................................... 173
8.2.5 Small-signal frequency-domain analysis of ELN descriptions.................................... 173

9. Utility definitions..174

9.1 Trace files.. 174
9.1.1 Class definitions... 174
9.1.2 Function declarations..177

9.2 Data types and constants...180
9.2.1 Class definition and function declarations...180
9.2.2 Definition of constants... 188

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

xii
Copyright © 2016 IEEE. All rights reserved.

9.3 Reporting information... 189
9.3.1 Class definition and function declarations...189
9.3.2 Mask definitions... 190

9.4 Version and copyright... 191
9.4.1 Macro definitions... 191
9.4.2 Constants...193
9.4.3 Function declarations..193

Annex A (informative) Introduction to the SystemC Analog/Mixed-Signal extensions...............................195

Annex B (informative) Glossary... 208

Index...211

Annex C (informative) Participants ... 210

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

Behavioural languages –
Part 8: Standard SystemC® Analog/Mixed-Signal

Extensions Language Reference Manual

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC document(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the
IEEE Standards Association (IEEE SA) Standards Board. IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members
of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote
fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the
accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly
voluntary. IEEE documents are made available for use subject to important notices and legal disclaimers (see
http://standards.ieee.org/ipr/disclaimers.html for more information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two
organizations. This Dual Logo International Standard was jointly developed by the IEC and IEEE under the terms
of that agreement.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of
opinion on the relevant subjects since each technical committee has representation from all interested IEC
National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies
and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially
interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE standards
document is given by the IEEE Standards Association (IEEE SA) Standards Board.

3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC National
Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical
content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in which they
are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
(including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional
publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional
publication shall be clearly indicated in the latter.

5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible
for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual
experts and members of technical committees and IEC National Committees, or volunteers of IEEE Societies and
the Standards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Board, for any
personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for
costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE
Publication or any other IEC or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of material
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or
scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with
submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory.
Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk
of infringement of such rights, is entirely their own responsibility.

IEC 61691-8/IEEE Std 1666.1 was processed through IEC technical committee 91: Electronics
assembly technology, under the IEC/IEEE Dual Logo Agreement. It is an International Standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

http://standards.ieee.org/ipr/disclaimers.html
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

The text of this International Standard is based on the following documents:

IEEE Std FDIS Report on voting

1666.1 (2016) 91/1712/FDIS 91/1724/RVD

Full information on the voting for its approval can be found in the report on voting indicated in
the above table.

The language used for the development of this International Standard is English.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents
of this document will remain unchanged until the stability date indicated on the IEC website
under webstore.iec.ch in the data related to the specific document. At this date, the document
will be

• reconfirmed,

• withdrawn,
• replaced by a revised edition, or

• amended.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

http://webstore.iec.ch/
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

Title page

IEEE Std 1666.1™-2016

IEEE Standard for Standard SystemC®

Analog/Mixed-Signal Extensions
Language Reference Manual

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 29 January 2016

IEEE-SA Standards Board

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

Abstract: The SystemC® Analog/Mixed-Signal (AMS) extensions are defined in this standard.
SystemC AMS is an ANSI standard C++ class library for electronic system-level design and modeling
for use by system architects and engineers who need to address complex heterogeneous systems
that are a hybrid between analog, digital and software components. This standard provides a precise
and complete definition of the SystemC AMS class library so that a SystemC AMS implementation
can be developed with reference to this standard alone. The primary audiences for this standard are
the implementors of the SystemC AMS class library, the implementors of tools supporting the class
library, and the users of the class library.

Keywords: analog mixed signal, behavioral modeling, C++, computer languages, data flow
simulation, digital systems, discrete event simulation, electronic design automation, electronic
system level, electronic systems, electrical networks, hardware description language, hardware
design, hardware verification, IEEE 1666™, IEEE 1666.1™, mixed-signal modeling, SystemC,
SystemC AMS, signal flow modeling, system modeling, system-on-chip

Acknowledgment: Grateful acknowledgment is made to the Accellera Systems Initiative for the
permission to use the following source material: Standard SystemC® AMS extensions 2.0 Language
Reference Manual.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

iii
Copyright © 2016 IEEE. All rights reserved.

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices
and disclaimers, or a reference to this page, appear in all standards and may be found under the heading
“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use,
are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus
development process, approved by the American National Standards Institute (“ANSI”), which brings together
volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not
necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers
the process and establishes rules to promote fairness in the consensus development process, IEEE does not
independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments
contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other document
relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular
purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In
addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards
documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments received
from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or
her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate,
seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

iv
Copyright © 2016 IEEE. All rights reserved.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that
an IEEE standard is translated, only the English version published by IEEE should be considered the approved
IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations
Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall
not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or
educational courses, an individual presenting information on IEEE standards shall make it clear that his or her
views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless
of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards
Coordinating Committees are not able to provide an instant response to comments or questions except in
those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to
interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome
to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They
are made available by IEEE and are adopted for a wide variety of both public and private uses. These include
both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the
promotion of engineering practices and methods. By making these documents available for use and adoption
by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

v
Copyright © 2016 IEEE. All rights reserved.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy
portions of any individual standard for company or organizational internal use or individual, noncommercial
use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer
Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions
of any individual standard for educational classroom use can also be obtained through the Copyright Clearance
Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years
old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of
some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that
they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through
the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.ieee.org/
expel/standards.jsp or contact IEEE at the address listed previously. For more information about the IEEE-SA
or IOWA’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://
standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the
existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has
filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-
SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate
whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation
or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE
is not responsible for identifying Essential Patent Claims for which a license may be required, for
conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing
terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any
licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their
own responsibility. Further information may be obtained from the IEEE Standards Association.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

http://ieeexplore.ieee.org/expel/standards.jsp
http://ieeexplore.ieee.org/expel/standards.jsp
http://standards.ieee.org
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

vii
Copyright © 2016 IEEE. All rights reserved.

Introduction

This introduction is not part of IEEE Std 1666.1™-2016, IEEE Standard for Standard SystemC® Analog/Mixed-Signal
Extensions Language Reference Manual.

This document defines the SystemC Analog/Mixed-Signal (AMS) extensions, which is a C++ class library.

As the electronics industry builds more complex heterogeneous systems involving large numbers of
components including analog, digital and software, there is an increasing need for a modeling language that
can manage the complexity, heterogeneity, and size of these systems. SystemC AMS provides a mechanism
for managing this complexity with its facility for modeling hardware and software together at multiple levels
of abstraction. This capability is not available in traditional hardware description languages.

Stakeholders in SystemC AMS include Electronic Design Automation (EDA) companies who implement
SystemC AMS class libraries and tools, integrated circuit (IC) suppliers who extend those class libraries and
use SystemC AMS to model their intellectual property, and end users who use SystemC AMS to model their
systems.

This standard is not intended to serve as a user’s guide or to provide an introduction to SystemC AMS.
Readers requiring a SystemC AMS tutorial or information on the intended use of SystemC AMS should consult
the Accellera Systems Initiative Web site (http://www.accellera.org) to locate the supplemental material and
training classes available.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

http://www.accellera.org
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

1
Copyright © 2016 IEEE. All rights reserved.

Important notice

IEEE Standard for Standard SystemC®

Analog/Mixed-Signal Extensions
Language Reference Manual

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, health, or
environmental protection, or ensure against interference with or from other devices or networks.
Implementers of IEEE Standards documents are responsible for determining and complying with all
appropriate safety, security, environmental, health, and interference protection practices and all applicable
laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They
can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This standard defines the Analog/Mixed-Signal extensions for SystemC®1, as an ANSI standard C++ class
library based on SystemC for system and hardware design including analog/mixed-signal elements.

1.2 Purpose

The general purpose of the SystemC AMS extensions is to provide a C++ standard for designers and architects,
who need to address complex heterogeneous systems that are a hybrid between hardware and software. This
standard is built on the IEEE Std 1666™-20112 (SystemC Language Reference Manual) and extends it to
create analog/mixed-signal, multi-disciplinary models to simulate continuous-time, discrete-time, and discrete-
event behavior simultaneously.

The specific purpose of this standard is to provide a precise and complete definition of the AMS class library,
so that a SystemC AMS implementation can be developed with reference to this standard alone. This standard
is neither intended to serve as a user’s guide nor to provide an introduction to AMS extensions in SystemC,
but does contain useful information for end users.

1SystemC® is a registered trademark of the Accellera Systems Initiative.
2Information on references can be found in Clause 2.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

http://standards.ieee.org/IPR/disclaimers.html
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

2
Copyright © 2016 IEEE. All rights reserved.

1.3 Subsets

It is anticipated that tool vendors will create implementations that support only a subset of this standard or
that impose further constraints on the use of this standard. Such implementations are not fully compliant with
this standard but may nevertheless claim partial compliance with this standard and may use the name SystemC
AMS extensions.

1.4 Relationship with C++

This standard is closely related to the C++ programming language and adheres to the terminology used in
ISO/IEC 14882:2003. This standard does not seek to restrict the usage of the C++ programming language; an
application using the SystemC AMS extensions may use any of the facilities provided by C++, which in turn
may use any of the facilities provided by C. However, where the facilities provided by this standard are used,
they shall be used in accordance with the rules and constraints set out in this standard.

This standard defines the public interface to the SystemC AMS class library and the constraints on how those
classes may be used. The SystemC AMS class library may be implemented in any manner whatsoever, provided
only that the obligations imposed by this standard are honored.

A C++ class library may be extended using the mechanisms provided by the C++ language. Implementors and
users are free to extend SystemC AMS extensions in this way, provided that they do not violate this standard.

NOTE—It is possible to create a well-formed C++ program that is legal according to the C++ programming language
standard but that violates this standard. An implementation is not obliged to detect every violation of this standard.3

1.5 Relationship with SystemC

This standard is built on IEEE Std 1666-2011 and extends it using the mechanisms provided by the C++
language, to provide an additional layer of analog/mixed-signal constructs. Consequently, an implementation
and application may use the SystemC core language and predefined channels defined in the namespace sc_core
and the SystemC data types defined in the namespace sc_dt, unless stated otherwise.

Any SystemC compliant application shall behave the same in the presence of the SystemC AMS extensions.

1.6 Guidance for readers

Readers who are not entirely familiar with the SystemC AMS extensions should start with Annex A, which
provides a brief informal summary of the subject intended to aid in the understanding of the normative
definitions. Such readers may also find it helpful to scan the examples embedded in the normative definitions
and to see Annex B.

Readers should pay close attention to Clause 3. An understanding of the terminology and conventions defined
in that clause is necessary for a precise interpretation of this standard.

The semantic definitions given in the subsequent clauses detailing the individual classes are built upon the
foundations laid in Clause 4.

Clause 5, Clause 6 and Clause 7 define the public interface to the SystemC AMS class library defining the
predefined models of computation.

3Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 2 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

3
Copyright © 2016 IEEE. All rights reserved.

The following information is listed for each class:
a) A brief class description.
b) A C++ source code listing of the class definition.
c) A statement of any constraints on the use of the class and its members.
d) A statement of the semantics of the class and its members.
e) For certain classes, a description of functions, typedefs, macros, and template parameters associated

with the class.

For each predefined model of computation, the execution semantics for elaboration and simulation are defined.

Readers should bear in mind that the primary obligation of a tool vendor is to implement the abstract semantics
defined in Clause 5, Clause 6, and Clause 7, using the framework and constraints provided by the class
definitions starting in Clause 4.

Annex A is intended to aid the reader in the understanding of the structure and intent of the SystemC AMS
class library.

Annex B is giving informal descriptions of the terms used in this standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 3 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

4
Copyright © 2016 IEEE. All rights reserved.

2. Normative references

The following referenced documents are indispensable for the applications of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained) For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments or corrigenda) applies.

This standard shall be used in conjunction with the following publications:

ISO/IEC 14882:2003, Programming Languages—C++4

IEEE Std 1666™-2011: IEEE Standard for Standard SystemC Language Reference Manual5,6

4ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,
Switzerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).

5The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.
6IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331, USA (http://standards.ieee.org/).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 4 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

http://www.iso.ch/
http://global.ihs.com/
http://www.ansi.org/
http://www.ansi.org/
http://standards.ieee.org/
https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

5
Copyright © 2016 IEEE. All rights reserved.

3. Terminology and conventions used in this standard

3.1 Terminology

3.1.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but does not impose any obligation.

The word may is used to mean shall be permitted (in the sense of being legally allowed).

The word can is used to mean shall be able to (in the sense of being technically possible).

In some cases, word usage is qualified to indicate on whom the obligation falls, such as an application may
or an implementation shall.

3.1.2 Implementation, application

The word implementation is used to mean any specific implementation of the full SystemC AMS class library
as defined in this standard, only the public interface of which need be exposed to the application.

The word application is used to mean a C++ program, written by an end user, that uses the SystemC AMS class
library, that is, it uses the classes, functions, or macros defined in this standard.

3.1.3 Call, called from, derived from

The term call is taken to mean call directly or indirectly. Call indirectly means call an intermediate function
which in turn calls the function in question, where the chain of function calls may be extended indefinitely.

Similarly, called from means called from directly or indirectly.

Except where explicitly qualified, the term derived from is taken to mean derived directly or indirectly from.
Derived indirectly from means derived from one or more intermediate base classes.

3.1.4 Specific technical terms

The specific technical terms as defined in IEEE Std 1666-2011 also apply for the AMS extensions. In addition,
the following technical terms are defined:

A model of computation (MoC) is a set of rules defining the behavior and interaction between AMS primitive
modules. The defined models of computation in this standard are: timed data flow (TDF), linear signal flow
(LSF) and electrical linear networks (ELN).

A cluster is a set of AMS primitive modules connected by channels via AMS ports, which have no defined
decoupling semantics. All modules have to be associated with the same model of computation.

An AMS primitive module is a class derived from the class sca_core::sca_module and associated with a model
of computation. A primitive module cannot be hierarchically decomposed and contains no child modules or
channels. A TDF module is a primitive module derived from class sca_tdf::sca_module. An LSF module is
a primitive module derived from class sca_lsf::sca_module. An ELN module is a primitive module derived
from class sca_eln::sca_module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 5 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

6
Copyright © 2016 IEEE. All rights reserved.

An AMS port is a class derived from the class sca_core::sca_port and associated with a model of computation.
A primitive port is a port of a primitive module.

An AMS terminal is a class derived from the class sca_core::sca_port and associated with the electrical linear
networks model of computation.

An AMS interface is a class derived from the class sca_core::sca_interface and associated with a model of
computation.

An AMS interface proper is an abstract class derived from the class sca_core::sca_interface and associated
with a model of computation.

An AMS channel is a non-abstract class derived from one or more interfaces and associated with a model
of computation.

An AMS node is an object of the class sca_eln::sca_node or sca_eln::sca_node_ref and is an AMS channel
associated with the electrical linear networks model of computation.

An AMS signal is an object of the class sca_tdf::sca_signal or sca_lsf::sca_signal and is an AMS channel
associated with the timed data flow or linear signal flow model of computation, respectively.

3.2 Syntactical conventions

3.2.1 Implementation-defined

The italicized term implementation-defined is used where part of a C++ definition is omitted from this standard.
In such cases, an implementation shall provide an appropriate definition that honors the semantics defined in
this standard.

3.2.2 Disabled

The italicized term disabled is used within a C++ class definition to indicate a group of member functions that
shall be disabled by the implementation so that they cannot be called by an application. The disabled member
functions are typically the default constructor, the copy constructor, or the assignment operator.

3.2.3 Ellipsis (...)

An ellipsis, which consists of three consecutive dots (...), is used to indicate that irrelevant or repetitive parts
of a C++ code listing or example have been omitted for clarity.

3.2.4 Class names

Class names italicized and annotated with a superscript dagger (†) should not be used explicitly within an
application. Moreover, an application shall not create an object of such a class. An implementation is strongly
recommended to use the given class name. However, an implementation may substitute an alternative class
name in place of every occurrence of a particular daggered class name.

Only the class name is being considered here. Whether any part of the definition of the class is implementation-
defined is a separate issue.

The class names in question are the following:

sca_core::sca_assign_from_proxy†

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 6 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

7
Copyright © 2016 IEEE. All rights reserved.

sca_core::sca_assign_to_proxy†

sca_tdf::sca_ct_proxy†

sca_tdf::sca_ct_vector_proxy†

sca_util::sca_information_mask†

sca_util::sca_traceable_object†

3.2.5 Prefixes

The AMS extensions are denoted with the prefix sca_ for namespaces, classes, functions, global definitions
and variables and with the prefix SCA_ for macros and enumeration values.

An application shall not make use of these prefixes for namespaces, functions, global definitions, variables,
macros, and classes derived from the classes defined in this standard.

3.3 Typographical conventions

The following typographical conventions are used in this standard:
a) The italic font is used for:

1) Cross references to terms defined in 3.1, 3.2, and Annex B.
2) Arguments of member functions in class definitions and in the text that are generally substituted

with real values by the implementation or application.
b) The bold font is used for all reserved keywords of SystemC and the AMS extensions as defined in

namespaces, macros, constants, enum literals, classes, member functions, data members and types.
c) The constant-width (Courier) font is used:

1) For the SystemC AMS class definition including its member functions, data members and data
types.

2) To illustrate SystemC AMS language examples when the exact usage is depicted.
3) For references to the SystemC AMS language syntax and headers.

The conventions listed previously are for ease of reading only. Editorial inconsistencies in the use of
typography are unintentional and have no normative meaning in this standard.

3.4 Semantic conventions

3.4.1 Class definitions and the inheritance hierarchy

An implementation may differ from this standard in that an implementation may introduce additional base
classes, class members, and friends to the classes defined in this standard. An implementation may modify the
inheritance hierarchy by moving class members defined by this standard into base classes not defined by this
standard. Such additions and modifications may be made as necessary in order to implement the semantics
defined by this standard or in order to introduce additional functionality not defined by this standard.

3.4.2 Function definitions and side-effects

This standard explicitly defines the semantics of the C++ functions for the AMS class library for SystemC.
Such functions shall not have any side-effects that would contradict the behavior explicitly mandated by this
standard. In general, the reader should assume the common-sense rule that if it is explicitly stated that a function
shall perform action A, that function shall not perform any action other than A, either directly or by calling

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 7 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

8
Copyright © 2016 IEEE. All rights reserved.

another function defined in this standard. However, a function may, and indeed in certain circumstances shall,
perform any tasks necessary for resource management, performance optimization, or to support any ancillary
features of an implementation. As an example of resource management, it is presumed that a destructor will
perform any tasks necessary to release the resources allocated by the corresponding constructor.

3.4.3 Functions whose return type is a reference or a pointer

Many functions in this standard return a reference to an object or a pointer to an object; that is, the return type
of the function is a reference or a pointer. This subclause gives some general rules defining the lifetime and
the validity of such objects.

An object returned from a function by pointer or by reference is said to be valid during any period in which
the object is not deleted and the value or behavior of the object remains accessible to the application. If an
application refers to the returned object after it ceases to be valid, the behavior of the implementation shall
be undefined.

3.4.3.1 Functions that return *this or an actual argument

In certain cases, the object returned is either an object (*this) returned by reference from its own member
function (for example, the assignment operators) or is an object that was passed by reference as an actual
argument to the function being called [for example, std::ostream& operator<<(std::ostream&, const T&)].
In either case, the function call itself places no additional obligations on the implementation concerning the
lifetime and validity of the object following return from the function call.

3.4.3.2 Functions that return const char*

Certain functions have the return type const char*; that is, they return a pointer to a null-terminated character
string. The const char* pointer shall remain valid for the whole lifetime of the object associated to the member
function, which returns this pointer.

3.4.4 Namespaces and internal naming

An implementation shall place every declaration and definition specified by this standard within one of the
following namespaces: sca_core, sca_tdf, sca_lsf, sca_eln, sca_ac_analysis, or sca_util.

The core language base classes shall be placed in the namespace sca_core.

For the predefined models of computation, the following namespaces shall be used:
— The predefined classes for timed data flow shall be placed in the namespace sca_tdf.
— The predefined classes for linear signal flow shall be placed in the namespace sca_lsf.
— The predefined classes for electrical linear networks shall be placed in the namespace sca_eln.

The predefined classes for small-signal frequency-domain analyses shall be placed in the namespace
sca_ac_analysis. The utilities shall be placed in the namespace sca_util.

It is recommended that an implementation uses nested namespaces within sca_core, sca_tdf, sca_lsf, sca_eln,
sca_ac_analysis, and sca_util to reduce to a minimum the number of implementation-defined names in these
namespaces.

For predefined primitive modules, which use ports to connect to a different model of computation, the
namespace associated with the connected model of computation shall be used as nested namespace. The nested
namespace sca_de shall be used for modules or ports, which are used to connect to SystemC discrete-event
channels or ports.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 8 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

9
Copyright © 2016 IEEE. All rights reserved.

In general, the choice of internal, implementation-specific names within an implementation can cause naming
conflicts within an application. It is up to the implementor to choose names that are unlikely to cause naming
conflicts within an application.

3.4.5 Non-compliant applications and errors

In the case where an application fails to meet an obligation imposed by this standard, the behavior of the
SystemC AMS implementation shall be undefined in general. When this results in the violation of a diagnosable
rule of the C++ standard, the C++ implementation shall issue a diagnostic message in conformance with the
C++ standard.

When this standard explicitly states that the failure of an application to meet a specific obligation is an error
or a warning, the SystemC AMS implementation shall generate a diagnostic message by calling the function
sc_core::sc_report_handler::report. In the case of an error, the implementation shall call function report
with a severity of sc_core::SC_ERROR. In the case of a warning, the implementation shall call function
report with a severity of sc_core::SC_WARNING.

An implementation or an application may choose to suppress run-time error checking and diagnostic messages
because of considerations of efficiency or practicality. For example, an application may call member function
set_actions of class sc_core::sc_report_handler to take no action for certain categories of reports. An
application that fails to meet the obligations imposed by this standard remains in error. There are cases where
this standard states explicitly that a certain behavior or result is undefined. This standard places no obligations
on the implementation in such a circumstance. In particular, such a circumstance may or may not result in an
error or a warning being issued.

3.5 Notes and examples

Notes appear at the end of certain subclauses, designated by the uppercase word NOTE. Notes often describe
the consequences of rules defined elsewhere in this standard. Certain subclauses include examples consisting
of fragments of C++ source code. Such notes and examples are informative to help the reader but are not an
official part of this standard.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 9 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

10
Copyright © 2016 IEEE. All rights reserved.

4. Core language definitions

4.1 Class header files

To use the AMS class library features, an application shall include either of the C++ header files specified in
this subclause at appropriate positions in the source code as required by the scope and linkage rules of C++.

4.1.1 #include “systemc-ams”

The header file named systemc-ams shall add the names sca_core, sca_tdf, sca_lsf, sca_eln, sca_ac_analysis,
and sca_util, as well as the names defined in IEEE Std 1666-2011 for the header file named systemc, to the
declarative region in which it is included. The header file systemc-ams shall not introduce into the declarative
region, in which it is included, any other names from this standard or any names from the standard C or C++
libraries.

It is recommended that applications include the header file systemc-ams rather than the header file systemc-
ams.h.

4.1.2 #include “systemc-ams.h”

The header file named systemc-ams.h shall add names from the namespace sca_core, sca_ac_analysis,
sca_util, and sca_tdf as defined in this subclause to the declarative region, in which it is included. It
is recommended that an implementation keeps the number of additional implementation-specific names
introduced by this header file to a minimum.

The header file systemc-ams.h shall include at least the following:

#include "systemc.h"
#include "systemc-ams"

// Using declarations for the following names in the sca_ac_analysis namespace
using sca_ac_analysis::sca_ac_start;
using sca_ac_analysis::sca_ac_noise_start;
using sca_ac_analysis::sca_ac;
using sca_ac_analysis::sca_ac_is_running;
using sca_ac_analysis::sca_ac_noise;
using sca_ac_analysis::sca_ac_noise_is_running;
using sca_ac_analysis::sca_ac_f;
using sca_ac_analysis::sca_ac_w;
using sca_ac_analysis::sca_ac_s;
using sca_ac_analysis::sca_ac_z;
using sca_ac_analysis::sca_ac_delay;
using sca_ac_analysis::sca_ac_ltf_nd;
using sca_ac_analysis::sca_ac_ltf_zp;
using sca_ac_analysis::sca_ac_ss;
using sca_ac_analysis::SCA_LOG;
using sca_ac_analysis::SCA_LIN;

// Using declarations for the following names in the sca_util namespace
using sca_util::sca_trace_file;
using sca_util::sca_trace;
using sca_util::sca_create_tabular_trace_file;
using sca_util::sca_close_tabular_trace_file;
using sca_util::sca_create_vcd_trace_file;
using sca_util::sca_close_vcd_trace_file;
using sca_util::sca_write_comment;
using sca_util::sca_complex;
using sca_util::sca_matrix;
using sca_util::sca_vector;
using sca_util::sca_create_vector;
using sca_util::sca_information_on;
using sca_util::sca_information_off;
using sca_util::SCA_AC_REAL_IMAG;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 10 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

11
Copyright © 2016 IEEE. All rights reserved.

using sca_util::SCA_AC_MAG_RAD;
using sca_util::SCA_AC_DB_DEG;
using sca_util::SCA_NOISE_SUM;
using sca_util::SCA_NOISE_ALL;
using sca_util::SCA_INTERPOLATE;
using sca_util::SCA_DONT_INTERPOLATE;
using sca_util::SCA_HOLD_SAMPLE;
using sca_util::sca_ac_format;
using sca_util::sca_noise_format;
using sca_util::sca_decimation;
using sca_util::sca_sampling;
using sca_util::sca_multirate;
using sca_util::SCA_COMPLEX_J;
using sca_util::SCA_INFINITY;
using sca_util::SCA_UNDEFINED;
namespace sca_info = sca_util::sca_info;

// Using declarations for the following names in the sca_core namespace
using sca_core::sca_parameter;
using sca_core::sca_time;
using sca_core::sca_max_time;
using sca_core::sca_copyright;
using sca_core::sca_version;
using sca_core::sca_release;

// Using declarations for the following names in the sca_tdf namespace
using sca_tdf::SCA_CT_CUT;
using sca_tdf::SCA_DT_CUT;
using sca_tdf::SCA_NO_CUT;

NOTE—The header file systemc-ams.h is provided for backward compatibility with earlier versions of the SystemC
AMS extensions and may be deprecated in future versions of this standard.

4.2 Base class definitions

All names used in the base class definitions shall be placed in the namespace sca_core.

4.2.1 sca_core::sca_module

4.2.1.1 Description

The class sca_core::sca_module shall define the base class to derive primitive modules for the predefined
models of computation.

4.2.1.2 Class definition

namespace sca_core {

 class sca_module : public sc_core::sc_module
 {
 public:
 virtual const char* kind() const;

 virtual void set_timestep(const sca_core::sca_time&);
 virtual void set_timestep(double, sc_core::sc_time_unit);
 virtual void set_max_timestep(const sca_core::sca_time&);
 virtual void set_max_timestep(double, sc_core::sc_time_unit);

 protected:
 sca_module();
 virtual ~sca_module();
 };

 #define SCA_CTOR(name) implementation-defined name(sc_core::sc_module_name)

} // namespace sca_core

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 11 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

12
Copyright © 2016 IEEE. All rights reserved.

4.2.1.3 Constraints on usage

Any primitive module as defined in Clause 5, Clause 6 and Clause 7 shall be publicly derived from class
sca_core::sca_module.

Objects of class sca_core::sca_module can only be constructed during elaboration. It shall be an error to
instantiate a primitive module during simulation.

Although class sca_core::sca_module is derived from class sc_core::sc_module, the use of classes, member
functions, and functions, which have direct access to the SystemC kernel shall not be allowed in the context
of a module derived from class sca_core::sca_module.

The following member functions of class sc_core::sc_module shall not be called in the context of a module
derived from class sca_core::sca_module:

a) All forms of member function sc_core::sc_module::wait.
b) All forms of member function sc_core::sc_module::next_trigger.
c) All forms of member function sc_core::sc_module::reset_signal_is.
d) All forms of member function sc_core::sc_module::async_reset_signal_is.
e) Member function sc_core::sc_module::dont_initialize.
f) Member function sc_core::sc_module::set_stack_size.

The following macros shall not be used in the context of a module derived from class sca_core::sca_module:
a) Macro SC_CTOR.
b) Macro SC_HAS_PROCESS.
c) Macro SC_METHOD.
d) Macro SC_THREAD.
e) Macro SC_CTHREAD.
f) Macro SC_FORK.
g) Macro SC_JOIN.

The following functions shall not be used in the context of a module derived from class sca_core::sca_module:
a) All forms of function sc_core::wait.
b) All forms of function sc_core::next_trigger.
c) Function sc_core::sc_time_stamp.
d) Function sc_core::sc_delta_count.
e) Function sc_core::sc_get_current_process_handle.
f) Function sc_core::sc_spawn.

Objects of the following classes shall not be created in the context of modules derived from class
sca_core::sca_module:

a) Objects of class sc_core::sc_event.
b) Objects of class sc_core::sc_process_handle.
c) All objects which are derived from class sc_core::sc_export_base.
d) All objects which are derived from class sc_core::sc_interface.
e) All objects which are derived from class sc_core::sc_module.
f) All objects which are derived from class sc_core::sc_port_base and not from sca_core::sca_port.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 12 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

13
Copyright © 2016 IEEE. All rights reserved.

An application shall not derive from class sca_core::sca_module directly, but shall use the primitive modules
defined in Clause 5, Clause 6, and Clause 7.

4.2.1.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_core::sca_module”.

4.2.1.5 set_timestep

virtual void set_timestep(const sca_core::sca_time&);

virtual void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep of the module according to the execution
semantics of the associated predefined model of computation (see 5.3, 6.3, 7.3). If the member function
is not called, the current timestep of the module is computed as defined in the execution semantics of
the associated predefined model of computation. It shall be an error to call this function after the first
sc_core::sc_module::end_of_elaboration callback has been executed, except in the context of the callbacks
set_attributes and change_attributes of the current module derived from class sca_tdf::sca_module (see
5.1.1.6).

4.2.1.6 set_max_timestep

virtual void set_max_timestep(const sca_core::sca_time&);

virtual void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep or the latest first activation
time after elaboration of the module according to the execution semantics of the associated predefined
model of computation (see 5.3, 6.3, 7.3). If set_max_timestep is not called, an implementation shall set the
maximum timestep to the value returned by function sca_core::sca_max_time. It shall be an error to call
this function after the first sc_core::sc_module::end_of_elaboration callback has been executed, except in
the context of the callbacks set_attributes and change_attributes of the current module derived from class
sca_tdf::sca_module (see 5.1.1.6).

NOTE—The propagated maximum timestep defined by the member function set_max_timestep is always respected.

4.2.1.7 SCA_CTOR

The macro SCA_CTOR is provided for convenience when declaring or defining a constructor for a module
derived from class sca_core::sca_module. The macro shall only be used at a place where the rules of C++
permit a constructor to be declared and can be used as the declarator of a constructor declaration or a constructor
definition. The name of the module class being constructed shall be passed as the argument to the macro.

4.2.2 sca_core::sca_interface

4.2.2.1 Description

The class sca_core::sca_interface shall define the base class for deriving interfaces for the predefined models
of computation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 13 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

14
Copyright © 2016 IEEE. All rights reserved.

4.2.2.2 Class definition

namespace sca_core {

 class sca_interface : public sc_core::sc_interface
 {
 protected:
 sca_interface();

 private:
 // Disabled
 sca_interface(const sca_core::sca_interface&);
 sca_core::sca_interface& operator= (const sca_core::sca_interface&);
 };

} // namespace sca_core

4.2.2.3 Constraints on usage

An application shall not use class sca_core::sca_interface as the direct base class for any class other than
an interface proper.

4.2.3 sca_core::sca_prim_channel

4.2.3.1 Description

The class sca_core::sca_prim_channel shall be used as base class to derive primitive channels for the
predefined models of computation.

4.2.3.2 Class definition

namespace sca_core {

 class sca_prim_channel : public sc_core::sc_object,
 public sca_util::sca_traceable_object†
 {
 public:
 virtual const char* kind() const;

 protected:
 sca_prim_channel();
 explicit sca_prim_channel(const char*);
 virtual ~sca_prim_channel();

 private:
 // Disabled
 sca_prim_channel(const sca_core::sca_prim_channel&);
 sca_core::sca_prim_channel& operator= (const sca_core::sca_prim_channel&);
 };

} // namespace sca_core

4.2.3.3 Constraints on usage

Any primitive channel as defined in Clause 5, Clause 6, and Clause 7 shall be publicly derived from class
sca_core::sca_prim_channel.

Objects of class sca_core::sca_prim_channel can only be constructed during elaboration. It shall be an error
to instantiate a primitive channel during simulation.

NOTE—Since the constructors are protected, class sca_core::sca_prim_channel cannot be instantiated directly. An
application shall use only the channels defined in Clause 5, Clause 6, and Clause 7 and shall not directly derive any channel
from this class.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 14 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

15
Copyright © 2016 IEEE. All rights reserved.

4.2.3.4 Constructors

sca_prim_channel();

explicit sca_prim_channel(const char*);

The constructor for class sca_core::sca_prim_channel shall pass the character string argument (if such
argument exists) through to the constructor belonging to the base class sc_core::sc_object to set the string
name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_prim_channel”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sc_core::sc_object.

4.2.3.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_core::sca_prim_channel”.

4.2.4 sca_core::sca_port

4.2.4.1 Description

The class sca_core::sca_port shall define the base class to derive ports for the predefined models of
computation. It shall implement the interface of class sca_util::sca_traceable_object† in such a way that the
channel, to which the port is bound, can be traced.

4.2.4.2 Class definition

namespace sca_core {

 template <class IF>
 class sca_port : public sc_core::sc_port<IF, 1, sc_core::SC_ONE_OR_MORE_BOUND >,
 public sca_util::sca_traceable_object†

 {
 public:
 virtual const char* kind() const;

 protected:
 sca_port();
 explicit sca_port(const char*);
 virtual ~sca_port();
 };

} // namespace sca_core

4.2.4.3 Template parameter IF

The argument passed to template sca_core::sca_port shall be the name of an interface proper. The interface
shall be derived from class sc_core::sc_interface.

4.2.4.4 Constraints on usage

An application shall not use class sca_core::sca_port to instantiate ports, but shall use the ports defined in
Clause 5, Clause 6, and Clause 7.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 15 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

16
Copyright © 2016 IEEE. All rights reserved.

4.2.4.5 Constructors

sca_port();

explicit sca_port(const char*);

The constructor for class sca_core::sca_port shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_port”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sc_core::sc_port.

4.2.4.6 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_core::sca_port”.

4.2.5 sca_core::sca_time

The class sca_core::sca_time shall be used to represent simulation time for the AMS extensions.

namespace sca_core { typedef sc_core::sc_time sca_time; }

NOTE 1—The typedef sca_core::sca_time has been introduced to facilitate future extensions to decouple the time
resolution used in the AMS extensions from the time resolution as defined in IEEE Std 1666-2011.

NOTE 2—Since typedef sca_core::sca_time is an alias to sc_core::sc_time, an application can change the time
resolution by calling the function sc_core::sc_set_time_resolution or query the time resolution by calling the function
sc_core::sc_get_time_resolution.

4.2.6 sca_core::sca_max_time

The implementation shall provide a function sca_core::sca_max_time with the following declaration:

namespace sca_core { const sca_core::sca_time& sca_max_time(); }

The function sca_core::sca_max_time shall return the maximum value of type sca_core::sca_time,
calculated after taking into account the time resolution. Since function sca_core::sca_max_time necessarily
returns a reference to an object of type sca_core::sca_time that represents a non-zero time value, the time
resolution cannot be modified after a call to sca_core::sca_max_time. Every call to sca_core::sca_max_time
during a given simulation run shall return an object having the same value and representing the maximum
simulation time. The actual value is implementation-defined. Whether each call to sca_core::sca_max_time
returns a reference to the same object or a different object is implementation-defined.

4.2.7 sca_core::sca_parameter_base

4.2.7.1 Description

The class sca_core::sca_parameter_base shall define a type independent base class for module parameters.
After construction, parameters shall be unlocked.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 16 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

17
Copyright © 2016 IEEE. All rights reserved.

NOTE—All instances of class sca_core::sca_parameter_base become part of the object hierarchy to facilitate access to
the primitive module parameter values.

4.2.7.2 Class definition

namespace sca_core {

 class sca_parameter_base : public sc_core::sc_object
 {
 public:
 virtual const char* kind() const;

 virtual std::string to_string() const = 0 ;
 virtual void print(std::ostream& os = std::cout) const = 0;

 void lock();
 void unlock();
 bool is_locked() const;

 protected:
 sca_parameter_base();
 explicit sca_parameter_base(const char*);
 virtual ~sca_parameter_base();

 private:
 // Disabled
 sca_parameter_base(const sca_core::sca_parameter_base&);
 sca_core::sca_parameter_base& operator= (const sca_core::sca_parameter_base&);
 };

 std::ostream& operator<< (std::ostream&, const sca_core::sca_parameter_base&);

} // namespace sca_core

4.2.7.3 Constructors

sca_parameter_base();

explicit sca_parameter_base(const char*);

The constructor for class sca_core::sca_parameter_base shall pass the character string argument (if such
argument exists) through to the constructor belonging to the base class sc_core::sc_object to set the string
name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_parameter_base”) to
generate a unique string name that it shall then pass through to the constructor belonging to the base class
sc_core::sc_object.

4.2.7.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_core::sca_parameter_base”.

4.2.7.5 to_string

virtual std::string to_string() = 0;

The member function to_string shall perform the conversion of the parameter value to an object of class
std::string.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 17 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

18
Copyright © 2016 IEEE. All rights reserved.

4.2.7.6 print

virtual void print(std::ostream& os = std::cout) = 0;

The member function print shall print the parameter value to the stream passed as an argument.

4.2.7.7 lock

void lock();

The member function lock shall prevent any further assignment to the parameter. It shall be an error if an
assignment is executed on a locked parameter.

4.2.7.8 unlock

void unlock();

The member function unlock shall allow further assignments to the parameter.

4.2.7.9 is_locked

bool is_locked() const;

The member function is_locked shall return true if the parameter is locked; otherwise, it shall return false.

4.2.7.10 operator<<

std::ostream& operator<< (std::ostream&, const sca_core::sca_parameter_base&);

The operator<< shall write the value of the parameter passed as the second argument to the stream passed as
the first argument by calling the member function print(std::ostream).

4.2.8 sca_core::sca_parameter

4.2.8.1 Description

The class sca_core::sca_parameter shall assign a parameter to a module.

4.2.8.2 Class definition

namespace sca_core {

 template<class T>
 class sca_parameter : public sca_core::sca_parameter_base
 {
 public:
 sca_parameter();
 explicit sca_parameter(const char* name_);
 sca_parameter(const char* name_, const T& default_value);
 ~sca_parameter();

 virtual const char* kind() const;

 virtual std::string to_string() const;
 virtual void print(std::ostream& os = std::cout) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 18 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

19
Copyright © 2016 IEEE. All rights reserved.

 const T& get() const;
 operator const T& () const;

 void set(const T&);
 sca_core::sca_parameter<T>& operator= (const T& value);
 sca_core::sca_parameter<T>& operator= (const sca_core::sca_parameter<T>& value);
 };

} // namespace sca_core

4.2.8.3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is not defined by this standard.
std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand.
const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

4.2.8.4 Constructors

The constructors shall only be called within the context of a sc_core::sc_module during module construction.

sca_parameter();

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_parameter”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_parameter_base. The actual parameter value shall be created by the default constructor of the
corresponding type.

explicit sca_parameter(const char* name_);

The constructor shall pass the character string name_ through to the constructor belonging to the base
class sca_core::sca_parameter_base to set the string name of the instance in the module hierarchy. The actual
parameter value shall be created by the default constructor of the corresponding type.

sca_parameter(const char* name_, const T& default_value);

The constructor shall pass the character string name_ through to the constructor belonging to the base
class sca_core::sca_parameter_base to set the string name of the instance in the module hierarchy. The actual
parameter value shall be created by the default constructor and initialized with the default value default_value.

4.2.8.5 kind

virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 19 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

20
Copyright © 2016 IEEE. All rights reserved.

The member function kind shall return the string “sca_core::sca_parameter”.

4.2.8.6 to_string

virtual std::string to_string() const;

The member function to_string shall perform the conversion of the parameter value to an object of class
std::string. Conversion shall be done by calling operator<< (std::ostream&, const T&). (See 4.2.8.3.)

4.2.8.7 print

virtual void print(std::ostream& os = std::cout) const;

The member function print shall print the current parameter value to the stream passed as an argument by
calling operator<< (std::ostream&, const T&). (See 4.2.8.3.)

4.2.8.8 get

const T& get() const;

operator const T& () const;

The member function get and operator const T& shall return a const reference to the actual parameter value.
If the member functions lock or unlock have not yet executed, the member function get and operator const
T& shall execute the member function lock of the base class sca_core::sca_parameter_base.

4.2.8.9 set

void set(const T& value);

sca_core::sca_parameter<T>& operator= (const T& value);

The member function set and operator= shall assign the value to the parameter. It shall be an error if the
member function set or operator= is called if the parameter is locked (see 4.2.7.9).

sca_core::sca_parameter<T>& operator= (const sca_core::sca_parameter<T>& value);

The operator= shall copy the value of the parameter passed as argument.

4.2.9 sca_core::sca_assign_from_proxy†

4.2.9.1 Description

The class sca_core::sca_assign_from_proxy† shall be a helper class to facilitate the implementation of the
assignment operator from one class to another.

NOTE—This class is the base class of sca_tdf::sca_ct_proxy† and sca_tdf::sca_ct_vector_proxy† to implement the
assignment of the values returned by these classes to a port or vector, whose type is passed to this base class as template
parameter of type T.

4.2.9.2 Class definition

namespace sca_core {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 20 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

21
Copyright © 2016 IEEE. All rights reserved.

 template<class T>
 class sca_assign_from_proxy†

 {
 implementation-defined
 };

} // namespace sca_core

4.2.9.3 Constraint on usage

An application shall not explicitly create an instance of class sca_core::sca_assign_from_proxy†.

4.2.10 sca_core::sca_assign_to_proxy†

4.2.10.1 Description

The class sca_core::sca_assign_to_proxy† shall be a helper class to facilitate the implementation of operators
to assign values to an object.

NOTE—This class is used to support the implementation of the operator[] for the classes sca_tdf::sca_out and
sca_tdf::sca_de::sca_out.

4.2.10.2 Class definition

namespace sca_core {

 template<class T, class TV>
 class sca_assign_to_proxy†

 {
 sca_core::sca_assign_to_proxy†<T, TV>& operator= (const TV& value);
 };

} // namespace sca_core

4.2.10.3 operator=

sca_assign_to_proxy†<T, TV>& operator= (const TV& value);

The operator= performs the assignment of value value to an object of class T.

4.2.10.4 Constraint on usage

An application shall not explicitly create an instance of class sca_core::sca_assign_to_proxy†.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 21 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

22
Copyright © 2016 IEEE. All rights reserved.

5. Timed data flow model of computation

The TDF model of computation shall define the procedural behavior that processes samples, which are tagged
in time. A TDF module shall define time domain processing, which is activated when a predefined number
of samples is available at its input port(s), and generates a predefined number of output samples at its output
port(s). Since the number of read and written samples is known and fixed, the activation schedule of a set
of connected TDF modules can be statically determined. For the communication with the SystemC kernel,
predefined specialized ports shall be used to maintain synchronization. For synchronization, the tagged time
of the samples shall be used. A TDF module is a primitive module that cannot be further hierarchically
decomposed.

5.1 Class definitions

All names used in the TDF class definitions shall be placed in the namespace sca_tdf.

5.1.1 sca_tdf::sca_module

5.1.1.1 Description

The class sca_tdf::sca_module shall define the base class for all TDF primitive modules.

5.1.1.2 Class definition

namespace sca_tdf {

 class sca_module : public sca_core::sca_module
 {
 public:
 virtual const char* kind() const;

 protected:
 typedef void (sca_tdf::sca_module::*sca_module_method)();

 virtual void set_attributes();
 virtual void change_attributes();
 virtual void initialize();
 virtual void reinitialize();
 virtual void processing();
 virtual void ac_processing();

 void register_processing(sca_tdf::sca_module::sca_module_method);
 void register_ac_processing(sca_tdf::sca_module::sca_module_method);

 void request_next_activation(const sca_core::sca_time&);
 void request_next_activation(double, sc_core::sc_time_unit);
 void request_next_activation(const sc_core::sc_event&);
 void request_next_activation(const sca_core::sca_time&, const sc_core::sc_event&);
 void request_next_activation(double, sc_core::sc_time_unit, const sc_core::sc_event&);
 void request_next_activation(const sc_core::sc_event_or_list&);
 void request_next_activation(const sc_core::sc_event_and_list&);
 void request_next_activation(const sca_core::sca_time&, const sc_core::sc_event_or_list&);
 void request_next_activation(double, sc_core::sc_time_unit, const sc_core::sc_event_or_list&);
 void request_next_activation(const sca_core::sca_time&, const sc_core::sc_event_and_list&);
 void request_next_activation(double, sc_core::sc_time_unit, const sc_core::sc_event_and_list&);

 template<class T>
 void request_next_activation(const sca_tdf::sca_de::sca_in<T>&);

 void accept_attribute_changes();
 void reject_attribute_changes();
 void does_attribute_changes();
 void does_no_attribute_changes();

 sca_core::sca_time get_time() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 22 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

23
Copyright © 2016 IEEE. All rights reserved.

 sca_core::sca_time get_timestep() const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep() const;

 bool is_dynamic() const;
 bool are_attribute_changes_allowed() const;
 bool are_attributes_changed() const;
 bool is_timestep_changed() const;

 explicit sca_module(const sc_core::sc_module_name&);
 sca_module();

 virtual ~sca_module();
 };

#define SCA_TDF_MODULE(name) struct name : sca_tdf::sca_module

} // namespace sca_tdf

5.1.1.3 Constraints on usage

Modules, channels, signals, and ports outside of the namespace sca_tdf shall not be instantiated in the context
of class sca_tdf::sca_module.

Objects of class sca_tdf::sca_module can only be constructed during elaboration. It shall be an error
to instantiate such a module during simulation. Every class derived (directly or indirectly) from class
sca_tdf::sca_module shall have at least one constructor. Every such constructor shall have one and only one
argument of class sc_core::sc_module_name. A string-valued argument shall be passed to the constructor of
every module instance.

Inter-module communication for TDF modules shall be accomplished using interface method calls, that is, a
module should communicate with its environment through its ports.

5.1.1.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_module”.

5.1.1.5 set_attributes

virtual void set_attributes();

The member function set_attributes shall provide a context to set attributes, which are required
for TDF MoC elaboration (see 5.3). The attributes can be defined using the member functions
set_timestep, set_max_timestep, and request_next_activation of a TDF module and member
functions set_timestep, set_max_timestep, set_delay, and set_rate for ports of classes sca_tdf::sca_in,
sca_tdf::sca_out, sca_tdf::sca_de::sca_in, sca_tdf::sca_de::sca_out, and in addition set_ct_delay for
ports of classes sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> and sca_tdf::sca_out<T,
sca_tdf::SCA_DT_CUT>. The member function set_attributes shall be called during the elaboration phase
(see 5.3.1.1). The application shall not call this member function.

5.1.1.6 change_attributes

virtual void change_attributes();

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 23 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

24
Copyright © 2016 IEEE. All rights reserved.

The member function change_attributes shall provide a context to change attributes of the TDF module
and its ports. The attributes can be changed using the member functions set_timestep, set_max_timestep,
or request_next_activation of a TDF module and member functions set_timestep, set_max_timestep,
set_delay, and set_rate for ports of classes sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sca_in,
sca_tdf::sca_de::sca_out, and in addition set_ct_delay for ports of classes sca_tdf::sca_out<T,
sca_tdf::SCA_CT_CUT, INTERP> and sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>. The member
function shall only be called during simulation (see 5.3.2). The application shall not call this member function.

5.1.1.7 initialize

virtual void initialize();

The member function initialize shall provide a context to set initial values to member variables and ports.
In the context of this member function, the application can initialize the delay samples of all ports if their
delay attribute has been set to a value greater than zero by using member function initialize of ports of classes
sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sca_in, and sca_tdf::sca_de::sca_out. The member
function shall only be called during simulation (see 5.3.2.1). The application shall not call this member
function.

5.1.1.8 reinitialize

virtual void reinitialize();

The member function reinitialize shall provide a context to reinitialize values to member variables and ports.
The member function shall be called after each cluster execution period (see 5.3.2.3). The application shall
not call this member function.

NOTE—This member function may be used to reinitialize the delay samples of the associated ports by using the member
function initialize in case of attribute changes.

5.1.1.9 processing

virtual void processing();

The member function processing shall provide a context to define the time-domain behavior of the
TDF module. It may be replaced by a registered application-defined member function (see 5.1.1.11). It shall
be a warning if a TDF module does not implement a single member function processing or a registered
application-defined member function when time-domain simulation starts. If no application-defined member
function is registered, this member function shall be called during time-domain simulation (see 8.1). The
application shall not call this member function.

5.1.1.10 ac_processing

virtual void ac_processing();

The member function ac_processing shall provide a context to define the small-signal frequency-domain
behavior of the TDF module. It may be replaced by a registered application-defined member function (see
5.1.1.12). If no application-defined member function is registered, this function shall be called during small-
signal frequency-domain simulation (see 8.2). The application shall not call this member function.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 24 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

25
Copyright © 2016 IEEE. All rights reserved.

5.1.1.11 register_processing

void register_processing(sca_tdf::sca_module::sca_module_method);

The member function register_processing shall register a time-domain processing member function as a
replacement to the default time-domain processing member function processing. The argument shall be a
pointer to a member function of the TDF module. The registered application-defined member function shall
behave in the same way as defined in member function processing (see 5.1.1.9). The member function
register_processing shall only be called during module construction; otherwise, it shall be an error. It shall
be an error if more than one member function is registered.

5.1.1.12 register_ac_processing

void register_ac_processing(sca_tdf::sca_module::sca_module_method);

The member function register_ac_processing shall register a small-signal frequency-domain processing
member function as a replacement to the default small-signal frequency-domain processing member
function ac_processing. The argument shall be a pointer to a member function of the TDF module. The
registered application-defined member function shall behave in the same way as defined in member function
ac_processing (see 5.1.1.10). The member function register_ac_processing shall only be called during
module construction; otherwise, it shall be an error. It shall be an error if more than one member function is
registered.

5.1.1.13 request_next_activation

The member function request_next_activation shall override the propagated timestep defined by the member
function set_timestep of the TDF modules and ports for the next module activation. The next module activation
shall be no later than the time requested by this member function.

The time given as argument shall be taken to be relative to the time in the context of the member function
change_attributes of the current module, in which the member function request_next_activation is called.

void request_next_activation(const sca_core::sca_time&);

void request_next_activation(double, sc_core::sc_time_unit);

The next module activation is requested after the time given as an argument has elapsed.

void request_next_activation(const sc_core::sc_event&);

The next module activation is requested when the event, passed as an argument, is notified.

void request_next_activation(const sca_core::sca_time&, const sc_core::sc_event&);

void request_next_activation(double, sc_core::sc_time_unit, const sc_core::sc_event&);

The next module activation is requested after the time given as an argument has elapsed or when the given
event is notified, whichever occurs first.

void request_next_activation(const sc_core::sc_event_or_list&);

void request_next_activation(const sc_core::sc_event_and_list&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 25 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

26
Copyright © 2016 IEEE. All rights reserved.

The next module activation is requested based on the event list, passed as argument.

void request_next_activation(const sca_core::sca_time&, const sc_core::sc_event_or_list&);

void request_next_activation(double, sc_core::sc_time_unit, const sc_core::sc_event_or_list&);

void request_next_activation(const sca_core::sca_time&, const sc_core::sc_event_and_list&);

void request_next_activation(double, sc_core::sc_time_unit, const sc_core::sc_event_and_list&);

The next module activation is requested after the time given as an argument has elapsed or in response to the
event list, passed as argument, whichever is satisfied first.

template<class T>
void request_next_activation(const sca_tdf::sca_de::sca_in<T>&);

The next module activation is requested when the event, which is returned by the member function
default_event of the port, passed as an argument, is notified.

5.1.1.14 accept_attribute_changes

void accept_attribute_changes();

The member function accept_attribute_changes shall mark a TDF module to accept attribute changes caused
by other TDF modules, which belong to the same TDF cluster, after all set_attributes or change_attributes
callbacks of the current cluster execution have been executed (see 5.3.2.3). It shall be an error if the member
function is called outside the context of the member functions set_attributes, change_attributes, or the
constructor of the current TDF module. If this member function is not called, a TDF module shall not accept
attribute changes.

NOTE—A TDF module which accepts attribute changes is not allowed to change attributes itself, unless the member
function does_attribute_changes has been called.

5.1.1.15 reject_attribute_changes

void reject_attribute_changes();

The member function reject_attribute_changes shall mark a TDF module to reject attribute changes made
by other TDF modules, which belong to the same TDF cluster, after all set_attributes or change_attributes
callbacks of the current cluster execution have been executed (see 5.3.2.3). It shall be an error if the TDF module
is marked to reject attribute changes, and if other TDF modules, which belong to the same TDF cluster, change
the attributes. It shall be an error if the member function is called outside the context of the member functions
set_attributes, change_attributes, or the constructor of the current TDF module. If this member function is
not called, a TDF module shall reject attribute changes.

NOTE—A TDF module which rejects attribute changes may still change attributes itself, as long as the member function
does_attribute_changes has been called.

5.1.1.16 does_attribute_changes

void does_attribute_changes();

The member function does_attribute_changes shall mark a TDF module to allow it to make attribute changes
after all set_attributes or change_attributes callbacks of the current cluster execution have been executed

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 26 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

27
Copyright © 2016 IEEE. All rights reserved.

(see 5.3.2.3). It shall be a warning if the TDF module is marked to allow making attribute changes and if there
is no change_attributes callback implemented in the TDF module. It shall be an error if the member function
is called outside the context of the member functions set_attributes, change_attributes, or the constructor of
the current TDF module. If this member function is not called, a TDF module is not allowed to make attribute
changes.

5.1.1.17 does_no_attribute_changes

void does_no_attribute_changes();

The member function does_no_attribute_changes shall mark a TDF module to disallow it to make attribute
changes after all set_attributes or change_attributes callbacks of the current cluster execution have been
executed (see 5.3.2.3). It shall be an error if the TDF module is marked to disallow making attribute changes,
but changes its attributes or the ones of its ports. It shall be an error if the member function is called outside
the context of the member functions set_attributes, change_attributes, or the constructor of the current
TDF module. If this member function is not called, a TDF module is not allowed to make attribute changes.

5.1.1.18 get_time

sca_core::sca_time get_time() const;

The member function get_time shall return the current module time of type sca_core::sca_time. It represents
the time of the first input sample of the current module activation. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

NOTE—The function sc_core::sc_time_stamp should not be used in a TDF module as there may be time offsets between
the current module time of the TDF module and the SystemC kernel time.

5.1.1.19 get_timestep

sca_core::sca_time get_timestep() const;

The member function get_timestep shall return the current timestep of the module according to the execution
semantics (see 5.3). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.1.20 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep of the module according to the
execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports through the
member function set_timestep. It shall be an error if the member function is called outside the context of
the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

NOTE—The member function request_next_activation overrules the resolved timestep set by the member functions
set_timestep of the TDF modules and needs to satisfy the resolved maximum timestep set by member functions
set_max_timestep of the TDF modules. The member function get_max_timestep returns the maximum resolved timestep.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 27 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

28
Copyright © 2016 IEEE. All rights reserved.

5.1.1.21 get_last_timestep

sca_core::sca_time get_last_timestep() const;

The member function get_last_timestep shall return the last non-zero module timestep of type
sca_core::sca_time of the last module activation or before. For the first module activation, the member
function shall return the propagated timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.1.22 is_dynamic

bool is_dynamic() const;

The member function is_dynamic shall return true if at least one TDF module within the TDF cluster has been
marked to allow making attribute changes using the member function does_attribute_changes. Otherwise,
it shall return false. The state returned by the member function is_dynamic is updated after the execution
of all member functions change_attributes of the current cluster (see 5.3.2.3). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.1.23 are_attribute_changes_allowed

bool are_attribute_changes_allowed() const;

The member function are_attribute_changes_allowed shall return true if changes to the attributes of the
TDF module, in which the member function is called, and its ports are allowed. Otherwise, it shall return false.
It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module. By default, a
TDF module is not allowed to make changes to its attributes.

5.1.1.24 are_attributes_changed

bool are_attributes_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
are_attributes_changed shall return true if the timestep, delay, or rate of the TDF module, or its ports, have
changed since the last activation of the callback processing. In the context of the callback change_attributes,
the member function are_attributes_changed shall return true if the timestep, delay, or rate of the
TDF module, or its ports, have changed between the last activation and before last activation of the callback
processing. Otherwise, it shall return false. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.1.25 is_timestep_changed

bool is_timestep_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_timestep_changed shall return true if the timestep of the TDF module, or its ports, have changed since
the last activation of the callback processing. In the context of the callback change_attributes, the member
function is_timestep_changed shall return true if the timestep of the TDF module, or its ports, have changed

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 28 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

29
Copyright © 2016 IEEE. All rights reserved.

between the last activation and before last activation of the callback processing. Otherwise, it shall return false.
It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

NOTE—A change in the propagated timestep (see 5.3.1.2) may change the TDF module or port timestep, which is then
also detected by this member function.

5.1.1.26 Constructor

explicit sca_module(const sc_core::sc_module_name&);

sca_module();

Module names are managed by class sc_core::sc_module_name, not by class sca_tdf::sca_module. The
string name of the module instance is initialized using the value of the string name passed as an argument to
the constructor.

5.1.1.27 SCA_TDF_MODULE

The macro SCA_TDF_MODULE may be used to prefix the definition of a sca_tdf::sca_module, but the use
of the macro is not obligatory.

Example:

SCA_TDF_MODULE(M1)
{
 // ports, data members, member functions
 ...

 SCA_CTOR(M1);
};

M1::M1(sc_core::sc_module_name)
{
 // constructor body
}

5.1.2 sca_tdf::sca_signal_if

5.1.2.1 Description

The class sca_tdf::sca_signal_if shall define an interface proper for a primitive channel of class
sca_tdf::sca_signal. The interface class member functions are implementation-defined.

5.1.2.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_signal_if : public sca_core::sca_interface
 {
 protected:
 sca_signal_if();

 private:
 // Other members
 implementation-defined

 // Disabled
 sca_signal_if(const sca_tdf::sca_signal_if<T>&);
 sca_tdf::sca_signal_if<T>& operator= (const sca_tdf::sca_signal_if<T>&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 29 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

30
Copyright © 2016 IEEE. All rights reserved.

 };

} // namespace sca_tdf

5.1.3 sca_tdf::sca_signal

5.1.3.1 Description

The class sca_tdf::sca_signal shall define a primitive channel for the TDF MoC. It shall be used for connecting
modules derived from class sca_tdf::sca_module using port classes sca_tdf::sca_in and sca_tdf::sca_out.
An application shall not access the associated interface directly.

5.1.3.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_signal : public sca_tdf::sca_signal_if<T>,
 public sca_core::sca_prim_channel
 {
 public:
 sca_signal();
 explicit sca_signal(const char*);

 virtual const char* kind() const;

 private:
 // Disabled
 sca_signal(const sca_tdf::sca_signal<T>&);
 };

} // namespace sca_tdf

5.1.3.3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is not defined by this standard. The implementation shall use this operator for writing trace
values in time-domain simulation (see 9.1).
std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand. The
implementation shall use this assignment operator within the implementation for writing to or reading
from ports of type T.
const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

5.1.3.4 Constructors

sca_signal();

explicit sca_signal(const char*);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 30 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

31
Copyright © 2016 IEEE. All rights reserved.

The constructor for class sca_tdf::sca_signal shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_prim_channel to set the string name of
the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_signal”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_prim_channel.

5.1.3.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_signal”.

5.1.4 sca_tdf::sca_default_interpolator

5.1.4.1 Description

The class sca_tdf::sca_default_interpolator shall define the default interpolation
mechanism for the continuous-time decoupling port of class sca_tdf::sca_out<T,
sca_tdf::SCA_CT_CUT, INTERP>. The specialized classes sca_tdf::sca_default_interpolator<double>
and sca_tdf::sca_default_interpolator<sca_util::sca_complex> shall provide a default interpolation
mechanism by interpreting the signal as continuous in time. For all other types, the class shall keep the value
of the last available time point.

5.1.4.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_default_interpolator
 {
 public:
 void store_value(const sca_core::sca_time&, const T&);
 T get_value(const sca_core::sca_time&) const;
 };

 template<>
 class sca_default_interpolator<double>
 {
 public:
 void store_value(const sca_core::sca_time&, const double&);
 double get_value(const sca_core::sca_time&) const;
 };

 template<>
 class sca_default_interpolator<sca_util::sca_complex>
 {
 public:
 void store_value(const sca_core::sca_time&, const sca_util::sca_complex&);
 sca_util::sca_complex get_value(const sca_core::sca_time&) const;
 };

} // namespace sca_tdf

5.1.4.3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 31 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

32
Copyright © 2016 IEEE. All rights reserved.

a) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand.
const T& operator= (const T&);

b) If any constructor for type T exists, a default constructor for type T shall be defined.

5.1.4.4 store_value

void store_value(const sca_core::sca_time&, const T&);

void store_value(const sca_core::sca_time&, const double&);

void store_value(const sca_core::sca_time&, const sca_util::sca_complex&);

An implementation shall use the member function store_value to store a time-value pair to the interpolator
class.

5.1.4.5 get_value

T get_value(const sca_core::sca_time&) const;

double get_value(const sca_core::sca_time&) const;

sca_util::sca_complex get_value(const sca_core::sca_time&) const;

An implementation shall use the member function get_value to return an interpolated value at a given time
point given as argument.

5.1.5 sca_tdf::sca_in

5.1.5.1 Description

The class sca_tdf::sca_in shall define a port class for the TDF MoC. It provides functions for defining or
getting attribute values (e.g., sampling rate or timestep), for initialization, and for reading input samples.

5.1.5.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_in : public sca_core::sca_port< sca_tdf::sca_signal_if<T> >
 {
 public:
 sca_in();
 explicit sca_in(const char*);

 void set_delay(unsigned long);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 32 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

33
Copyright © 2016 IEEE. All rights reserved.

 virtual const char* kind() const;

 void initialize(const T& value, unsigned long sample_id = 0);
 const T& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 const T& read(unsigned long sample_id = 0) const;
 operator const T& () const;
 const T& operator[] (unsigned long sample_id) const;

 private:
 // Disabled
 sca_in(const sca_tdf::sca_in<T>&);
 sca_tdf::sca_in<T>& operator= (const sca_tdf::sca_in<T>&);
 };

} // namespace sca_tdf

5.1.5.3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is not defined by this standard. The implementation shall use this operator for writing trace
values in time-domain simulation (see 9.1).
std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand. The
implementation shall use this assignment operator within the implementation for writing to or reading
from ports of type T.
const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

5.1.5.4 Constructors

sca_in();

explicit sca_in(const char*);

The constructor for class sca_tdf::sca_in shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_in”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sca_core::sca_port.

5.1.5.5 set_delay

void set_delay(unsigned long);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 33 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

34
Copyright © 2016 IEEE. All rights reserved.

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

5.1.5.6 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1. It
shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.5.7 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.5.8 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.5.9 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.5.10 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 34 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

35
Copyright © 2016 IEEE. All rights reserved.

5.1.5.11 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.1) shall hold:

 (5.1)

where P is an instance of a port of class sca_tdf::sca_in and M is the parent module derived from class
sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.5.12 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.5.13 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.5.14 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 35 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

36
Copyright © 2016 IEEE. All rights reserved.

5.1.5.15 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_in”.

5.1.5.16 initialize

void initialize(const T& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay. This member function shall
only be called in the member functions initialize or reinitialize of the current TDF module; otherwise, it shall
be an error. Consecutive initializations with the same sample_id shall overwrite the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.5.17 read_delayed_value

const T& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.5.18 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.5.19 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 36 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

37
Copyright © 2016 IEEE. All rights reserved.

be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.5.20 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.5.21 read

const T& read(unsigned long sample_id = 0) const;

operator const T& () const;

const T& operator[] (unsigned long sample_id) const;

The member functions read, operator const T&, and operator[] shall return a reference to the value of a
particular sample that is available at the port. The argument sample_id denotes the index of the sample being
read. The samples shall be indexed from zero to P.get_rate()–1, where P denotes the port. A sample_id of
zero shall refer to the first input sample in time. It shall be an error if sample_id is greater than or equal to
the port rate.

The member functions read, operator const T&, and operator[] shall only be called in the context of
the member functions processing and ac_processing of the current module; otherwise, it shall be an error.
Consecutive reads with the same sample_id during the same module activation shall return the same value.

5.1.6 sca_tdf::sca_out

5.1.6.1 Description

The class sca_tdf::sca_out shall define a port class for the TDF MoC.

5.1.6.2 Class definition

namespace sca_tdf {

 enum sca_cut_policy
 {
 SCA_NO_CUT,
 SCA_CT_CUT,
 SCA_DT_CUT
 };

 template<class T, sca_tdf::sca_cut_policy CUT_POL = sca_tdf::SCA_NO_CUT,
 class INTERP = sca_tdf::sca_default_interpolator<T> >
 class sca_out implementation-defined ;

} // namespace sca_tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 37 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

38
Copyright © 2016 IEEE. All rights reserved.

5.1.6.3 Constraint on usage

An application shall not instantiate the sca_tdf::sca_out class template with template parameter combinations
matching none of the partial template specializations sca_tdf::sca_out<T>, sca_tdf::sca_out<T,
sca_tdf::SCA_CT_CUT, INTERP> or sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT> (see 5.1.7, 5.1.8, and
5.1.9 respectively).

5.1.6.4 Template parameters

The first argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of the
following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is not defined by this standard. The implementation shall use this operator for writing trace
values in time-domain simulation (see 9.1).
std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand. The
implementation shall use this assignment operator within the implementation for writing to or reading
from ports of type T.
const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

The second argument passed as template parameter CUT_POL is an optional port decoupling policy of type
sca_tdf::sca_cut_policy. The port decoupling policy argument determines the rules how sample time points
to ports of class sca_tdf::sca_in shall be decoupled:

— The policy sca_tdf::SCA_NO_CUT means that the port shall not decouple TDF clusters. As such,
it acts as a normal TDF port of class sca_tdf::sca_out<T>. For this type of port, the third template
parameter INTERP shall be ignored.

— The policy sca_tdf::SCA_CT_CUT means that the port shall decouple TDF clusters using
interpolation as defined by the third template parameter INTERP.

— The policy sca_tdf::SCA_DT_CUT means that the port shall decouple TDF clusters using a sample-
and-hold regime. For this type of port, the third template parameter INTERP shall be ignored.

The third argument passed as template parameter INTERP is an optional interpolation mechanism for the
type T. By default, the class sca_tdf::sca_default_interpolator<T> shall be used. If any constructor for type
INTERP exists, a default constructor for type INTERP shall be defined. An application may define its own
interpolator classes for other types. Such class shall provide the following public member functions:

void store_value(const sca_core::sca_time&, const T&);

T get_value(const sca_core::sca_time&) const;

An implementation shall confirm that the time passed as argument to member function store_value is larger
than the time passed as argument to the last call to member function store_value.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 38 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

39
Copyright © 2016 IEEE. All rights reserved.

An implementation shall confirm that the time passed as argument to member function get_value is smaller
than or equal to the time passed as argument to the last call to member function store_value and larger than
or equal to the time passed as argument to the before last call of member function store_value (see 5.1.4).

5.1.7 sca_tdf::sca_out<T>

5.1.7.1 Description

The class sca_tdf::sca_out<T> shall define a port class for the TDF MoC. It provides functions for defining
or getting attribute values (e.g., sampling rate or timestep), for initialization, and for writing output samples.

5.1.7.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_out_base : public sca_core::sca_port< sca_tdf::sca_signal_if<T> >
 { implementation-defined };

 template<class T>
 class sca_out<T, sca_tdf::SCA_NO_CUT> : public sca_tdf::sca_out_base<T>
 {
 public:
 sca_out();
 explicit sca_out(const char*);

 void set_delay(unsigned long);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const T& value, unsigned long sample_id = 0);
 const T& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 void write(const T& value, unsigned long sample_id = 0);
 void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);
 sca_tdf::sca_out<T>& operator= (const T&);
 sca_tdf::sca_out<T>& operator= (const sca_tdf::sca_in<T>&);
 sca_tdf::sca_out<T>& operator= (sca_tdf::sca_de::sca_in<T>&);
 sca_tdf::sca_out<T>& operator= (sca_core::sca_assign_from_proxy†<
 sca_tdf::sca_out_base<T> >&);
 sca_core::sca_assign_to_proxy†<sca_tdf::sca_out<T>,T>& operator[] (
 unsigned long sample_id);

 private:
 // Disabled
 sca_out(const sca_tdf::sca_out<T>&);
 sca_tdf::sca_out<T>& operator= (const sca_tdf::sca_out<T>&);
 };

} // namespace sca_tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 39 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

40
Copyright © 2016 IEEE. All rights reserved.

5.1.7.3 Constructors

sca_out();

explicit sca_out(const char*);

The constructor for class sca_tdf::sca_out shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_out”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.7.4 set_delay

void set_delay(unsigned long);

The member function set_delay shall define the number of samples to be inserted before the first output sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

5.1.7.5 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument
rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.7.6 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.7.7 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 40 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

41
Copyright © 2016 IEEE. All rights reserved.

5.1.7.8 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.7.9 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.7.10 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.2) shall hold:

 (5.2)

where P is an instance of a port of class sca_tdf::sca_out and M is the parent module derived from class
sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.7.11 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.7.12 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 41 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

42
Copyright © 2016 IEEE. All rights reserved.

context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.7.13 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.7.14 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_out”.

5.1.7.15 initialize

void initialize(const T& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.7.16 read_delayed_value

const T& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.7.17 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 42 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

43
Copyright © 2016 IEEE. All rights reserved.

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.7.18 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.7.19 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.7.20 write

void write(const T& value, unsigned long sample_id = 0);

sca_tdf::sca_out<T>& operator= (const T&);

sca_core::sca_assign_to_proxy†<sca_tdf::sca_out<T>,T>& operator[] (unsigned long sample_id);

The member functions write, operator=, and operator[] shall write one sample to the port. The argument
sample_id denotes the index of the sample being written. The samples shall be indexed from zero to
P.get_rate()–1, where P denotes the port. It shall be an error if sample_id is greater than or equal to the port rate.

sca_tdf::sca_out<T>& operator= (const sca_tdf::sca_in<T>&);

sca_tdf::sca_out<T>& operator= (sca_tdf::sca_de::sca_in<T>&);

The operator= shall read the first value from the input port of class sca_tdf::sca_in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);

sca_tdf::sca_out<T>& operator= (sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 43 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

44
Copyright © 2016 IEEE. All rights reserved.

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from_proxy† to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member
function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

5.1.8 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>

5.1.8.1 Description

The class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> shall define a decoupling port class for
the TDF MoC. It provides functions for defining or getting attribute values (e.g., sampling rate or timestep), for
initialization, and for writing output samples. The samples read by the connected ports of class sca_tdf::sca_in
shall be interpreted as forming a continuous-time signal.

5.1.8.2 Class definition

namespace sca_tdf {

 template<class T, class INTERP>
 class sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> : public sca_tdf::sca_out_base<T>
 {
 public:
 sca_out();
 explicit sca_out(const char*);

 void set_delay(unsigned long);
 void set_ct_delay(const sca_core::sca_time&);
 void set_ct_delay(double, sc_core::sc_time_unit);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 sca_core::sca_time get_ct_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const T& value, unsigned long sample_id = 0);
 void set_initial_value(const T&);
 const T& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 void write(const T& value, unsigned long sample_id = 0);
 void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);
 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (const T&);
 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (const sca_tdf::sca_in<T>&);
 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (sca_tdf::sca_de::sca_in<T>&);
 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (sca_core::sca_assign_from_proxy†<
 sca_tdf::sca_out_base<T> >&);
 sca_core::sca_assign_to_proxy†<sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>, T>& operator[] (
 unsigned long sample_id);

 private:
 // Disabled
 sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>(
 const sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 44 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

45
Copyright © 2016 IEEE. All rights reserved.

 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (
 const sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>&);
 };

} // namespace sca_tdf

5.1.8.3 Constraint on usage

A port of class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> shall only be a member of a module
derived from class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.8.4 Constructors

sca_out();

explicit sca_out(const char*);

The constructor for class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> shall pass the
character string argument (if such argument exists) through to the constructor belonging to the base
class sca_core::sca_port to set the string name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_out_ct_cut”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.8.5 set_delay

void set_delay(unsigned long);

The member function set_delay shall define the number of samples to be inserted before the first output sample.
If the member function is not called, the port shall have a delay of zero. The total delay of the port shall be
the sum of the delay set by the member functions set_delay and set_ct_delay. It shall be an error if the total
delay of the port is smaller than one timestep. It shall be an error if the member function is called outside
the constructor of the parent module or called outside the context of the member functions set_attributes or
change_attributes of the current TDF module.

5.1.8.6 set_ct_delay

void set_ct_delay(const sca_core::sca_time&);

void set_ct_delay(double, sc_core::sc_time_unit);

The member function set_ct_delay shall define the continuous-time delay to be inserted before the first output
sample. If the member function is not called, the continuous-time delay is set to sc_core::SC_ZERO_TIME.
The total delay of the port shall be the sum of the delay set by the member functions set_delay and set_ct_delay.
It shall be an error if the total delay of the port is smaller than one timestep. It shall be an error if the member
function is called outside the constructor of the parent module or called outside the context of the member
functions set_attributes or change_attributes of the current TDF module.

5.1.8.7 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 45 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

46
Copyright © 2016 IEEE. All rights reserved.

rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.8.8 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.8.9 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.8.10 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.8.11 get_ct_delay

sca_core::sca_time get_ct_delay() const;

The member function get_ct_delay shall return the continuous-time delay of type sca_core::sca_time set at
the port. It shall be an error if the member function is called outside the context of the member functions
initialize, reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.8.12 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.8.13 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 46 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

47
Copyright © 2016 IEEE. All rights reserved.

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.3) shall hold:

 (5.3)

where P is an instance of a port of class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> and M is
the parent module derived from class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.8.14 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.8.15 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.8.16 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.8.17 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_out<SCA_CT_CUT>”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 47 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

48
Copyright © 2016 IEEE. All rights reserved.

5.1.8.18 initialize

void initialize(const T& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the constructor of the parent module or in the member functions
initialize or reinitialize of the current TDF module; otherwise, it shall be an error. Consecutive initializations
with the same sample_id shall overwrite the value.

NOTE—The writing of an initial value to a port of class sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP> requires
that the port has been assigned a delay using the member function set_delay, which shall be called in the member functions
set_attributes or change_attributes of the TDF module.

5.1.8.19 set_initial_value

void set_initial_value(const T&);

The member function set_initial_value shall set the initial value of the TDF decoupling port to the value
supplied as argument. It shall be an error if the member function is called outside the context of the member
function set_attributes of the current TDF module.

5.1.8.20 read_delayed_value

const T& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.8.21 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.8.22 is_rate_changed

bool is_rate_changed() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 48 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

49
Copyright © 2016 IEEE. All rights reserved.

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.8.23 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.8.24 write

void write(const T& value, unsigned long sample_id = 0);

sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (const T&);

sca_core::sca_assign_to_proxy†<sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>, T>& operator[] (
 unsigned long sample_id);

The member functions write, operator=, and operator[] shall write one sample to the port. The argument
sample_id denotes the index of the sample being written. The samples shall be indexed from zero to
P.get_rate()–1, where P denotes the port. It shall be an error if sample_id is greater than or equal to the port rate.

sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (const sca_tdf::sca_in<T>&);

sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (sca_tdf::sca_de::sca_in<T>&);

The operator= shall read the first value from the input port of class sca_tdf::sca_in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);

sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>& operator= (
 sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from_proxy† to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member
function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 49 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

50
Copyright © 2016 IEEE. All rights reserved.

5.1.9 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>

5.1.9.1 Description

The class sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT> shall define a decoupling port class for the
TDF MoC. It provides functions for defining or getting attribute values (e.g., sampling rate or timestep), for
initialization, and for writing output samples. The samples read by the connected ports of class sca_tdf::sca_in
shall always have the value of the last available time point.

5.1.9.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_out<T, sca_tdf::SCA_DT_CUT> : public sca_tdf::sca_out_base<T>
 {
 public:
 sca_out();
 explicit sca_out(const char*);

 void set_delay(unsigned long);
 void set_ct_delay(const sca_core::sca_time&);
 void set_ct_delay(double, sc_core::sc_time_unit);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 sca_core::sca_time get_ct_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const T& value, unsigned long sample_id = 0);
 void set_initial_value(const T&);
 const T& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 void write(const T& value, unsigned long sample_id = 0);
 void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);
 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (const T&);
 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (const sca_tdf::sca_in<T>&);
 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (sca_tdf::sca_de::sca_in<T>&);
 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (sca_core::sca_assign_from_proxy†<
 sca_tdf::sca_out_base<T> >&);
 sca_core::sca_assign_to_proxy†<sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>, T>& operator[] (
 unsigned long sample_id);

 private:
 // Disabled
 sca_out<T, sca_tdf::SCA_DT_CUT>(const sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>&);
 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (
 const sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>&);
 };

} // namespace sca_tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 50 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

51
Copyright © 2016 IEEE. All rights reserved.

5.1.9.3 Constraint on usage

A port of class sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT> shall only be a member of a module derived
from class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.9.4 Constructors

sca_out();

explicit sca_out(const char*);

The constructor for class sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT> shall pass the character string
argument (if such argument exists) through to the constructor belonging to the base class sca_core::sca_port
to set the string name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_out_dt_cut”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.9.5 set_delay

void set_delay(unsigned long);

The member function set_delay shall define the number of samples to be inserted before the first output sample.
If the member function is not called, the port shall have a delay of zero. The total delay of the port shall be the
sum of the delay set by the member functions set_delay and set_ct_delay. It shall be an error if the member
function is called outside the constructor of the parent module or called outside the context of the member
functions set_attributes or change_attributes of the current TDF module.

5.1.9.6 set_ct_delay

void set_ct_delay(const sca_core::sca_time&);

void set_ct_delay(double, sc_core::sc_time_unit);

The member function set_ct_delay shall define the continuous-time delay to be inserted before the first output
sample. If the member function is not called, the continuous-time delay is set to sc_core::SC_ZERO_TIME.
The total delay of the port shall be the sum of the delay set by the member functions set_delay and set_ct_delay.
It shall be an error if the member function is called outside the constructor of the parent module or called
outside the context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.9.7 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument
rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 51 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

52
Copyright © 2016 IEEE. All rights reserved.

5.1.9.8 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.9.9 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.9.10 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.9.11 get_ct_delay

sca_core::sca_time get_ct_delay() const;

The member function get_ct_delay shall return the continuous-time delay of type sca_core::sca_time set at
the port. It shall be an error if the member function is called outside the context of the member functions
initialize, reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.9.12 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.9.13 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 52 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

53
Copyright © 2016 IEEE. All rights reserved.

The relationship shown in Equation (5.4) shall hold:

 (5.4)

where P is an instance of a port of class sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT> and M is the parent
module derived from class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.9.14 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.9.15 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.9.16 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.9.17 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_out<SCA_DT_CUT>”.

5.1.9.18 initialize

void initialize(const T& value, unsigned long sample_id = 0);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 53 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

54
Copyright © 2016 IEEE. All rights reserved.

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the constructor of the parent module or in the member functions
initialize or reinitialize of the current TDF module; otherwise, it shall be an error. Consecutive initializations
with the same sample_id shall overwrite the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.9.19 set_initial_value

void set_initial_value(const T&);

The member function set_initial_value shall set the initial value of the TDF decoupling port to the value
supplied as argument. It shall be an error if the member function is called outside the context of the member
function set_attributes of the current TDF module.

5.1.9.20 read_delayed_value

const T& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.9.21 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.9.22 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 54 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

55
Copyright © 2016 IEEE. All rights reserved.

be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.9.23 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.9.24 write

void write(const T& value, unsigned long sample_id = 0);

sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (const T&);

sca_core::sca_assign_to_proxy†<sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>, T>& operator[] (
 unsigned long sample_id);

The member functions write, operator=, and operator[] shall write one sample to the port. The argument
sample_id denotes the index of the sample being written. The samples shall be indexed from zero to
P.get_rate()–1, where P denotes the port. It shall be an error if sample_id is greater than or equal to the port rate.

sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (const sca_tdf::sca_in<T>&);

sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (sca_tdf::sca_de::sca_in<T>&);

The operator= shall read the first value from the input port of class sca_tdf::sca_in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);

sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>& operator= (
 sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<T> >&);

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from_proxy† to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member
function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

5.1.10 sca_tdf::sca_de::sca_in, sca_tdf::sc_in

5.1.10.1 Description

The class sca_tdf::sca_de::sca_in shall define a specialized port class for the TDF MoC. It provides functions
for defining or getting attribute values (e.g., sampling rate or timestep), for initialization, and for reading input
values. The port shall perform the synchronization between the TDF MoC and the SystemC kernel (see 5.3.2.4).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 55 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

56
Copyright © 2016 IEEE. All rights reserved.

The class sca_tdf::sc_in shall be defined as an alias for class sca_tdf::sca_de::sca_in.

5.1.10.2 Class definition

namespace sca_tdf {

 namespace sca_de {

 template<class T>
 class sca_in : public sca_core::sca_port< sc_core::sc_signal_in_if<T> >
 {
 public:
 sca_in();
 explicit sca_in(const char*);

 void set_delay(unsigned long);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const T& value, unsigned long sample_id = 0);
 const T& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 const T& read(unsigned long sample_id = 0);
 operator const T& ();
 const T& operator[] (unsigned long sample_id);

 const sc_event& default_event() const;
 const sc_event& value_changed_event() const;
 bool event() const;

 virtual void bind(sc_core::sc_signal_in_if<T>&);
 void operator() (sc_core::sc_signal_in_if<T>&);

 virtual void bind(sc_core::sc_port<sc_core::sc_signal_in_if<T> >&);
 void operator() (sc_core::sc_port<sc_core::sc_signal_in_if<T> >&);

 virtual void bind(sc_core::sc_port<sc_core::sc_signal_inout_if<T> >&);
 void operator() (sc_core::sc_port<sc_core::sc_signal_inout_if<T> >&);

 private:
 // Disabled
 sca_in(const sca_tdf::sca_de::sca_in<T>&);
 sca_tdf::sca_de::sca_in<T>& operator= (const sca_tdf::sca_de::sca_in<T>&);

 };

 } // namespace sca_de

 template<class T>
 class sc_in: public sca_tdf::sca_de::sca_in<T>
 {
 public:
 sc_in() : sca_tdf::sca_de::sca_in<T>() {}
 explicit sc_in(const char* name_) : sca_tdf::sca_de::sca_in<T>(name_) {}
 };

} // namespace sca_tdf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 56 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

57
Copyright © 2016 IEEE. All rights reserved.

5.1.10.3 Constraint on usage

A port of class sca_tdf::sca_de::sca_in and sca_tdf::sc_in shall only be a member of a module derived from
class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.10.4 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is not defined by this standard. The implementation shall use this operator for writing trace
values in time-domain simulation (see 9.1).
std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand. The
implementation shall use this assignment operator within the implementation for writing to or reading
from ports of type T.
const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

5.1.10.5 Constructors

sca_in();

explicit sca_in(const char*);

The constructor for class sca_tdf::sca_de::sca_in shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_core::sca_port to set the string name of the
instance in the module hierarchy.

sc_in() : sca_tdf::sca_de::sca_in<T>() {}

explicit sc_in(const char* name_) : sca_tdf::sca_de::sca_in<T>(name_) {}

The constructor for class sca_tdf::sc_in shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_tdf::sca_de::sca_in to set the string name of the
instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_sc_in”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.10.6 set_delay

void set_delay(unsigned long);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 57 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

58
Copyright © 2016 IEEE. All rights reserved.

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

5.1.10.7 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1. It
shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.10.8 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics (see
5.3). It shall be an error if the function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.10.9 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.10.10 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.10.11 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 58 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

59
Copyright © 2016 IEEE. All rights reserved.

5.1.10.12 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.5) shall hold:

 (5.5)

where P is an instance of a port of class sca_tdf::sca_de::sca_in and M is the parent module derived from
class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.10.13 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the member functions
initialize, reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.10.14 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.10.15 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 59 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

60
Copyright © 2016 IEEE. All rights reserved.

5.1.10.16 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_in”.

5.1.10.17 initialize

void initialize(const T& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.10.18 read_delayed_value

const T& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.10.19 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.10.20 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 60 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

61
Copyright © 2016 IEEE. All rights reserved.

last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.10.21 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.10.22 read

const T& read(unsigned long sample_id = 0);

operator const T& ();

const T& operator[] (unsigned long sample_id);

The member functions read, operator const T&, and operator[] shall return a reference to the value of a
particular sample that is available at the port. The argument sample_id denotes the index of the sample being
read. The samples shall be indexed from zero to P.get_rate()–1, where P denotes the port. A sample_id of
zero shall refer to the first input sample. It shall be an error if sample_id is greater than or equal to the port rate.

The member functions read, operator const T&, and operator[] shall only be called in the context of
the member functions processing and ac_processing of the current module; otherwise, it shall be an error.
Consecutive reads with the same sample_id during the same module activation shall return the same value.

The value of a sample shall be read by the member function read of the interface proper of class
sc_core::sc_signal_in_if. The member function read of the interface proper of class sc_core::sc_signal_in_if
shall be called in the evaluation phase at the first delta cycle of the associated time of the sample. (see 5.3).

5.1.10.23 default_event

const sc_event& default_event() const;

The member function default_event shall return a reference to the default event, which is returned by the
member function default_event of the channel, to which the port is bound.

5.1.10.24 value_changed_event

const sc_event& value_changed_event() const;

The member function value_changed_event shall return a reference to the value-changed event, which is
returned by the member function value_changed_event of the channel, to which the port is bound.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 61 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

62
Copyright © 2016 IEEE. All rights reserved.

5.1.10.25 event

bool event() const;

The member function event shall return the value, which is returned by the member function event of the
channel, to which the port is bound, at the current module time.

5.1.10.26 bind, operator()

virtual void bind(sc_core::sc_signal_in_if<T>&);
void operator() (sc_core::sc_signal_in_if<T>&);

virtual void bind(sc_core::sc_port<sc_core::sc_signal_in_if<T> >&);
void operator() (sc_core::sc_port<sc_core::sc_signal_in_if<T> >&);

virtual void bind(sc_core::sc_port<sc_core::sc_signal_inout_if<T> >&);
void operator() (sc_core::sc_port<sc_core::sc_signal_inout_if<T> >&);

The member functions bind and operator() shall each call member function bind of the base class,
passing through their parameters as arguments to the function bind, in order to bind the object of class
sca_tdf::sca_de::sca_in to the channel or port instance passed as an argument.

5.1.11 sca_tdf::sca_de::sca_in<bool>, sca_tdf::sc_in<bool>

5.1.11.1 Description

The class sca_tdf::sca_de::sca_in<bool> shall define a specialized port class for the TDF MoC. It provides
additional member functions appropriate for two-valued signals.

The class sca_tdf::sc_in<bool> shall be defined as an alias for class sca_tdf::sca_de::sca_in<bool>.

5.1.11.2 Class definition

namespace sca_tdf {

 namespace sca_de {

 template<>
 class sca_in<bool> : public sca_core::sca_port< sc_core::sc_signal_in_if<bool> >
 {
 public:
 sca_in();
 explicit sca_in(const char*);

 void set_delay(unsigned long);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const bool value, unsigned long sample_id = 0);
 const bool& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 62 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

63
Copyright © 2016 IEEE. All rights reserved.

 bool is_rate_changed() const;
 bool is_delay_changed() const;

 const bool& read(unsigned long sample_id = 0);
 operator const bool& ();
 const bool& operator[] (unsigned long sample_id);

 const sc_event& default_event() const;
 const sc_event& value_changed_event() const;
 const sc_event& posedge_event() const;
 const sc_event& negedge_event() const;

 bool event() const;
 bool posedge() const;
 bool negedge() const;

 virtual void bind(sc_core::sc_signal_in_if<bool>&);
 void operator() (sc_core::sc_signal_in_if<bool>&);

 virtual void bind(sc_core::sc_port<sc_core::sc_signal_in_if<bool> >&);
 void operator() (sc_core::sc_port<sc_core::sc_signal_in_if<bool> >&);

 virtual void bind(sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >&);
 void operator() (sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >&);

 private:
 // Disabled
 sca_in(const sca_tdf::sca_de::sca_in<bool>&);
 sca_tdf::sca_de::sca_in<bool>& operator= (const sca_tdf::sca_de::sca_in<bool>&);
 };

 } // namespace sca_de

 template<>
 class sc_in<bool>: public sca_tdf::sca_de::sca_in<bool>
 {
 public:
 sc_in() : sca_tdf::sca_de::sca_in<bool>() {}
 explicit sc_in(const char* name_) : sca_tdf::sca_de::sca_in<bool>(name_) {}
 };

} // namespace sca_tdf

5.1.11.3 Constraint on usage

A port of class sca_tdf::sca_de::sca_in<bool> and sca_tdf::sc_in<bool> shall only be a member of a module
derived from class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.11.4 Constructors

sca_in();

explicit sca_in(const char*);

The constructor for class sca_tdf::sca_de::sca_in<bool> shall pass the character string argument (if such
argument exists) through to the constructor belonging to the base class sca_core::sca_port to set the string
name of the instance in the module hierarchy.

sc_in() : sca_tdf::sca_de::sca_in<bool>() {}

explicit sc_in(const char* name_) : sca_tdf::sca_de::sca_in<bool>(name_) {}

The constructor for class sca_tdf::sc_in<bool> shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_tdf::sca_de::sca_in<bool> to set the string
name of the instance in the module hierarchy.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 63 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

64
Copyright © 2016 IEEE. All rights reserved.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_sc_in”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.11.5 set_delay

void set_delay(unsigned long);

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

5.1.11.6 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1. It
shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.11.7 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics (see
5.3). It shall be an error if the function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.11.8 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.11.9 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 64 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

65
Copyright © 2016 IEEE. All rights reserved.

5.1.11.10 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.11.11 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.6) shall hold:

 (5.6)

where P is an instance of a port of class sca_tdf::sca_de::sca_in<bool> and M is the parent module derived
from class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.11.12 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.11.13 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.11.14 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 65 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

66
Copyright © 2016 IEEE. All rights reserved.

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.11.15 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_in”.

5.1.11.16 initialize

void initialize(const bool& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.11.17 read_delayed_value

const bool& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.11.18 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 66 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

67
Copyright © 2016 IEEE. All rights reserved.

5.1.11.19 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.11.20 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.11.21 read

const bool& read(unsigned long sample_id = 0);

operator const bool& ();

const bool& operator[] (unsigned long sample_id);

The member functions read, operator const bool&, and operator[] shall return a reference to the value of a
particular sample that is available at the port. The argument sample_id denotes the index of the sample being
read. The samples shall be indexed from zero to P.get_rate()–1, where P denotes the port. A sample_id of
zero shall refer to the first input sample. It shall be an error if sample_id is greater than or equal to the port rate.

The member functions read, operator const bool&, and operator[] shall only be called in the context of
the member functions processing and ac_processing of the current module; otherwise, it shall be an error.
Consecutive reads with the same sample_id during the same module activation shall return the same value.

The value of a sample shall be read by the member function read of the interface proper of
class sc_core::sc_signal_in_if<bool>. The member function read of the interface proper of class
sc_core::sc_signal_in_if<bool> shall be called in the evaluation phase at the first delta cycle of the associated
time of the sample. (see 5.3).

5.1.11.22 default_event

const sc_event& default_event() const;

The member function default_event shall return a reference to the default event, which is returned by the
member function default_event of the channel, to which the port is bound.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 67 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

68
Copyright © 2016 IEEE. All rights reserved.

5.1.11.23 value_changed_event

const sc_event& value_changed_event() const;

The member function value_changed_event shall return a reference to the value-changed event, which is
returned by the member function value_changed_event of the channel, to which the port is bound.

5.1.11.24 posedge_event

const sc_event& posedge_event() const;

The member function posedge_event shall return a reference to the event, which is returned by the member
function posedge_event of the channel, to which the port is bound.

5.1.11.25 negedge_event

const sc_event& negedge_event() const;

The member function negedge_event shall return a reference to the event, which is returned by the member
function negedge_event of the channel, to which the port is bound.

5.1.11.26 event

bool event() const;

The member function event shall return the value, which is returned by the member function event of the
channel, to which the port is bound, at the current module time.

5.1.11.27 posedge

bool posedge() const;

The member function posedge shall return the value, which is returned by the member function posedge of
the channel, to which the port is bound, at the current module time.

5.1.11.28 negedge

bool negedge() const;

The member function negedge shall return the value, which is returned by the member function negedge of
the channel, to which the port is bound, at the current module time.

5.1.11.29 bind, operator()

virtual void bind(sc_core::sc_signal_in_if<bool>&);
void operator() (sc_core::sc_signal_in_if<bool>&);

virtual void bind(sc_core::sc_port<sc_core::sc_signal_in_if<bool> >&);
void operator() (sc_core::sc_port<sc_core::sc_signal_in_if<bool> >&);

virtual void bind(sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >&);
void operator() (sc_core::sc_port<sc_core::sc_signal_inout_if<bool> >&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 68 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

69
Copyright © 2016 IEEE. All rights reserved.

The member functions bind and operator() shall each call member function bind of the base class,
passing through their parameters as arguments to the function bind, in order to bind the object of class
sca_tdf::sca_de::sca_in<bool> to the channel or port instance passed as an argument.

5.1.12 sca_tdf::sca_de::sca_in<sc_dt::sc_logic>, sca_tdf::sc_in<sc_dt::sc_logic>

5.1.12.1 Description

The class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> shall define a specialized port class for the TDF MoC. It
provides additional member functions appropriate for four-valued signals.

The class sca_tdf::sc_in<sc_dt::sc_logic> shall be defined as an alias for class
sca_tdf::sca_de::sca_in<sc_dt::sc_logic>.

5.1.12.2 Class definition

namespace sca_tdf {

 namespace sca_de {

 template<>
 class sca_in<sc_dt::sc_logic> : public sca_core::sca_port<
 sc_core::sc_signal_in_if<sc_dt::sc_logic> >
 {
 public:
 sca_in();
 explicit sca_in(const char*);

 void set_delay(unsigned long);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const sc_dt::sc_logic value, unsigned long sample_id = 0);
 const sc_dt::sc_logic& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 const sc_dt::sc_logic& read(unsigned long sample_id = 0);
 operator const sc_dt::sc_logic& ();
 const sc_dt::sc_logic& operator[] (unsigned long sample_id);

 const sc_event& default_event() const;
 const sc_event& value_changed_event() const;
 const sc_event& posedge_event() const;
 const sc_event& negedge_event() const;

 bool event() const;
 bool posedge() const;
 bool negedge() const;

 virtual void bind(sc_core::sc_signal_in_if<sc_dt::sc_logic>&);
 void operator() (sc_core::sc_signal_in_if<sc_dt::sc_logic>&);

 virtual void bind(sc_core::sc_port<sc_core::sc_signal_in_if<sc_dt::sc_logic> >&);
 void operator() (sc_core::sc_port<sc_core::sc_signal_in_if<sc_dt::sc_logic> >&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 69 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

70
Copyright © 2016 IEEE. All rights reserved.

 virtual void bind(sc_core::sc_port<sc_core::sc_signal_inout_if<sc_dt::sc_logic> >&);
 void operator() (sc_core::sc_port<sc_core::sc_signal_inout_if<sc_dt::sc_logic> >&);

 private:
 // Disabled
 sca_in(const sca_tdf::sca_de::sca_in<sc_dt::sc_logic>&);
 sca_tdf::sca_de::sca_in<sc_dt::sc_logic>& operator= (
 const sca_tdf::sca_de::sca_in<sc_dt::sc_logic>&);
 };

 } // namespace sca_de

 template<>
 class sc_in<sc_dt::sc_logic>: public sca_tdf::sca_de::sca_in<sc_dt::sc_logic>
 {
 public:
 sc_in() : sca_tdf::sca_de::sca_in<sc_dt::sc_logic>() {}
 explicit sc_in(const char* name_) : sca_tdf::sca_de::sca_in<sc_dt::sc_logic>(name_) {}
 };

} // namespace sca_tdf

5.1.12.3 Constraint on usage

A port of class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> and sca_tdf::sc_in<sc_dt::sc_logic> shall only be
a member of a module derived from class sca_tdf::sca_module; otherwise, it shall be an error.

5.1.12.4 Constructors

sca_in();

explicit sca_in(const char*);

The constructor for class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> shall pass the character string argument
(if such argument exists) through to the constructor belonging to the base class sca_core::sca_port to set the
string name of the instance in the module hierarchy.

sc_in() : sca_tdf::sca_de::sca_in<sc_dt::sc_logic>() {}

explicit sc_in(const char* name_) : sca_tdf::sca_de::sca_in<sc_dt::sc_logic>(name_) {}

The constructor for class sca_tdf::sc_in<sc_dt::sc_logic> shall pass the character string
argument (if such argument exists) through to the constructor belonging to the base
class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> to set the string name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_sc_in”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.12.5 set_delay

void set_delay(unsigned long);

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 70 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

71
Copyright © 2016 IEEE. All rights reserved.

5.1.12.6 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be read during the execution of the
member function processing of the current TDF module by using member function read. The argument rate
shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1. It
shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.12.7 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics (see
5.3). It shall be an error if the function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.12.8 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.12.9 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.12.10 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.12.11 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 71 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

72
Copyright © 2016 IEEE. All rights reserved.

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.7) shall hold:

 (5.7)

where P is an instance of a port of class sca_tdf::sca_de::sca_in<sc_dt::sc_logic> and M is the parent module
derived from class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.12.12 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.12.13 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.12.14 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.12.15 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_in”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 72 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

73
Copyright © 2016 IEEE. All rights reserved.

5.1.12.16 initialize

void initialize(const sc_dt::sc_logic& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.12.17 read_delayed_value

const sc_dt::sc_logic& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.12.18 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.12.19 is_rate_changed

bool is_rate_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 73 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

74
Copyright © 2016 IEEE. All rights reserved.

5.1.12.20 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.12.21 read

const sc_dt::sc_logic& read(unsigned long sample_id = 0);

operator const sc_dt::sc_logic& ();

const sc_dt::sc_logic& operator[] (unsigned long sample_id);

The member functions read, operator const sc_dt::sc_logic& and operator[] shall return a reference to the
value of a particular sample that is available at the port. The argument sample_id denotes the index of the
sample being read. The samples shall be indexed from zero to P.get_rate()–1, where P denotes the port. A
sample_id of zero shall refer to the first input sample. It shall be an error if sample_id is greater than or equal
to the port rate.

The member functions read, operator const sc_dt::sc_logic&, and operator[] shall only be called in the
context of the member functions processing and ac_processing of the current module; otherwise, it shall be
an error. Consecutive reads with the same sample_id during the same module activation shall return the same
value.

The value of a sample shall be read by the member function read of the interface proper of class
sc_core::sc_signal_in_if<sc_dt::sc_logic>. The member function read of the interface proper of class
sc_core::sc_signal_in_if<sc_dt::sc_logic> shall be called in the evaluation phase at the first delta cycle of
the associated time of the sample. (see 5.3).

5.1.12.22 default_event

const sc_event& default_event() const;

The member function default_event shall return a reference to the default event, which is returned by the
member function default_event of the channel, to which the port is bound.

5.1.12.23 value_changed_event

const sc_event& value_changed_event() const;

The member function value_changed_event shall return a reference to the value-changed event, which is
returned by the member function value_changed_event of the channel, to which the port is bound.

5.1.12.24 posedge_event

const sc_event& posedge_event() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 74 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

75
Copyright © 2016 IEEE. All rights reserved.

The member function posedge_event shall return a reference to the event, which is returned by the member
function posedge_event of the channel, to which the port is bound.

5.1.12.25 negedge_event

const sc_event& negedge_event() const;

The member function negedge_event shall return a reference to the event, which is returned by the member
function negedge_event of the channel, to which the port is bound.

5.1.12.26 event

bool event() const;

The member function event shall return the value, which is returned by the member function event of the
channel, to which the port is bound, at the current module time.

5.1.12.27 posedge

bool posedge() const;

The member function posedge shall return the value, which is returned by the member function posedge of
the channel, to which the port is bound, at the current module time.

5.1.12.28 negedge

bool negedge() const;

The member function negedge shall return the value, which is returned by the member function negedge of
the channel, to which the port is bound, at the current module time.

5.1.12.29 bind, operator()

virtual void bind(sc_core::sc_signal_in_if<sc_dt::sc_logic>&);
void operator() (sc_core::sc_signal_in_if<sc_dt::sc_logic>&);

virtual void bind(sc_core::sc_port<sc_core::sc_signal_in_if<sc_dt::sc_logic> >&);
void operator() (sc_core::sc_port<sc_core::sc_signal_in_if<sc_dt::sc_logic> >&);

virtual void bind(sc_core::sc_port<sc_core::sc_signal_inout_if<sc_dt::sc_logic> >&);
void operator() (sc_core::sc_port<sc_core::sc_signal_inout_if<sc_dt::sc_logic> >&);

The member functions bind and operator() shall each call member function bind of the base class,
passing through their parameters as arguments to the function bind, in order to bind the object of class
sca_tdf::sca_de::sca_in<sc_dt::sc_logic> to the channel or port instance passed as an argument.

5.1.13 sca_tdf::sca_de::sca_out, sca_tdf::sc_out

5.1.13.1 Description

The class sca_tdf::sca_de::sca_out shall define a specialized port class for the TDF MoC. It provides functions
for defining or getting attribute values (e.g., sampling rate or timestep), for initialization, and for writing output
values. The port shall perform the synchronization between the TDF MoC and the SystemC kernel (see 5.3.2.4).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 75 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

76
Copyright © 2016 IEEE. All rights reserved.

The class sca_tdf::sc_out shall be defined as an alias for class sca_tdf::sca_de::sca_out.

5.1.13.2 Class definition

namespace sca_tdf {

 namespace sca_de {

 template<class T>
 class sca_out : public sca_core::sca_port< sc_core::sc_signal_inout_if<T> >
 {
 public:
 sca_out();
 explicit sca_out(const char*);

 void set_delay(unsigned long);
 void set_rate(unsigned long);
 void set_timestep(const sca_core::sca_time&);
 void set_timestep(double, sc_core::sc_time_unit);
 void set_max_timestep(const sca_core::sca_time&);
 void set_max_timestep(double, sc_core::sc_time_unit);

 unsigned long get_delay() const;
 unsigned long get_rate() const;
 sca_core::sca_time get_time(unsigned long sample_id = 0) const;
 sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;
 sca_core::sca_time get_max_timestep() const;
 sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

 virtual const char* kind() const;

 void initialize(const T& value, unsigned long sample_id = 0);
 void initialize_de_signal(const T&);
 const T& read_delayed_value(unsigned long sample_id = 0) const;

 bool is_timestep_changed(unsigned long sample_id = 0) const;
 bool is_rate_changed() const;
 bool is_delay_changed() const;

 void write(const T& value, unsigned long sample_id = 0);
 void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_de::sca_out<T> >&);
 sca_tdf::sca_de::sca_out<T>& operator= (const T&);
 sca_tdf::sca_de::sca_out<T>& operator= (const sca_tdf::sca_in<T>&);
 sca_tdf::sca_de::sca_out<T>& operator= (sca_tdf::sca_de::sca_in<T>&);
 sca_tdf::sca_de::sca_out<T>& operator= (sca_core::sca_assign_from_proxy†<
 sca_tdf::sca_de::sca_out<T> >&);
 sca_core::sca_assign_to_proxy†<sca_tdf::sca_de::sca_out<T>, T>& operator[] (
 unsigned long sample_id);

 private:
 // Disabled
 sca_out(const sca_tdf::sca_de::sca_out<T>&);
 sca_tdf::sca_de::sca_out<T>& operator= (const sca_tdf::sca_de::sca_out<T>&);
 };

 } // namespace sca_de

 template<class T>
 class sc_out: public sca_tdf::sca_de::sca_out<T>
 {
 public:
 sc_out() : sca_tdf::sca_de::sca_out<T>() {}
 explicit sc_out(const char* name_) : sca_tdf::sca_de::sca_out<T>(name_) {}
 };

} // namespace sca_tdf

5.1.13.4 Constraint on usage

A port of class sca_tdf::sca_de::sca_out and sca_tdf::sc_out shall only be a member of a module derived
from class sca_tdf::sca_module; otherwise, it shall be an error.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 76 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

77
Copyright © 2016 IEEE. All rights reserved.

5.1.13.3 Template parameter T

The argument passed as template parameter T shall be either a C++ type for which the predefined semantics
for assignment are adequate (for example, a fundamental type or a pointer) or a type T that obeys each of
the following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is not defined by this standard. The implementation shall use this operator for writing trace
values in time-domain simulation (see 9.1).
std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate (in the sense given in this subclause), the following
assignment operator shall be defined for the type T. In either case (default assignment or explicit
operator), the semantics of assignment should be sufficient to assign the state of an object of type T
such that the value of the left operand is indistinguishable from the value of the right operand. The
implementation shall use this assignment operator within the implementation for writing to or reading
from ports of type T.
const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

5.1.13.5 Constructors

sca_out();

explicit sca_out(const char*);

The constructor for class sca_tdf::sca_de::sca_out shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_core::sca_port to set the string name of the
instance in the module hierarchy.

sc_out() : sca_tdf::sca_de::sca_out<T>() {}

explicit sc_out(const char* name_) : sca_tdf::sca_de::sca_out<T>(name_) {}

The constructor for class sca_tdf::sc_out shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_tdf::sca_de::sca_out to set the string name of the
instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_tdf_sc_out”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

5.1.13.6 set_delay

void set_delay(unsigned long);

The member function set_delay shall define the number of samples to be inserted before the first input sample.
If the member function is not called, the port shall have a delay of zero. It shall be an error if the member
function is called outside the context of the member functions set_attributes or change_attributes of the
current TDF module.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 77 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

78
Copyright © 2016 IEEE. All rights reserved.

5.1.13.7 set_rate

void set_rate(unsigned long);

The member function set_rate shall define the number of samples that can be written during the execution of
the member function processing of the current TDF module by using member function write. The argument
rate shall have a positive, nonzero value. If the member function is not called, the port rate shall be equal to 1.
It shall be an error if the member function is called outside the context of the member functions set_attributes
or change_attributes of the current TDF module.

5.1.13.8 set_timestep

void set_timestep(const sca_core::sca_time&);

void set_timestep(double, sc_core::sc_time_unit);

The member function set_timestep shall define the timestep between two consecutive samples. If the member
function is not called, the current timestep of the port is computed as defined in the execution semantics
(see 5.3). It shall be an error if the member function is called outside the context of the member functions
set_attributes or change_attributes of the current TDF module.

5.1.13.9 set_max_timestep

void set_max_timestep(const sca_core::sca_time&);

void set_max_timestep(double, sc_core::sc_time_unit);

The member function set_max_timestep shall define the maximum timestep between two consecutive
samples. If set_max_timestep is not called, an implementation shall set the maximum timestep to the value
returned by function sca_core::sca_max_time. It shall be an error if the member function is called outside the
context of the member functions set_attributes or change_attributes of the current TDF module.

5.1.13.10 get_delay

unsigned long get_delay() const;

The member function get_delay shall return the delay set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.13.11 get_rate

unsigned long get_rate() const;

The member function get_rate shall return the rate set at the port. It shall be an error if the member function
is called outside the context of the member functions initialize, reinitialize, processing, ac_processing, or
change_attributes of the current TDF module.

5.1.13.12 get_time

sca_core::sca_time get_time(unsigned long sample_id = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 78 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

79
Copyright © 2016 IEEE. All rights reserved.

The member function get_time shall return the time of the sample with index sample_id. It shall be an error if
the member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

The relationship shown in Equation (5.8) shall hold:

 (5.8)

where P is an instance of a port of class sca_tdf::sca_de::sca_out and M is the parent module derived from
class sca_tdf::sca_module (see 5.3).

NOTE—The relation is valid within the time resolution bound, which is returned by the function
sc_core::sc_get_time_resolution (see 5.3.1.2).

5.1.13.13 get_timestep

sca_core::sca_time get_timestep(unsigned long sample_id = 0) const;

The member function get_timestep shall return the timestep between the preceding and current sample with
index sample_id. If the preceding sample is not available, the member function shall return the propagated
timestep (see 5.3.1.2). It shall be an error if the member function is called outside the context of the
member functions initialize, reinitialize, processing, ac_processing, or change_attributes of the current
TDF module.

5.1.13.14 get_max_timestep

sca_core::sca_time get_max_timestep() const;

The member function get_max_timestep shall return the maximum timestep between two consecutive samples
according to the execution semantics (see 5.3), ignoring the timesteps set for all TDF modules and TDF ports
through the member function set_timestep. It shall be an error if the member function is called outside the
context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes of
the current TDF module.

5.1.13.15 get_last_timestep

sca_core::sca_time get_last_timestep(unsigned long sample_id = 0) const;

The member function get_last_timestep shall return the timestep between the two samples preceding
the sample with index sample_id. If the timestep between these two preceding samples is equal to
sc_core::SC_ZERO_TIME, the member function shall return the last non-zero timestep. If one or both of the
preceding samples are not available or if all preceding timesteps are all equal to sc_core::SC_ZERO_TIME,
the member function shall return the propagated timestep (see 5.3.1.2). It shall be an error if the
member function is called outside the context of the member functions initialize, reinitialize, processing,
ac_processing, or change_attributes of the current TDF module.

5.1.13.16 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_de::sca_out”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 79 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

80
Copyright © 2016 IEEE. All rights reserved.

5.1.13.17 initialize

void initialize(const T& value, unsigned long sample_id = 0);

The member function initialize shall initialize one sample at the port. The argument sample_id denotes the
index of the sample being written. The samples shall be indexed from zero to P.get_delay()–1, where P denotes
the port. It shall be an error if sample_id is greater than or equal to the port delay.

This member function shall only be called in the member functions initialize or reinitialize of the current
TDF module; otherwise, it shall be an error. Consecutive initializations with the same sample_id shall overwrite
the value.

NOTE—The writing of an initial value to the port requires that the port has been assigned a delay using the member function
set_delay, which shall be called in the member functions set_attributes or change_attributes of the TDF module.

5.1.13.18 initialize_de_signal

void initialize_de_signal(const T&);

The member function initialize_de_signal shall set the initial value of the signal, to which the port is bound,
by calling member function write of that signal using the value passed as an argument to member function
initialize_de_signal. The port need not have been bound at the point during elaboration when member function
initialize_de_signal is called. In this case, the implementation shall defer the call to write until after the port
has been bound and the identity of the signal is known. It shall be an error to call this member function after
the elaboration phase has finished.

5.1.13.19 read_delayed_value

const T& read_delayed_value(unsigned long sample_id = 0) const;

The member function read_delayed_value shall return a reference to the value of a delayed sample that is
available at the port. The argument sample_id denotes the index of the delayed sample being read. The samples
shall be indexed from zero to P.get_delay()–1, where P denotes the port. A sample_id of zero shall refer to
the first delayed sample in time. It shall be an error if sample_id is greater than or equal to the port delay.

The member function shall only be called in the member function reinitialize of the current TDF module.
Otherwise, it shall be an error. Consecutive reads with the same sample_id during the same module activation
shall return the same delayed value.

5.1.13.20 is_timestep_changed

bool is_timestep_changed(unsigned long sample_id = 0) const;

The member function is_timestep_changed shall return true if the timestep of the sample with index sample_id
of the TDF port, returned by its member function get_timestep(sample_id), has changed with respect to the
preceding sample. Otherwise, it shall return false. It shall be an error if the member function is called outside
the context of the member functions initialize, reinitialize, processing, ac_processing, or change_attributes
of the current TDF module.

5.1.13.21 is_rate_changed

bool is_rate_changed() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 80 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

81
Copyright © 2016 IEEE. All rights reserved.

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_rate_changed shall return true if the rate of the TDF port has changed since the last activation of the callback
processing of the current TDF module. In the context of the callback change_attributes, the member function
is_rate_changed shall return true if the rate of the TDF port has changed between the last activation and before
last activation of the callback processing of the current TDF module. Otherwise, it shall return false. It shall
be an error if the member function is called outside the context of the member functions initialize, reinitialize,
processing, ac_processing, or change_attributes of the current TDF module.

5.1.13.22 is_delay_changed

bool is_delay_changed() const;

In the context of the callbacks processing, ac_processing, and reinitialize, the member function
is_delay_changed shall return true if the delay of the TDF port has changed since the last activation of the
callback processing of the current TDF module. In the context of the callback change_attributes, the member
function is_delay_changed shall return true if the delay of the TDF port has changed between the last activation
and before last activation of the callback processing of the current TDF module. Otherwise, it shall return
false. It shall be an error if the member function is called outside the context of the member functions initialize,
reinitialize, processing, ac_processing, or change_attributes of the current TDF module.

5.1.13.23 write

void write(const T& value, unsigned long sample_id = 0);

sca_tdf::sca_de::sca_out<T>& operator= (const T&);

sca_core::sca_assign_to_proxy†<sca_tdf::sca_de::sca_out<T>, T>& operator[] (
 unsigned long sample_id);

The member functions write, operator=, and operator[] shall write one sample to the port. The argument
sample_id denotes the index of the sample being written. The samples shall be indexed from zero to
P.get_rate()–1, where P denotes the port. It shall be an error if sample_id is greater than or equal to the port rate.

sca_tdf::sca_de::sca_out<T>& operator= (const sca_tdf::sca_in<T>&);

sca_tdf::sca_de::sca_out<T>& operator= (sca_tdf::sca_de::sca_in<T>&);

The operator= shall read the first value from the input port of class sca_tdf::sca_in or
sca_tdf::sca_de::sca_in and write it to the first value of the output port.

void write(sca_core::sca_assign_from_proxy†<sca_tdf::sca_de::sca_out<T> >&);

sca_tdf::sca_de::sca_out<T>& operator= (
 sca_core::sca_assign_from_proxy†<sca_tdf::sca_de::sca_out<T> >&);

The member functions write and operator= shall write the value made available through the object of class
sca_core::sca_assign_from_proxy† to the output port.

The member functions write, operator=, and operator[] shall only be called in the context of the member
function processing of the current module; otherwise, it shall be an error. Consecutive writes with the same
sample_id during the same module activation shall overwrite the value.

The value of a sample shall be written by the member function write of the interface proper of class
sc_core::sc_signal_inout_if. The member function write shall be called in the evaluation phase at the first
delta cycle of the associated time of the sample. (see 5.3).

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 81 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

82
Copyright © 2016 IEEE. All rights reserved.

5.1.14 sca_tdf::sca_trace_variable

5.1.14.1 Description

The class sca_tdf::sca_trace_variable shall implement a variable, which can be traced in a trace file of class
sca_util::sca_trace_file.

5.1.14.2 Class definition

namespace sca_tdf {

 template<class T>
 class sca_trace_variable : public sc_core::sc_object,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_trace_variable();
 explicit sca_trace_variable(const char*);

 virtual const char* kind() const;

 void write(const T&);
 const T& read();
 operator const T& ();
 sca_tdf::sca_trace_variable<T>& operator= (const T& value);
 sca_tdf::sca_trace_variable<T>& operator= (const sca_tdf::sca_in<T>& port);
 sca_tdf::sca_trace_variable<T>& operator= (sca_tdf::sca_de::sca_in<T>& port);
 };

} // namespace sca_tdf

5.1.14.3 Constraint on usage

An application shall instantiate an object of class sca_tdf::sca_trace_variable only in the context of a class
derived from sca_tdf::sca_module. An application shall write to an object of this class only within the member
function processing of the parent module derived from class sca_tdf::sca_module.

5.1.14.4 Constructors

sca_trace_variable();

explicit sca_trace_variable(const char*);

The constructor for class sca_tdf::sca_trace_variable shall pass the character string argument (if such
argument exists) through to the constructor belonging to the base class sc_core::sc_object to set the string
name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_trace_variable”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sc_core::sc_object.

5.1.14.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_trace_variable”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 82 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

83
Copyright © 2016 IEEE. All rights reserved.

5.1.14.6 write

void write(const T&);

sca_tdf::sca_trace_variable<T>& operator= (const T&);

sca_tdf::sca_trace_variable<T>& operator= (const sca_tdf::sca_in<T>&);

sca_tdf::sca_trace_variable<T>& operator= (sca_tdf::sca_de::sca_in<T>&);

The member functions write and operator= shall write one sample to the trace variable. The member functions
shall only be called in the context of the member function processing of the current module; otherwise, it
shall be an error.

5.1.14.7 read

const T& read();

operator const T& ();

The member functions read and operator const T& shall return a reference to the trace variable. The member
functions shall only be called in the context of the member functions processing and ac_processing of the
current module; otherwise, it shall be an error.

5.2 Hierarchical composition and port binding

The hierarchical composition of TDF modules shall use modules derived from class sc_core::sc_module and
the constructor or its equivalent macro definitions. A hierarchical module can include modules and ports of
different models of computation. Port binding rules shall follow IEEE Std 1666-2011 as well as the following
specific rules as defined in this subclause. Otherwise, it shall be an error.

a) A port of class sca_tdf::sca_in shall only be bound to a primitive channel of class sca_tdf::sca_signal
or to a port of class sca_tdf::sca_in or sca_tdf::sca_out of the parent module.

b) A port of class sca_tdf::sca_out shall only be bound to a primitive channel of class sca_tdf::sca_signal
or to a port of class sca_tdf::sca_out of the parent module.

c) A port of class sca_tdf::sca_in or sca_tdf::sca_out shall be bound to exactly one primitive channel of
class sca_tdf::sca_signal throughout the whole hierarchy.

d) A primitive channel of class sca_tdf::sca_signal shall have exactly one primitive port of class
sca_tdf::sca_out bound to it and may have one or more primitive ports of class sca_tdf::sca_in bound
to it throughout the whole hierarchy.

e) A port of class sca_tdf::sca_de::sca_in shall only be bound to a channel derived from an interface
proper of class sc_core::sc_signal_in_if or to a port of class sc_core::sc_in or sc_core::sc_out of the
parent module.

f) A port of class sca_tdf::sca_de::sca_out shall only be bound to a channel derived from an interface
proper of class sc_core::sc_signal_inout_if or to a port of class sc_core::sc_out of the parent module.

5.3 Elaboration and simulation

An implementation of the TDF MoC in a SystemC AMS class library shall include a public shell consisting
of the predefined classes, functions, macros, and so forth that can be used directly by an application. An
implementation also includes a TDF solver that implements the functionality of the TDF class library. The
underlying semantics of the TDF solver are defined in this subclause.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 83 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

84
Copyright © 2016 IEEE. All rights reserved.

The execution of a SystemC AMS application that includes TDF modules consists of elaboration followed
by simulation. Elaboration results in the consistent composition of the TDF modules through the computation
of TDF attributes. Simulation involves the activation of the member functions initialize, processing,
change_attributes, and reinitialize of the TDF modules. In addition to providing support for elaboration and
simulation, the TDF solver may also provide implementation-specific functionality beyond the scope of this
standard. As an example of such functionality, the TDF solver may compute a static schedule for time-domain
processing and may report information about the TDF module composition.

5.3.1 Elaboration

The primary purpose of TDF elaboration is to create internal data structures for the TDF solver to support the
semantics of TDF simulation. The TDF elaboration as described in this clause and in the following subclauses
shall execute in one sc_core::sc_module::end_of_elaboration callback. The actions stated in the following
subclauses shall occur, in the given order, during TDF elaboration and only during TDF elaboration. The
description of such actions uses the concept of a TDF cluster (see 3.1.4).

NOTE—It is not defined in which order the TDF elaboration and an application-defined
sca_tdf::sca_module::end_of_elaboration callback are executed.

5.3.1.1 Attribute setting

The TDF elaboration phase shall execute, in no particular order, all the member functions set_attributes of
the modules derived from class sca_tdf::sca_module.

5.3.1.2 Timestep calculation and propagation

The composition of TDF modules involves the computation and the propagation of consistent values
for the timesteps at each port of classes sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sca_in and
sca_tdf::sca_de::sca_out, and for each TDF module processing function. The port and module timesteps
are said to be consistent if they differ by less than the time resolution as returned by the function
sc_core::sc_get_time_resolution. It shall be an error if consistency is not met.

The propagated timestep of a module (Tm) derived from class sca_tdf::sca_module shall be consistent with
the rate (R) and the propagated timestep of any port (Tp) derived from class sca_tdf::sca_in, sca_tdf::sca_out,
sca_tdf::sca_de::sca_in or sca_tdf::sca_de::sca_out within that module, according to Equation (5.9):

 (5.9)

The maximum timesteps, set by member function set_max_timestep, shall be propagated to all TDF modules
and TDF ports in the cluster according to Equation (5.9). The maximum timestep shall be resolved by
taking the smallest propagated maximum timestep of the TDF modules in the cluster. In case none of the
TDF modules in the cluster specifies the maximum timestep smaller than the time returned by function
sca_core::sca_max_time, the largest propagated maximum timestep in the cluster shall be equal to the time
returned by function sca_core::sca_max_time. If in a TDF cluster no timestep has been assigned using
member function set_timestep of a TDF module or TDF port, the propagated maximum timestep shall be
used as the propagated timestep. It shall be an error if the propagated maximum timestep is smaller than the
propagated timestep in the cluster.

In case the TDF attributes are changed and the Equation (5.9) cannot be satisfied in consequence to this change,
an implementation shall at least satisfy the Equation (5.9) for the TDF modules in the cluster, which contain
the TDF ports with the smallest timestep.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 84 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

85
Copyright © 2016 IEEE. All rights reserved.

The timestep of a module, returned by the member function get_timestep, shall be equal to the time between
the last and current activation of the callback processing, except for the first module activation, where it shall
return the propagated value.

The timestep shall be only updated immediately before the execution of the callbacks initialize,
processing, and reinitialize. If the difference between two timesteps is smaller than or equal to the time
resolution, as returned by the function sc_core::sc_get_time_resolution, the timesteps are considered to
be indistinguishable. In case a timestep change is imposed, as a result of the use of the member functions
set_timestep or set_max_timestep, the time at which the next cluster execution period starts shall be equal to
the current module time plus the smallest propagated timestep in the cluster.

The timestep values for ports bound to the same channel of class sca_tdf::sca_signal shall be consistent.
The assigned and propagated timestep values shall be consistent throughout the TDF cluster; otherwise it
shall be an error. It shall be an error if the propagated timestep is equal to the time returned by function
sca_core::sca_max_time.

After successful TDF elaboration, all assigned timestep values shall be overridden by the propagated
timestep values, rounded to the next smallest multiple of the time resolution, as returned by the function
sc_core::sc_get_time_resolution.

Each sample read from or written to a port of class sca_tdf::sca_in, sca_tdf::sca_out,
sca_tdf::sca_de::sca_in or sca_tdf::sca_de::sca_out shall be associated with an absolute time of type
sca_core::sca_time. The first sample shall be associated with a time equal to the current module activation
time.

NOTE—An application needs to assign at least one timestep, using member functions set_timestep or set_max_timestep,
to at least one TDF module or one port of class sca_tdf::sca_in, sca_tdf::sca_out, sca_tdf::sca_de::sca_in or
sca_tdf::sca_de::sca_out in a TDF cluster. If no timestep has been assigned, the propagated timestep becomes equal to
the time returned by function sca_core::sca_max_time, which shall result in an error (see 4.2.6).

5.3.1.3 Computability check

It shall be an error if TDF clusters are not computable. For each TDF cluster, let R be a vector of positive
integer values rM1, rM2, ... , rMN, which size N is the number of modules in the cluster. A TDF cluster is said
to be computable if all three following conditions are met:

a) For every pair of ports Pi and Pj belonging, respectively, to modules Mi and Mj of the same cluster and
which are bound to the same channel of class sca_tdf::sca_signal, Equation (5.10) shall hold:

 (5.10)

b) For each cluster, there exists an order of activation of the TDF modules that fulfills the activation
conditions as defined in 5.3.2.2, such that each TDF module Mi shall be activated exactly rMi times.

c) For each cluster, there exists an activation order of modules where the time stamps of samples read
from ports of class sca_tdf::sca_de::sca_in at a particular module activation are smaller than or equal
to the time stamps of samples written to ports of class sca_tdf::sca_de::sca_out at later scheduled
module activations.

5.3.2 Simulation

This subclause defines the process of time-domain simulation of a TDF cluster. The simulation of TDF modules
involves the execution of a TDF initialization phase followed by activations of the time-domain processing
member functions.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 85 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

86
Copyright © 2016 IEEE. All rights reserved.

5.3.2.1 Initialization

The TDF initialization phase shall include the execution, in no particular order, of all the member functions
initialize of the TDF modules. The TDF initialization phase shall start after the callbacks to the member
functions start_of_simulation, immediately before the first call to the first scheduled member function
processing. The current module time, returned by member function get_time in the context of the member
function initialize, shall be equal to the time of the first module activation.

The initial sample values at ports with an associated delay greater than zero are defined by the execution of
the port member function initialize, which shall be called in the TDF module callback initialize. Otherwise,
the initial sample values are defined by the default constructor of the corresponding data type.

Samples written by the member function initialize of a port of class sca_tdf::sca_out shall be available to all
connected ports of class sca_tdf::sca_in before the first sample is written to the output port while executing
the member function processing (see 5.1.7.15, 5.1.8.18, and 5.1.9.18).

5.3.2.2 Processing

The member function processing of class sca_tdf::sca_module shall be called if the required number of
samples is available at all the module’s input ports. The number of required samples is defined by the rates of
the ports of class sca_tdf::sca_in. After execution of the member function processing, the required samples
shall be considered as consumed and thus not available anymore.

The number of produced samples is defined by the rates of the ports of class sca_tdf::sca_out. After execution
of the member function processing, the produced samples shall be available to all connected ports of class
sca_tdf::sca_in.

The samples written by the member function initialize of a port of class sca_tdf::sca_in or class
sca_tdf::sca_de::sca_in shall be available first at this port in the order of their sample indexes. (see 5.1.5.16
and 5.1.10.17).

NOTE 1—Samples, which are not written, remain undefined.

NOTE 2—Samples available at a port of class sca_tdf::sca_in become ordered as follows: 1. samples as defined by the
port delay, 2. samples as defined by the port delay of the connected port of class sca_tdf::sca_out, 3. samples as written
by the member function processing of the module that instantiates the connected port of class sca_tdf::sca_out.

NOTE 3—The member function sca_tdf::sca_module::end_of_simulation may be used to perform post processing
actions.

5.3.2.3 Attribute changes and reinitialization

The TDF attributes can be changed during simulation in the context of the member function change_attributes
of the modules derived from class sca_tdf::sca_module. The member functions change_attributes of each
TDF module, which belong to the same cluster, shall be executed, in no particular order, after each cluster
execution period. The cluster execution period shall be the shortest possible periodic cycle of module
activations to fulfill the execution semantics (see 5.3.2.2). The current module time, returned by member
function get_time in the context of the member function change_attributes, shall be equal to the highest
annotated time to any of the samples during the cluster execution period.

After execution of all member functions change_attributes, an implementation shall check the consistency of
timesteps and rates and perform timestep calculation and propagation (see 5.3.1.2 and 5.3.1.3). This is followed
by the execution of the member functions reinitialize. The current module time, returned by member function
get_time in the context of member function reinitialize, shall be equal to the time of the next module activation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 86 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

87
Copyright © 2016 IEEE. All rights reserved.

If the delay of a port is changed using the member function set_delay in the member function
change_attributes, the following rules shall be applied:

— If the delay of a port is decreased, the number of delayed samples shall be reduced to the new port
delay, starting with removing the oldest samples.

— If the delay of a port is increased, the number of delayed samples shall be increased, where the new delay
samples shall be added before the available samples. By default, the initial delay values are defined by
the default constructor of the corresponding data type. The member function initialize may be called
in the callback reinitialize to initialize these new delay values.

5.3.2.4 Synchronization with the SystemC kernel

Synchronization with the SystemC kernel shall be done exclusively by using ports of class
sca_tdf::sca_de::sca_in and class sca_tdf::sca_de::sca_out.

While executing the member function processing of a module and reading from a port of class
sca_tdf::sca_de::sca_in, the requested samples shall be available (see 5.1.10.22).

While executing the member function processing of a module and writing to a port of class
sca_tdf::sca_de::sca_out, the sample can be written at the corresponding time (see 5.1.13.23).

5.4 Embedded linear dynamic equations

A module derived from class sca_tdf::sca_module can embed linear dynamic equations in its member
function processing given in the form of linear transfer functions in the Laplace domain or state-space
equations. The equations shall be solved by considering samples as continuous-time signals. The solution
shall be a continuous-time signal represented by a reference to an object of class sca_tdf::sca_ct_proxy†

or sca_tdf::sca_ct_vector_proxy†. Only solutions at discrete time points shall be made available to the
TDF context. The required sampling shall be realized by the objects of class sca_tdf::sca_ct_proxy† or
sca_tdf::sca_ct_vector_proxy† depending on the output argument.

The discrete time points at which the input values are sampled shall be derived from:
a) The timestep returned by the member function get_timestep of the parent module of class

sca_tdf::sca_module.
b) The timestep returned by the member function get_timestep of an instance of class sca_tdf::sca_in or

sca_tdf::sca_de::sca_in, which is passed as an argument to the linear dynamic equations.
c) The timestep passed as an argument to the linear dynamic equations.

If a timestep value is defined for the equations, the timestep value shall be smaller than or equal to the time
distance between the last computed solution of the equations and the time of the current activation of the
module derived from class sca_tdf::sca_module, in which the equations are embedded.

The coefficients of the equation system to be solved can be changed between computations of solutions. The
computation of a solution shall be executed at least once in the member function processing of the module
derived from class sca_tdf::sca_module. The time of the last solution shall not be greater than the time of the
current activation of the member function processing of the module derived from class sca_tdf::sca_module,
in which the equations are embedded. When the time of the last computed solution is smaller than the current
module time, the timestep shall be extended by the difference between these two times.

If the time of the first discrete time point of the current calculation is equal or smaller than the time of the last
discrete time point of the previous calculation, the state of the equation system shall be restored to the state at
the last time point of the calculation before the last calculation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 87 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

88
Copyright © 2016 IEEE. All rights reserved.

The embedded linear dynamic equation classes shall be instantiated as a member of a module derived from class
sca_tdf::sca_module. The classes shall be instantiated before the callback start_of_simulation. After the
computation of the first solution of the equations, the sizes of the coefficient vectors or matrices, representing
the number of equations, shall not be changed.

5.4.1 sca_tdf::sca_ct_proxy†

5.4.1.1 Description

The class sca_tdf::sca_ct_proxy† shall be a helper class, which shall map the computed continuous-time
solution to sampled output values. An instance of this class shall exist only as reference returned by the member
functions calculate or operator() of class sca_tdf::sca_ltf_nd and sca_tdf::sca_ltf_zp (see 5.4.3.9, 5.4.4.9).

5.4.1.2 Class definition

namespace sca_tdf {

 class sca_ct_proxy† :
 public sca_core::sca_assign_from_proxy†<sca_util::sca_vector<double> >,
 public sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<double> >,
 public sca_core::sca_assign_from_proxy†<sca_tdf::sca_de::sca_out<double> >
 {
 public:
 double to_double() const;
 void to_vector(sca_util::sca_vector<double>&, unsigned long nsamples = 0) const;
 const sca_util::sca_vector<double>& to_vector(unsigned long nsamples = 0) const;
 void to_port(sca_tdf::sca_out_base<double>&) const;
 void to_port(sca_tdf::sca_de::sca_out<double>&) const;

 operator double() const;

 private:
 // Disabled
 sca_ct_proxy†();

 void assign_to(sca_util::sca_vector<double>&);
 void assign_to(sca_tdf::sca_out_base<double>&);
 void assign_to(sca_tdf::sca_de::sca_out<double>&);

 };

} // namespace sca_tdf

5.4.1.3 Constraint on usage

An application shall not explicitly create an instance of class sca_tdf::sca_ct_proxy†.

5.4.1.4 to_double

double to_double() const;

operator double() const;

The member function to_double and operator double() shall sample the continuous-time solution at the end
of the current time interval and shall return the value.

5.4.1.5 to_vector

void to_vector(sca_util::sca_vector<double>&, unsigned long nsamples = 0) const;

const sca_util::sca_vector<double>& to_vector(unsigned long nsamples = 0) const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 88 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

89
Copyright © 2016 IEEE. All rights reserved.

The member function to_vector shall sample the continuous-time solution with constant timesteps, starting at
the beginning of the current time interval plus the time interval divided by the number of samples nsamples and
finishing with the end time of the current calculation with nsamples samples. If nsamples is zero, the number
of input samples of the current calculation shall be used. The member function shall resize the vector and copy
the result or return a reference to a vector of the appropriate size. At zero time (t=0), the values written to the
vector shall be equal to the initial calculated value at t=0.

5.4.1.6 to_port

void to_port(sca_tdf::sca_out_base<double>& port) const;

void to_port(sca_tdf::sca_de::sca_out<double>& port) const;

The member function to_port shall sample the continuous-time solution with the constant timestep associated
with the port port using the member function port.get_timestep(), starting at the absolute time associated with
the first sample of the port port using the member function port.get_time(0) and finishing at the end of the
current time interval as returned by the member function port.get_time(port.get_rate()–1) or as provided by
the defined timestep. The result is written to the corresponding samples of the port. It shall be an error if the
time associated with the last output sample is larger than the time associated with the input sample plus the
continuous-time delay.

5.4.1.7 assign_to

void assign_to(sca_util::sca_vector<double>&);

void assign_to(sca_tdf::sca_out_base<double>&);

void assign_to(sca_tdf::sca_de::sca_out<double>&);

The member function assign_to shall use the class sca_core::sca_assign_from_proxy†, to map operator=
of class sca_util::sca_vector to the member function to_vector. Equally, the operator= of a port of class
sca_tdf::sca_out or sca_tdf::sca_de::sca_out shall be mapped to the member function to_port.

5.4.2 sca_tdf::sca_ct_vector_proxy†

5.4.2.1 Description

The class sca_tdf::sca_ct_vector_proxy† shall be a helper class, which shall map the computed continuous-
time solution to sampled output values. An instance of this class shall exist only as reference returned by the
member functions calculate or operator() of class sca_tdf::sca_ss (see 5.4.5.8).

5.4.2.2 Class definition

namespace sca_tdf {

 class sca_ct_vector_proxy† :
 public sca_core::sca_assign_from_proxy†<sca_util::sca_matrix<double> >,
 public sca_core::sca_assign_from_proxy†<sca_tdf::sca_out_base<sca_util::sca_vector<double> > >,
 public sca_core::sca_assign_from_proxy†<sca_tdf::sca_de::sca_out<sca_util::sca_vector<double> > >

 {
 public:
 const sca_util::sca_vector<double>& to_vector() const;
 void to_matrix(sca_util::sca_matrix<double>&, unsigned long nsamples = 0) const;
 const sca_util::sca_matrix<double>& to_matrix(unsigned long nsamples = 0) const;
 void to_port(sca_tdf::sca_out_base<sca_util::sca_vector<double> >&) const;
 void to_port(sca_tdf::sca_de::sca_out<sca_util::sca_vector<double> >&) const;

 operator const sca_util::sca_vector<double>& () const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 89 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

90
Copyright © 2016 IEEE. All rights reserved.

 private:
 // Disabled
 sca_ct_vector_proxy†();

 void assign_to(sca_util::sca_matrix<double>&);
 void assign_to(sca_tdf::sca_out_base<sca_util::sca_vector<double> >&);
 void assign_to(sca_tdf::sca_de::sca_out<sca_util::sca_vector<double> >&);
 };

} // namespace sca_tdf

5.4.2.3 Constraint on usage

An application shall not explicitly create an instance of class sca_tdf::sca_ct_vector_proxy†.

5.4.2.4 to_vector

const sca_util::sca_vector<double>& to_vector() const;

operator const sca_util::sca_vector<double>& () const;

The member function to_vector shall sample the continuous-time solution at the end of the current time interval
and shall return the values.

5.4.2.5 to_matrix

void to_matrix(sca_util::sca_matrix<double>&, unsigned long nsamples = 0) const;

const sca_util::sca_matrix<double>& to_matrix(unsigned long nsamples = 0) const;

The member function to_matrix shall sample the continuous-time solution with constant timesteps, starting at
the beginning of the current time interval plus the time interval divided by the number of samples nsamples and
finishing with the end time of the current calculation with nsamples samples. If nsamples is zero, the number
of input samples of the current calculation shall be used. The member function shall resize the matrix and
copy the result or return a reference to a matrix of the appropriate size. The column size of the matrix shall
be equal to the number of samples. At zero time (t=0), the values written to the matrix shall be equal to the
initial calculated value at t=0.

5.4.2.6 to_port

void to_port(sca_tdf::sca_out_base< sca_util::sca_vector<double> >& port) const;

void to_port(sca_tdf::sca_de::sca_out< sca_util::sca_vector<double> >& port) const;

The member function to_port shall sample the continuous-time solution with the constant timestep associated
with the port port using the member function port.get_timestep(), starting at the absolute time associated with
the first sample of the port port using the member function port.get_time(0) and finishing at the end of the
current time interval as returned by the member function port.get_time(port.get_rate()–1) or as provided by
the defined timestep. The result is written to the corresponding samples of the port. It shall be an error if the
time associated with the last output sample is larger than the time associated with the input sample plus the
continuous-time delay.

5.4.2.7 assign_to

void assign_to(sca_util::sca_matrix<double>&);

void assign_to(sca_tdf::sca_out_base<sca_util::sca_vector<double> >&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 90 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

91
Copyright © 2016 IEEE. All rights reserved.

void assign_to(sca_tdf::sca_de::sca_out<sca_util::sca_vector<double> >&);

The member function assign_to shall use the class sca_core::sca_assign_from_proxy†, to map the operator=
of class sca_util::sca_matrix to the member function to_matrix. Equally, the operator= of a port of class
sca_tdf::sca_out or sca_tdf::sca_de::sca_out shall be mapped to the member function to_port.

5.4.3 sca_tdf::sca_ltf_nd

5.4.3.1 Description

The class sca_tdf::sca_ltf_nd shall implement a scaled continuous-time linear transfer function of the Laplace-
domain variable s in the numerator-denominator form shown in Equation (5.11):

 (5.11)

where k is the constant gain of the transfer function, M and N are the number of numerator and denominator
coefficients, respectively, and numi and deni are real-valued coefficients of the numerator and denominator,
respectively. The argument delay is the continuous-time delay applied to the values available at the input.

5.4.3.2 Class definition

namespace sca_tdf {

 class sca_ltf_nd : public sc_core::sc_object
 {
 public:
 sca_ltf_nd();
 explicit sca_ltf_nd(const char*);

 virtual const char* kind() const;

 void set_max_delay(const sca_core::sca_time&);
 void set_max_delay(double, sc_core::sc_time_unit);

 double estimate_next_value() const;

 void enable_iterations();

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 91 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

92
Copyright © 2016 IEEE. All rights reserved.

 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(const sca_util::sca_vector<double>& num,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 92 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

93
Copyright © 2016 IEEE. All rights reserved.

 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 double input,
 const sca_core::sca_time& delay,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 93 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

94
Copyright © 2016 IEEE. All rights reserved.

 const sca_util::sca_vector<double>& den,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);
 };

} // namespace sca_tdf

5.4.3.3 Constructors

sca_ltf_nd();

explicit sca_ltf_nd(const char*);

The constructor for class sca_tdf::sca_ltf_nd shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_object to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_ltf_nd”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sc_core::sc_object.

5.4.3.4 Constraint on usage

The vectors num and den shall have at least one element, respectively.

5.4.3.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_ltf_nd”.

5.4.3.6 set_max_delay

void set_max_delay(const sca_core::sca_time&);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 94 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

95
Copyright © 2016 IEEE. All rights reserved.

void set_max_delay(double, sc_core::sc_time_unit);

The member function set_max_delay shall define the maximum allowable continuous-time delay of the input
values. If the member function is not called, the maximum allowable delay shall be set to the current timestep
used, at which the input values are available. It shall be an error if the member function is called outside the
context of the member function set_attributes of the current TDF module (see 5.1.1.5).

5.4.3.7 estimate_next_value

double estimate_next_value() const;

The member function estimate_next_value shall return an estimation of the value of type double one timestep
ahead. This timestep shall be equal to the last computed non-zero timestep. The estimation shall use the same
filter coefficients as provided for the last calculation of the equation system. The accuracy of the estimated
next value is implementation-defined.

NOTE 1—An implementation may give a warning in case the provided filter coefficients could lead to an inaccurate
estimation of the next value.

NOTE 2—If the number of numerator coefficients is equal or larger than the number of denumerator coefficients, an
implementation may give an inaccurate estimation of the next value.

5.4.3.8 enable_iterations

void enable_iterations();

The member function enable_iterations shall enable zero timestep recalculations by means of setting the
timestep argument tstep of the member function calculate and operator() to sc_core::SC_ZERO_TIME. It
shall be called during elaboration; otherwise it shall be an error.

5.4.3.9 calculate, operator()

sca_tdf::sca_ct_proxy†& calculate(...);

sca_tdf::sca_ct_proxy†& operator() (...);

The member function calculate and operator() shall return the continuous-time signal of the Laplace-domain
variable s in the numerator-denominator form, using a reference to the class sca_tdf::sca_ct_proxy†. The
computation of the solution of the equation system shall be started at the time of the first module activation.

The arguments include the gain of the transfer function k, the vectors of the numerator coefficients num and
denominator coefficients den, the continuous-time delay delay, the state vector state, the value of the input at
the current time input, and the timestep tstep.

The first element of the vectors num and den shall be the coefficient of order zero of the respective polynomial.

The argument delay specifies the continuous-time delay, which shall be applied to the input values before
calculating the linear transfer function. The delay shall be smaller than or equal to the current timestep used, at
which the input values are available, or if the member function set_max_delay has been called, smaller than
or equal to the delay set by the member function set_max_delay. If the argument delay is not specified, the
continuous-time delay shall be set to the value sc_core::SC_ZERO_TIME.

If the state vector state is not explicitly used as argument, the states shall be stored internally. In case where
states are stored internally and the member function get_timestep returns sc_core::SC_ZERO_TIME for

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 95 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

96
Copyright © 2016 IEEE. All rights reserved.

the first calculation of the equation system of the current module activation, the state vector is restored to the
values before the last module activation. If the size of the state vector is zero, its size shall be defined by the
member functions calculate or operator= and the vector elements shall be initialized to zero. Otherwise, the
size of the state vector shall be consistent with the numerator and denumerator sizes. The relation between the
numerator and denumerator sizes and the size of the state vector is implementation-defined.

If the timestep value tstep is not specified as argument, or if it is set to the value returned by function
sca_core::sca_max_time, the member functions calculate and operator() shall define a timestep value equal
to the time distance between the time reached by the last execution of the member function calculate and the
time of the current activation of the module derived from class sca_tdf::sca_module, in which the transfer
function is embedded. A specified timestep shall be smaller than or equal to the time distance between the time
reached by the last execution of the member function calculate and the time of the current activation of the
module derived from class sca_tdf::sca_module, in which the transfer function is embedded.

If the timestep tstep is set to the value sc_core::SC_ZERO_TIME and the internal time of the equation
system has progressed to the same point in time equal to the current module activation returned by member
function get_time, the time and the state of the equation system shall be restored to the time and state before
the last calculation, and shall use the new input values. It shall be an error if the timestep tstep is equal
to sc_core::SC_ZERO_TIME and the member function enable_iterations has not been called before the
callback start_of_simulation.

If a value of type double is used as input argument, the value shall be interpreted as forming a continuous-
time signal from the end of the last calculation time interval to the end of the current time interval. If a
vector of class sca_util::sca_vector<double> is used as input argument, the values shall be interpreted as
forming a continuous-time signal of equidistant distributed samples from the end of the last calculation
time interval to the end of the current time interval. If a port of class sca_tdf::sca_in<double> or
sca_tdf::sca_de::sca_in<double> is used as input argument, the samples available at the port shall be
interpreted as forming a continuous-time signal using the associated time points.

The output settling behavior resulting from a change of coefficients during simulation is implementation-
defined. If the state vector is stored internally, the state vector shall reset to zero when such a change occurs.

In case the state vector elements are set to zero, the output value shall be zero as long as the input value is zero.

5.4.4 sca_tdf::sca_ltf_zp

5.4.4.1 Description

The class sca_tdf::sca_ltf_zp shall implement a scaled continuous-time linear transfer function of the Laplace-
domain variable s in the zero-pole form shown in Equation (5.12):

 (5.12)

where k is the constant gain of the transfer function, M and N are the number of zeros and poles, respectively,
and zerosi and polesi are complex-valued zeros and poles, respectively. If M or N is zero, the corresponding
numerator or denominator term shall be a constant 1. The argument delay is the continuous-time delay applied
to the values available at the input.

5.4.4.2 Class definition

namespace sca_tdf {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 96 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

97
Copyright © 2016 IEEE. All rights reserved.

 class sca_ltf_zp : public sc_core::sc_object
 {
 public:
 sca_ltf_zp();
 explicit sca_ltf_zp(const char*);

 virtual const char* kind() const;

 void set_max_delay(const sca_core::sca_time&);
 void set_max_delay(double, sc_core::sc_time_unit);

 double estimate_next_value() const;

 void enable_iterations();

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 97 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

98
Copyright © 2016 IEEE. All rights reserved.

 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& calculate(
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 double input,
 double k = 1.0,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 98 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

99
Copyright © 2016 IEEE. All rights reserved.

 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& state,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 double input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 99 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

100
Copyright © 2016 IEEE. All rights reserved.

 const sca_util::sca_vector<double>& input,
 double k = 1.0,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);

 sca_tdf::sca_ct_proxy†& operator() (
 const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_de::sca_in<double>& input,
 double k = 1.0);
 };

} // namespace sca_tdf

5.4.4.3 Constructors

sca_ltf_zp();

explicit sca_ltf_zp(const char*);

The constructor for class sca_tdf::sca_ltf_zp shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_object to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_ltf_zp”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sc_core::sc_object.

5.4.4.4 Constraint on usage

The expansion of the numerator and the denominator shall result in a real value, respectively.

5.4.4.5 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_ltf_zp”.

5.4.4.6 set_max_delay

void set_max_delay(const sca_core::sca_time&);

void set_max_delay(double, sc_core::sc_time_unit);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 100 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

101
Copyright © 2016 IEEE. All rights reserved.

The member function set_max_delay shall define the maximum allowable continuous-time delay of the input
values. If the member function is not called, the maximum allowable delay shall be set to the current timestep
used, at which the input values are available. It shall be an error if the member function is called outside the
context of the member function set_attributes of the current TDF module (see 5.1.1.5).

5.4.4.7 estimate_next_value

double estimate_next_value() const;

The member function estimate_next_value shall return an estimation of the value of type double one timestep
ahead. This timestep shall be equal to the last computed non-zero timestep. The estimation shall use the same
filter coefficients as provided for the last calculation of the equation system. The accuracy of the estimated
next value is implementation-defined.

NOTE 1—An implementation may give a warning in case the provided filter coefficients could lead to an inaccurate
estimation of the next value.

NOTE 2—If the number of zeros is equal or larger than the number of poles, an implementation may give an inaccurate
estimation of the next value.

5.4.4.8 enable_iterations

void enable_iterations();

The member function enable_iterations shall enable zero timestep recalculations by means of setting the
timestep argument tstep of the member function calculate and operator() to sc_core::SC_ZERO_TIME. It
shall be called during elaboration; otherwise it shall be an error.

5.4.4.9 calculate, operator()

sca_tdf::sca_ct_proxy†& calculate(...);

sca_tdf::sca_ct_proxy†& operator() (...);

The member function calculate and operator() shall return the continuous-time signal of the Laplace-domain
variable s in the zero-pole form, using a reference to the class sca_tdf::sca_ct_proxy†. The computation of the
solution of the equation system shall be started at the time of the first module activation.

The arguments include the gain of the transfer function k, the vectors of the zero coefficients zeros and pole
coefficients poles, the continuous-time delay delay, the state vector state, the value of the input at the current
time input, and the timestep tstep.

Each element of the vectors zeros and poles shall define a root of the transfer function. The root shall be a
value of type sca_util::sca_complex. It shall be an error if the expansion of the zeros and poles has a nonzero
imaginary part. If the size of the vector zeros, respectively poles, is zero, then the numerator, respectively the
denominator, of the transfer function shall be equal to the value shown in Equation (5.13):

 (5.13)

The argument delay specifies the continuous-time delay, which shall be applied to the input values before
calculating the linear transfer function. The delay shall be smaller than or equal to the current timestep used, at
which the input values are available, or if the member function set_max_delay has been called, smaller than
or equal to the delay set by the member function set_max_delay. If the argument delay is not specified, the
continuous-time delay shall be set to the value sc_core::SC_ZERO_TIME.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 101 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

102
Copyright © 2016 IEEE. All rights reserved.

If the state vector state is not explicitly used as argument, the states shall be stored internally. In case where
states are stored internally and the member function get_timestep returns sc_core::SC_ZERO_TIME for
the first calculation of the equation system of the current module activation, the state vector is restored to the
values before the last module activation. If the size of the state vector is zero, its size shall be defined by the
member functions calculate or operator() and the vector elements shall be initialized to zero. Otherwise, the
size of the state vector shall be consistent with the numerator and denumerator sizes. The relation between the
numerator and denumerator sizes and the size of the state vector is implementation-defined.

If the timestep value tstep is not specified as argument, or if it is set to the value returned by function
sca_core::sca_max_time, the member functions calculate and operator() shall define a timestep value equal
to the time distance between the time reached by the last execution of the member function calculate and the
time of the current activation of the module derived from class sca_tdf::sca_module, in which the transfer
function is embedded. A specified timestep shall be smaller than or equal to the time distance between the time
reached by the last execution of the member function calculate and the time of the current activation of the
module derived from class sca_tdf::sca_module, in which the transfer function is embedded.

If the timestep tstep is set to the value sc_core::SC_ZERO_TIME and the internal time of the equation
system has progressed to the same point in time equal to the current module activation returned by member
function get_time, the time and the state of the equation system shall be restored to the time and state before
the last calculation, and shall use the new input values. It shall be an error if the timestep tstep is equal
to sc_core::SC_ZERO_TIME and the member function enable_iterations has not been called before the
callback start_of_simulation.

If a value of type double is used as input argument, the value shall be interpreted as forming a continuous-
time signal from the end of the last calculation time interval to the end of the current time interval. If a
vector of class sca_util::sca_vector<double> is used as input argument, the values shall be interpreted as
forming a continuous-time signal of equidistant distributed samples from the end of the last calculation
time interval to the end of the current time interval. If a port of class sca_tdf::sca_in<double> or
sca_tdf::sca_de::sca_in<double> is used as input argument, the samples available at the port shall be
interpreted as forming a continuous-time signal using the associated time points.

The output settling behavior resulting from a change of coefficients during simulation is implementation-
defined. If the state vector is stored internally the state vector shall reset to zero when such a change occurs.

In case the state vector elements are set to zero, the output value shall be zero as long as the input value is zero.

5.4.5 sca_tdf::sca_ss

5.4.5.1 Description

The class sca_tdf::sca_ss shall implement a system, which behavior is defined by the state-space equations
Equation (5.14) and Equation (5.15):

 (5.14)

 (5.15)

where s(t) is the state vector, x(t) is the input vector, and y(t) is the output vector. The argument delay is the
continuous-time delay applied to the values available at the input. A, B, C, and D are matrices having the
following characteristics:

— A is a n-by-n matrix, where n is the number of states.
— B is a n-by-m matrix, where m is the number of inputs.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 102 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

103
Copyright © 2016 IEEE. All rights reserved.

— C is a r-by-n matrix, where r is the number of outputs.
— D is a r-by-m matrix.

5.4.5.2 Class definition

namespace sca_tdf {

 class sca_ss : public sc_core::sc_object
 {
 public:
 sca_ss();
 explicit sca_ss(const char*);

 virtual const char* kind() const;

 void set_max_delay(const sca_core::sca_time&);
 void set_max_delay(double, sc_core::sc_time_unit);

 sca_util::sca_vector<double> estimate_next_value() const;

 void enable_iterations();

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a, // matrix A
 const sca_util::sca_matrix<double>& b, // matrix B
 const sca_util::sca_matrix<double>& c, // matrix C
 const sca_util::sca_matrix<double>& d, // matrix D
 sca_util::sca_vector<double>& s, // state vector s(t)
 const sca_util::sca_vector<double>& x, // input vector x(t)
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a, // matrix A
 const sca_util::sca_matrix<double>& b, // matrix B
 const sca_util::sca_matrix<double>& c, // matrix C
 const sca_util::sca_matrix<double>& d, // matrix D
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s, // state vector s(t)
 const sca_util::sca_vector<double>& x, // input vector x(t)
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 103 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

104
Copyright © 2016 IEEE. All rights reserved.

 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_util::sca_vector<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_util::sca_vector<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 104 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

105
Copyright © 2016 IEEE. All rights reserved.

 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& calculate(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_util::sca_vector<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_util::sca_vector<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 105 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

106
Copyright © 2016 IEEE. All rights reserved.

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 sca_util::sca_vector<double>& s,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_util::sca_vector<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_util::sca_vector<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_util::sca_matrix<double>& x,
 const sca_core::sca_time& tstep = sca_core::sca_max_time());

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);

 sca_tdf::sca_ct_vector_proxy†& operator() (
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_tdf::sca_de::sca_in< sca_util::sca_vector<double> >& x);
 };

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 106 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

107
Copyright © 2016 IEEE. All rights reserved.

} // namespace sca_tdf

5.4.5.3 Constructors

sca_ss();

explicit sca_ss(const char*);

The constructor for class sca_tdf::sca_ss shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sc_core::sc_object to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_ss”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sc_core::sc_object.

5.4.5.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_tdf::sca_ss”.

5.4.5.5 set_max_delay

void set_max_delay(const sca_core::sca_time&);

void set_max_delay(double, sc_core::sc_time_unit);

The member function set_max_delay shall define the maximum allowable continuous-time delay of the input
values. If the member function is not called, the maximum allowable delay shall be set to the current timestep
used, at which the input values are available. It shall be an error if the member function is called outside the
context of the member function set_attributes of the current TDF module (see 5.1.1.5).

5.4.5.6 estimate_next_value

sca_util::sca_vector<double> estimate_next_value() const;

The member function estimate_next_value shall return an estimation of the value of type
sca_util::sca_vector<double> one timestep ahead. This timestep shall be equal to the last computed non-zero
timestep. The estimation shall use the same filter coefficients as provided for the last calculation of the equation
system. The accuracy of the estimated next value is implementation-defined.

NOTE 1—An implementation may give a warning in case the provided filter coefficients could lead to an inaccurate
estimation of the next value.

NOTE 2—If any of the values in matrix D of the state-space equation system is non-zero, an implementation may give
an inaccurate estimation of the next value.

5.4.5.7 enable_iterations

void enable_iterations();

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 107 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

108
Copyright © 2016 IEEE. All rights reserved.

The member function enable_iterations shall enable zero timestep recalculations by means of setting the
timestep argument tstep of the member function calculate and operator() to sc_core::SC_ZERO_TIME. It
shall be called during elaboration; otherwise it shall be an error.

5.4.5.8 calculate, operator()

sca_tdf::sca_ct_vector_proxy†& calculate(...);

sca_tdf::sca_ct_vector_proxy†& operator() (...);

The member function calculate and operator() shall return the continuous-time signal of the state-space
equation system using a reference to the class sca_tdf::sca_ct_vector_proxy†. The computation of the solution
of the equation system shall be started at the time of the first module activation.

The arguments include the matrices a, b, c, and d, the continuous-time delay delay, the state vector s, the input
vector x, and the timestep tstep. It shall be an error if one of the following conditions is not met:

a) Argument a shall be a square matrix of the size of state vector s.
b) The number of columns in matrix b and the number of columns in matrix d is equal to the size of the

input vector x.
c) The number of rows in matrix b and the number of columns in matrix c is equal to the size of the

state vector s.
d) The number of rows in matrices c and d is equal to the size of the output vector y.

The value of the state vector shall be kept after a change of values of matrix coefficients.

The argument delay specifies the continuous-time delay, which shall be applied to the input values before
calculating the linear transfer function. The delay shall be smaller than or equal to the current timestep used, at
which the input values are available, or if the member function set_max_delay has been called, smaller than
or equal to the delay set by the member function set_max_delay. If the argument delay is not specified, the
continuous-time delay shall be set to the value sc_core::SC_ZERO_TIME.

If the state vector state is not explicitly used as argument, the states shall be stored internally. In case where
states are stored internally and the member function get_timestep returns sc_core::SC_ZERO_TIME for
the first calculation of the equation system of the current module activation, the state vector is restored to the
values before the last module activation. If the size of the state vector is zero, its size shall be defined by the
member functions calculate or operator= and the vector elements shall be initialized to zero. Otherwise, the
size of the state vector shall be consistent with the coefficient matrix sizes.

If the timestep value tstep is not specified as argument, or if it is set to the value returned by function
sca_core::sca_max_time, the member functions calculate and operator() shall define a timestep value equal
to the time distance between the time reached by the last execution of the member function calculate and the
time of the current activation of the module derived from class sca_tdf::sca_module, in which the state space
equation is embedded. A specified timestep shall be smaller than or equal to the time distance between the
time reached by the last execution of the member function calculate and the time of the current activation of
the module derived from class sca_tdf::sca_module, in which the state space equation is embedded.

If the timestep tstep is set to the value sc_core::SC_ZERO_TIME and the internal time of the equation
system has progressed to the same point in time equal to the current module activation returned by member
function get_time, the time and the state of the equation system shall be restored to the time and state before
the last calculation, and shall use the new input values. It shall be an error if the timestep tstep is equal
to sc_core::SC_ZERO_TIME and the member function enable_iterations has not been called before the
callback start_of_simulation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 108 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

109
Copyright © 2016 IEEE. All rights reserved.

If a vector of class sca_util::sca_vector<double> is used as input argument, the values shall be interpreted
as forming a continuous-time signal of equidistant distributed samples from the end of the last calculation
time interval to the end of the current time interval. If a matrix of class sca_util::sca_matrix<double>
is used as input argument, the matrix columns shall be interpreted as forming continuous-time signal of
equidistant distributed samples from the end of the last calculation time interval to the end of the current
time interval. If a port of class sca_tdf::sca_in< sca_util::sca_vector<double> > or sca_tdf::sca_de::sca_in<
sca_util::sca_vector<double> > is used as input argument, the samples available at the port shall be interpreted
as forming a continuous-time signal using the associated time points.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 109 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

110
Copyright © 2016 IEEE. All rights reserved.

6. Linear signal flow model of computation

The LSF model of computation shall define the behavior of non-conservative continuous-time systems as
mathematical relations between quantities represented by real-value functions of the independent variable
time. The resulting differential and algebraic equation system, which is defined by the set of connected
predefined LSF primitive modules, shall be solved during simulation. The mathematical relation defined by
each LSF primitive module shall contribute to this overall equation system. The predefined set of LSF primitive
modules shall support the basic operators required to define LSF behavior as defined in this clause.

6.1 Class definitions

All names used in the LSF class definitions shall be placed in the namespace sca_lsf.

6.1.1 sca_lsf::sca_module

6.1.1.1 Description

The class sca_lsf::sca_module shall define the base class for all LSF primitive modules. An application shall
not derive from this class directly, but shall use the predefined primitive modules as defined in the following
clauses.

6.1.1.2 Class definition

namespace sca_lsf {

 class sca_module : public sca_core::sca_module
 {
 public:
 virtual const char* kind() const;

 protected:
 sca_module();
 virtual ~sca_module();
 };
} // namespace sca_lsf

6.1.2 sca_lsf::sca_signal_if

6.1.2.1 Description

The class sca_lsf::sca_signal_if shall define an interface proper for a primitive channel of class
sca_lsf::sca_signal. The interface class member functions are implementation-defined.

6.1.2.2 Class definition

namespace sca_lsf {

 class sca_signal_if : public sca_core::sca_interface
 {
 protected:
 sca_signal_if();

 private:
 // Other members
 implementation-defined

 // Disabled
 sca_signal_if(const sca_lsf::sca_signal_if&);
 sca_lsf::sca_signal_if& operator= (const sca_lsf::sca_signal_if&);
 };

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 110 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

111
Copyright © 2016 IEEE. All rights reserved.

} // namespace sca_lsf

6.1.3 sca_lsf::sca_signal

6.1.3.1 Description

The class sca_lsf::sca_signal shall define a primitive channel for the LSF MoC. It shall be used for connecting
modules derived from class sca_lsf::sca_module using ports of class sca_lsf::sca_in and sca_lsf::sca_out.
An application shall not access the associated interface directly.

6.1.3.2 Class definition

namespace sca_lsf {

 class sca_signal : public sca_lsf::sca_signal_if,
 public sca_core::sca_prim_channel
 {
 public:
 sca_signal();
 explicit sca_signal(const char*);

 virtual const char* kind() const;

 private:
 // Disabled
 sca_signal(const sca_lsf::sca_signal&);
 };

} // namespace sca_lsf

6.1.3.3 Constructors

sca_signal();

explicit sca_signal(const char*);

The constructor for class sca_lsf::sca_signal shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_prim_channel to set the string name of
the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_lsf_signal”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_prim_channel.

6.1.3.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_signal”.

6.1.4 sca_lsf::sca_in

6.1.4.1 Description

The class sca_lsf::sca_in shall define a port class for the LSF MoC.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 111 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

112
Copyright © 2016 IEEE. All rights reserved.

6.1.4.2 Class definition

namespace sca_lsf {

 class sca_in : public sca_core::sca_port< sca_lsf::sca_signal_if >
 {
 public:
 sca_in();
 explicit sca_in(const char*);

 virtual const char* kind() const;

 private:
 // Other members
 implementation-defined

 // Disabled
 sca_in(const sca_lsf::sca_in&);
 };

} // namespace sca_lsf

6.1.4.3 Constructors

sca_in();

explicit sca_in(const char*);

The constructor for class sca_lsf::sca_in shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_lsf_in”) to generate a unique
string name that it shall then pass through to the constructor belonging to the base class sca_core::sca_port.

6.1.4.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_in”.

6.1.5 sca_lsf::sca_out

6.1.5.1 Description

The class sca_lsf::sca_out shall define a port class for the LSF MoC.

6.1.5.2 Class definition

namespace sca_lsf {

 class sca_out : public sca_core::sca_port< sca_lsf::sca_signal_if >
 {
 public:
 sca_out();
 explicit sca_out(const char*);

 virtual const char* kind() const;

 private:
 // Other members
 implementation-defined

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 112 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

113
Copyright © 2016 IEEE. All rights reserved.

 // Disabled
 sca_out(const sca_lsf::sca_out&);
 };

} // namespace sca_lsf

6.1.5.3 Constructors

sca_out();

explicit sca_out(const char*);

The constructor for class sca_lsf::sca_out shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_port to set the string name of the instance
in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_lsf_out”) to generate a
unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

6.1.5.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_out”.

6.1.6 sca_lsf::sca_add

6.1.6.1 Description

The class sca_lsf::sca_add shall implement a primitive module for the LSF MoC that realizes the weighted
addition of two LSF signals. The primitive shall contribute Equation (6.1) to the equation system:

 (6.1)

where x1(t) and x2(t) are the two LSF input signals, k1 and k2 are constant weighting coefficients, and y(t) is
the LSF output signal.

6.1.6.2 Class definition

namespace sca_lsf {

 class sca_add : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x1; // LSF inputs
 sca_lsf::sca_in x2;

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> k1; // weighting coefficients
 sca_core::sca_parameter<double> k2;

 virtual const char* kind() const;

 explicit sca_add(sc_core::sc_module_name, double k1_ = 1.0, double k2_ = 1.0)
 : x1("x1"), x2("x2"), y("y"), k1("k1", k1_), k2("k2", k2_)
 { implementation-defined }
 };

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 113 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

114
Copyright © 2016 IEEE. All rights reserved.

} // namespace sca_lsf

6.1.6.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_add”.

6.1.7 sca_lsf::sca_sub

6.1.7.1 Description

The class sca_lsf::sca_sub shall implement a primitive module for the LSF MoC that realizes the weighted
subtraction of two LSF signals. The primitive shall contribute Equation (6.2) to the equation system:

 (6.2)

where x1(t) and x2(t) are the two LSF input signals, k1 and k2 are constant weighting coefficients, and y(t) is
the LSF output signal.

6.1.7.2 Class definition

namespace sca_lsf {

 class sca_sub : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x1; // LSF inputs
 sca_lsf::sca_in x2;

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> k1; // weighting coefficients
 sca_core::sca_parameter<double> k2;

 virtual const char* kind() const;

 explicit sca_sub(sc_core::sc_module_name, double k1_ = 1.0, double k2_ = 1.0)
 : x1("x1"), x2("x2"), y("y"), k1("k1", k1_), k2("k2", k2_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.7.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_sub”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 114 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

115
Copyright © 2016 IEEE. All rights reserved.

6.1.8 sca_lsf::sca_gain

6.1.8.1 Description

The class sca_lsf::sca_gain shall implement a primitive module for the LSF MoC that realizes the
multiplication of an LSF signal by a constant gain. The primitive shall contribute Equation (6.3) to the equation
system:

 (6.3)

where k is the constant gain coefficient, x(t) is the LSF input signal, and y(t) is the LSF output signal.

6.1.8.2 Class definition

namespace sca_lsf {

 class sca_gain : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> k; // gain coefficient

 virtual const char* kind() const;

 explicit sca_gain(sc_core::sc_module_name, double k_ = 1.0)
 : x("x"), y("y"), k("k", k_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.8.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_gain”.

6.1.9 sca_lsf::sca_dot

6.1.9.1 Description

The class sca_lsf::sca_dot shall implement a primitive module for the LSF MoC that realizes the scaled first-
order time derivative of an LSF signal. The primitive shall contribute Equation (6.4) to the equation system:

 (6.4)

where k is the constant scale coefficient, x(t) is the LSF input signal, and y(t) is the LSF output signal.

6.1.9.2 Class definition

namespace sca_lsf {

 class sca_dot : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 115 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

116
Copyright © 2016 IEEE. All rights reserved.

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> k; // scale coefficient

 virtual const char* kind() const;

 explicit sca_dot(sc_core::sc_module_name, double k_ = 1.0)
 : x("x"), y("y"), k("k", k_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.9.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_dot”.

6.1.10 sca_lsf::sca_integ

6.1.10.1 Description

The class sca_lsf::sca_integ shall implement a primitive module for the LSF MoC that realizes the scaled
time-domain integration of an LSF signal. The primitive shall contribute Equation (6.5) to the equation system:

 (6.5)

where k is the constant scale coefficient, x(t) is the LSF input signal, y0 is the initial condition at t = 0, and
y(t) is the LSF output signal. The integration shall be done from the first calculation time point tstart to the
current time t.

If y0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute the equation y = k · x for the first
calculation instead of Equation (6.5). In this case, y0 is set to the resulting y value of the first calculation.

6.1.10.2 Class definition

namespace sca_lsf {

 class sca_integ : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> k; // scale coefficient
 sca_core::sca_parameter<double> y0; // initial condition at t=0

 virtual const char* kind() const;

 explicit sca_integ(sc_core::sc_module_name, double k_ = 1.0, double y0_ = 0.0)
 : x("x"), y("y"), k("k", k_), y0("y0", y0_)
 { implementation-defined }
 };

} // namespace sca_lsf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 116 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

117
Copyright © 2016 IEEE. All rights reserved.

6.1.10.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_integ”.

6.1.11 sca_lsf::sca_delay

6.1.11.1 Description

The class sca_lsf::sca_delay shall implement a primitive module for the LSF MoC that generates a scaled
time-delayed version of an LSF signal. The primitive shall contribute Equation (6.6) to the equation system:

 (6.6)

where t is the time in seconds, delay is the time delay in seconds, k is the constant scale coefficient, x(t) is the
LSF input signal, y0 is the output value before the delay is in effect, and y(t) is the LSF output signal.

6.1.11.2 Class definition

namespace sca_lsf {

 class sca_delay : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<sca_core::sca_time> delay; // time delay
 sca_core::sca_parameter<double> k; // scale coefficient
 sca_core::sca_parameter<double> y0; // output value before delay is in effect

 virtual const char* kind() const;

 explicit sca_delay(sc_core::sc_module_name,
 const sca_core::sca_time& delay_ = sc_core::SC_ZERO_TIME,
 double k_ = 1.0,
 double y0_ = 0.0)
 : x("x"), y("y"), delay("delay", delay_), k("k", k_), y0("y0", y0_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.11.3 Constraint of usage

The delay shall be greater than or equal to zero.

6.1.11.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_delay”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 117 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

118
Copyright © 2016 IEEE. All rights reserved.

6.1.12 sca_lsf::sca_source

6.1.12.1 Description

The class sca_lsf::sca_source shall implement a primitive module for the LSF MoC that realizes a source for
an LSF signal. In time-domain simulation, the primitive shall contribute Equation (6.7) to the equation system:

 (6.7)

where t is the time in seconds, delay is the initial delay in seconds, init_value is the initial value, offset is the
offset, amplitude is the source amplitude, frequency is the source frequency in hertz, phase is the source phase
in radians, and y(t) is the LSF output signal.

In small-signal frequency-domain simulation, the primitive shall contribute Equation (6.8) to the equation
system:

 (6.8)

where f is the simulation frequency, ac_amplitude is the small-signal amplitude, and ac_phase is the small-
signal phase in radians.

In small-signal frequency-domain noise simulation, the primitive shall contribute Equation (6.9) to the equation
system:

 (6.9)

where f is the simulation frequency, and ac_noise_amplitude is the small-signal noise amplitude.

6.1.12.2 Class definition

namespace sca_lsf {

 class sca_source : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> init_value;
 sca_core::sca_parameter<double> offset;
 sca_core::sca_parameter<double> amplitude;
 sca_core::sca_parameter<double> frequency;
 sca_core::sca_parameter<double> phase;
 sca_core::sca_parameter<sca_core::sca_time> delay;
 sca_core::sca_parameter<double> ac_amplitude;
 sca_core::sca_parameter<double> ac_phase;
 sca_core::sca_parameter<double> ac_noise_amplitude;

 virtual const char* kind() const;

 explicit sca_source(sc_core::sc_module_name,
 double init_value_ = 0.0,
 double offset_ = 0.0,
 double amplitude_ = 0.0,
 double frequency_ = 0.0,
 double phase_ = 0.0,
 const sca_core::sca_time& delay_ = sc_core::SC_ZERO_TIME,
 double ac_amplitude_ = 0.0,
 double ac_phase_ = 0.0,
 double ac_noise_amplitude_ = 0.0)
 : y("y"),
 init_value("init_value", init_value_),

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 118 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

119
Copyright © 2016 IEEE. All rights reserved.

 offset("offset", offset_),
 amplitude("amplitude", amplitude_),
 frequency("frequency", frequency_),
 phase("phase", phase_),
 delay("delay", delay_),
 ac_amplitude("ac_amplitude", ac_amplitude_),
 ac_phase("ac_phase", ac_phase_),
 ac_noise_amplitude("ac_noise_amplitude", ac_noise_amplitude_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.12.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_source”.

6.1.13 sca_lsf::sca_ltf_nd

6.1.13.1 Description

The class sca_lsf::sca_ltf_nd shall implement a primitive module for the LSF MoC that realizes a scaled
Laplace transfer function in the time-domain in the numerator-denominator form (see 5.4.3). The primitive
shall contribute Equation (6.10) to the equation system:

 (6.10)

where k is the constant gain coefficient, M and N are the number of numerator and denominator coefficients,
respectively, indexed with i, x(t) is the LSF input signal, numi and deni are real-valued coefficients of the
numerator and denominator, respectively, delay is the continuous-time delay in seconds, applied to the values
available at the input, and y(t) is the LSF output signal.

6.1.13.2 Class definition

namespace sca_lsf {

 class sca_ltf_nd : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<sca_util::sca_vector<double> > num; // numerator coefficients
 sca_core::sca_parameter<sca_util::sca_vector<double> > den; // denumerator coefficients
 sca_core::sca_parameter<sca_core::sca_time> delay; // time delay
 sca_core::sca_parameter<double> k; // gain coefficient

 virtual const char* kind() const;

 explicit sca_ltf_nd(sc_core::sc_module_name,
 const sca_util::sca_vector<double>& num_ = sca_util::sca_create_vector(1.0),
 const sca_util::sca_vector<double>& den_ = sca_util::sca_create_vector(1.0),
 double k_ = 1.0)
 : x("x"), y("y"), num("num", num_), den("den", den_),

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 119 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

120
Copyright © 2016 IEEE. All rights reserved.

 delay("delay", sc_core::SC_ZERO_TIME), k("k", k_)
 { implementation-defined }

 sca_ltf_nd(sc_core::sc_module_name,
 const sca_util::sca_vector<double>& num_,
 const sca_util::sca_vector<double>& den_,
 const sca_core::sca_time& delay_,
 double k_ = 1.0)
 : x("x"), y("y"), num("num", num_), den("den", den_),
 delay("delay" , delay_), k("k", k_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.13.3 Constraint on usage

The vectors num and den shall have at least one element, respectively.

6.1.13.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_ltf_nd”.

6.1.14 sca_lsf::sca_ltf_zp

6.1.14.1 Description

The class sca_lsf::sca_ltf_zp shall implement a primitive module for the LSF MoC that realizes a scaled
Laplace transfer function in the time-domain in the zero-pole form (see 5.4.4). The primitive shall contribute
Equation (6.11) to the equation system:

 (6.11)

where k is the constant gain coefficient, M and N are the number of zeros and poles, respectively, indexed with
i, x(t) is the LSF input signal, zerosi and polesi are complex-valued zeros and poles, respectively, delay is the
continuous-time delay in seconds applied to the values available at the input, and y(t) is the LSF output signal.

6.1.14.2 Class definition

namespace sca_lsf {

 class sca_ltf_zp : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<sca_util::sca_vector<sca_util::sca_complex> > zeros;
 sca_core::sca_parameter<sca_util::sca_vector<sca_util::sca_complex> > poles;
 sca_core::sca_parameter<sca_core::sca_time> delay; // time delay
 sca_core::sca_parameter<double> k; // gain coefficient

 virtual const char* kind() const;

 explicit sca_ltf_zp(sc_core::sc_module_name,
 const sca_util::sca_vector<sca_util::sca_complex>& zeros_ =
 sca_util::sca_vector<sca_util::sca_complex>(),

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 120 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

121
Copyright © 2016 IEEE. All rights reserved.

 const sca_util::sca_vector<sca_util::sca_complex>& poles_ =
 sca_util::sca_vector<sca_util::sca_complex>(),
 double k_ = 1.0)
 : x("x"), y("y"), zeros("zeros", zeros_), poles("poles", poles_),
 delay("delay", sc_core::SC_ZERO_TIME), k("k", k_)
 { implementation-defined }

 sca_ltf_zp(sc_core::sc_module_name,
 const sca_util::sca_vector<sca_util::sca_complex>& zeros_,
 const sca_util::sca_vector<sca_util::sca_complex>& poles_,
 const sca_core::sca_time& delay_,
 double k_ = 1.0)
 : x("x"), y("y"), zeros("zeros", zeros_), poles("poles", poles_),
 delay("delay", delay_), k("k", k_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.14.3 Constraint on usage

The expansion of the numerator and the denominator shall result in a real value, respectively. It shall be an
error if, after expansion, the imaginary part is numerically not zero.

6.1.14.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_ltf_zp”.

6.1.15 sca_lsf::sca_ss

6.1.15.1 Description

The class sca_lsf::sca_ss shall implement a primitive module for the LSF MoC that realizes a system,
which behavior is defined by single-input single-output state-space equations (see 5.4.5). The primitive shall
contribute Equation (6.12) and Equation (6.13) to the equation system:

 (6.12)

 (6.13)

where s(t) is the state vector, x(t) is the LSF input signal, delay is the continuous-time delay in seconds applied
to the values available at the input, and y(t) is the LSF output signal. A is a n-by-n matrix, where n is the
number of states, B and C are vectors of size n, and D is a real value.

6.1.15.2 Class definition

namespace sca_lsf {

 class sca_ss : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<sca_util::sca_matrix<double> > a; // matrix A of size n-by-n
 sca_core::sca_parameter<sca_util::sca_matrix<double> > b; // matrix B with one column of size n
 sca_core::sca_parameter<sca_util::sca_matrix<double> > c; // matrix C with one row of size n
 sca_core::sca_parameter<sca_util::sca_matrix<double> > d; // matrix D of size 1

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 121 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

122
Copyright © 2016 IEEE. All rights reserved.

 sca_core::sca_parameter<sca_core::sca_time> delay; // time delay

 virtual const char* kind() const;

 explicit sca_ss(sc_core::sc_module_name,
 const sca_util::sca_matrix<double>& a_ = sca_util::sca_matrix<double>(),
 const sca_util::sca_matrix<double>& b_ = sca_util::sca_matrix<double>(),
 const sca_util::sca_matrix<double>& c_ = sca_util::sca_matrix<double>(),
 const sca_util::sca_matrix<double>& d_ = sca_util::sca_matrix<double>(),
 const sca_core::sca_time& delay_ = sc_core::SC_ZERO_TIME)
 : x("x"), y("y"), a("a", a_), b("b", b_), c("c", c_), d("d", d_),
 delay("delay", delay_)
 { implementation-defined }
 };

} // namespace sca_lsf

6.1.15.3 Constraint on usage

It shall be an error if one of the following conditions is not met:
— Argument a shall be a square matrix of the size of state vector s.
— Argument b shall be a matrix with one column and the size of state vector s rows.
— Argument c shall be a matrix with one row and the size of state vector s columns.
— Argument d shall be a matrix of one row and one column.

NOTE—The class sca_lsf::sca_ss uses matrices similar to class sca_tdf::sca_ss.

6.1.15.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_ss”.

6.1.16 sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain

6.1.16.1 Description

The class sca_lsf::sca_tdf::sca_gain shall implement a primitive module for the LSF MoC that realizes the
scaled multiplication of a TDF input signal by an LSF input signal. The primitive shall contribute Equation
(6.14) to the equation system:

 (6.14)

where scale is the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a continuous-
time signal, x(t) is the LSF input signal, and y(t) is the LSF output signal.

The class sca_lsf::sca_tdf_gain shall be defined as an alias for class sca_lsf::sca_tdf::sca_gain.

6.1.16.2 Class definition

namespace sca_lsf {

 namespace sca_tdf {

 class sca_gain : public sca_lsf::sca_module
 {
 public:
 ::sca_tdf::sca_in<double> inp; // TDF input

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 122 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

123
Copyright © 2016 IEEE. All rights reserved.

 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> scale; // scale coefficient

 virtual const char* kind() const;

 explicit sca_gain(sc_core::sc_module_name, double scale_ = 1.0)
 : inp("inp"), x("x"), y("y"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_lsf::sca_tdf::sca_gain sca_tdf_gain;

} // namespace sca_lsf

6.1.16.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_gain”.

6.1.17 sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source

6.1.17.1 Description

The class sca_lsf::sca_tdf::sca_source shall implement a primitive module for the LSF MoC that realizes
the scaled conversion of a TDF signal to an LSF signal. The primitive shall contribute Equation (6.15) to the
equation system:

 (6.15)

where scale is the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a continuous-
time signal, and y(t) is the LSF output signal.

The class sca_lsf::sca_tdf_source shall be defined as an alias for class sca_lsf::sca_tdf::sca_source.

6.1.17.2 Class definition

namespace sca_lsf {

 namespace sca_tdf {

 class sca_source : public sca_lsf::sca_module
 {
 public:
 ::sca_tdf::sca_in<double> inp; // TDF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> scale; // scale coefficient

 virtual const char* kind() const;

 explicit sca_source(sc_core::sc_module_name, double scale_ = 1.0)
 : inp("inp"), y("y"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_lsf::sca_tdf::sca_source sca_tdf_source;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 123 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

124
Copyright © 2016 IEEE. All rights reserved.

} // namespace sca_lsf

6.1.17.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_source”.

6.1.18 sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink

6.1.18.1 Description

The class sca_lsf::sca_tdf::sca_sink shall implement a primitive module for the LSF MoC that realizes a
scaled conversion from an LSF signal to a TDF signal. The value of the LSF input signal x(t) shall be scaled
with coefficient scale and written to the TDF output port outp.

The class sca_lsf::sca_tdf_sink shall be defined as an alias for class sca_lsf::sca_tdf::sca_sink.

6.1.18.2 Class definition

namespace sca_lsf {

 namespace sca_tdf {

 class sca_sink : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 ::sca_tdf::sca_out<double> outp; // TDF output

 sca_core::sca_parameter<double> scale; // scale coefficient

 virtual const char* kind() const;

 explicit sca_sink(sc_core::sc_module_name, double scale_ = 1.0)
 : x("x"), outp("outp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_lsf::sca_tdf::sca_sink sca_tdf_sink;

} // namespace sca_lsf

6.1.18.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_sink”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 124 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

125
Copyright © 2016 IEEE. All rights reserved.

6.1.19 sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux

6.1.19.1 Description

The class sca_lsf::sca_tdf::sca_mux shall implement a primitive module for the LSF MoC that realizes the
selection of one of two LSF signals by a TDF control signal (multiplexer). The primitive shall contribute
Equation (6.16) to the equation system:

 (6.16)

where ctrl is the TDF control signal, x1(t) and x2(t) are the LSF input signals, and y(t) is the LSF output signal.

The class sca_lsf::sca_tdf_mux shall be defined as an alias for class sca_lsf::sca_tdf::sca_mux.

6.1.19.2 Class definition

namespace sca_lsf {

 namespace sca_tdf {

 class sca_mux : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x1; // LSF inputs
 sca_lsf::sca_in x2;

 sca_lsf::sca_out y; // LSF output

 ::sca_tdf::sca_in<bool> ctrl; // TDF control input

 virtual const char* kind() const;

 explicit sca_mux(sc_core::sc_module_name)
 : x1("x1"), x2("x2"), y("y"), ctrl("ctrl")
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_lsf::sca_tdf::sca_mux sca_tdf_mux;

} // namespace sca_lsf

6.1.19.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_mux”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 125 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

126
Copyright © 2016 IEEE. All rights reserved.

6.1.20 sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux

6.1.20.1 Description

The class sca_lsf::sca_tdf::sca_demux shall implement a primitive module for the LSF MoC that realizes
the routing of an LSF input signal to either one of two LSF output signals controlled by a TDF signal
(demultiplexer). The primitive shall contribute Equation (6.17) and Equation (6.18) to the equation system:

 (6.17)

 (6.18)

where ctrl is the TDF control signal, x(t) is the LSF input signal, and y1(t) and y2(t) are the LSF output signals.

The class sca_lsf::sca_tdf_demux shall be defined as an alias for class sca_lsf::sca_tdf::sca_demux.

6.1.20.2 Class definition

namespace sca_lsf {

 namespace sca_tdf {

 class sca_demux : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y1; // LSF outputs
 sca_lsf::sca_out y2;

 ::sca_tdf::sca_in<bool> ctrl; // TDF control input

 virtual const char* kind() const;

 explicit sca_demux(sc_core::sc_module_name)
 : x("x"), y1("y1"), y2("y2"), ctrl("ctrl")
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_lsf::sca_tdf::sca_demux sca_tdf_demux;

} // namespace sca_lsf

6.1.20.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_tdf::sca_demux”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 126 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

127
Copyright © 2016 IEEE. All rights reserved.

6.1.21 sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain

6.1.21.1 Description

The class sca_lsf::sca_de::sca_gain shall implement a primitive module for the LSF MoC that realizes the
scaled multiplication of a discrete-event input signal by an LSF input signal. The primitive shall contribute
Equation (6.19) to the equation system:

 (6.19)

where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as a
discrete-time signal, x(t) is the LSF input signal, and y(t) is the LSF output signal.

The class sca_lsf::sca_de_gain shall be defined as an alias for class sca_lsf::sca_de::sca_gain.

6.1.21.2 Class definition

namespace sca_lsf {

 namespace sca_de {

 class sca_gain : public sca_lsf::sca_module
 {
 public:
 sc_core::sc_in<double> inp; // discrete-event input

 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> scale; // scale coefficient

 virtual const char* kind() const;

 explicit sca_gain(sc_core::sc_module_name, double scale_ = 1.0)
 : inp("inp"), x("x"), y("y"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_lsf::sca_de::sca_gain sca_de_gain;

} // namespace sca_lsf

6.1.21.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_gain”.

6.1.22 sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source

6.1.22.1 Description

The class sca_lsf::sca_de::sca_source shall implement a primitive module for the LSF MoC that realizes the
scaled conversion of a discrete-event input signal to an LSF signal. The primitive shall contribute Equation
(6.20) to the equation system:

 (6.20)

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 127 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

128
Copyright © 2016 IEEE. All rights reserved.

where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as
a discrete-time signal, and y(t) is the LSF output signal.

The class sca_lsf::sca_de_source shall be defined as an alias for class sca_lsf::sca_de::sca_source.

6.1.22.2 Class definition

namespace sca_lsf {

 namespace sca_de {

 class sca_source : public sca_lsf::sca_module
 {
 public:
 sc_core::sc_in<double> inp; // discrete-event input

 sca_lsf::sca_out y; // LSF output

 sca_core::sca_parameter<double> scale; // scale coefficient

 virtual const char* kind() const;

 explicit sca_source(sc_core::sc_module_name, double scale_ = 1.0)
 : inp("inp"), y("y"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_lsf::sca_de::sca_source sca_de_source;

} // namespace sca_lsf

6.1.22.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_source”.

6.1.23 sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink

6.1.23.1 Description

The class sca_lsf::sca_de::sca_sink shall implement a primitive module for the LSF MoC that realizes a scaled
conversion from an LSF signal to a discrete-event signal. The value of the LSF input signal x(t) shall be scaled
with coefficient scale and written to the discrete-event output port outp.

The class sca_lsf::sca_de_sink shall be defined as an alias for class sca_lsf::sca_de::sca_sink.

6.1.23.2 Class definition

namespace sca_lsf {

 namespace sca_de {

 class sca_sink : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sc_core::sc_out<double> outp; // discrete-event output

 sca_core::sca_parameter<double> scale; // scale coefficient

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 128 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

129
Copyright © 2016 IEEE. All rights reserved.

 virtual const char* kind() const;

 explicit sca_sink(sc_core::sc_module_name, double scale_ = 1.0)
 : x("x"), outp("outp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_lsf::sca_de::sca_sink sca_de_sink;

} // namespace sca_lsf

6.1.23.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_sink”.

6.1.24 sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux

6.1.24.1 Description

The class sca_lsf::sca_de::sca_mux shall implement a primitive module for the LSF MoC that realizes the
selection of one of two LSF signals by a discrete-event control signal (multiplexer). The primitive shall
contribute Equation (6.21) to the equation system:

 (6.21)

where ctrl is the discrete-event control signal, x1(t) and x2(t) are the LSF input signals, and y(t) is the LSF output
signal.

The class sca_lsf::sca_de_mux shall be defined as an alias for class sca_lsf::sca_de::sca_mux.

6.1.24.2 Class definition

namespace sca_lsf {

 namespace sca_de {

 class sca_mux : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x1; // LSF inputs
 sca_lsf::sca_in x2;

 sca_lsf::sca_out y; // LSF output

 sc_core::sc_in<bool> ctrl; // discrete-event control

 virtual const char* kind() const;

 explicit sca_mux(sc_core::sc_module_name)
 : x1("x1"), x2("x2"), y("y"), ctrl("ctrl")
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_lsf::sca_de::sca_mux sca_de_mux;

} // namespace sca_lsf

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 129 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

130
Copyright © 2016 IEEE. All rights reserved.

6.1.24.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_mux”.

6.1.25 sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux

6.1.25.1 Description

The class sca_lsf::sca_de::sca_demux shall implement a primitive module for the LSF MoC that realizes the
routing of an LSF input signal to either one of two LSF output signals controlled by a discrete-event signal
(demultiplexer). The primitive shall contribute Equation (6.22) and Equation (6.23) to the equation system:

 (6.22)

 (6.23)

where ctrl is the discrete-event control signal, x(t) is the LSF input signal, and y1(t) and y2(t) are the LSF output
signals.

The class sca_lsf::sca_de_demux shall be defined as an alias for class sca_lsf::sca_de::sca_demux.

6.1.25.2 Class definition

namespace sca_lsf {

 namespace sca_de {

 class sca_demux : public sca_lsf::sca_module
 {
 public:
 sca_lsf::sca_in x; // LSF input

 sca_lsf::sca_out y1; // LSF outputs
 sca_lsf::sca_out y2;

 sc_core::sc_in<bool> ctrl; // discrete-event control

 virtual const char* kind() const;

 explicit sca_demux(sc_core::sc_module_name)
 : x("x"), y1("y1"), y2("y2"), ctrl("ctrl")
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_lsf::sca_de::sca_demux sca_de_demux;

} // namespace sca_lsf

6.1.25.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_lsf::sca_de::sca_demux”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 130 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

131
Copyright © 2016 IEEE. All rights reserved.

6.2 Hierarchical composition and port binding

The hierarchical composition of LSF modules shall use modules derived from class sc_core::sc_module and
the constructor or its equivalent macro definitions. A hierarchical module can include modules and ports of
different models of computation. Port binding rules shall follow IEEE Std 1666-2011 as well as the following
specific rules:

a) A port of class sca_lsf::sca_in shall only be bound to a primitive channel of class sca_lsf::sca_signal
or to a port of class sca_lsf::sca_in or sca_lsf::sca_out of the parent module.

b) A port of class sca_lsf::sca_out shall only be bound to a primitive channel of class sca_lsf::sca_signal
or to port of class sca_lsf::sca_out of the parent module.

c) A port of class sca_lsf::sca_in or sca_lsf::sca_out shall be bound to exactly one primitive channel of
class sca_lsf::sca:signal throughout the whole hierarchy.

d) A primitive channel of class sca_lsf::sca_signal shall have exactly one primitive port of class
sca_lsf::sca_out bound to it and may have one or more primitive ports of class sca_lsf::sca_in bound
to it throughout the whole hierarchy.

Predefined LSF primitive modules using ports of other models of computation shall follow the port binding
rules of the corresponding models of computation.

6.3 Elaboration and simulation

An implementation of the LSF MoC in a SystemC AMS class library shall include a public shell consisting of
the predefined classes, functions, and so forth that can be used directly by an application. An implementation
shall also include an LSF solver that implements the functionality of the LSF class library. The underlying
semantics of the LSF solver are defined in this subclause.

The execution of a SystemC AMS application that includes LSF modules consists of elaboration followed by
simulation. Elaboration results in one or more equation systems based on the contributions of the connected
LSF modules. Simulation solves the equation systems repetitively. In addition to providing support for
elaboration and simulation, the LSF solver may also provide implementation-specific functionality beyond the
scope of this standard. As an example of such functionality, the LSF solver may report information on the
LSF module composition and equation setup.

6.3.1 Elaboration

The primary purpose of LSF elaboration is to create internal data structures and equations for the LSF solver to
support the semantics of LSF simulation. The LSF elaboration as described in this clause and in the following
subclauses shall execute in a sc_core::sc_module::end_of_elaboration callback.

The actions stated in the following subclauses shall occur, in the given order, during LSF elaboration and only
during LSF elaboration. The description of such actions use the concept of an LSF cluster, which is a set of
LSF modules connected by channels of class sca_lsf::sca_signal.

LSF elaboration shall lock the parameter values of the predefined primitive modules (see 4.2.7).

6.3.1.1 Timestep calculation and propagation

The timestep for every LSF cluster shall be derived from the timestep of a connected TDF cluster or set by
the member functions set_timestep or set_max_timestep of an LSF primitive module derived from class
sca_lsf::sca_module in the corresponding LSF cluster. The timestep shall be propagated within the LSF cluster
to all primitive modules and to all ports of class sca_tdf::sca_in and sca_tdf::sca_out<T>, if any.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 131 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

132
Copyright © 2016 IEEE. All rights reserved.

It shall be an error if a timestep value is not assigned to at least one LSF module. The assigned and propagated
timestep values shall be consistent throughout the LSF cluster; otherwise, it shall be an error. It shall be an
error if the propagated timestep is equal to the time returned by function sca_core::sca_max_time.

After successful LSF elaboration, all assigned timestep values shall be overridden by the propagated timestep
values.

NOTE—An LSF cluster could be considered as one TDF module marked to accept attribute changes, which could be
connected to TDF modules in a hierarchical composition by the ports of class sca_tdf::sca_in and sca_tdf::sca_out<T> of
the predefined LSF primitive modules. In this case, the LSF cluster is included in the timestep calculation of the TDF cluster
and needs to comply with the same rules (see 5.3.1.2).

6.3.1.2 Equation system setup and solvability check

For each LSF cluster, an equation system shall be set up by combining:
— the contributing equations of each of the predefined LSF primitive modules in the cluster.
— the equations implied by the connected ports of class sca_lsf::sca_in and sca_lsf::sca_out that express

the equality of the values conveyed by the ports.

it shall be an error if any of the equation systems is numerically singular.

6.3.2 Simulation

This subclause defines the process of time-domain simulation of LSF descriptions. The simulation of a cluster
of LSF modules is done by a repetitive solving of the underlying equation systems.

6.3.2.1 Initialization

For each LSF cluster:
— all LSF signals and states shall be set to zero.
— for all LSF signals consistent initial conditions shall be calculated in agreement with the initial

conditions set by the predefined primitives.

6.3.2.2 Time-domain simulation

The solver shall at least provide results at the calculated timestep distances. If the current calculation timestep
is sc_core::SC_ZERO_TIME, the time and the state of the equation system shall be restored to the time and
state before the last calculation and the calculation shall be repeated on the new input values.

6.3.2.3 Synchronization with TDF MoC

Synchronization with the TDF MoC shall be done exclusively by using the predefined LSF primitive modules
containing ports of class sca_tdf::sca_in and sca_tdf::sca_out.

The LSF solver reads repetitively samples from ports of class sca_tdf::sca_in for all calculated timesteps of
the LSF cluster. Consecutive reads shall be interpreted as forming a continuous-time signal.

The LSF solver writes repetitively samples to ports of class sca_tdf::sca_out for all calculated timesteps of
the LSF cluster.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 132 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

133
Copyright © 2016 IEEE. All rights reserved.

6.3.2.4 Synchronization with the SystemC kernel

Synchronization with the SystemC kernel shall be done exclusively by using the predefined LSF primitive
modules containing ports of class sc_core::sc_in and sc_core::sc_out.

The LSF solver reads repetitively values from ports of class sc_core::sc_in at each first delta cycle of the
corresponding SystemC time for all calculated timesteps of the LSF cluster. The value is assumed as constant
until the next value is read.

The LSF solver writes repetitively values to ports of class sc_core::sc_out at each first delta cycle of the
corresponding SystemC time for all calculated timesteps of the LSF cluster.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 133 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

134
Copyright © 2016 IEEE. All rights reserved.

7. Electrical linear networks model of computation

The ELN model of computation shall define the behavior of conservative continuous-time systems consisting
of linear networks based on electrical primitives. The resulting differential and algebraic equation system,
which is determined by the set of connected predefined ELN primitive modules, shall be solved during
simulation. The mathematical relation defined in each ELN primitive module shall contribute to this overall
equation system. The predefined ELN primitive modules shall serve as a basic set of electrical linear network
primitives as defined in this clause.

For ELN primitive modules with exactly two terminals, the voltage across the primitive is defined in volt and
the current through the primitive is defined in ampere.

Current tracing for ELN primitive modules shall be supported for at least the primitives having two terminals
as defined in this clause. The current, which is traced, is defined as the current in ampere flowing through the
ELN primitive from terminal p to terminal n.

Voltage tracing shall be supported by the primitive channels of class sca_eln::sca_node and
sca_eln::sca_node_ref. The voltage, which is traced, is defined as the voltage in volt across the electrical
node of class sca_eln::sca_node or sca_eln::sca_node_ref and the corresponding electrical reference node
of class sca_eln::sca_node_ref.

An implementation may support current tracing of ELN primitive modules with more than two terminals.

All ELN primitive modules, which support current tracing, shall be derived from class
sca_util::sca_traceable_object†.

7.1 Class definitions

All names used in the ELN class definitions shall be placed in the namespace sca_eln.

7.1.1 sca_eln::sca_module

7.1.1.1 Description

The class sca_eln::sca_module shall define the base class for all ELN primitive modules. An application shall
not derive from this class directly, but shall use the predefined primitive modules as defined in the following
clauses.

7.1.1.2 Class definition

namespace sca_eln {

 class sca_module : public sca_core::sca_module
 {
 public:
 virtual const char* kind() const;

 protected:
 sca_module();
 virtual ~sca_module();
 };
} // namespace sca_eln

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 134 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

135
Copyright © 2016 IEEE. All rights reserved.

7.1.2 sca_eln::sca_node_if

7.1.2.1 Description

The class sca_eln::sca_node_if shall define an interface proper for the primitive channels of class
sca_eln::sca_node and sca_eln::sca_node_ref. The interface class member functions are implementation-
defined.

7.1.2.2 Class definition

namespace sca_eln {

 class sca_node_if : public sca_core::sca_interface
 {
 protected:
 sca_node_if();

 private:
 // Other members
 implementation-defined

 // Disabled
 sca_node_if(const sca_eln::sca_node_if&);
 sca_eln::sca_node_if& operator= (const sca_eln::sca_node_if&);
 };

} // namespace sca_eln

7.1.3 sca_eln::sca_terminal

7.1.3.1 Description

The class sca_eln::sca_terminal shall define a port class for the ELN MoC.

7.1.3.2 Class definition

namespace sca_eln {

 class sca_terminal : public sca_core::sca_port< sca_eln::sca_node_if >
 {
 public:
 sca_terminal();
 explicit sca_terminal(const char* name_);

 virtual const char* kind() const;

 private:
 // Other members
 implementation-defined

 // Disabled
 sca_terminal(const sca_eln::sca_terminal&);
 };

} // namespace sca_eln

7.1.3.3 Constructors

sca_terminal();

explicit sca_terminal(const char* name_);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 135 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

136
Copyright © 2016 IEEE. All rights reserved.

The constructor for class sca_eln::sca_terminal shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_core::sca_port to set the string name of the
instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_eln_terminal”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_port.

7.1.3.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_terminal”.

7.1.4 sca_eln::sca_node

7.1.4.1 Description

The class sca_eln::sca_node shall define a primitive channel for the ELN MoC. It shall be used for connecting
ELN primitive modules using ports of class sca_eln::sca_terminal. The primitive channel shall represent an
electrical node. An application shall not access the associated interface directly.

7.1.4.2 Class definition

namespace sca_eln {

 class sca_node : public sca_eln::sca_node_if,
 public sca_core::sca_prim_channel
 {
 public:
 sca_node();
 explicit sca_node(const char* name_);

 virtual const char* kind() const;

 private:
 // Disabled
 sca_node(const sca_eln::sca_node&);
 };

} // namespace sca_eln

7.1.4.3 Constructors

sca_node();

explicit sca_node(const char* name_);

The constructor for class sca_eln::sca_node shall pass the character string argument (if such argument exists)
through to the constructor belonging to the base class sca_core::sca_prim_channel to set the string name of
the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_eln_node”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_prim_channel.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 136 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

137
Copyright © 2016 IEEE. All rights reserved.

7.1.4.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_node”.

7.1.5 sca_eln::sca_node_ref

7.1.5.1 Description

The class sca_eln::sca_node_ref shall define a primitive channel for the ELN MoC. It shall be used for
connecting ELN primitive modules using ports of class sca_eln::sca_terminal. The primitive channel shall
represent an electrical reference node, a node which holds a voltage of zero volt. An application shall not
access the associated interface directly.

7.1.5.2 Class definition

namespace sca_eln {

 class sca_node_ref : public sca_eln::sca_node_if,
 public sca_core::sca_prim_channel
 {
 public:
 sca_node_ref();
 explicit sca_node_ref(const char* name_);

 virtual const char* kind() const;

 private:
 // Disabled
 sca_node_ref(const sca_eln::sca_node_ref&);
 };

} // namespace sca_eln

7.1.5.3 Constructors

sca_node_ref();

explicit sca_node_ref(const char* name_);

The constructor for class sca_eln::sca_node_ref shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sca_core::sca_prim_channel to set the string
name of the instance in the module hierarchy.

The default constructor shall call function sc_core::sc_gen_unique_name(“sca_eln_node_ref”) to generate
a unique string name that it shall then pass through to the constructor belonging to the base class
sca_core::sca_prim_channel.

7.1.5.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_node_ref”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 137 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

138
Copyright © 2016 IEEE. All rights reserved.

7.1.6 sca_eln::sca_r

7.1.6.1 Description

The class sca_eln::sca_r shall implement a primitive module for the ELN MoC that represents a resistor. The
primitive shall contribute Equation (7.1) to the equation system:

 (7.1)

where value is the resistance in ohm, vp,n(t) is the voltage across the resistor between terminals p and n, and
ip,n(t) is the current through the resistor flowing from terminal p to terminal n.

7.1.6.2 Class definition

namespace sca_eln {

 class sca_r : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sca_core::sca_parameter<double> value;

 virtual const char* kind() const;

 explicit sca_r(sc_core::sc_module_name, double value_ = 1.0)
 : p("p"), n("n"), value("value", value_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.6.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_r”.

7.1.7 sca_eln::sca_c

7.1.7.1 Description

The class sca_eln::sca_c shall implement a primitive module for the ELN MoC that represents a capacitor.
The primitive shall contribute Equation (7.2) to the equation system:

(7.2)

where value is the capacitance in farad, q0 is the initial charge in coulomb, vp,n(t) is the voltage across the
capacitor between terminals p and n, and ip,n(t) is the current through the capacitor flowing from terminal p
to terminal n.

If the initial charge q0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute no equation to
the equation system for the first calculation. In this case, the initial charge q0 shall be calculated as follows:
q0 = value · vp,n0, where vp,n0 is the voltage across the capacitor after the first calculation.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 138 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

139
Copyright © 2016 IEEE. All rights reserved.

7.1.7.2 Class definition

namespace sca_eln {

 class sca_c : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sca_core::sca_parameter<double> value;
 sca_core::sca_parameter<double> q0;

 virtual const char* kind() const;

 explicit sca_c(sc_core::sc_module_name, double value_ = 1.0, double q0_ = 0.0)
 : p("p"), n("n"), value("value", value_), q0("q0", q0_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.7.3 Constraint of usage

The argument value shall not be numerically zero.

7.1.7.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_c”.

7.1.8 sca_eln::sca_l

7.1.8.1 Description

The class sca_eln::sca_l shall implement a primitive module for the ELN MoC that represents an inductor.
The primitive shall contribute Equation (7.3) to the equation system:

(7.3)

where value is the inductance in henry, psi0 is the initial linked flux in weber, vp,n(t) is the voltage across the
inductor between terminals p and n, and ip,n(t) is the current through the inductor flowing from terminal p to
terminal n.

If the initial linked flux psi0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute to the
equation system the equation vp,n = 0 for the first calculation instead of Equation (7.3). In this case, the initial
linked flux psi0 shall be calculated as follows: psi0 = value · ip,n0, where ip,n0 is the current flowing through
the inductor after the first calculation.

7.1.8.2 Class definition

namespace sca_eln {

 class sca_l : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 139 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

140
Copyright © 2016 IEEE. All rights reserved.

 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sca_core::sca_parameter<double> value;
 sca_core::sca_parameter<double> psi0;

 virtual const char* kind() const;

 explicit sca_l(sc_core::sc_module_name, double value_ = 1.0, double psi0_ = 0.0)
 : p("p"), n("n"), value("value", value_), psi0("psi0", psi0_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.8.3 Constraint of usage

The argument value shall not be numerically zero.

7.1.8.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_l”.

7.1.9 sca_eln::sca_vcvs

7.1.9.1 Description

The class sca_eln::sca_vcvs shall implement a primitive module for the ELN MoC that represents a voltage
controlled voltage source. The primitive shall contribute Equation (7.4) to the equation system:

 (7.4)

where value is the scale coefficient, vncp,ncn(t) is the control voltage across terminals ncp and ncn, and vnp,nn(t)
is the voltage across terminals np and nn.

7.1.9.2 Class definition

namespace sca_eln {

 class sca_vcvs : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal ncp;
 sca_eln::sca_terminal ncn;

 sca_eln::sca_terminal np;
 sca_eln::sca_terminal nn;

 sca_core::sca_parameter<double> value;

 virtual const char* kind() const;

 explicit sca_vcvs(sc_core::sc_module_name, double value_ = 1.0)
 : ncp("ncp"), ncn("ncn"), np("np"), nn("nn"), value("value", value_)
 { implementation-defined }
 };

} // namespace sca_eln

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 140 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

141
Copyright © 2016 IEEE. All rights reserved.

7.1.9.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_vcvs”.

7.1.10 sca_eln::sca_vccs

7.1.10.1 Description

The class sca_eln::sca_vccs shall implement a primitive module for the ELN MoC that represents a voltage
controlled current source. The primitive shall contribute Equation (7.5) to the equation system:

 (7.5)

where value is the scale coefficient in siemens, vncp,ncn(t) is the control voltage across terminals ncp and ncn,
and inp,nn(t) is the current flowing through the primitive from terminal np to terminal nn.

7.1.10.2 Class definition

namespace sca_eln {

 class sca_vccs : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal ncp;
 sca_eln::sca_terminal ncn;

 sca_eln::sca_terminal np;
 sca_eln::sca_terminal nn;

 sca_core::sca_parameter<double> value;

 virtual const char* kind() const;

 explicit sca_vccs(sc_core::sc_module_name, double value_ = 1.0)
 : ncp("ncp"), ncn("ncn"), np("np"), nn("nn"), value("value", value_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.10.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_vccs”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 141 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

142
Copyright © 2016 IEEE. All rights reserved.

7.1.11 sca_eln::sca_ccvs

7.1.11.1 Description

The class sca_eln::sca_ccvs shall implement a primitive module for the ELN MoC that represents a current
controlled voltage source. The primitive shall contribute Equation (7.6) and Equation (7.7) to the equation
system:

 (7.6)

 (7.7)

where value is the scale coefficient in ohm, incp,ncn(t) is the current flowing through the primitive from terminal
ncp to terminal ncn, vnp,nn(t) is the voltage across terminals np and nn, and vncp,ncn(t) is the voltage across
terminals ncp and ncn.

7.1.11.2 Class definition

namespace sca_eln {

 class sca_ccvs : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal ncp;
 sca_eln::sca_terminal ncn;

 sca_eln::sca_terminal np;
 sca_eln::sca_terminal nn;

 sca_core::sca_parameter<double> value;

 virtual const char* kind() const;

 explicit sca_ccvs(sc_core::sc_module_name, double value_ = 1.0)
 : ncp("ncp"), ncn("ncn"), np("np"), nn("nn"), value("value", value_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.11.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_ccvs”.

7.1.12 sca_eln::sca_cccs

7.1.12.1 Description

The class sca_eln::sca_cccs shall implement a primitive module for the ELN MoC that represents a current
controlled current source. The primitive shall contribute Equation (7.8) and Equation (7.9) to the equation
system:

 (7.8)

 (7.9)

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 142 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

143
Copyright © 2016 IEEE. All rights reserved.

where value is the scale coefficient, incp,ncn(t) is the current flowing through the primitive from terminal ncp
to terminal ncn, inp,nn(t) is the current flowing through the primitive from terminal np to terminal nn, and
vncp,ncn(t) is the voltage across terminals ncp and ncn.

7.1.12.2 Class definition

namespace sca_eln {

 class sca_cccs : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal ncp;
 sca_eln::sca_terminal ncn;

 sca_eln::sca_terminal np;
 sca_eln::sca_terminal nn;

 sca_core::sca_parameter<double> value;

 virtual const char* kind() const;

 explicit sca_cccs(sc_core::sc_module_name, double value_ = 1.0)
 : ncp("ncp"), ncn("ncn"), np("np"), nn("nn"), value("value", value_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.12.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_cccs”.

7.1.13 sca_eln::sca_nullor

7.1.13.1 Description

The class sca_eln::sca_nullor shall implement a primitive module for the ELN MoC that represents a nullor.
The primitive shall contribute Equation (7.10) and Equation (7.11) to the equation system:

 (7.10)

 (7.11)

where vnip,nin(t) is the voltage across terminals nip and nin, and inip,nin(t) is the current flowing through the
primitive from terminal nip to terminal nin.

NOTE—A nullor (a nullator - norator pair) corresponds to an ideal operational amplifier (an amplifier with an infinite gain).

7.1.13.2 Class definition

namespace sca_eln {

 class sca_nullor : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal nip;
 sca_eln::sca_terminal nin;

 sca_eln::sca_terminal nop;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 143 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

144
Copyright © 2016 IEEE. All rights reserved.

 sca_eln::sca_terminal non;

 virtual const char* kind() const;

 explicit sca_nullor(sc_core::sc_module_name)
 : nip("nip"), nin("nin"), nop("nop"), non("non")
 { implementation-defined }
 };

} // namespace sca_eln

7.1.13.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_nullor”.

7.1.14 sca_eln::sca_gyrator

7.1.14.1 Description

The class sca_eln::sca_gyrator shall implement a primitive module for the ELN MoC that represents a gyrator.
The primitive shall contribute Equation (7.12) and Equation (7.13) to the equation system:

 (7.12)

 (7.13)

where g1 and g2 are the gyration conductances in siemens, vp2,n2(t) is the voltage across terminals p2 and n2,
vp1,n1(t) is the voltage across terminals p1 and n1, ip1,n1(t) is the current flowing through the primitive from
terminal p1 to terminal n1, and ip2,n2(t) is the current flowing through the primitive from terminal p2 to terminal
n2.

7.1.14.2 Class definition

namespace sca_eln {

 class sca_gyrator : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal p1;
 sca_eln::sca_terminal n1;

 sca_eln::sca_terminal p2;
 sca_eln::sca_terminal n2;

 sca_core::sca_parameter<double> g1;
 sca_core::sca_parameter<double> g2;

 virtual const char* kind() const;

 explicit sca_gyrator(sc_core::sc_module_name, double g1_ = 1.0, double g2_ = 1.0)
 : p1("p1"), n1("n1"), p2("p2"), n2("n2"), g1("g1", g1_), g2("g2", g2_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.14.3 kind

virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 144 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

145
Copyright © 2016 IEEE. All rights reserved.

The member function kind shall return the string “sca_eln::sca_gyrator”.

7.1.15 sca_eln::sca_ideal_transformer

7.1.15.1 Description

The class sca_eln::sca_ideal_transformer shall implement a primitive module for the ELN MoC that
represents an ideal transformer. The primitive shall contribute Equation (7.14) and Equation (7.15) to the
equation system:

 (7.14)

 (7.15)

where ratio is the transformation ratio, vp2,n2(t) is the voltage across terminals p2 and n2, vp1,n1(t) is the voltage
across terminals p1 and n1, ip1,n1(t) is the current flowing through the primitive from terminal p1 to terminal n1,
and ip2,n2(t) is the current flowing through the primitive from terminal p2 to terminal n2.

7.1.15.2 Class definition

namespace sca_eln {

 class sca_ideal_transformer : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal p1;
 sca_eln::sca_terminal n1;

 sca_eln::sca_terminal p2;
 sca_eln::sca_terminal n2;

 sca_core::sca_parameter<double> ratio;

 virtual const char* kind() const;

 explicit sca_ideal_transformer(sc_core::sc_module_name, double ratio_ = 1.0)
 : p1("p1"), n1("n1"), p2("p2"), n2("n2"), ratio("ratio", ratio_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.15.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_ideal_transformer”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 145 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

146
Copyright © 2016 IEEE. All rights reserved.

7.1.16 sca_eln::sca_transmission_line

7.1.16.1 Description

The class sca_eln::sca_transmission_line shall implement a primitive module for the ELN MoC that
represents a transmission line. The primitive shall contribute Equation (7.16) and Equation (7.17) to the
equation system:

 (7.16)

 (7.17)

where z0 is the characteristic impedance of the transmission line in ohm, delay is the transmission delay in
seconds and delta0 is the dissipation factor in 1/seconds. va1,b1(t) is the voltage across terminals a1 and b1,
va2,b2(t) is the voltage across terminals a2 and b2, ia1,b1(t) is the current flowing through the primitive from
terminal a1 to terminal b1, and ia2,b2(t) is the current flowing through the primitive from terminal a2 to terminal
b2.

7.1.16.2 Class definition

namespace sca_eln {

 class sca_transmission_line : public sca_eln::sca_module
 {
 public:
 sca_eln::sca_terminal a1;
 sca_eln::sca_terminal b1;

 sca_eln::sca_terminal a2;
 sca_eln::sca_terminal b2;

 sca_core::sca_parameter<double> z0;
 sca_core::sca_parameter<sca_core::sca_time> delay;
 sca_core::sca_parameter<double> delta0;

 virtual const char* kind() const;

 explicit sca_transmission_line(sc_core::sc_module_name,
 double z0_ = 100.0,
 const sca_core::sca_time& delay_ = sc_core::SC_ZERO_TIME,
 double delta0_ = 0.0)
 : a1("a1"), b1("b1"),
 a2("a2"), b2("b2"),
 z0("z0", z0_),
 delay("delay", delay_),
 delta0("delta0", delta0_)
 { implementation-defined }
 };

} // namespace sca_eln

7.1.16.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_transmission_line”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 146 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

147
Copyright © 2016 IEEE. All rights reserved.

7.1.17 sca_eln::sca_vsource

7.1.17.1 Description

The class sca_eln::sca_vsource shall implement a primitive module for the ELN MoC that realizes a voltage
source. In time-domain simulation, the primitive shall contribute Equation (7.18) to the equation system:

 (7.18)

where t is the time in seconds, delay is the initial delay in seconds, init_value is the inital voltage in volt, offset
is the offset voltage in volt, amplitude is the source amplitude in volt, frequency is the source frequency in
hertz, phase is the source phase in radians, and vp,n(t) is the output voltage across terminals p and n.

In small-signal frequency-domain simulation, the primitive shall contribute Equation (7.19) to the equation
system:

 (7.19)

where f is the simulation frequency in hertz, ac_amplitude is the small-signal amplitude in volt, and ac_phase
is the small-signal phase in radian.

In small-signal frequency-domain noise simulation, the primitive shall contribute Equation (7.20) to the
equation system:

 (7.20)

where f is the simulation frequency in hertz, and ac_noise_amplitude is the small-signal noise amplitude in volt.

7.1.17.2 Class definition

namespace sca_eln {

 class sca_vsource : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sca_core::sca_parameter<double> init_value;
 sca_core::sca_parameter<double> offset;
 sca_core::sca_parameter<double> amplitude;
 sca_core::sca_parameter<double> frequency;
 sca_core::sca_parameter<double> phase;
 sca_core::sca_parameter<sca_core::sca_time> delay;
 sca_core::sca_parameter<double> ac_amplitude;
 sca_core::sca_parameter<double> ac_phase;
 sca_core::sca_parameter<double> ac_noise_amplitude;

 virtual const char* kind() const;

 explicit sca_vsource(sc_core::sc_module_name,
 double init_value_ = 0.0,
 double offset_ = 0.0,
 double amplitude_ = 0.0,
 double frequency_ = 0.0,
 double phase_ = 0.0,
 const sca_core::sca_time& delay_ = sc_core::SC_ZERO_TIME,
 double ac_amplitude_ = 0.0,
 double ac_phase_ = 0.0,
 double ac_noise_amplitude_ = 0.0)

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 147 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

148
Copyright © 2016 IEEE. All rights reserved.

 : p("p"),
 n("n"),
 init_value("init_value", init_value_),
 offset("offset", offset_),
 amplitude("amplitude", amplitude_),
 frequency("frequency", frequency_),
 phase("phase", phase_),
 delay("delay", delay_),
 ac_amplitude("ac_amplitude", ac_amplitude_),
 ac_phase("ac_phase", ac_phase_),
 ac_noise_amplitude("ac_noise_amplitude", ac_noise_amplitude_)
 { implementation-defined }

 };

} // namespace sca_eln

7.1.17.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_vsource”.

7.1.18 sca_eln::sca_isource

7.1.18.1 Description

The class sca_eln::sca_isource shall implement a primitive module for the ELN MoC that realizes a current
source. In time-domain simulation, the primitive shall contribute Equation (7.21) to the equation system:

 (7.21)

where t is the time in seconds, delay is the initial delay in seconds, init_value is the initial current in ampere,
offset is the offset current in ampere, amplitude is the source amplitude in ampere, frequency is the source
frequency in hertz, phase is the source phase in radians, and ip,n(t) is the output current through the primitive
from terminal p to terminal n.

In small-signal frequency-domain simulation, the primitive shall contribute Equation (7.22) to the equation
system:

 (7.22)

where f is the simulation frequency, ac_amplitude is the small-signal amplitude in ampere, and ac_phase is
the small-signal phase in radian.

In small-signal frequency-domain noise simulation, the primitive shall contribute Equation (7.23) to the
equation system:

 (7.23)

where f is the simulation frequency, and ac_noise_amplitude is the small-signal noise amplitude in ampere.

7.1.18.2 Class definition

namespace sca_eln {

 class sca_isource : public sca_eln::sca_module,

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 148 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

149
Copyright © 2016 IEEE. All rights reserved.

 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sca_core::sca_parameter<double> init_value;
 sca_core::sca_parameter<double> offset;
 sca_core::sca_parameter<double> amplitude;
 sca_core::sca_parameter<double> frequency;
 sca_core::sca_parameter<double> phase;
 sca_core::sca_parameter<sca_core::sca_time> delay;
 sca_core::sca_parameter<double> ac_amplitude;
 sca_core::sca_parameter<double> ac_phase;
 sca_core::sca_parameter<double> ac_noise_amplitude;

 virtual const char* kind() const;

 explicit sca_isource(sc_core::sc_module_name,
 double init_value_ = 0.0,
 double offset_ = 0.0,
 double amplitude_ = 0.0,
 double frequency_ = 0.0,
 double phase_ = 0.0,
 const sca_core::sca_time& delay_ = sc_core::SC_ZERO_TIME,
 double ac_amplitude_ = 0.0,
 double ac_phase_ = 0.0,
 double ac_noise_amplitude_ = 0.0)
 : p("p"),
 n("n"),
 init_value("init_value", init_value_),
 offset("offset", offset_),
 amplitude("amplitude", amplitude_),
 frequency("frequency", frequency_),
 phase("phase", phase_),
 delay("delay", delay_),
 ac_amplitude("ac_amplitude", ac_amplitude_),
 ac_phase("ac_phase", ac_phase_),
 ac_noise_amplitude("ac_noise_amplitude", ac_noise_amplitude_)
 { implementation-defined }

 };

} // namespace sca_eln

7.1.18.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_isource”.

7.1.19 sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r

7.1.19.1 Description

The class sca_eln::sca_tdf::sca_r shall implement a primitive module for the ELN MoC that represents a
resistor, which resistance is controlled by a TDF input signal. The primitive shall contribute Equation (7.24)
to the equation system:

 (7.24)

where scale is the constant scale coefficient, inp is the TDF input signal, vp,n(t) is the voltage across terminals
p and n, and ip,n(t) is the current flowing through the primitive from terminal p to terminal n. The product of
scale and inp shall be interpreted as the resistance in ohm.

The class sca_eln::sca_tdf_r shall be defined as an alias for class sca_eln::sca_tdf::sca_r.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 149 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

150
Copyright © 2016 IEEE. All rights reserved.

7.1.19.2 Class definition

namespace sca_eln {

 namespace sca_tdf {

 class sca_r : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_in<double> inp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_r(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_r sca_tdf_r;

} // namespace sca_eln

7.1.19.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_r”.

7.1.20 sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c

7.1.20.1 Description

The class sca_eln::sca_tdf::sca_c shall implement a primitive module for the ELN MoC that represents a
capacitor, which capacitance is controlled by a TDF input signal. The primitive shall contribute Equation (7.25)
to the equation system:

(7.25)

where scale is the constant scale coefficient, inp is the TDF input signal, q0 is the initial charge in coulomb,
vp,n(t) is the voltage across terminals p and n, and ip,n(t) is the current flowing through the primitive from
terminal p to terminal n. The product of scale and inp shall be interpreted as the capacitance in farad.

If the initial charge q0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute no equation to
the equation system for the first calculation. In this case, the initial charge q0 shall be calculated as follows:
q0 = scale · inp · vp,n0, where vp,n0 is the voltage across the capacitor after the first calculation.

The class sca_eln::sca_tdf_c shall be defined as an alias for class sca_eln::sca_tdf::sca_c.

7.1.20.2 Class definition

namespace sca_eln {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 150 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

151
Copyright © 2016 IEEE. All rights reserved.

 namespace sca_tdf {

 class sca_c : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_in<double> inp;

 sca_core::sca_parameter<double> scale;
 sca_core::sca_parameter<double> q0;

 virtual const char* kind() const;

 explicit sca_c(sc_core::sc_module_name, double scale_ = 1.0, double q0_ = 0.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_), q0("q0", q0_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_c sca_tdf_c;

} // namespace sca_eln

7.1.20.3 Constraint of usage

The TDF input signal inp shall not be zero.

7.1.20.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_c”.

7.1.21 sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l

7.1.21.1 Description

The class sca_eln::sca_tdf::sca_l shall implement a primitive module for the ELN MoC that represents an
inductor, which inductance is controlled by a TDF input signal. The primitive shall contribute Equation (7.26)
to the equation system:

(7.26)

where scale is the constant scale coefficient, inp is the TDF input signal, psi0 is the initial linked flux in weber,
vp,n(t) is the voltage across terminals p and n, and ip,n(t) is the current flowing through the primitive from
terminal p to terminal n. The product of scale and inp shall be interpreted as the inductance in henry.

If the initial linked flux psi0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute to the
equation system the equation vp,n = 0 for the first calculation instead of Equation (7.26). In this case, the initial
linked flux psi0 shall be calculated as follows: psi0 = scale · inp · ip,n0, where ip,n0 is the current flowing through
the inductor after the first calculation.

The class sca_eln::sca_tdf_l shall be defined as an alias for class sca_eln::sca_tdf::sca_l.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 151 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

152
Copyright © 2016 IEEE. All rights reserved.

7.1.21.2 Class definition

namespace sca_eln {

 namespace sca_tdf {

 class sca_l : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_in<double> inp;

 sca_core::sca_parameter<double> scale;
 sca_core::sca_parameter<double> psi0;

 virtual const char* kind() const;

 explicit sca_l(sc_core::sc_module_name, double scale_ = 1.0, double psi0_ = 0.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_), psi0("psi0", psi0_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_l sca_tdf_l;

} //namespace sca_eln

7.1.21.3 Constraint of usage

The TDF input signal inp shall not be zero.

7.1.21.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_l”.

7.1.22 sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch

7.1.22.1 Description

The class sca_eln::sca_tdf::sca_rswitch shall implement a primitive module for the ELN MoC that represents
a switch, which is controlled by a TDF control signal. The primitive shall contribute Equation (7.27) to the
equation system:

 (7.27)

where ctrl is the TDF control signal, roff is the resistance of the switch in ohm under the condition that off_state
is equal to the TDF control signal, and ron is the resistance of the switch in ohm under the condition that
off_state is not equal to the TDF control signal. vp,n(t) is the voltage across terminals p and n, and ip,n(t) is the
current flowing through the primitive from terminal p to terminal n.

The class sca_eln::sca_tdf_rswitch shall be defined as an alias for class sca_eln::sca_tdf::sca_rswitch.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 152 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

153
Copyright © 2016 IEEE. All rights reserved.

7.1.22.2 Class definition

namespace sca_eln {

 namespace sca_tdf {

 class sca_rswitch : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_in<bool> ctrl;

 sca_core::sca_parameter<double> ron;
 sca_core::sca_parameter<double> roff;
 sca_core::sca_parameter<bool> off_state;

 virtual const char* kind() const;

 explicit sca_rswitch(sc_core::sc_module_name,
 double ron_ = 0.0,
 double roff_ = sca_util::SCA_INFINITY,
 bool off_state_ = false)
 : p("p"), n("n"), ctrl("ctrl"),
 ron("ron", ron_), roff("roff", roff_),
 off_state("off_state", off_state_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_rswitch sca_tdf_rswitch;

} // namespace sca_eln

7.1.22.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_rswitch”.

7.1.23 sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource

7.1.23.1 Description

The class sca_eln::sca_tdf::sca_vsource shall implement a primitive module for the ELN MoC that realizes
the scaled conversion of a TDF signal to an ELN voltage source. The primitive shall contribute Equation (7.28)
to the equation system:

 (7.28)

where scale is the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a continuous-
time signal, and vp,n(t) is the voltage across terminals p and n. The product of scale and inp shall be interpreted
as the voltage in volt.

The class sca_eln::sca_tdf_vsource shall be defined as an alias for class sca_eln::sca_tdf::sca_vsource.

7.1.23.2 Class definition

namespace sca_eln {

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 153 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

154
Copyright © 2016 IEEE. All rights reserved.

 namespace sca_tdf {

 class sca_vsource : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_in<double> inp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_vsource(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_vsource sca_tdf_vsource;

} // namespace sca_eln

7.1.23.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_vsource”.

7.1.24 sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource

7.1.24.1 Description

The class sca_eln::sca_tdf::sca_isource shall implement a primitive module for the ELN MoC that realizes
the scaled conversion of a TDF signal to an ELN current source. The primitive shall contribute Equation (7.29)
to the equation system:

 (7.29)

where scale is the constant scale coefficient, inp is the TDF input signal that shall be interpreted as a continuous-
time signal, and ip,n(t) is the current flowing through the primitive from terminal p to terminal n. The product
of scale and inp shall be interpreted as the current in ampere.

The class sca_eln::sca_tdf_isource shall be defined as an alias for class sca_eln::sca_tdf::sca_isource.

7.1.24.2 Class definition

namespace sca_eln {

 namespace sca_tdf {

 class sca_isource : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_in<double> inp;

 sca_core::sca_parameter<double> scale;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 154 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

155
Copyright © 2016 IEEE. All rights reserved.

 virtual const char* kind() const;

 explicit sca_isource(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_isource sca_tdf_isource;

} // namespace sca_eln

7.1.24.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_isource”.

7.1.25 sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink

7.1.25.1 Description

The class sca_eln::sca_tdf::sca_vsink shall implement a primitive module for the ELN MoC that realizes a
scaled conversion from an ELN voltage to a TDF output signal. The value of the voltage across terminals p
and n shall be scaled with coefficient scale and written to a TDF output port outp.

The class sca_eln::sca_tdf_vsink shall be defined as an alias for class sca_eln::sca_tdf::sca_vsink.

7.1.25.2 Class definition

namespace sca_eln {

 namespace sca_tdf {

 class sca_vsink : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_out<double> outp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_vsink(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), outp("outp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_vsink sca_tdf_vsink;

} // namespace sca_eln

7.1.25.3 kind

virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 155 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

156
Copyright © 2016 IEEE. All rights reserved.

The member function kind shall return the string “sca_eln::sca_tdf::sca_vsink”.

7.1.26 sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink

7.1.26.1 Description

The class sca_eln::sca_tdf::sca_isink shall implement a primitive module for the ELN MoC that realizes a
scaled conversion from an ELN current to a TDF output signal. The value of the current flowing through the
primitive from terminal p to terminal n shall be scaled with coefficient scale and written to a TDF output port
outp. The primitive shall contribute Equation (7.30) to the equation system:

 (7.30)

where vp,n(t) is the voltage across terminals p and n.

The class sca_eln::sca_tdf_isink shall be defined as an alias for class sca_eln::sca_tdf::sca_isink.

7.1.26.2 Class definition

namespace sca_eln {

 namespace sca_tdf {

 class sca_isink : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 ::sca_tdf::sca_out<double> outp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_isink(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), outp("outp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_tdf

 typedef sca_eln::sca_tdf::sca_isink sca_tdf_isink;

} // namespace sca_eln

7.1.26.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_tdf::sca_isink”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 156 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

157
Copyright © 2016 IEEE. All rights reserved.

7.1.27 sca_eln::sca_de::sca_r, sca_eln::sca_de_r

7.1.27.1 Description

The class sca_eln::sca_de::sca_r shall implement a primitive module for the ELN MoC that represents a
resistor, which resistance is controlled by a discrete-event input signal. The primitive shall contribute Equation
(7.31) to the equation system:

 (7.31)

where scale is the constant scale coefficient, inp is the discrete-event input signal, vp,n(t) is the voltage across
terminals p and n, and ip,n(t) is the current flowing through the primitive from terminal p to terminal n. The
product of scale and inp shall be interpreted as the resistance in ohm.

The class sca_eln::sca_de_r shall be defined as an alias for class sca_eln::sca_de::sca_r.

7.1.27.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_r : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_in<double> inp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_r(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_r sca_de_r;

} // namespace sca_eln

7.1.27.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_r”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 157 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

158
Copyright © 2016 IEEE. All rights reserved.

7.1.28 sca_eln::sca_de::sca_c, sca_eln::sca_de_c

7.1.28.1 Description

The class sca_eln::sca_de::sca_c shall implement a primitive module for the ELN MoC that represents a
capacitor, which capacitance is controlled by a discrete-event input signal. The primitive shall contribute
Equation (7.32) to the equation system:

(7.32)

where scale is the constant scale coefficient, inp is the discrete-event input signal, q0 is the initial charge in
coulomb, vp,n(t) is the voltage across terminals p and n, and ip,n(t) is the current flowing through the primitive
from terminal p to terminal n. The product of scale and inp shall be interpreted as the capacitance in farad.

If the initial charge q0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute no equation to
the equation system for the first calculation. In this case, the initial charge q0 shall be calculated as follows:
q0 = scale · inp · vp,n0, where vp,n0 is the voltage across the capacitor after the first calculation.

The class sca_eln::sca_de_c shall be defined as an alias for class sca_eln::sca_de::sca_c.

7.1.28.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_c : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_in<double> inp;

 sca_core::sca_parameter<double> scale;
 sca_core::sca_parameter<double> q0;

 virtual const char* kind() const;

 explicit sca_c(sc_core::sc_module_name, double scale_ = 1.0, double q0_ = 0.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_), q0("q0", q0_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_c sca_de_c;

} // namespace sca_eln

7.1.28.3 Constraint of usage

The discrete-event input signal inp shall not be zero.

7.1.28.4 kind

virtual const char* kind() const;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 158 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

159
Copyright © 2016 IEEE. All rights reserved.

The member function kind shall return the string “sca_eln::sca_de::sca_c”.

7.1.29 sca_eln::sca_de::sca_l, sca_eln::sca_de_l

7.1.29.1 Description

The class sca_eln::sca_de::sca_l shall implement a primitive module for the ELN MoC that represents
an inductor, which inductance is controlled by a discrete-event input signal. The primitive shall contribute
Equation (7.33) to the equation system:

(7.33)

where scale is the constant scale coefficient, inp is the discrete-event input signal, psi0 is the initial linked flux
in weber, vp,n(t) is the voltage across terminals p and n, and ip,n(t) is the current flowing through the primitive
from terminal p to terminal n. The product of scale and inp shall be interpreted as the inductance in henry.

If the initial linked flux psi0 is set to sca_util::SCA_UNDEFINED, the primitive shall contribute to the
equation system the equation vp,n = 0 for the first calculation instead of Equation (7.33). In this case, the initial
linked flux psi0 shall be calculated as follows: psi0 = scale · inp · ip,n0, where ip,n0 is the current flowing through
the inductor after the first calculation.

The class sca_eln::sca_de_l shall be defined as an alias for class sca_eln::sca_de::sca_l.

7.1.29.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_l : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_in<double> inp;

 sca_core::sca_parameter<double> scale;
 sca_core::sca_parameter<double> psi0;

 virtual const char* kind() const;

 explicit sca_l(sc_core::sc_module_name, double scale_ = 1.0, double psi0_ = 0.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_), psi0("psi0", psi0_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_l sca_de_l;

} // namespace sca_eln

7.1.29.3 Constraint of usage

The discrete-event input signal inp shall not be zero.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 159 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

160
Copyright © 2016 IEEE. All rights reserved.

7.1.29.4 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_l”.

7.1.30 sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch

7.1.30.1 Description

The class sca_eln::sca_de::sca_rswitch shall implement a primitive module for the ELN MoC that represents
a switch, which is controlled by a discrete-event control signal. The primitive shall contribute Equation (7.34)
to the equation system:

 (7.34)

where ctrl is the discrete-event control signal, roff is the resistance of the switch in ohm under the condition that
off_state is equal to the discrete-event control signal, and ron is the resistance of the switch in ohm under the
condition that off_state is not equal to the discrete-event control signal. vp,n(t) is the voltage across terminals
p and n, and ip,n(t) is the current flowing through the primitive from terminal p to terminal n.

The class sca_eln::sca_de_rswitch shall be defined as an alias for class sca_eln::sca_de::sca_rswitch.

7.1.30.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_rswitch : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_in<bool> ctrl;

 sca_core::sca_parameter<double> ron;
 sca_core::sca_parameter<double> roff;
 sca_core::sca_parameter<bool> off_state;

 virtual const char* kind() const;

 explicit sca_rswitch(sc_core::sc_module_name,
 double ron_ = 0.0,
 double roff_ = sca_util::SCA_INFINITY,
 bool off_state_ = false)
 : p("p"), n("n"), ctrl("ctrl"),
 ron("ron", ron_), roff("roff", roff_),
 off_state("off_state", off_state_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_rswitch sca_eln::sca_de_rswitch;

} // namespace sca_eln

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 160 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

161
Copyright © 2016 IEEE. All rights reserved.

7.1.30.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_rswitch”.

7.1.31 sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource

7.1.31.1 Description

The class sca_eln::sca_de::sca_vsource shall implement a primitive module for the ELN MoC that realizes the
scaled conversion of a discrete-event signal to an ELN voltage source. The primitive shall contribute Equation
(7.35) to the equation system:

 (7.35)

where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as
a discrete-time signal, and vp,n(t) is the voltage across terminals p and n. The product of scale and inp shall
be interpreted as the voltage in volt.

The class sca_eln::sca_de_vsource shall be defined as an alias for class sca_eln::sca_de::sca_vsource.

7.1.31.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_vsource : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_in<double> inp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_vsource(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), inp("inp"), scale(scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_vsource sca_de_vsource;

} // namespace sca_eln

7.1.31.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_vsource”.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 161 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

162
Copyright © 2016 IEEE. All rights reserved.

7.1.32 sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource

7.1.32.1 Description

The class sca_eln::sca_de::sca_isource shall implement a primitive module for the ELN MoC that realizes the
scaled conversion of a discrete-event signal to an ELN current source. The primitive shall contribute Equation
(7.36) to the equation system:

 (7.36)

where scale is the constant scale coefficient, inp is the discrete-event input signal that shall be interpreted as a
discrete-time signal, and ip,n(t) is the current flowing through the primitive from terminal p to terminal n. The
product of scale and inp shall be interpreted as the current in ampere.

The class sca_eln::sca_de_isource shall be defined as an alias for class sca_eln::sca_de::sca_isource.

7.1.32.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_isource : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_in<double> inp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_isource(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), inp("inp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_isource sca_de_isource;

} // namespace sca_eln

7.1.32.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_isource”.

7.1.33 sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink

7.1.33.1 Description

The class sca_eln::sca_de::sca_vsink shall implement a primitive module for the ELN MoC that realizes
a scaled conversion from an ELN voltage to a discrete-event output signal. The value of the voltage across
terminals p and n shall be scaled with coefficient scale and written to a discrete-event output port outp.

The class sca_eln::sca_de_vsink shall be defined as an alias for class sca_eln::sca_de::sca_vsink.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 162 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

163
Copyright © 2016 IEEE. All rights reserved.

7.1.33.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_vsink : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

 sc_core::sc_out<double> outp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_vsink(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), outp("outp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_vsink sca_de_vsink;

} // namespace sca_eln

7.1.33.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_vsink”.

7.1.34 sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink

7.1.34.1 Description

The class sca_eln::sca_de::sca_isink shall implement a primitive module for the ELN MoC that realizes a
scaled conversion from an ELN current to a discrete-event output signal. The value of the current flowing
through the primitive from terminal p to terminal n shall be scaled with coefficient scale and written to a
discrete-event output port outp. The primitive shall contribute Equation (7.37) to the equation system:

 (7.37)

where vp,n(t) is the voltage across terminals p and n.

The class sca_eln::sca_de_isink shall be defined as an alias for class sca_eln::sca_de::sca_isink.

7.1.34.2 Class definition

namespace sca_eln {

 namespace sca_de {

 class sca_isink : public sca_eln::sca_module,
 public sca_util::sca_traceable_object†

 {
 public:
 sca_eln::sca_terminal p;
 sca_eln::sca_terminal n;

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 163 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

164
Copyright © 2016 IEEE. All rights reserved.

 sc_core::sc_out<double> outp;

 sca_core::sca_parameter<double> scale;

 virtual const char* kind() const;

 explicit sca_isink(sc_core::sc_module_name, double scale_ = 1.0)
 : p("p"), n("n"), outp("outp"), scale("scale", scale_)
 { implementation-defined }
 };

 } // namespace sca_de

 typedef sca_eln::sca_de::sca_isink sca_de_isink;

} // namespace sca_eln

7.1.34.3 kind

virtual const char* kind() const;

The member function kind shall return the string “sca_eln::sca_de::sca_isink”.

7.2 Hierarchical composition and port binding

The hierarchical composition of ELN modules shall use modules derived from class sc_core::sc_module and
the constructor or its equivalent macro definitions. A hierarchical module can include modules and ports of
different models of computation. Port binding rules shall follow IEEE Std 1666-2011 as well as the following
specific rules:

a) A port of class sca_eln::sca_terminal shall only be bound to a primitive channel of class
sca_eln::sca_node, sca_eln::sca_node_ref or to a port of class sca_eln::sca_terminal of the parent
module.

b) A port of class sca_eln::sca_terminal shall be bound to exactly one primitive channel of class
sca_eln::sca_node or sca_eln::sca_node_ref throughout the whole hierarchy.

c) A primitive channel of class sca_eln::sca_node or sca_eln::sca_node_ref shall have one or more
primitive ports of class sca_eln::sca_terminal bound to it throughout the whole hierarchy.

d) For each cluster of connected predefined ELN primitive modules, at least one port of class
sca_eln::sca_terminal shall be bound to a primitive channel of class sca_eln::sca_node_ref.

Predefined ELN primitive modules with ports of other models of computation shall follow the port binding
rules of the corresponding models of computation.

7.3 Elaboration and simulation

An implementation of the ELN MoC in a SystemC AMS class library shall include a public shell consisting of
the predefined classes, functions, and so forth that can be used directly by an application. An implementation
shall also include an ELN solver that implements the functionality of the ELN class library. The underlying
semantics of the ELN solver are defined in this subclause.

The execution of a SystemC AMS application that includes ELN modules consists of elaboration followed by
simulation. Elaboration results in one or more equation systems setup by the contributions of the ELN modules.
Simulation solves the equation systems repetitively. In addition to providing support for elaboration and
simulation, the ELN solver may also provide implementation-specific functionality beyond the scope of this

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 164 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

165
Copyright © 2016 IEEE. All rights reserved.

standard. As an example of such functionality, the ELN solver may report information on the ELN module
composition and equation setup.

7.3.1 Elaboration

The primary purpose of ELN elaboration is to create internal data structures and setup equations for the
ELN solver to support the semantics of ELN simulation. The ELN elaboration as described in this clause
and in the following subclauses shall execute in one sc_core::sc_module::end_of_elaboration callback. The
actions stated in the following subclauses shall occur, in the given order, during ELN elaboration and only
during ELN elaboration. The description of such actions use the concept of an ELN cluster, which is a set of
ELN modules connected by channels of class sca_eln::sca_node.

ELN elaboration shall lock the parameter values of the predefined ELN primitive modules (see 4.2.7).

NOTE—Connections by channels of class sca_eln::sca_node_ref are ignored for building ELN clusters.

7.3.1.1 Timestep calculation and propagation

The timestep for every ELN cluster shall be derived from the timestep of a connected TDF cluster or set
by the member functions set_timestep or set_max_timestep of an ELN primitive module derived from
class sca_eln::sca_module of the corresponding ELN cluster. The timestep shall be propagated within the
ELN cluster to all primitive modules and to all ports of class sca_tdf::sca_in and sca_tdf::sca_out<T>, if any.

It shall be an error if a timestep value is not assigned to at least one ELN module. The assigned and propagated
timestep values shall be consistent throughout the ELN cluster; otherwise, it shall be an error. It shall be an
error if the propagated timestep is equal to the time returned by function sca_core::sca_max_time.

NOTE—An ELN cluster can be considered as one TDF module marked to accept attribute changes, which could be
connected to TDF modules in a hierarchical composition by the ports of class sca_tdf::sca_in and sca_tdf::sca_out<T>
of the predefined ELN primitive modules. The ELN cluster is included in the timestep calculation of the TDF cluster and
need to comply with the same rules (see 5.3.1.2).

7.3.1.2 Equation system setup and solvability check

For each ELN cluster, an equation system shall be set up by combining:
— the contributing equations of each of the predefined ELN primitive modules in the cluster.
— the equations implied by Kirchhoff’s Laws.

It shall be an error if any of the equation systems is numerically singular.

For each port of class sca_eln::sca_terminal, the voltage across the terminal and the corresponding reference
node of class sca_eln::sca_node_ref shall be defined due to Kirchhoff’s Voltage Law. It shall be an error if
this voltage is undefined.

7.3.2 Simulation

This subclause defines the process of time-domain simulation of ELN descriptions. The simulation of a cluster
of ELN modules is done by a repetitive solving of the underlying equation systems.

7.3.2.1 Initialization

The ELN initialization phase calculates consistent initial conditions for the equation systems.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 165 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

166
Copyright © 2016 IEEE. All rights reserved.

7.3.2.2 Time-domain simulation

The solver shall provide results at least at the calculated timestep distances. If the current calculation timestep
is sc_core::SC_ZERO_TIME, the time and the state of the equation system shall be restored to the time and
state before the last calculation and the calculation shall be repeated on the new input values.

7.3.2.3 Synchronization with TDF MoC

Synchronization with the TDF MoC shall be done exclusively by using the predefined ELN primitive modules
containing ports of class sca_tdf::sca_in and sca_tdf::sca_out.

The ELN solver reads repetitively samples from ports of class sca_tdf::sca_in for all calculated timesteps of
the ELN cluster. Consecutive reads shall be interpreted as forming a continuous-time signal.

The ELN solver writes repetitively samples to ports of class sca_tdf::sca_out for all calculated timesteps of
the ELN cluster.

7.3.2.4 Synchronization with the SystemC kernel

Synchronization with the SystemC kernel shall be done exclusively by using the predefined ELN primitive
modules containing ports of class sc_core::sc_in and sc_core::sc_out.

The ELN solver reads repetitively values from ports of class sc_core::sc_in at each first delta cycle of the
corresponding SystemC time for all calculated timesteps of the ELN cluster. The value is assumed as constant
until the next value is read.

The ELN solver writes repetitively values to ports of class sc_core::sc_out at each first delta cycle of the
corresponding SystemC time for all calculated timesteps of the ELN cluster.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 166 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

167
Copyright © 2016 IEEE. All rights reserved.

8. Predefined analyses

8.1 Time-domain analysis

The time-domain analysis shall be applicable to all descriptions supported by the predefined models of
computation as defined in Clause 5, Clause 6 and Clause 7. The analysis shall compute the time-domain
behavior of the overall system, possibly composed by different models of computation and including
descriptions as defined in IEEE Std 1666-2011.

8.1.1 Elaboration and simulation

The execution of a time-domain analysis consists of elaboration followed by simulation (see 5.3, 6.3, 7.3). The
elaboration and simulation shall use the same semantics as defined in IEEE Std 1666-2011.

8.1.2 Running elaboration and simulation

An implementation shall provide either or both of the following two mechanisms for running elaboration and
simulation:

— Under application control using functions sc_main and sc_core::sc_start.
— Under control of the kernel.

An application may pause and resume the simulation using the function sc_core::sc_pause followed by
the function sc_core::sc_start. The time of each individual TDF, LSF, and ELN module after pausing is
implementation-defined. The time domain simulation is resumed from these individual module times.

An application may stop the simulation using the function sc_core::sc_stop. If the stop mode, defined by
function sc_set_stop_mode, is set to sc_core::SC_STOP_IMMEDIATE, the time domain simulation shall
stop immediately. If the stop mode is set to sc_core::SC_STOP_FINISH_DELTA, the time of each individual
TDF, LSF, and ELN module after stopping is implementation-defined.

NOTE—TDF, LSF, and ELN modules can be instantiated in the sc_main context.

8.2 Small-signal frequency-domain analyses

The small-signal frequency-domain analyses shall be applicable to all descriptions supported by the predefined
models of computation defined in 5.3, 6.3, and 7.3. The analyses shall compute the small-signal frequency-
domain behavior of the overall system, possibly composed of modules from different models of computation.
The system description shall be mapped to a linear complex equation system.

Two kinds of small-signal frequency-domain analysis shall be supported:
a) Small-signal frequency-domain analysis shall solve for each frequency point the linear complex

equation system including all small-signal frequency-domain source contributions.
b) Small-signal frequency-domain noise analysis shall solve the linear complex equation system for

each frequency point and each small-signal frequency-domain noise source contribution, whereby
all contributions of small-signal frequency-domain sources and small-signal frequency-domain noise
sources, except the currently activated noise source, shall be set to zero.

All functions used in the small-signal frequency-domain and noise analysis shall be placed in the namespace
sca_ac_analysis.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 167 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

168
Copyright © 2016 IEEE. All rights reserved.

8.2.1 Elaboration and simulation

The execution of a small-signal frequency-domain or noise simulation consists of elaboration followed by
simulation. For starting a small-signal frequency-domain or noise analysis, dedicated functions shall be used
(see 8.2.2). While performing the analysis, the state of the time-domain simulation shall not be changed.

8.2.1.1 Elaboration

The small-signal frequency-domain elaboration shall be performed if one of the dedicated start functions is
executed (see 8.2.2). In the case a time-domain elaboration has not yet been performed (due sc_core::sc_start
has not yet been executed), the implementation shall perform a time-domain elaboration first.

The implementation shall set up one complex linear frequency-dependent equation system by composing the
equation system contributions of TDF, LSF, and ELN descriptions.

8.2.1.2 Simulation

The linear complex equation system for the chosen analysis kind, shall be solved for each frequency point
according to the kind of analysis.

8.2.2 Running elaboration and simulation

The implementation shall provide the function sca_ac_analysis::sca_ac_start and
sca_ac_analysis::sca_ac_noise_start for running small-signal frequency-domain elaboration and simulation.

When called, functions sca_ac_analysis::sca_ac_start and sca_ac_analysis::aca_ac_noise_start shall first
run elaboration as described in 8.1, if not yet performed.

8.2.2.1 sca_ac_analysis::sca_ac_start

namespace sca_ac_analysis {

 enum sca_ac_scale { SCA_LOG, SCA_LIN };

 void sca_ac_start(double start_freq, double stop_freq, unsigned long npoints,
 sca_ac_analysis::sca_ac_scale scale = sca_ac_analysis::SCA_LOG);

 void sca_ac_start(const sca_util::sca_vector<double>& frequencies);

} // namespace sca_ac_analysis

The functions sca_ac_analysis::sca_ac_start shall perform a small-signal frequency-domain simulation. The
first function shall calculate the frequency domain behavior at npoints frequencies. If npoints is greater than
zero, the first frequency point in hertz shall be start_freq. If npoints is greater than one, the last frequency point
in hertz shall be stop_freq. If scale is sca_ac_analysis::SCA_LOG, the remaining frequency points shall be
logarithmically distributed and if scale is sca_ac_analysis::SCA_LIN, the remaining points shall be linearly
distributed.

The second function shall calculate the small-signal frequency-domain behavior at the frequency points given
by the vector frequencies.

8.2.2.2 sca_ac_analysis::sca_ac_noise_start

namespace sca_ac_analysis {

 void sca_ac_noise_start(double start_freq, double stop_freq, unsigned long npoints,
 sca_ac_analysis::sca_ac_scale scale = sca_ac_analysis::SCA_LOG);

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 168 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

169
Copyright © 2016 IEEE. All rights reserved.

 void sca_ac_noise_start(const sca_util::sca_vector<double>& frequencies);

} // namespace sca_ac_analysis

The functions sca_ac_analysis::sca_ac_noise_start shall perform a small-signal frequency-domain noise
simulation. The first function shall calculate the frequency-domain noise behavior at npoints frequencies. If
npoints is greater than zero, the first frequency point in hertz shall be start_freq. If npoints is greater than one,
the last frequency point in hertz shall be stop_freq. If scale is sca_ac_analysis::SCA_LOG, the remaining
frequency points shall be distributed logarithmically and if scale is sca_ac_analysis::SCA_LIN, the remaining
points shall be distributed linear.

The second function shall calculate the frequency-domain noise behavior at the frequency points given by the
vector frequencies.

8.2.3 Small-signal frequency-domain analysis of TDF descriptions

The small-signal frequency-domain and noise representation of a TDF description shall contribute the complex
equation system shown in Equation (8.1):

 (8.1)

where A(f) is a complex matrix of the frequency f that shall include contributions of modules derived from class
sca_tdf::sca_module. Each module derived from class sca_tdf::sca_module can provide the implementation
of the member function ac_processing (see 5.1.1.10) or the corresponding registered member function (see
5.1.1.12). The contributions shall describe linear complex functions between ports of class sca_tdf::sca_in
and ports of class sca_tdf::sca_out_base.

x( f ) is a complex vector representing the small-signal frequency-domain values of the ports of class
sca_tdf::sca_out_base.

b(f) and bnoise(f) are complex frequency dependent vectors, which represent the contributions to the ports of
class sca_tdf::sca_out_base independent from the ports of class sca_tdf::sca_in.

For small-signal frequency-domain analysis, the independent contribution b(f) shall be provided to the equation
system by using the function sca_ac_analysis::sca_ac for accessing the port of class sca_tdf::sca_out_base.
In this case the contribution bnoise(f) shall be set to zero.

For small-signal frequency-domain noise analysis, the independent contribution bnoise(f) shall be provided
to the equation system by using the function sca_ac_analysis::sca_ac_noise for accessing the port of class
sca_tdf::sca_out_base. In this case the contribution b(f) shall be set to zero.

c(f, x(f)) is a vector of contributions from interaction with LSF or ELN primitives and may depend on TDF
small-signal frequency-domain values of the ports of class sca_tdf::sca_out_base.

The implementation shall permit the access to time-domain values and complex frequency-domain values at
ports. The access to complex frequency-domain values shall be done by the function sca_ac_analysis::sca_ac
(see 8.2.3.1), while the time-domain values shall be accessible by using the member functions to read from a
port of class sca_tdf::sca_de::sca_in or sca_tdf::sca_in.

If no value of type sca_util::sca_complex has been assigned to ports of class sca_tdf::sca_out_base, using
the functions sca_ac_analysis::sca_ac or sca_ac_analysis::sca_ac_noise, respectively, the implementation
shall set these values to zero.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 169 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

170
Copyright © 2016 IEEE. All rights reserved.

NOTE—It is not defined in which order and how often the member functions sca_tdf::sca_module::ac_processing are
executed.

8.2.3.1 sca_ac_analysis::sca_ac

namespace sca_ac_analysis {

 template<class T>
 const sca_util::sca_complex& sca_ac(const sca_tdf::sca_in<T>&);

 template<class T>
 sca_util::sca_complex& sca_ac(const sca_tdf::sca_out_base<T>&);

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac applied to ports of class sca_tdf::sca_in shall return a const reference
to a value of type sca_util::sca_complex of the corresponding port.

The function sca_ac_analysis::sca_ac applied to ports of class sca_tdf::sca_out_base shall return a reference
to a value of type sca_util::sca_complex to allow assignment of a contribution to this port.

It shall be an error if the functions are called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

NOTE—The values of type sca_util::sca_complex read using the function sca_ac_analysis::sca_ac from the ports of
class sca_tdf::sca_in are implementation-defined.

8.2.3.2 sca_ac_analysis::sca_ac_noise

namespace sca_ac_analysis {

 template<class T>
 sca_util::sca_complex& sca_ac_noise(const sca_tdf::sca_out_base<T>&);

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_noise applied to port of class sca_tdf::sca_out_base shall return a
reference to a value of type sca_util::sca_complex to allow assignment of a noise contribution to this port.

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.3 sca_ac_analysis::sca_ac_is_running

namespace sca_ac_analysis {

 bool sca_ac_is_running();

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_is_running shall return true while performing a small-signal
frequency-domain or a small-signal noise simulation; otherwise, it shall return false.

8.2.3.4 sca_ac_analysis::sca_ac_noise_is_running

namespace sca_ac_analysis {

 bool sca_ac_noise_is_running();

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 170 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

171
Copyright © 2016 IEEE. All rights reserved.

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_noise_is_running shall return true while performing a small-signal
frequency-domain noise simulation; otherwise, it shall return false.

8.2.3.5 sca_ac_analysis::sca_ac_f

namespace sca_ac_analysis {

 double sca_ac_f();

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_f shall return the current frequency in hertz.

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.6 sca_ac_analysis::sca_ac_w

namespace sca_ac_analysis {

 double sca_ac_w();

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_w shall return the current angular frequency in radians per second
(rad/s).

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.7 sca_ac_analysis::sca_ac_s

namespace sca_ac_analysis {

 sca_util::sca_complex sca_ac_s(long n = 1);

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_s shall return the complex value of the Laplace operator sn = (jω)n.

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.8 sca_ac_analysis::sca_ac_z

namespace sca_ac_analysis {

 sca_util::sca_complex sca_ac_z(long n, const sca_core::sca_time& tstep);

 sca_util::sca_complex sca_ac_z(long n = 1);

} // namespace sca_ac_analysis

The functions sca_ac_analysis::sca_ac_z shall return the complex value of the z operator zn (ejω · n · tstep). If
not specified, the argument tstep shall be set to the value returned by the member function get_timestep of the
module of class sca_tdf::sca_module, in which the function is called.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 171 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

172
Copyright © 2016 IEEE. All rights reserved.

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.9 sca_ac_analysis::sca_ac_delay

namespace sca_ac_analysis {

 sca_util::sca_complex sca_ac_delay(const sca_core::sca_time& delay);

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_delay shall return the complex value of the continuous time delay
(e–jω · delay).

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.10 sca_ac_analysis::sca_ac_ltf_nd

namespace sca_ac_analysis {

 sca_util::sca_complex sca_ac_ltf_nd(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_util::sca_complex& input = 1.0,
 double k = 1.0);

 sca_util::sca_complex sca_ac_ltf_nd(const sca_util::sca_vector<double>& num,
 const sca_util::sca_vector<double>& den,
 const sca_core::sca_time& delay,
 const sca_util::sca_complex& input = 1.0,
 double k = 1.0);

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_ltf_nd shall return the complex value of the linear transfer function
of the Laplace-domain variable s in numerator-denumerator form (see 8.2.3.10) with si = (jω)i, multiplied by
the complex value input.

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.11 sca_ac_analysis::sca_ac_ltf_zp

namespace sca_ac_analysis {

 sca_util::sca_complex sca_ac_ltf_zp(const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_util::sca_complex& input = 1.0,
 double k = 1.0);

 sca_util::sca_complex sca_ac_ltf_zp(const sca_util::sca_vector<sca_util::sca_complex>& zeros,
 const sca_util::sca_vector<sca_util::sca_complex>& poles,
 const sca_core::sca_time& delay,
 const sca_util::sca_complex& input = 1.0,
 double k = 1.0);

} // namespace sca_ac_analysis

The function sca_ac_analysis::sca_ac_ltf_zp shall return the complex value of the linear transfer function
of the Laplace-domain variable s in zero-pole form (see 8.2.3.11) with si = (jω)i, multiplied by the complex
value input.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 172 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

173
Copyright © 2016 IEEE. All rights reserved.

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.3.12 sca_ac_analysis::sca_ac_ss

namespace sca_ac_analysis {

 sca_util::sca_vector<sca_util::sca_complex> sca_ac_ss(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_util::sca_vector<sca_util::sca_complex>& input);

 sca_util::sca_vector<sca_util::sca_complex> sca_ac_ss(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d);

 sca_util::sca_vector<sca_util::sca_complex> sca_ac_ss(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay,
 const sca_util::sca_vector<sca_util::sca_complex>& input);

 sca_util::sca_vector<sca_util::sca_complex> sca_ac_ss(
 const sca_util::sca_matrix<double>& a,
 const sca_util::sca_matrix<double>& b,
 const sca_util::sca_matrix<double>& c,
 const sca_util::sca_matrix<double>& d,
 const sca_core::sca_time& delay);

} // namespace sca_ac_analysis

The functions sca_ac_analysis::sca_ac_ss shall return the complex vector y of the state-space equation system
with (d/dt)i = (jω)i. The function with the complex vector input as argument shall multiply the complex vector
y with input. It shall be an error if the matrix and vector sizes are inconsistent (see 8.2.3.12) .

It shall be an error if the function is called outside the context of the member function
sca_tdf::sca_module::ac_processing or its equivalent registered member function.

8.2.4 Small-signal frequency-domain analysis of LSF descriptions

The implementation of the LSF primitive modules shall define their small-signal frequency-domain behavior.

Therefore, the equation system for each LSF cluster (see 6.3.1.2) shall be transformed from time-domain to
small-signal frequency-domain by replacing a derivation d/dt by jω, an integral by 1/(jω) respectively and a
delay by e–jω · delay. The resulting equation systems shall be contributed to the overall equation system.

8.2.5 Small-signal frequency-domain analysis of ELN descriptions

The implementation of the ELN primitive modules shall define their small-signal frequency-domain behavior.

Therefore, the equation system for each ELN cluster (see 7.3.1.2) shall be transformed from time-domain to
small-signal frequency-domain by replacing a derivation d/dt by jω, and a delay by e–jω · delay. The resulting
equation system shall be contributed to the overall equation system.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 173 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

174
Copyright © 2016 IEEE. All rights reserved.

9. Utility definitions

9.1 Trace files

An AMS trace file records the simulation results for AMS signals and nodes. At least the tabular and the VCD
trace file format shall be supported. The VCD format can only support tracing for time-domain simulation.

A VCD trace file can only be created and opened by calling function sca_util::sca_create_vcd_trace_file
and a tabular trace file by calling function sca_util::sca_create_tabular_trace_file. A trace file may be
opened during elaboration or at any time during simulation. Values can only be traced by calling function
sca_util::sca_trace. A trace file shall be opened before values can be traced to that file, and values shall not
be traced to a given trace file if one or more delta cycles have elapsed since opening the file. A VCD trace
file shall be closed by calling function sca_util::sca_close_vcd_trace_file. A tabular trace file shall be closed
by calling function sca_util::sca_close_tabular_trace_file. A trace file shall not be closed by these functions
before the final delta cycle of the simulation.

An implementation may support other trace file formats by providing alternatives
to the functions sca_util::sca_create_vcd_trace_file, sca_util::sca_create_tabular_trace_file,
sca_util::sca_close_vcd_trace_file, and sca_util::sca_close_tabular_trace_file.

9.1.1 Class definitions

All names used in the class definitions and function declarations for tracing shall be placed in the namespace
sca_util.

9.1.1.1 sca_util::sca_trace_mode_base

9.1.1.1.1 Description

The class sca_util::sca_trace_mode_base shall define the base class for trace mode manipulators. The
manipulators, which shall be derived from this base class, are predefined. An application shall not create an
instance and shall not derive from this class.

Instances of derived classes can only be used as argument to the member function set_mode of class
sca_util::sca_trace_file (see 9.1.1.2.5).

An implementation shall at least support the trace mode manipulators as defined in this subclause.

9.1.1.1.2 Class definition

namespace sca_util {

 class sca_trace_mode_base
 {
 public:
 virtual ~sca_trace_mode_base() = 0;
 };

 enum sca_ac_fmt { SCA_AC_REAL_IMAG, SCA_AC_MAG_RAD, SCA_AC_DB_DEG };

 class sca_ac_format : public sca_util::sca_trace_mode_base
 {
 public:
 sca_ac_format(sca_util::sca_ac_fmt format = sca_util::SCA_AC_REAL_IMAG);
 };

 enum sca_noise_fmt { SCA_NOISE_SUM, SCA_NOISE_ALL };

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

– 174 –
IEC 61691-8:2021 © IEC 2021

IEEE Std 1666.1™-2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

IEEE Std 1666.1-2016
IEEE Standard for Standard SystemC® Analog/Mixed-Signal Extensions Language Reference Manual

175
Copyright © 2016 IEEE. All rights reserved.

 class sca_noise_format : public sca_util::sca_trace_mode_base
 {
 public:
 sca_noise_format(sca_util::sca_noise_fmt format = sca_util::SCA_NOISE_SUM);
 };

 class sca_decimation : public sca_util::sca_trace_mode_base
 {
 public:
 sca_decimation(unsigned long n);
 };

 class sca_sampling : public sca_util::sca_trace_mode_base
 {
 public:
 sca_sampling(const sca_core::sca_time& tstep,
 const sca_core::sca_time& toffset = sc_core::SC_ZERO_TIME);
 sca_sampling(double tstep, sc_core::sc_time_unit tstep_unit,
 double toffset = 0.0, sc_core::sc_time_unit toffset_unit = sc_core::SC_SEC);
 };

 enum sca_multirate_fmt { SCA_INTERPOLATE, SCA_DONT_INTERPOLATE, SCA_HOLD_SAMPLE };

 class sca_multirate : public sca_util::sca_trace_mode_base
 {
 public:
 sca_multirate(sca_util::sca_multirate_fmt format = sca_util::SCA_INTERPOLATE);
 };

} // namespace sca_util

9.1.1.1.3 Trace mode classes

If an instance of class sca_util::sca_ac_format is passed to the member function set_mode of class
sca_util::sca_trace_file, the format for writing the results of a small-signal frequency-domain or noise
simulation shall be set. If sca_util::SCA_AC_REAL_IMAG is passed as argument to create an instance of
class sca_util::sca_ac_format, the results shall be written as real and imaginary part. The signal names shall
be extended by .real and .imag. If sca_util::SCA_AC_MAG_RAD is passed as argument to create an instance
of class sca_util::sca_ac_format, the results shall be written as magnitude value and phase in radian. The
signal names shall be extended by .mag and .rad. If sca_util::SCA_AC_DB_DEG is passed as argument to
create an instance of class sca_util::sca_ac_format, the results shall be written as the magnitude in decibel
(dB) and phase in degree. The signal names shall be extended by .db and .deg. The magnitude (DB) of the
signal relative to a reference level of one (1) shall be expressed in decibel according to Equation (9.1):

 (9.1)

If an instance of class sca_util::sca_noise_format is passed to the member function set_mode of class
sca_util::sca_trace_file, the format for writing the results of a small-signal frequency-domain noise
simulation shall be set. If sca_util::SCA_NOISE_SUM is passed as argument to create an instance of class
sca_util::sca_noise_format, the contributions of all noise sources of a small-signal frequency-domain noise
simulation shall be summed arithmetically. In this case, only the magnitude or real value corresponding to the
specified format shall be written. If sca_util::SCA_NOISE_ALL is passed as argument to create an instance
of class sca_util::sca_noise_format, the contributions of all noise sources of a small-signal frequency-domain
noise simulation shall be written separately. The name shall be extended by the instance name followed by the
corresponding format specifier (e.g., .db or .deg).

If an instance of class sca_util::sca_decimation is passed to the member function set_mode of class
sca_util::sca_trace_file, only every n-th line of the results of a time-domain simulation shall be written to the
tabular trace file, where n is the argument that shall be assigned while creating the passed instance. It shall
be an error, if n is equal to zero.

Published by IEC under licence from IEEE. © 2016 IEEE. All rights reserved.

IEC 61691-8:2021 © IEC 2021
IEEE Std 1666.1™-2016 – 175 –

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

69
1-8

:20
21

https://iecnorm.com/api/?name=ac7dc424f4a28697fee1c0b9bc41cf35

	Contents
	FOREWORD
	Introduction
	Important notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Subsets
	1.4 Relationship with C++
	1.5 Relationship with SystemC
	1.6 Guidance for readers

	2. Normative references
	3. Terminology and conventions used in this standard
	3.1 Terminology
	3.1.1 Shall, should, may, can
	3.1.2 Implementation, application
	3.1.3 Call, called from, derived from
	3.1.4 Specific technical terms

	3.2 Syntactical conventions
	3.2.1 Implementation-defined
	3.2.2 Disabled
	3.2.3 Ellipsis (...)
	3.2.4 Class names
	3.2.5 Prefixes

	3.3 Typographical conventions
	3.4 Semantic conventions
	3.4.1 Class definitions and the inheritance hierarchy
	3.4.2 Function definitions and side-effects
	3.4.3 Functions whose return type is a reference or a pointer
	3.4.3.1 Functions that return *this or an actual argument
	3.4.3.2 Functions that return const char*

	3.4.4 Namespaces and internal naming
	3.4.5 Non-compliant applications and errors

	3.5 Notes and examples

	4. Core language definitions
	4.1 Class header files
	4.1.1 #include “systemc-ams”
	4.1.2 #include “systemc-ams.h”

	4.2 Base class definitions
	4.2.1 sca_core::sca_module
	4.2.1.1 Description
	4.2.1.2 Class definition
	4.2.1.3 Constraints on usage
	4.2.1.4 kind
	4.2.1.5 set_timestep
	4.2.1.6 set_max_timestep
	4.2.1.7 SCA_CTOR

	4.2.2 sca_core::sca_interface
	4.2.2.1 Description
	4.2.2.2 Class definition
	4.2.2.3 Constraints on usage

	4.2.3 sca_core::sca_prim_channel
	4.2.3.1 Description
	4.2.3.2 Class definition
	4.2.3.3 Constraints on usage
	4.2.3.4 Constructors
	4.2.3.5 kind

	4.2.4 sca_core::sca_port
	4.2.4.1 Description
	4.2.4.2 Class definition
	4.2.4.3 Template parameter IF
	4.2.4.4 Constraints on usage
	4.2.4.5 Constructors
	4.2.4.6 kind

	4.2.5 sca_core::sca_time
	4.2.6 sca_core::sca_max_time
	4.2.7 sca_core::sca_parameter_base
	4.2.7.1 Description
	4.2.7.2 Class definition
	4.2.7.3 Constructors
	4.2.7.4 kind
	4.2.7.5 to_string
	4.2.7.6 print
	4.2.7.7 lock
	4.2.7.8 unlock
	4.2.7.9 is_locked
	4.2.7.10 operator<<

	4.2.8 sca_core::sca_parameter
	4.2.8.1 Description
	4.2.8.2 Class definition
	4.2.8.3 Template parameter T
	4.2.8.4 Constructors
	4.2.8.5 kind
	4.2.8.6 to_string
	4.2.8.7 print
	4.2.8.8 get
	4.2.8.9 set

	4.2.9 sca_core::sca_assign_from_proxy†
	4.2.9.1 Description
	4.2.9.2 Class definition
	4.2.9.3 Constraint on usage

	4.2.10 sca_core::sca_assign_to_proxy†
	4.2.10.1 Description
	4.2.10.2 Class definition
	4.2.10.3 operator=
	4.2.10.4 Constraint on usage

	5. Timed data flow model of computation
	5.1 Class definitions
	5.1.1 sca_tdf::sca_module
	5.1.1.1 Description
	5.1.1.2 Class definition
	5.1.1.3 Constraints on usage
	5.1.1.4 kind
	5.1.1.5 set_attributes
	5.1.1.6 change_attributes
	5.1.1.7 initialize
	5.1.1.8 reinitialize
	5.1.1.9 processing
	5.1.1.10 ac_processing
	5.1.1.11 register_processing
	5.1.1.12 register_ac_processing
	5.1.1.13 request_next_activation
	5.1.1.14 accept_attribute_changes
	5.1.1.15 reject_attribute_changes
	5.1.1.16 does_attribute_changes
	5.1.1.17 does_no_attribute_changes
	5.1.1.18 get_time
	5.1.1.19 get_timestep
	5.1.1.20 get_max_timestep
	5.1.1.21 get_last_timestep
	5.1.1.22 is_dynamic
	5.1.1.23 are_attribute_changes_allowed
	5.1.1.24 are_attributes_changed
	5.1.1.25 is_timestep_changed
	5.1.1.26 Constructor
	5.1.1.27 SCA_TDF_MODULE

	5.1.2 sca_tdf::sca_signal_if
	5.1.2.1 Description
	5.1.2.2 Class definition

	5.1.3 sca_tdf::sca_signal
	5.1.3.1 Description
	5.1.3.2 Class definition
	5.1.3.3 Template parameter T
	5.1.3.4 Constructors
	5.1.3.5 kind

	5.1.4 sca_tdf::sca_default_interpolator
	5.1.4.1 Description
	5.1.4.2 Class definition
	5.1.4.3 Template parameter T
	5.1.4.4 store_value
	5.1.4.5 get_value

	5.1.5 sca_tdf::sca_in
	5.1.5.1 Description
	5.1.5.2 Class definition
	5.1.5.3 Template parameter T
	5.1.5.4 Constructors
	5.1.5.5 set_delay
	5.1.5.6 set_rate
	5.1.5.7 set_timestep
	5.1.5.8 set_max_timestep
	5.1.5.9 get_delay
	5.1.5.10 get_rate
	5.1.5.11 get_time
	5.1.5.12 get_timestep
	5.1.5.13 get_max_timestep
	5.1.5.14 get_last_timestep
	5.1.5.15 kind
	5.1.5.16 initialize
	5.1.5.17 read_delayed_value
	5.1.5.18 is_timestep_changed
	5.1.5.19 is_rate_changed
	5.1.5.20 is_delay_changed
	5.1.5.21 read

	5.1.6 sca_tdf::sca_out
	5.1.6.1 Description
	5.1.6.2 Class definition
	5.1.6.3 Constraint on usage
	5.1.6.4 Template parameters

	5.1.7 sca_tdf::sca_out<T>
	5.1.7.1 Description
	5.1.7.2 Class definition
	5.1.7.3 Constructors
	5.1.7.4 set_delay
	5.1.7.5 set_rate
	5.1.7.6 set_timestep
	5.1.7.7 set_max_timestep
	5.1.7.8 get_delay
	5.1.7.9 get_rate
	5.1.7.10 get_time
	5.1.7.11 get_timestep
	5.1.7.12 get_max_timestep
	5.1.7.13 get_last_timestep
	5.1.7.14 kind
	5.1.7.15 initialize
	5.1.7.16 read_delayed_value
	5.1.7.17 is_timestep_changed
	5.1.7.18 is_rate_changed
	5.1.7.19 is_delay_changed
	5.1.7.20 write

	5.1.8 sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT, INTERP>
	5.1.8.1 Description
	5.1.8.2 Class definition
	5.1.8.3 Constraint on usage
	5.1.8.4 Constructors
	5.1.8.5 set_delay
	5.1.8.6 set_ct_delay
	5.1.8.7 set_rate
	5.1.8.8 set_timestep
	5.1.8.9 set_max_timestep
	5.1.8.10 get_delay
	5.1.8.11 get_ct_delay
	5.1.8.12 get_rate
	5.1.8.13 get_time
	5.1.8.14 get_timestep
	5.1.8.15 get_max_timestep
	5.1.8.16 get_last_timestep
	5.1.8.17 kind
	5.1.8.18 initialize
	5.1.8.19 set_initial_value
	5.1.8.20 read_delayed_value
	5.1.8.21 is_timestep_changed
	5.1.8.22 is_rate_changed
	5.1.8.23 is_delay_changed
	5.1.8.24 write

	5.1.9 sca_tdf::sca_out<T, sca_tdf::SCA_DT_CUT>
	5.1.9.1 Description
	5.1.9.2 Class definition
	5.1.9.3 Constraint on usage
	5.1.9.4 Constructors
	5.1.9.5 set_delay
	5.1.9.6 set_ct_delay
	5.1.9.7 set_rate
	5.1.9.8 set_timestep
	5.1.9.9 set_max_timestep
	5.1.9.10 get_delay
	5.1.9.11 get_ct_delay
	5.1.9.12 get_rate
	5.1.9.13 get_time
	5.1.9.14 get_timestep
	5.1.9.15 get_max_timestep
	5.1.9.16 get_last_timestep
	5.1.9.17 kind
	5.1.9.18 initialize
	5.1.9.19 set_initial_value
	5.1.9.20 read_delayed_value
	5.1.9.21 is_timestep_changed
	5.1.9.22 is_rate_changed
	5.1.9.23 is_delay_changed
	5.1.9.24 write

	5.1.10 sca_tdf::sca_de::sca_in, sca_tdf::sc_in
	5.1.10.1 Description
	5.1.10.2 Class definition
	5.1.10.3 Constraint on usage
	5.1.10.4 Template parameter T
	5.1.10.5 Constructors
	5.1.10.6 set_delay
	5.1.10.7 set_rate
	5.1.10.8 set_timestep
	5.1.10.9 set_max_timestep
	5.1.10.10 get_delay
	5.1.10.11 get_rate
	5.1.10.12 get_time
	5.1.10.13 get_timestep
	5.1.10.14 get_max_timestep
	5.1.10.15 get_last_timestep
	5.1.10.16 kind
	5.1.10.17 initialize
	5.1.10.18 read_delayed_value
	5.1.10.19 is_timestep_changed
	5.1.10.20 is_rate_changed
	5.1.10.21 is_delay_changed
	5.1.10.22 read
	5.1.10.23 default_event
	5.1.10.24 value_changed_event
	5.1.10.25 event
	5.1.10.26 bind, operator()

	5.1.11 sca_tdf::sca_de::sca_in<bool>, sca_tdf::sc_in<bool>
	5.1.11.1 Description
	5.1.11.2 Class definition
	5.1.11.3 Constraint on usage
	5.1.11.4 Constructors
	5.1.11.5 set_delay
	5.1.11.6 set_rate
	5.1.11.7 set_timestep
	5.1.11.8 set_max_timestep
	5.1.11.9 get_delay
	5.1.11.10 get_rate
	5.1.11.11 get_time
	5.1.11.12 get_timestep
	5.1.11.13 get_max_timestep
	5.1.11.14 get_last_timestep
	5.1.11.15 kind
	5.1.11.16 initialize
	5.1.11.17 read_delayed_value
	5.1.11.18 is_timestep_changed
	5.1.11.19 is_rate_changed
	5.1.11.20 is_delay_changed
	5.1.11.21 read
	5.1.11.22 default_event
	5.1.11.23 value_changed_event
	5.1.11.24 posedge_event
	5.1.11.25 negedge_event
	5.1.11.26 event
	5.1.11.27 posedge
	5.1.11.28 negedge
	5.1.11.29 bind, operator()

	5.1.12 sca_tdf::sca_de::sca_in<sc_dt::sc_logic>, sca_tdf::sc_in<sc_dt::sc_logic>
	5.1.12.1 Description
	5.1.12.2 Class definition
	5.1.12.3 Constraint on usage
	5.1.12.4 Constructors
	5.1.12.5 set_delay
	5.1.12.6 set_rate
	5.1.12.7 set_timestep
	5.1.12.8 set_max_timestep
	5.1.12.9 get_delay
	5.1.12.10 get_rate
	5.1.12.11 get_time
	5.1.12.12 get_timestep
	5.1.12.13 get_max_timestep
	5.1.12.14 get_last_timestep
	5.1.12.15 kind
	5.1.12.16 initialize
	5.1.12.17 read_delayed_value
	5.1.12.18 is_timestep_changed
	5.1.12.19 is_rate_changed
	5.1.12.20 is_delay_changed
	5.1.12.21 read
	5.1.12.22 default_event
	5.1.12.23 value_changed_event
	5.1.12.24 posedge_event
	5.1.12.25 negedge_event
	5.1.12.26 event
	5.1.12.27 posedge
	5.1.12.28 negedge
	5.1.12.29 bind, operator()

	5.1.13 sca_tdf::sca_de::sca_out, sca_tdf::sc_out
	5.1.13.1 Description
	5.1.13.2 Class definition
	5.1.13.4 Constraint on usage
	5.1.13.3 Template parameter T
	5.1.13.5 Constructors
	5.1.13.6 set_delay
	5.1.13.7 set_rate
	5.1.13.8 set_timestep
	5.1.13.9 set_max_timestep
	5.1.13.10 get_delay
	5.1.13.11 get_rate
	5.1.13.12 get_time
	5.1.13.13 get_timestep
	5.1.13.14 get_max_timestep
	5.1.13.15 get_last_timestep
	5.1.13.16 kind
	5.1.13.17 initialize
	5.1.13.18 initialize_de_signal
	5.1.13.19 read_delayed_value
	5.1.13.20 is_timestep_changed
	5.1.13.21 is_rate_changed
	5.1.13.22 is_delay_changed
	5.1.13.23 write

	5.1.14 sca_tdf::sca_trace_variable
	5.1.14.1 Description
	5.1.14.2 Class definition
	5.1.14.3 Constraint on usage
	5.1.14.4 Constructors
	5.1.14.5 kind
	5.1.14.6 write
	5.1.14.7 read

	5.2 Hierarchical composition and port binding
	5.3 Elaboration and simulation
	5.3.1 Elaboration
	5.3.1.1 Attribute setting
	5.3.1.2 Timestep calculation and propagation
	5.3.1.3 Computability check

	5.3.2 Simulation
	5.3.2.1 Initialization
	5.3.2.2 Processing
	5.3.2.3 Attribute changes and reinitialization
	5.3.2.4 Synchronization with the SystemC kernel

	5.4 Embedded linear dynamic equations
	5.4.1 sca_tdf::sca_ct_proxy†
	5.4.1.1 Description
	5.4.1.2 Class definition
	5.4.1.3 Constraint on usage
	5.4.1.4 to_double
	5.4.1.5 to_vector
	5.4.1.6 to_port
	5.4.1.7 assign_to

	5.4.2 sca_tdf::sca_ct_vector_proxy†
	5.4.2.1 Description
	5.4.2.2 Class definition
	5.4.2.3 Constraint on usage
	5.4.2.4 to_vector
	5.4.2.5 to_matrix
	5.4.2.6 to_port
	5.4.2.7 assign_to

	5.4.3 sca_tdf::sca_ltf_nd
	5.4.3.1 Description
	5.4.3.2 Class definition
	5.4.3.3 Constructors
	5.4.3.4 Constraint on usage
	5.4.3.5 kind
	5.4.3.6 set_max_delay
	5.4.3.7 estimate_next_value
	5.4.3.8 enable_iterations
	5.4.3.9 calculate, operator()

	5.4.4 sca_tdf::sca_ltf_zp
	5.4.4.1 Description
	5.4.4.2 Class definition
	5.4.4.3 Constructors
	5.4.4.4 Constraint on usage
	5.4.4.5 kind
	5.4.4.6 set_max_delay
	5.4.4.7 estimate_next_value
	5.4.4.8 enable_iterations
	5.4.4.9 calculate, operator()

	5.4.5 sca_tdf::sca_ss
	5.4.5.1 Description
	5.4.5.2 Class definition
	5.4.5.3 Constructors
	5.4.5.4 kind
	5.4.5.5 set_max_delay
	5.4.5.6 estimate_next_value
	5.4.5.7 enable_iterations
	5.4.5.8 calculate, operator()

	6. Linear signal flow model of computation
	6.1 Class definitions
	6.1.1 sca_lsf::sca_module
	6.1.1.1 Description
	6.1.1.2 Class definition

	6.1.2 sca_lsf::sca_signal_if
	6.1.2.1 Description
	6.1.2.2 Class definition

	6.1.3 sca_lsf::sca_signal
	6.1.3.1 Description
	6.1.3.2 Class definition
	6.1.3.3 Constructors
	6.1.3.4 kind

	6.1.4 sca_lsf::sca_in
	6.1.4.1 Description
	6.1.4.2 Class definition
	6.1.4.3 Constructors
	6.1.4.4 kind

	6.1.5 sca_lsf::sca_out
	6.1.5.1 Description
	6.1.5.2 Class definition
	6.1.5.3 Constructors
	6.1.5.4 kind

	6.1.6 sca_lsf::sca_add
	6.1.6.1 Description
	6.1.6.2 Class definition
	6.1.6.3 kind

	6.1.7 sca_lsf::sca_sub
	6.1.7.1 Description
	6.1.7.2 Class definition
	6.1.7.3 kind

	6.1.8 sca_lsf::sca_gain
	6.1.8.1 Description
	6.1.8.2 Class definition
	6.1.8.3 kind

	6.1.9 sca_lsf::sca_dot
	6.1.9.1 Description
	6.1.9.2 Class definition
	6.1.9.3 kind

	6.1.10 sca_lsf::sca_integ
	6.1.10.1 Description
	6.1.10.2 Class definition
	6.1.10.3 kind

	6.1.11 sca_lsf::sca_delay
	6.1.11.1 Description
	6.1.11.2 Class definition
	6.1.11.3 Constraint of usage
	6.1.11.4 kind

	6.1.12 sca_lsf::sca_source
	6.1.12.1 Description
	6.1.12.2 Class definition
	6.1.12.3 kind

	6.1.13 sca_lsf::sca_ltf_nd
	6.1.13.1 Description
	6.1.13.2 Class definition
	6.1.13.3 Constraint on usage
	6.1.13.4 kind

	6.1.14 sca_lsf::sca_ltf_zp
	6.1.14.1 Description
	6.1.14.2 Class definition
	6.1.14.3 Constraint on usage
	6.1.14.4 kind

	6.1.15 sca_lsf::sca_ss
	6.1.15.1 Description
	6.1.15.2 Class definition
	6.1.15.3 Constraint on usage
	6.1.15.4 kind

	6.1.16 sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain
	6.1.16.1 Description
	6.1.16.2 Class definition
	6.1.16.3 kind

	6.1.17 sca_lsf::sca_tdf::sca_source, sca_lsf::sca_tdf_source
	6.1.17.1 Description
	6.1.17.2 Class definition
	6.1.17.3 kind

	6.1.18 sca_lsf::sca_tdf::sca_sink, sca_lsf::sca_tdf_sink
	6.1.18.1 Description
	6.1.18.2 Class definition
	6.1.18.3 kind

	6.1.19 sca_lsf::sca_tdf::sca_mux, sca_lsf::sca_tdf_mux
	6.1.19.1 Description
	6.1.19.2 Class definition
	6.1.19.3 kind

	6.1.20 sca_lsf::sca_tdf::sca_demux, sca_lsf::sca_tdf_demux
	6.1.20.1 Description
	6.1.20.2 Class definition
	6.1.20.3 kind

	6.1.21 sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain
	6.1.21.1 Description
	6.1.21.2 Class definition
	6.1.21.3 kind

	6.1.22 sca_lsf::sca_de::sca_source, sca_lsf::sca_de_source
	6.1.22.1 Description
	6.1.22.2 Class definition
	6.1.22.3 kind

	6.1.23 sca_lsf::sca_de::sca_sink, sca_lsf::sca_de_sink
	6.1.23.1 Description
	6.1.23.2 Class definition
	6.1.23.3 kind

	6.1.24 sca_lsf::sca_de::sca_mux, sca_lsf::sca_de_mux
	6.1.24.1 Description
	6.1.24.2 Class definition
	6.1.24.3 kind

	6.1.25 sca_lsf::sca_de::sca_demux, sca_lsf::sca_de_demux
	6.1.25.1 Description
	6.1.25.2 Class definition
	6.1.25.3 kind

	6.2 Hierarchical composition and port binding
	6.3 Elaboration and simulation
	6.3.1 Elaboration
	6.3.1.1 Timestep calculation and propagation
	6.3.1.2 Equation system setup and solvability check

	6.3.2 Simulation
	6.3.2.1 Initialization
	6.3.2.2 Time-domain simulation
	6.3.2.3 Synchronization with TDF MoC
	6.3.2.4 Synchronization with the SystemC kernel

	7. Electrical linear networks model of computation
	7.1 Class definitions
	7.1.1 sca_eln::sca_module
	7.1.1.1 Description
	7.1.1.2 Class definition

	7.1.2 sca_eln::sca_node_if
	7.1.2.1 Description
	7.1.2.2 Class definition

	7.1.3 sca_eln::sca_terminal
	7.1.3.1 Description
	7.1.3.2 Class definition
	7.1.3.3 Constructors
	7.1.3.4 kind

	7.1.4 sca_eln::sca_node
	7.1.4.1 Description
	7.1.4.2 Class definition
	7.1.4.3 Constructors
	7.1.4.4 kind

	7.1.5 sca_eln::sca_node_ref
	7.1.5.1 Description
	7.1.5.2 Class definition
	7.1.5.3 Constructors
	7.1.5.4 kind

	7.1.6 sca_eln::sca_r
	7.1.6.1 Description
	7.1.6.2 Class definition
	7.1.6.3 kind

	7.1.7 sca_eln::sca_c
	7.1.7.1 Description
	7.1.7.2 Class definition
	7.1.7.3 Constraint of usage
	7.1.7.4 kind

	7.1.8 sca_eln::sca_l
	7.1.8.1 Description
	7.1.8.2 Class definition
	7.1.8.3 Constraint of usage
	7.1.8.4 kind

	7.1.9 sca_eln::sca_vcvs
	7.1.9.1 Description
	7.1.9.2 Class definition
	7.1.9.3 kind

	7.1.10 sca_eln::sca_vccs
	7.1.10.1 Description
	7.1.10.2 Class definition
	7.1.10.3 kind

	7.1.11 sca_eln::sca_ccvs
	7.1.11.1 Description
	7.1.11.2 Class definition
	7.1.11.3 kind

	7.1.12 sca_eln::sca_cccs
	7.1.12.1 Description
	7.1.12.2 Class definition
	7.1.12.3 kind

	7.1.13 sca_eln::sca_nullor
	7.1.13.1 Description
	7.1.13.2 Class definition
	7.1.13.3 kind

	7.1.14 sca_eln::sca_gyrator
	7.1.14.1 Description
	7.1.14.2 Class definition
	7.1.14.3 kind

	7.1.15 sca_eln::sca_ideal_transformer
	7.1.15.1 Description
	7.1.15.2 Class definition
	7.1.15.3 kind

	7.1.16 sca_eln::sca_transmission_line
	7.1.16.1 Description
	7.1.16.2 Class definition
	7.1.16.3 kind

	7.1.17 sca_eln::sca_vsource
	7.1.17.1 Description
	7.1.17.2 Class definition
	7.1.17.3 kind

	7.1.18 sca_eln::sca_isource
	7.1.18.1 Description
	7.1.18.2 Class definition
	7.1.18.3 kind

	7.1.19 sca_eln::sca_tdf::sca_r, sca_eln::sca_tdf_r
	7.1.19.1 Description
	7.1.19.2 Class definition
	7.1.19.3 kind

	7.1.20 sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf_c
	7.1.20.1 Description
	7.1.20.2 Class definition
	7.1.20.3 Constraint of usage
	7.1.20.4 kind

	7.1.21 sca_eln::sca_tdf::sca_l, sca_eln::sca_tdf_l
	7.1.21.1 Description
	7.1.21.2 Class definition
	7.1.21.3 Constraint of usage
	7.1.21.4 kind

	7.1.22 sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf_rswitch
	7.1.22.1 Description
	7.1.22.2 Class definition
	7.1.22.3 kind

	7.1.23 sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf_vsource
	7.1.23.1 Description
	7.1.23.2 Class definition
	7.1.23.3 kind

	7.1.24 sca_eln::sca_tdf::sca_isource, sca_eln::sca_tdf_isource
	7.1.24.1 Description
	7.1.24.2 Class definition
	7.1.24.3 kind

	7.1.25 sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf_vsink
	7.1.25.1 Description
	7.1.25.2 Class definition
	7.1.25.3 kind

	7.1.26 sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf_isink
	7.1.26.1 Description
	7.1.26.2 Class definition
	7.1.26.3 kind

	7.1.27 sca_eln::sca_de::sca_r, sca_eln::sca_de_r
	7.1.27.1 Description
	7.1.27.2 Class definition
	7.1.27.3 kind

	7.1.28 sca_eln::sca_de::sca_c, sca_eln::sca_de_c
	7.1.28.1 Description
	7.1.28.2 Class definition
	7.1.28.3 Constraint of usage
	7.1.28.4 kind

	7.1.29 sca_eln::sca_de::sca_l, sca_eln::sca_de_l
	7.1.29.1 Description
	7.1.29.2 Class definition
	7.1.29.3 Constraint of usage
	7.1.29.4 kind

	7.1.30 sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch
	7.1.30.1 Description
	7.1.30.2 Class definition
	7.1.30.3 kind

	7.1.31 sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource
	7.1.31.1 Description
	7.1.31.2 Class definition
	7.1.31.3 kind

	7.1.32 sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource
	7.1.32.1 Description
	7.1.32.2 Class definition
	7.1.32.3 kind

	7.1.33 sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink
	7.1.33.1 Description
	7.1.33.2 Class definition
	7.1.33.3 kind

	7.1.34 sca_eln::sca_de::sca_isink, sca_eln::sca_de_isink
	7.1.34.1 Description
	7.1.34.2 Class definition
	7.1.34.3 kind

	7.2 Hierarchical composition and port binding
	7.3 Elaboration and simulation
	7.3.1 Elaboration
	7.3.1.1 Timestep calculation and propagation
	7.3.1.2 Equation system setup and solvability check

	7.3.2 Simulation
	7.3.2.1 Initialization
	7.3.2.2 Time-domain simulation
	7.3.2.3 Synchronization with TDF MoC
	7.3.2.4 Synchronization with the SystemC kernel

	8. Predefined analyses
	8.1 Time-domain analysis
	8.1.1 Elaboration and simulation
	8.1.2 Running elaboration and simulation

	8.2 Small-signal frequency-domain analyses
	8.2.1 Elaboration and simulation
	8.2.1.1 Elaboration
	8.2.1.2 Simulation

	8.2.2 Running elaboration and simulation
	8.2.2.1 sca_ac_analysis::sca_ac_start
	8.2.2.2 sca_ac_analysis::sca_ac_noise_start

	8.2.3 Small-signal frequency-domain analysis of TDF descriptions
	8.2.3.1 sca_ac_analysis::sca_ac
	8.2.3.2 sca_ac_analysis::sca_ac_noise
	8.2.3.3 sca_ac_analysis::sca_ac_is_running
	8.2.3.4 sca_ac_analysis::sca_ac_noise_is_running
	8.2.3.5 sca_ac_analysis::sca_ac_f
	8.2.3.6 sca_ac_analysis::sca_ac_w
	8.2.3.7 sca_ac_analysis::sca_ac_s
	8.2.3.8 sca_ac_analysis::sca_ac_z
	8.2.3.9 sca_ac_analysis::sca_ac_delay
	8.2.3.10 sca_ac_analysis::sca_ac_ltf_nd
	8.2.3.11 sca_ac_analysis::sca_ac_ltf_zp
	8.2.3.12 sca_ac_analysis::sca_ac_ss

	8.2.4 Small-signal frequency-domain analysis of LSF descriptions
	8.2.5 Small-signal frequency-domain analysis of ELN descriptions

	9. Utility definitions
	9.1 Trace files
	9.1.1 Class definitions
	9.1.1.1 sca_util::sca_trace_mode_base
	9.1.1.1.1 Description
	9.1.1.1.2 Class definition
	9.1.1.1.3 Trace mode classes

	9.1.1.2 sca_util::sca_trace_file
	9.1.1.2.1 Description
	9.1.1.2.2 Class definition
	9.1.1.2.3 enable
	9.1.1.2.4 disable
	9.1.1.2.5 set_mode
	9.1.1.2.6 reopen

	9.1.1.3 sca_util::sca_traceable_object†
	9.1.1.3.1 Description
	9.1.1.3.2 Class definition
	9.1.1.3.3 Constraint on usage

	9.1.2 Function declarations
	9.1.2.1 sca_util::sca_create_vcd_trace_file
	9.1.2.2 sca_util::sca_close_vcd_trace_file
	9.1.2.3 sca_util::sca_create_tabular_trace_file
	9.1.2.3.1 Format for time-domain simulations
	9.1.2.3.2 Format for small-signal frequency-domain and noise simulations

	9.1.2.4 sca_util::sca_close_tabular_trace_file
	9.1.2.5 sca_util::sca_write_comment
	9.1.2.6 sca_util::sca_trace

	9.2 Data types and constants
	9.2.1 Class definition and function declarations
	9.2.1.1 sca_util::sca_complex
	9.2.1.1.1 Description
	9.2.1.1.2 Class definition

	9.2.1.2 sca_util::sca_matrix
	9.2.1.2.1 Description
	9.2.1.2.2 Class definition
	9.2.1.2.3 Template parameter T
	9.2.1.2.4 Constructors
	9.2.1.2.5 resize
	9.2.1.2.6 set_auto_resizable
	9.2.1.2.7 unset_auto_resizable
	9.2.1.2.8 is_auto_resizable
	9.2.1.2.9 n_rows
	9.2.1.2.10 n_cols
	9.2.1.2.11 operator()
	9.2.1.2.12 operator=
	9.2.1.2.13 operator==
	9.2.1.2.14 operator!=
	9.2.1.2.15 to_string
	9.2.1.2.16 print
	9.2.1.2.17 operator<<

	9.2.1.3 sca_util::sca_vector
	9.2.1.3.1 Description
	9.2.1.3.2 Class definition
	9.2.1.3.3 Template parameter T
	9.2.1.3.4 Constructors
	9.2.1.3.5 resize
	9.2.1.3.6 set_auto_resizable
	9.2.1.3.7 unset_auto_resizable
	9.2.1.3.8 is_auto_resizable
	9.2.1.3.9 length
	9.2.1.3.10 operator()
	9.2.1.3.11 operator=
	9.2.1.3.12 operator==
	9.2.1.3.13 operator!=
	9.2.1.3.14 to_string
	9.2.1.3.15 print
	9.2.1.3.16 operator<<

	9.2.1.4 sca_util::sca_create_vector
	9.2.1.4.1 Description
	9.2.1.4.2 Definition

	9.2.2 Definition of constants
	9.2.2.1 sca_util::SCA_INFINITY
	9.2.2.1.1 Description
	9.2.2.1.2 Definition

	9.2.2.2 sca_util::SCA_COMPLEX_J
	9.2.2.2.1 Description
	9.2.2.2.2 Definition

	9.2.2.3 sca_util::SCA_UNDEFINED
	9.2.2.3.1 Description
	9.2.2.3.2 Definition

	9.3 Reporting information
	9.3.1 Class definition and function declarations
	9.3.1.1 sca_util::sca_information_mask†
	9.3.1.1.1 Class definition
	9.3.1.1.2 operator|

	9.3.1.2 sca_util::sca_information_on
	9.3.1.3 sca_util::sca_information_off

	9.3.2 Mask definitions
	9.3.2.1 sca_util::sca_info::sca_module
	9.3.2.2 sca_util::sca_info::sca_tdf_solver
	9.3.2.3 sca_util::sca_info::sca_lsf_solver
	9.3.2.4 sca_util::sca_info::sca_eln_solver

	9.4 Version and copyright
	9.4.1 Macro definitions
	9.4.1.1 IEEE_16661_SYSTEMC_AMS
	9.4.1.2 SCA_VERSION_MAJOR
	9.4.1.3 SCA_VERSION_MINOR
	9.4.1.4 SCA_VERSION_PATCH
	9.4.1.5 SCA_VERSION_ORIGINATOR
	9.4.1.6 SCA_VERSION_RELEASE_DATE
	9.4.1.7 SCA_VERSION_PRERELEASE
	9.4.1.8 SCA_IS_PRERELEASE
	9.4.1.9 SCA_VERSION
	9.4.1.10 SCA_COPYRIGHT

	9.4.2 Constants
	9.4.2.1 sca_core::sca_version_major
	9.4.2.2 sca_core::sca_version_minor
	9.4.2.3 sca_core::sca_version_patch
	9.4.2.4 sca_core::sca_version_originator
	9.4.2.5 sca_core::sca_version_release_date
	9.4.2.6 sca_core::sca_version_prerelease
	9.4.2.7 sca_core::sca_is_prerelease
	9.4.2.8 sca_core::sca_version_string
	9.4.2.9 sca_core::sca_copyright_string

	9.4.3 Function declarations
	9.4.3.1 sca_core::sca_copyright
	9.4.3.2 sca_core::sca_version
	9.4.3.3 sca_core::sca_release

	Annex A (informative) Introduction to the SystemC Analog/Mixed-Signal extensions
	Annex B (informative) Glossary
	Index

